CHAPTER 2

Relation between Real and Complex Secondary Classes

A natural mapping $\varphi \colon B\Gamma_q^{\mathbb{C}} \to B\Gamma_{2q}$ is obtained by forgetting transverse complex structures. There is a natural homomorphism from $H^*(WO_{2q})$ to $H^*(WU_q)$ which corresponds to this mapping as follows.

THEOREM 2.1 ([64], [3, Theorem 3.1]). Let λ be the mapping from WO_{2q} to WU_q given by

$$\lambda(c_k) = (\sqrt{-1})^k \sum_{j=0}^k (-1)^j v_{k-j} \overline{v}_j,$$

$$\lambda(h_{2k+1}) = \frac{(-1)^k}{2} \sqrt{-1} \sum_{j=0}^{2k+1} (-1)^j \widetilde{u}_{2k-j+1} (v_j + \overline{v}_j),$$

where v_0 and \overline{v}_0 are considered as 1. Then λ induces a homomorphism from $H^*(WO_{2q})$ to $H^*(WU_q)$, denoted by $[\lambda]$. The homomorphism $[\lambda]$ corresponds to forgetting transverse complex structures, indeed, the following diagram commutes:

$$\begin{array}{ccc} H^*(\mathrm{WO}_{2q}) & \stackrel{[\lambda]}{\longrightarrow} & H^*(\mathrm{WU}_q) \\ & \chi & & & \downarrow \chi^{\mathbb{C}} \\ & & & & \downarrow \chi^{\mathbb{C}} \\ H^*(B\Gamma_{2q}) & \stackrel{}{\longrightarrow} & H^*(B\Gamma_q^{\mathbb{C}}). \end{array}$$

The Godbillon–Vey class and the imaginary part of the Bott class are related by the formula

$$[\lambda](\mathrm{GV}_{2q}) = \frac{(2q)!}{q! \, q!} \, \xi_q \cdot \mathrm{ch}_1^q \,,$$

where $ch_1 = \frac{v_1 + \overline{v}_1}{2}$ and it corresponds to the first Chern class of the complex normal bundle of the foliation. The image of GV_{2q} under $[\lambda]$ is also called the Godbillon-Vey class.

REMARK 2.2. Theorem 2.1 first appeared in [64] without proofs.

The kernel, image and cokernel of $[\lambda]$ have the following meanings:

 $\ker [\lambda] = \begin{cases} \text{classes in } H^*(WO_{2q}) \text{ which are obstructions for foliations} \\ \text{to admit transverse holomorphic structures} \end{cases} \\ \text{im } [\lambda] = \{ \text{classes in } H^*(WU_q) \text{ which are invariants as real foliations} \}, \\ \text{coker } [\lambda] = \{ \text{classes in } H^*(WU_q) \text{ which cannot be induced from real classes} \}.$

If $H^*(WU_q)$ is explicitly described, then one can write down $[\lambda]$ and determine these spaces. This is done for $q \leq 3$ in [5]. The results are given in the last part of this section (Theorems 2.6 and 2.7).

The image of GV_{2q} is non-trivial in $H^*(\mathrm{WU}_q)$. Indeed, we will construct transversely holomorphic foliations with non-trivial Godbillon–Vey classes. On the other hand, we have the following

COROLLARY 2.3. The image of GV_{2q} is trivial in $H^*(\mathrm{W}_q^{\mathbb{C}})$.

PROOF. The equality $ch_1 = d\left(\frac{u_1 + \overline{u}_1}{2}\right)$ holds in $W_q^{\mathbb{C}}$. Therefore GV_{2q} is trivial by Theorem 2.1.

This corollary implies that the Godbillon–Vey classes of transversely holomorphic foliations is trivial if the first Chern class of the complex normal bundle is trivial.

There is a version of Theorem 2.1 for foliations with trivialized normal bundles.

THEOREM 2.4 ([3]). Let $\widehat{\lambda} \colon W_{2q} \to W_q^{\mathbb{C}}$ be an extension of λ defined by

$$\widehat{\lambda}(h_{2k}) = \frac{(-1)^k}{2} \sqrt{-1} \sum_{j=0}^{2k} (-1)^j (u_{2k-j} \overline{v}_j + \overline{u}_j v_{2k-j}),$$

where v_0 and \overline{v}_0 are regarded as 2, and u_0 and \overline{u}_0 are regarded as 0. Then $\widehat{\lambda}$ induces on the cohomology a homomorphism, denoted by $[\widehat{\lambda}]$, which corresponds to forgetting transverse complex structures.

