CHAPTER 2

Relation between Real and Complex Secondary Classes

A natural mapping $\varphi: B \Gamma_{q}^{\mathbb{C}} \rightarrow B \Gamma_{2 q}$ is obtained by forgetting transverse complex structures. There is a natural homomorphism from $H^{*}\left(\mathrm{WO}_{2 q}\right)$ to $H^{*}\left(\mathrm{WU}_{q}\right)$ which corresponds to this mapping as follows.

Theorem 2.1 ([64], [3, Theorem 3.1]). Let λ be the mapping from $\mathrm{WO}_{2 q}$ to WU_{q} given by

$$
\begin{aligned}
\lambda\left(c_{k}\right) & =(\sqrt{-1})^{k} \sum_{j=0}^{k}(-1)^{j} v_{k-j} \bar{v}_{j}, \\
\lambda\left(h_{2 k+1}\right) & =\frac{(-1)^{k}}{2} \sqrt{-1} \sum_{j=0}^{2 k+1}(-1)^{j} \widetilde{u}_{2 k-j+1}\left(v_{j}+\bar{v}_{j}\right),
\end{aligned}
$$

where v_{0} and \bar{v}_{0} are considered as 1 . Then λ induces a homomorphism from $H^{*}\left(\mathrm{WO}_{2 q}\right)$ to $H^{*}\left(\mathrm{WU}_{q}\right)$, denoted by $[\lambda]$. The homomorphism $[\lambda]$ corresponds to forgetting transverse complex structures, indeed, the following diagram commutes:

The Godbillon-Vey class and the imaginary part of the Bott class are related by the formula

$$
[\lambda]\left(\mathrm{GV}_{2 q}\right)=\frac{(2 q)!}{q!q!} \xi_{q} \cdot \operatorname{ch}_{1}^{q}
$$

where $\operatorname{ch}_{1}=\frac{v_{1}+\bar{v}_{1}}{2}$ and it corresponds to the first Chern class of the complex normal bundle of the foliation. The image of $\mathrm{GV}_{2 q}$ under $[\lambda]$ is also called the Godbillon-Vey class.

Remark 2.2. Theorem 2.1 first appeared in [64] without proofs.

The kernel, image and cokernel of $[\lambda]$ have the following meanings:
$\operatorname{ker}[\lambda]=\left\{\begin{array}{l}\text { classes in } H^{*}\left(\mathrm{WO}_{2 q}\right) \text { which are obstructions for foliations } \\ \text { to admit transverse holomorphic structures }\end{array}\right\}$,
$\operatorname{im}[\lambda]=\left\{\right.$ classes in $H^{*}\left(\mathrm{WU}_{q}\right)$ which are invariants as real foliations $\}$, coker $[\lambda]=\left\{\right.$ classes in $H^{*}\left(\mathrm{WU}_{q}\right)$ which cannot be induced from real classes $\}$.

If $H^{*}\left(\mathrm{WU}_{q}\right)$ is explicitly described, then one can write down $[\lambda]$ and determine these spaces. This is done for $q \leq 3$ in [5]. The results are given in the last part of this section (Theorems 2.6 and 2.7).

The image of $\mathrm{GV}_{2 q}$ is non-trivial in $H^{*}\left(\mathrm{WU}_{q}\right)$. Indeed, we will construct transversely holomorphic foliations with non-trivial Godbillon-Vey classes. On the other hand, we have the following

Corollary 2.3. The image of $\mathrm{GV}_{2 q}$ is trivial in $H^{*}\left(\mathrm{~W}_{q}^{\mathbb{C}}\right)$.
Proof. The equality $\operatorname{ch}_{1}=d\left(\frac{u_{1}+\bar{u}_{1}}{2}\right)$ holds in $W_{q}^{\mathbb{C}}$. Therefore $\mathrm{GV}_{2 q}$ is trivial by Theorem 2.1.

This corollary implies that the Godbillon-Vey classes of transversely holomorphic foliations is trivial if the first Chern class of the complex normal bundle is trivial.