Let $\widehat{\varphi} \colon B\overline{\Gamma_q^{\mathbb{C}}} \to B\overline{\Gamma_{2q}}$ be the mapping obtained by forgetting transverse complex structures. The induced homomorphisms commute as follows:

The mapping in which we are most interested in the first half of this monograph is $\chi^{\mathbb{C}} \circ [\lambda] \colon H^*(WO_{2q}) \to H^*(B\Gamma_q^{\mathbb{C}}).$

REMARK 2.5 (cf. Remark 1.3.13). The above diagram can be explained in terms of the Schubert varieties. Let $X_q \times X_q \to X_{2q}$ be the mapping induced by taking the direct sum. This mapping also induces a mapping from $\widetilde{X}_q = (X_q \times X_q)/\mathrm{U}(q)$ to $X_{2q}/\mathrm{O}(2q)$. Then the top square in the above diagram corresponds to the following commutative diagram:

The following is a table of bases for ker[λ], im[λ] and coker[λ] for q = 2, 3. The image of a class $\alpha \in H^*(WO_{2q})$ under [λ] is denoted by $[\alpha]_{\lambda}$.

THEOREM 2.6 ([5, Theorem 1.8]).

 As a basis for the image of H^{*}(WO₄) in H^{*}(WU₂), we can take the following classes:

 $[c_2]_{\lambda}, \quad [h_1 c_2^2]_{\lambda}, \quad [h_1 c_1^2 c_2]_{\lambda}, \quad [h_1 c_1^4]_{\lambda}.$

- 2) The classes in Table 2.1 form a basis for the kernel of $[\lambda]$.

THEOREM 2.7 ([5, Theorem 1.9]).

- 1) A basis for the image of $H^*(WO_6)$ in $H^*(WU_3)$ is given by Table 2.2.
- 2) A basis for the kernel of $[\lambda]$ is given by Table 2.3.
- 3) The image is described as follows:
 - i) The only Chern class in the image is $[\overline{v}_1]^2 2[\overline{v}_2]$.
 - ii) The image of the secondary classes is contained in the subspace $H^{13}(WU_3) \oplus H^{17}(WU_3) \oplus H^{18}(WU_3)$, more precisely,
 - the subspace of $H^{13}(WO_6)$ spanned by the classes

 $[h_1c_1^6], [h_1c_1^4c_2], [h_1c_1^3c_3], [h_1c_1c_2c_3], [h_1c_3^2], [h_1c_1^2c_2^2]$

is mapped to the subspace of $H^{13}(WU_3)$ spanned by the classes

$$[\widetilde{u}_1v_1^3\overline{v}_1^3], \ [\widetilde{u}_1v_1v_2\overline{v}_1^3], \ [\widetilde{u}_1v_1v_2\overline{v}_1\overline{v}_2], \ [\widetilde{u}_1v_1v_2\overline{v}_3], \ [\widetilde{u}_1v_3\overline{v}_1^3],$$

 $[\widetilde{u}_1v_3\overline{v}_3].$

The class $[h_3c_2^2]$ is mapped to the class $[\widetilde{u}_2v_1v_2\overline{v}_2] - [\widetilde{u}_2v_2\overline{v}_3]$ modulo the above subspace.

• The class $[h_3c_3^2]$, of degree 17, is mapped to the class $[\widetilde{u}_3v_3\overline{v}_3]$.

TABLE 2.1. A basis for the kernel of $[\lambda]: H^*(WO_4) \to H^*(WU_2)$.

4	$[c_2]_{\lambda}$
13	$[h_1c_3^2]_{\lambda}, [h_1c_1c_2c_3]_{\lambda}, [h_1c_1^3c_3]_{\lambda}, [h_1c_1^4c_2]_{\lambda}, [h_1c_1^2c_2^2]_{\lambda}, [h_1c_1^6]_{\lambda}, [h_3c_2^2]_{\lambda}$
17	$[h_3c_3^2]_\lambda$
18	$ [h_1h_3c_3^2]_{\lambda}, [h_1h_3c_1c_2c_3]_{\lambda}, [h_1h_3c_1^3c_3]_{\lambda}, [h_1h_3c_1^4c_2]_{\lambda}, [h_1h_3c_1^2c_2^2]_{\lambda}, [h_1h_3c_1^6]_{\lambda}] $
	TABLE 2.2 A basis for the image of $[\lambda]: H^*(W\Omega_c) \to H^*(WU_c)$

TABLE 2.2. A basis for the image of $[\lambda]: H^*(WO_6) \to H^*(WU_3)$.

• The subspace spanned by the classes

 $[h_1h_3c_1^6], [h_1h_3c_1c_2c_3], [h_1h_3c_1^3c_3], [h_1h_3c_3^2], [h_1h_3c_1^4c_2],$ $[h_1h_3c_1^2c_2^2],$

which are of degree 18, is mapped to the subspace spanned by the classes

$$\begin{split} &[\widetilde{u}_1\widetilde{u}_3v_1^3\overline{v}_1^3], \ [\widetilde{u}_1\widetilde{u}_3(v_1v_2\overline{v}_3+v_3\overline{v}_1\overline{v}_2)], \ [\widetilde{u}_1\widetilde{u}_3(v_1^3\overline{v}_3+v_3\overline{v}_1^3)], \\ &[\widetilde{u}_1\widetilde{u}_3v_3\overline{v}_3], \ [\widetilde{u}_1\widetilde{u}_3v_1v_2\overline{v}_1^3], \ [\widetilde{u}_1\widetilde{u}_3v_1v_2\overline{v}_1\overline{v}_2]. \end{split}$$

- 4) The following classes form a basis for the cokernel, namely,
 - i) the classes of degree not equal to 4, 13, 17, 18,
 - ii) the class $[\widetilde{u}_2 v_1 v_2 \overline{v}_2] + [\widetilde{u}_2 v_2 \overline{v}_3]$ (of degree 13),
 - iii) the classes $[\widetilde{u}_1\widetilde{u}_3(v_1^3\overline{v}_3-v_3\overline{v}_1^3)]$, $[\widetilde{u}_1\widetilde{u}_3(v_1v_2\overline{v}_3-v_3\overline{v}_1\overline{v}_2)]$, $[\widetilde{u}_2\widetilde{u}_3v_1v_2\overline{v}_2]$, $[\widetilde{u}_2\widetilde{u}_3v_2\overline{v}_3]$ and $[\widetilde{u}_2\widetilde{u}_3v_3\overline{v}_2]$ (of degree 18), and
 - iv) the class $[\overline{v}_1]^2 + 2[\overline{v}_2]$ (of degree 4).