There is a version of Theorem 2.1 for foliations with trivialized normal bundles.
Theorem 2.4 ([3]). Let $\widehat{\lambda}: \mathrm{W}_{2 q} \rightarrow \mathrm{~W}_{q}^{\mathbb{C}}$ be an extension of λ defined by

$$
\widehat{\lambda}\left(h_{2 k}\right)=\frac{(-1)^{k}}{2} \sqrt{-1} \sum_{j=0}^{2 k}(-1)^{j}\left(u_{2 k-j} \bar{v}_{j}+\bar{u}_{j} v_{2 k-j}\right)
$$

where v_{0} and \bar{v}_{0} are regarded as 2 , and u_{0} and \bar{u}_{0} are regarded as 0 . Then $\widehat{\lambda}$ induces on the cohomology a homomorphism, denoted by $[\widehat{\lambda}]$, which corresponds to forgetting transverse complex structures.

Let $\widehat{\varphi}: B \overline{\Gamma_{q}^{\mathbb{C}}} \rightarrow B \overline{\Gamma_{2 q}}$ be the mapping obtained by forgetting transverse complex structures. The induced homomorphisms commute as follows:

The mapping in which we are most interested in the first half of this monograph is $\chi^{\mathbb{C}} \circ[\lambda]: H^{*}\left(\mathrm{WO}_{2 q}\right) \rightarrow H^{*}\left(B \Gamma_{q}^{\mathbb{C}}\right)$.

REmARK 2.5 (cf. Remark 1.3.13). The above diagram can be explained in terms of the Schubert varieties. Let $X_{q} \times X_{q} \rightarrow X_{2 q}$ be the mapping induced by taking the direct sum. This mapping also induces a mapping from $\widetilde{X_{q}}=\left(X_{q} \times X_{q}\right) / \mathrm{U}(q)$ to $X_{2 q} / \mathrm{O}(2 q)$. Then the top square in the above diagram corresponds to the following commutative diagram:

The following is a table of bases for $\operatorname{ker}[\lambda], \operatorname{im}[\lambda]$ and $\operatorname{coker}[\lambda]$ for $q=2,3$. The image of a class $\alpha \in H^{*}\left(\mathrm{WO}_{2 q}\right)$ under $[\lambda]$ is denoted by $[\alpha]_{\lambda}$.

Theorem 2.6 ([5, Theorem 1.8]).

1) As a basis for the image of $H^{*}\left(\mathrm{WO}_{4}\right)$ in $H^{*}\left(\mathrm{WU}_{2}\right)$, we can take the following classes:

$$
\left[c_{2}\right]_{\lambda}, \quad\left[h_{1} c_{2}^{2}\right]_{\lambda}, \quad\left[h_{1} c_{1}^{2} c_{2}\right]_{\lambda}, \quad\left[h_{1} c_{1}^{4}\right]_{\lambda}
$$

2) The classes in Table 2.1 form a basis for the kernel of $[\lambda]$.
3) The image is equal to $\left\langle\left[\bar{v}_{1}\right]^{2}-2\left[\bar{v}_{2}\right]\right\rangle \oplus H^{9}\left(\mathrm{WU}_{2}\right)$, where $\left\langle\left[\bar{v}_{1}\right]^{2}-2\left[\bar{v}_{2}\right]\right\rangle$ denotes the linear subspace spanned by $\left[\bar{v}_{1}\right]^{2}-2\left[\bar{v}_{2}\right]$. In particular, the subspace spanned by the classes $\left[h_{1} c_{1}^{4}\right],\left[h_{1} c_{1}^{2} c_{2}\right]$ and $\left[h_{1} c_{2}^{2}\right]$ in $H^{9}\left(\mathrm{WO}_{4}\right)$ is mapped isomorphically to $H^{9}\left(\mathrm{WU}_{2}\right)$.
4) The cokernel consists of the secondary classes of $H^{*}\left(\mathrm{WU}_{2}\right)$ which are not of degree 9 and the subspace spanned by the classes $\left[\bar{v}_{1}\right],\left[\bar{v}_{1}\right]^{2}+2\left[\bar{v}_{2}\right]$.

Theorem 2.7 ([5, Theorem 1.9]).