$ \begin{bmatrix} [h_1c_2^3] - \frac{1}{8}[h_1c_1^6] + \frac{3}{4}[h_1c_1^4c_2] - \frac{3}{2}[h_1c_1^2c_2^2], \\ [h_1c_2c_4] - \frac{1}{16}[h_1c_1^6] - [h_1c_1c_2c_3] + \frac{1}{4}[h_1c_1^2c_2^2] + \frac{1}{8}[h_1c_1^4c_2], \\ [h_1c_1^2c_4] - \frac{1}{4}[h_1c_1^6] + [h_1c_1^4c_2] - [h_1c_1^3c_3] - \frac{1}{2}[h_1c_1^2c_2^2], \\ [h_1c_1c_5] - [h_1c_1c_2c_3] - \frac{1}{20}[h_1c_1^6] + \frac{1}{2}[h_1c_1^2c_2^2], \\ [h_1c_6] + \frac{1}{80}[h_1c_1^6] - \frac{1}{8}[h_1c_1^4c_2] + \frac{1}{4}[h_1c_1^2c_2^2] - \frac{1}{2}[h_1c_3^2], \\ [h_3c_4] - \frac{1}{4}[h_1c_1^3c_3] + [h_1c_1c_2c_3] - [h_1c_3^2] - \frac{1}{2}[h_3c_2^2], \\ [h_5c_2] - \frac{1}{2}[h_1c_1c_5] \end{bmatrix} $ $15 [h_3c_6] - \frac{1}{2}[h_3c_3^2], \\ [h_5c_4], [h_5c_2^2], [h_3c_2^3], [h_3c_2c_4] \end{bmatrix} $ $17 \begin{bmatrix} h_3c_6] - \frac{1}{2}[h_3c_3^2], [h_3c_2c_4] \\ [h_1h_3c_2^2] - \frac{1}{8}[h_1h_3c_1^6] + \frac{3}{4}[h_1h_3c_1^4c_2] - \frac{3}{2}[h_1h_3c_1^2c_2^2], \\ [h_1h_3c_1c_5] - [h_1h_3c_1^6] - [h_1h_3c_1c_2c_3] + \frac{1}{4}[h_1h_3c_1^2c_2^2] + \frac{1}{8}[h_1h_3c_1^4c_2], \\ [h_1h_3c_1c_5] - [h_1h_3c_1^6] - [h_1h_3c_1^6] + \frac{1}{2}[h_1h_3c_1^2c_2^2], \\ [h_1h_3c_1c_5] - [h_1h_3c_1^6] - \frac{1}{8}[h_1h_3c_1^6] + \frac{1}{4}[h_1h_3c_1^2c_2^2] - \frac{1}{2}[h_1h_3c_1^2c_2^2], \\ [h_1h_3c_1c_5] - [h_1h_3c_1^6] - \frac{1}{8}[h_1h_3c_1^6] + \frac{1}{4}[h_1h_3c_1^2c_2^2] - \frac{1}{2}[h_1h_3c_1^2c_2^2], \\ [h_1h_3c_6] + \frac{1}{80}[h_1h_3c_1^6] - \frac{1}{8}[h_1h_3c_1^6c_2] + \frac{1}{4}[h_1h_3c_1^2c_2^2] - \frac{1}{2}[h_1h_3c_1^2c_2^2], \\ [h_1h_3c_1c_5] - [h_1h_3c_1^6] - \frac{1}{8}[h_1h_3c_1^6c_2] + \frac{1}{4}[h_1h_3c_1^2c_2^2] - \frac{1}{2}[h_1h_3c_1^2c_2], \\ [h_1h_3c_1c_5] - [h_1h_3c_1^6] - \frac{1}{8}[h_1h_3c_1^6c_2] + \frac{1}{4}[h_1h_3c_1^2c_2^2] - \frac{1}{2}[h_1h_3c_3^2] \\ 19 [h_5c_5] \\ \\ \text{the secondary classes of degree greater than 20 \\ \end{bmatrix}$		the Pontrjagin classes other than $[c_2]$
$ \begin{array}{c} 10 & 4 & 0 \\ [h_1c_1^2c_4] - \frac{1}{4}[h_1c_1^6] + [h_1c_1^4c_2] - [h_1c_1^3c_3] - \frac{1}{2}[h_1c_1^2c_2^2], \\ [h_1c_1c_5] - [h_1c_1c_2c_3] - \frac{1}{20}[h_1c_1^6] + \frac{1}{2}[h_1c_1^2c_2^2], \\ [h_1c_6] + \frac{1}{80}[h_1c_1^6] - \frac{1}{8}[h_1c_1^4c_2] + \frac{1}{4}[h_1c_1^2c_2^2] - \frac{1}{2}[h_1c_3^2], \\ [h_1c_6] + \frac{1}{80}[h_1c_1^6] - \frac{1}{8}[h_1c_1^4c_2] + \frac{1}{4}[h_1c_1^2c_2^2] - \frac{1}{2}[h_1c_3^2], \\ [h_3c_4] - \frac{1}{4}[h_1c_1^3c_3] + [h_1c_1c_2c_3] - [h_1c_3^2] - \frac{1}{2}[h_3c_2^2], \\ [h_5c_2] - \frac{1}{2}[h_1c_1c_5] \\ \hline \\ 15 & [h_3c_5], & [h_3c_2c_3] \\ \hline \\ 17 & [h_3c_6] - \frac{1}{2}[h_3c_3^2], \\ [h_5c_4], & [h_5c_2^2], & [h_3c_3^2], & [h_3c_2c_4] \\ \hline \\ & [h_1h_3c_2^3] - \frac{1}{8}[h_1h_3c_1^6] + \frac{3}{4}[h_1h_3c_1^4c_2] - \frac{3}{2}[h_1h_3c_1^2c_2^2], \\ [h_1h_3c_2c_4] - \frac{1}{16}[h_1h_3c_1^6] - [h_1h_3c_1c_2c_3] + \frac{1}{4}[h_1h_3c_1^2c_2^2] + \frac{1}{8}[h_1h_3c_1^4c_2], \\ \hline \\ 18 & [h_1h_3c_1^2c_4] - \frac{1}{4}[h_1h_3c_1^6] + [h_1h_3c_1^4c_2] - [h_1h_3c_1^3c_3] - \frac{1}{2}[h_1h_3c_1^2c_2^2], \\ [h_1h_3c_1c_5] - [h_1h_3c_1c_2c_3] - \frac{1}{20}[h_1h_3c_1^6] + \frac{1}{2}[h_1h_3c_1^2c_2^2], \\ [h_1h_3c_6] + \frac{1}{80}[h_1h_3c_1^6] - \frac{1}{8}[h_1h_3c_1^4c_2] + \frac{1}{4}[h_1h_3c_1^2c_2^2] - \frac{1}{2}[h_1h_3c_3^3] \\ \hline \\ 19 & [h_5c_5] \\ \hline \end{array}$	13	$[h_1c_2^3] - \frac{1}{8}[h_1c_1^6] + \frac{3}{4}[h_1c_1^4c_2] - \frac{3}{2}[h_1c_1^2c_2^2],$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$[h_1c_2c_4] - \frac{1}{16}[h_1c_1^6] - [h_1c_1c_2c_3] + \frac{1}{4}[h_1c_1^2c_2^2] + \frac{1}{8}[h_1c_1^4c_2],$
$\begin{array}{c} 120 & 2 \\ [h_1c_6] + \frac{1}{80}[h_1c_1^6] - \frac{1}{8}[h_1c_1^4c_2] + \frac{1}{4}[h_1c_1^2c_2^2] - \frac{1}{2}[h_1c_3^2], \\ [h_3c_4] - \frac{1}{4}[h_1c_1^3c_3] + [h_1c_1c_2c_3] - [h_1c_3^2] - \frac{1}{2}[h_3c_2^2], \\ [h_3c_4] - \frac{1}{4}[h_1c_1^3c_3] + [h_1c_1c_2c_3] - [h_1c_3^2] - \frac{1}{2}[h_3c_2^2], \\ [h_5c_2] - \frac{1}{2}[h_1c_1c_5] \\ \hline \\ 15 & [h_3c_5], \ [h_3c_2c_3] \\ \hline \\ 17 & [h_3c_6] - \frac{1}{2}[h_3c_3^2], \\ [h_5c_4], \ [h_5c_2^2], \ [h_3c_2^3], \ [h_3c_2c_4] \\ \hline \\ [h_1h_3c_2^2] - \frac{1}{8}[h_1h_3c_1^6] + \frac{3}{4}[h_1h_3c_1^4c_2] - \frac{3}{2}[h_1h_3c_1^2c_2^2], \\ [h_1h_3c_2c_4] - \frac{1}{16}[h_1h_3c_1^6] - [h_1h_3c_1c_2c_3] + \frac{1}{4}[h_1h_3c_1^2c_2^2] + \frac{1}{8}[h_1h_3c_1^4c_2], \\ \hline \\ 18 & [h_1h_3c_1^2c_4] - \frac{1}{4}[h_1h_3c_1^6] + [h_1h_3c_1^4c_2] - [h_1h_3c_1^3c_3] - \frac{1}{2}[h_1h_3c_1^2c_2^2], \\ [h_1h_3c_1c_5] - [h_1h_3c_1c_2c_3] - \frac{1}{20}[h_1h_3c_1^6] + \frac{1}{2}[h_1h_3c_1^2c_2^2], \\ [h_1h_3c_6] + \frac{1}{80}[h_1h_3c_1^6] - \frac{1}{8}[h_1h_3c_1^4c_2] + \frac{1}{4}[h_1h_3c_1^2c_2^2] - \frac{1}{2}[h_1h_3c_3^2] \\ \hline \\ 19 & [h_5c_5] \end{array}$		