1) A basis for the image of $H^{*}\left(\mathrm{WO}_{6}\right)$ in $H^{*}\left(\mathrm{WU}_{3}\right)$ is given by Table 2.2.
2) A basis for the kernel of $[\lambda]$ is given by Table 2.3.
3) The image is described as follows:
i) The only Chern class in the image is $\left[\bar{v}_{1}\right]^{2}-2\left[\bar{v}_{2}\right]$.
ii) The image of the secondary classes is contained in the subspace $H^{13}\left(\mathrm{WU}_{3}\right) \oplus H^{17}\left(\mathrm{WU}_{3}\right) \oplus H^{18}\left(\mathrm{WU}_{3}\right)$, more precisely,

- the subspace of $H^{13}\left(\mathrm{WO}_{6}\right)$ spanned by the classes

$$
\left[h_{1} c_{1}^{6}\right],\left[h_{1} c_{1}^{4} c_{2}\right],\left[h_{1} c_{1}^{3} c_{3}\right],\left[h_{1} c_{1} c_{2} c_{3}\right],\left[h_{1} c_{3}^{2}\right],\left[h_{1} c_{1}^{2} c_{2}^{2}\right]
$$

is mapped to the subspace of $H^{13}\left(\mathrm{WU}_{3}\right)$ spanned by the classes

$$
\begin{aligned}
& {\left[\widetilde{u}_{1} v_{1}^{3} \bar{v}_{1}^{3}\right],\left[\widetilde{u}_{1} v_{1} v_{2} \bar{v}_{1}^{3}\right],\left[\widetilde{u}_{1} v_{1} v_{2} \bar{v}_{1} \bar{v}_{2}\right],\left[\widetilde{u}_{1} v_{1} v_{2} \bar{v}_{3}\right],\left[\widetilde{u}_{1} v_{3} \bar{v}_{1}^{3}\right],} \\
& {\left[\widetilde{u}_{1} v_{3} \bar{v}_{3}\right] .}
\end{aligned}
$$

The class $\left[h_{3} c_{2}^{2}\right]$ is mapped to the class $\left[\widetilde{u}_{2} v_{1} v_{2} \bar{v}_{2}\right]-\left[\widetilde{u}_{2} v_{2} \bar{v}_{3}\right] \bmod -$ ulo the above subspace.

- The class $\left[h_{3} c_{3}^{2}\right]$, of degree 17 , is mapped to the class $\left[\widetilde{u}_{3} v_{3} \bar{v}_{3}\right]$.

4	$\left[c_{2}\right]^{2},\left[c_{4}\right]$,
9	$\left[h_{3} c_{2}\right]-\frac{1}{2}\left[h_{1} c_{1} c_{3}\right]$,
	$\left[h_{1} c_{4}\right]-\frac{1}{2}\left[h_{1} c_{2}^{2}\right]+\frac{1}{12}\left[h_{1} c_{1}^{4}\right],\left[h_{1} c_{1} c_{3}\right]-\left[h_{1} c_{1}^{2} c_{2}\right]+\frac{1}{3}\left[h_{1} c_{1}^{4}\right]$
	$\left[h_{3} c_{J}\right]$, where $\|J\| \geq 3$
	$\left[h_{1} h_{3} c_{J}\right]$, where $\|J\| \geq 4$

Table 2.1. A basis for the kernel of $[\lambda]: H^{*}\left(\mathrm{WO}_{4}\right) \rightarrow H^{*}\left(\mathrm{WU}_{2}\right)$.

4	$\left[c_{2}\right]_{\lambda}$
13	$\left[h_{1} c_{3}^{2}\right]_{\lambda},\left[h_{1} c_{1} c_{2} c_{3}\right]_{\lambda},\left[h_{1} c_{1}^{3} c_{3}\right]_{\lambda},\left[h_{1} c_{1}^{4} c_{2}\right]_{\lambda},\left[h_{1} c_{1}^{2} c_{2}^{2}\right]_{\lambda},\left[h_{1} c_{1}^{6}\right]_{\lambda},\left[h_{3} c_{2}^{2}\right]_{\lambda}$
17	$\left[h_{3} c_{3}^{2}\right]_{\lambda}$
18	$\left[h_{1} h_{3} c_{3}^{2}\right]_{\lambda},\left[h_{1} h_{3} c_{1} c_{2} c_{3}\right]_{\lambda},\left[h_{1} h_{3} c_{1}^{3} c_{3}\right]_{\lambda},\left[h_{1} h_{3} c_{1}^{4} c_{2}\right]_{\lambda},\left[h_{1} h_{3} c_{1}^{2} c_{2}^{2}\right]_{\lambda},\left[h_{1} h_{3} c_{1}^{6}\right]_{\lambda}$

TABLE 2.2. A basis for the image of $[\lambda]: H^{*}\left(\mathrm{WO}_{6}\right) \rightarrow H^{*}\left(\mathrm{WU}_{3}\right)$.

- The subspace spanned by the classes

$$
\begin{aligned}
& {\left[h_{1} h_{3} c_{1}^{6}\right],\left[h_{1} h_{3} c_{1} c_{2} c_{3}\right],\left[h_{1} h_{3} c_{1}^{3} c_{3}\right],\left[h_{1} h_{3} c_{3}^{2}\right],\left[h_{1} h_{3} c_{1}^{4} c_{2}\right],} \\
& {\left[h_{1} h_{3} c_{1}^{2} c_{2}^{2}\right],}
\end{aligned}
$$

which are of degree 18 , is mapped to the subspace spanned by the classes

$$
\begin{aligned}
& {\left[\widetilde{u}_{1} \widetilde{u}_{3} v_{1}^{3} \bar{v}_{1}^{3}\right],\left[\widetilde{u}_{1} \widetilde{u}_{3}\left(v_{1} v_{2} \bar{v}_{3}+v_{3} \bar{v}_{1} \bar{v}_{2}\right)\right],\left[\widetilde{u}_{1} \widetilde{u}_{3}\left(v_{1}^{3} \bar{v}_{3} v_{3} \bar{v}_{1}^{3}\right)\right],} \\
& {\left[\widetilde{u}_{1} \widetilde{u}_{3} v_{3} \bar{v}_{3}\right],\left[\widetilde{u}_{1} \widetilde{u}_{3} v_{1} v_{2} \bar{v}_{1}^{3}\right],\left[\widetilde{u}_{1} \widetilde{u}_{3} v_{1} v_{2} \bar{v}_{1} \bar{v}_{2}\right] .}
\end{aligned}
$$

4) The following classes form a basis for the cokernel, namely,
i) the classes of degree not equal to $4,13,17,18$,
ii) the class $\left[\widetilde{u}_{2} v_{1} v_{2} \bar{v}_{2}\right]+\left[\widetilde{u}_{2} v_{2} \bar{v}_{3}\right]$ (of degree 13),
iii) the classes $\left[\widetilde{u}_{1} \widetilde{u}_{3}\left(v_{1}^{3} \bar{v}_{3}-v_{3} \bar{v}_{1}^{3}\right)\right]$, $\left[\widetilde{u}_{1} \widetilde{u}_{3}\left(v_{1} v_{2} \bar{v}_{3}-v_{3} \bar{v}_{1} \bar{v}_{2}\right)\right]$, $\left[\widetilde{u}_{2} \widetilde{u}_{3} v_{1} v_{2} \bar{v}_{2}\right]$, $\left[\widetilde{u}_{2} \widetilde{u}_{3} v_{2} \bar{v}_{3}\right]$ and $\left[\widetilde{u}_{2} \widetilde{u}_{3} v_{3} \bar{v}_{2}\right]$ (of degree 18), and
iv) the class $\left[\bar{v}_{1}\right]^{2}+2\left[\bar{v}_{2}\right]$ (of degree 4).