$[h_1c_1^2c_4] - \frac{1}{4}[h_1c_1^6] + [h_1c_1^4c_2] - [h_1c_1^3c_3] - \frac{1}{2}[h_1c_1^2c_2^2],$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$[h_1c_1c_5] - [h_1c_1c_2c_3] - \frac{1}{20}[h_1c_1^6] + \frac{1}{2}[h_1c_1^2c_2^2],$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$[h_1c_6] + \frac{1}{80}[h_1c_1^6] - \frac{1}{8}[h_1c_1^4c_2] + \frac{1}{4}[h_1c_1^2c_2^2] - \frac{1}{2}[h_1c_3^2],$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$[h_3c_4] - \frac{1}{4}[h_1c_1^3c_3] + [h_1c_1c_2c_3] - [h_1c_3^2] - \frac{1}{2}[h_3c_2^2],$
$\begin{array}{c c} 17 & \begin{bmatrix} h_3c_6 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} h_3c_3^2 \end{bmatrix}, \\ \hline & [h_5c_4], \ \begin{bmatrix} h_5c_2^2 \end{bmatrix}, \ \begin{bmatrix} h_3c_2^3 \end{bmatrix}, \ \begin{bmatrix} h_3c_2c_4 \end{bmatrix} \\ & \begin{bmatrix} h_1h_3c_2^3 \end{bmatrix} - \frac{1}{8} \begin{bmatrix} h_1h_3c_1^6 \end{bmatrix} + \frac{3}{4} \begin{bmatrix} h_1h_3c_1^4c_2 \end{bmatrix} - \frac{3}{2} \begin{bmatrix} h_1h_3c_1^2c_2^2 \end{bmatrix}, \\ & \begin{bmatrix} h_1h_3c_2c_4 \end{bmatrix} - \frac{1}{16} \begin{bmatrix} h_1h_3c_1^6 \end{bmatrix} - \begin{bmatrix} h_1h_3c_1c_2c_3 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} h_1h_3c_1^2c_2^2 \end{bmatrix} + \frac{1}{8} \begin{bmatrix} h_1h_3c_1^4c_2 \end{bmatrix}, \\ & \begin{bmatrix} h_1h_3c_1^2c_4 \end{bmatrix} - \frac{1}{4} \begin{bmatrix} h_1h_3c_1^6 \end{bmatrix} + \begin{bmatrix} h_1h_3c_1^4c_2 \end{bmatrix} - \begin{bmatrix} h_1h_3c_1^3c_3 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} h_1h_3c_1^2c_2^2 \end{bmatrix}, \\ & \begin{bmatrix} h_1h_3c_1c_5 \end{bmatrix} - \begin{bmatrix} h_1h_3c_1c_2c_3 \end{bmatrix} - \frac{1}{20} \begin{bmatrix} h_1h_3c_1^6 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} h_1h_3c_1^2c_2^2 \end{bmatrix}, \\ & \begin{bmatrix} h_1h_3c_6 \end{bmatrix} + \frac{1}{80} \begin{bmatrix} h_1h_3c_1^6 \end{bmatrix} - \frac{1}{8} \begin{bmatrix} h_1h_3c_1^4c_2 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} h_1h_3c_1^2c_2^2 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} h_1h_3c_3^2 \end{bmatrix} \\ & 19 \end{bmatrix} \begin{bmatrix} h_5c_5 \end{bmatrix} \end{array}$		$[h_5c_2] - rac{1}{2}[h_1c_1c_5]$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	$[h_3c_5], \ [h_3c_2c_3]$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	$[h_3c_6]-rac{1}{2}[h_3c_3^2],$