	the Pontrjagin classes other than [c_{2}]
13	$\begin{aligned} & {\left[h_{1} c_{2}^{3}\right]-\frac{1}{8}\left[h_{1} c_{1}^{6}\right]+\frac{3}{4}\left[h_{1} c_{1}^{4} c_{2}\right]-\frac{3}{2}\left[h_{1} c_{1}^{2} c_{2}^{2}\right],} \\ & {\left[h_{1} c_{2} c_{4}\right]-\frac{1}{16}\left[h_{1} c_{1}^{6}\right]-\left[h_{1} c_{1} c_{2} c_{3}\right]+\frac{1}{4}\left[h_{1} c_{1}^{2} c_{2}^{2}\right]+\frac{1}{8}\left[h_{1} c_{1}^{4} c_{2}\right],} \\ & {\left[h_{1} c_{1}^{2} c_{4}\right]-\frac{1}{4}\left[h_{1} c_{1}^{6}\right]+\left[h_{1} c_{1}^{4} c_{2}\right]-\left[h_{1} c_{1}^{3} c_{3}\right]-\frac{1}{2}\left[h_{1} c_{1}^{2} c_{2}^{2}\right],} \\ & {\left[h_{1} c_{1} c_{5}\right]-\left[h_{1} c_{1} c_{2} c_{3}\right]-\frac{1}{20}\left[h_{1} c_{1}^{6}\right]+\frac{1}{2}\left[h_{1} c_{1}^{2} c_{2}^{2}\right],} \\ & {\left[h_{1} c_{6}\right]+\frac{1}{80}\left[h_{1} c_{1}^{6}\right]-\frac{1}{8}\left[h_{1} c_{1}^{4} c_{2}\right]+\frac{1}{4}\left[h_{1} c_{1}^{2} c_{2}^{2}\right]-\frac{1}{2}\left[h_{1} c_{3}^{2}\right],} \\ & {\left[h_{3} c_{4}\right]-\frac{1}{4}\left[h_{1} c_{1}^{3} c_{3}\right]+\left[h_{1} c_{1} c_{2} c_{3}\right]-\left[h_{1} c_{3}^{2}\right]-\frac{1}{2}\left[h_{3} c_{2}^{2}\right],} \\ & {\left[h_{5} c_{2}\right]-\frac{1}{2}\left[h_{1} c_{1} c_{5}\right]} \end{aligned}$
15	$\left[h_{3} c_{5}\right], \quad\left[h_{3} c_{2} c_{3}\right]$
17	$\begin{aligned} & {\left[h_{3} c_{6}\right]-\frac{1}{2}\left[h_{3} c_{3}^{2}\right],} \\ & {\left[h_{5} c_{4}\right],\left[h_{5} c_{2}^{2}\right], \quad\left[h_{3} c_{2}^{3}\right], \quad\left[h_{3} c_{2} c_{4}\right]} \end{aligned}$
18	$\begin{aligned} & {\left[h_{1} h_{3} c_{2}^{3}\right]-\frac{1}{8}\left[h_{1} h_{3} c_{1}^{6}\right]+\frac{3}{4}\left[h_{1} h_{3} c_{1}^{4} c_{2}\right]-\frac{3}{2}\left[h_{1} h_{3} c_{1}^{2} c_{2}^{2}\right],} \\ & {\left[h_{1} h_{3} c_{2} c_{4}\right]-\frac{1}{16}\left[h_{1} h_{3} c_{1}^{6}\right]-\left[h_{1} h_{3} c_{1} c_{2} c_{3}\right]+\frac{1}{4}\left[h_{1} h_{3} c_{1}^{2} c_{2}^{2}\right]+\frac{1}{8}\left[h_{1} h_{3} c_{1}^{4} c_{2}\right],} \\ & {\left[h_{1} h_{3} c_{1}^{2} c_{4}\right]-\frac{1}{4}\left[h_{1} h_{3} c_{1}^{6}\right]+\left[h_{1} h_{3} c_{1}^{4} c_{2}\right]-\left[h_{1} h_{3} c_{1}^{3} c_{3}\right]-\frac{1}{2}\left[h_{1} h_{3} c_{1}^{2} c_{2}^{2}\right],} \\ & {\left[h_{1} h_{3} c_{1} c_{5}\right]-\left[h_{1} h_{3} c_{1} c_{2} c_{3}\right]-\frac{1}{20}\left[h_{1} h_{3} c_{1}^{6}\right]+\frac{1}{2}\left[h_{1} h_{3} c_{1}^{2} c_{2}^{2}\right],} \\ & {\left[h_{1} h_{3} c_{6}\right]+\frac{1}{80}\left[h_{1} h_{3} c_{1}^{6}\right]-\frac{1}{8}\left[h_{1} h_{3} c_{1}^{4} c_{2}\right]+\frac{1}{4}\left[h_{1} h_{3} c_{1}^{2} c_{2}^{2}\right]-\frac{1}{2}\left[h_{1} h_{3} c_{3}^{2}\right]} \end{aligned}$
19	$\left[h_{5} c_{5}\right]$
	the secondary classes of degree greater than 20

Table 2.3. A basis for the kernel of $[\lambda]: H^{*}\left(\mathrm{WO}_{6}\right) \rightarrow H^{*}\left(\mathrm{WU}_{3}\right)$.