$\begin{bmatrix} h_{1}h_{3}c_{2}c_{4} \end{bmatrix} - \frac{1}{16}[h_{1}h_{3}c_{1}^{6}] - [h_{1}h_{3}c_{1}c_{2}c_{3}] + \frac{1}{4}[h_{1}h_{3}c_{1}^{2}c_{2}^{2}] + \frac{1}{8}[h_{1}h_{3}c_{1}^{4}c_{2}], \\ \begin{bmatrix} h_{1}h_{3}c_{1}^{2}c_{4} \end{bmatrix} - \frac{1}{4}[h_{1}h_{3}c_{1}^{6}] + [h_{1}h_{3}c_{1}^{4}c_{2}] - [h_{1}h_{3}c_{1}^{3}c_{3}] - \frac{1}{2}[h_{1}h_{3}c_{1}^{2}c_{2}^{2}], \\ \begin{bmatrix} h_{1}h_{3}c_{1}c_{5} \end{bmatrix} - [h_{1}h_{3}c_{1}c_{2}c_{3}] - \frac{1}{20}[h_{1}h_{3}c_{1}^{6}] + \frac{1}{2}[h_{1}h_{3}c_{1}^{2}c_{2}^{2}], \\ \begin{bmatrix} h_{1}h_{3}c_{1}c_{5} \end{bmatrix} - [h_{1}h_{3}c_{1}c_{2}c_{3}] - \frac{1}{20}[h_{1}h_{3}c_{1}^{6}] + \frac{1}{2}[h_{1}h_{3}c_{1}^{2}c_{2}^{2}], \\ \begin{bmatrix} h_{1}h_{3}c_{6} \end{bmatrix} + \frac{1}{80}[h_{1}h_{3}c_{1}^{6}] - \frac{1}{8}[h_{1}h_{3}c_{1}^{4}c_{2}] + \frac{1}{4}[h_{1}h_{3}c_{1}^{2}c_{2}^{2}] - \frac{1}{2}[h_{1}h_{3}c_{3}^{2}] \\ 19 [h_{5}c_{5}] \end{bmatrix}$		$[h_5c_4], \ \ [h_5c_2^2], \ \ [h_3c_2^3], \ \ [h_3c_2c_4]$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	$[h_1h_3c_2^3] - \frac{1}{8}[h_1h_3c_1^6] + \frac{3}{4}[h_1h_3c_1^4c_2] - \frac{3}{2}[h_1h_3c_1^2c_2^2],$
$\begin{bmatrix} h_{1}h_{3}c_{1}c_{5} \end{bmatrix} - \begin{bmatrix} h_{1}h_{3}c_{1}c_{2}c_{3} \end{bmatrix} - \frac{1}{20}\begin{bmatrix} h_{1}h_{3}c_{1}^{6} \end{bmatrix} + \frac{1}{2}\begin{bmatrix} h_{1}h_{3}c_{1}^{2}c_{2}^{2} \end{bmatrix}, \\ \begin{bmatrix} h_{1}h_{3}c_{6} \end{bmatrix} + \frac{1}{80}\begin{bmatrix} h_{1}h_{3}c_{1}^{6} \end{bmatrix} - \frac{1}{8}\begin{bmatrix} h_{1}h_{3}c_{1}^{4}c_{2} \end{bmatrix} + \frac{1}{4}\begin{bmatrix} h_{1}h_{3}c_{1}^{2}c_{2}^{2} \end{bmatrix} - \frac{1}{2}\begin{bmatrix} h_{1}h_{3}c_{3}^{2} \end{bmatrix} \\ 19 \begin{bmatrix} h_{5}c_{5} \end{bmatrix}$		$[h_1h_3c_2c_4] - \frac{1}{16}[h_1h_3c_1^6] - [h_1h_3c_1c_2c_3] + \frac{1}{4}[h_1h_3c_1^2c_2^2] + \frac{1}{8}[h_1h_3c_1^4c_2],$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$[h_1h_3c_1^2c_4] - \frac{1}{4}[h_1h_3c_1^6] + [h_1h_3c_1^4c_2] - [h_1h_3c_1^3c_3] - \frac{1}{2}[h_1h_3c_1^2c_2^2],$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$[h_1h_3c_1c_5] - [h_1h_3c_1c_2c_3] - \frac{1}{20}[h_1h_3c_1^6] + \frac{1}{2}[h_1h_3c_1^2c_2^2],$
		$[h_1h_3c_6] + \frac{1}{80}[h_1h_3c_1^6] - \frac{1}{8}[h_1h_3c_1^4c_2] + \frac{1}{4}[h_1h_3c_1^2c_2^2] - \frac{1}{2}[h_1h_3c_3^2]$
the secondary classes of degree greater than 20	19	$[h_5c_5]$
		the secondary classes of degree greater than 20

TABLE 2.3. A basis for the kernel of $[\lambda]: H^*(WO_6) \to H^*(WU_3)$.