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Correction to the article
Intersection theorems for .0; ˙1/-vectors and s-cross-intersecting families

Peter Frankl and Andrey Kupavskii

Volume 7:2 (2017), 91–109

We modify the statement and proof of Theorem 1 in “Intersection theorems for f0;˙1g-vectors and s-
cross-intersecting families”. A version of the paper that incorporates the errata is uploaded on the arXiv:
https://arxiv.org/abs/1603.00938. We thank Danila Cherkashin and Sergei Kiselev for pointing out the
error.

Part 2 of Theorem 1 in [Frankl and Kupavskii 2017] is incorrect. To give a corrected version, let us
introduce some notation: V.n; m1; m2/� f0;˙1gn is the collection of all vectors with exactly m1 ones
and m2 minus ones, and

g.n; m1; m2/ WDmaxfjVj W V � V.n; m1; m2/ and hv; wi � �2m2C 1 for any v; w 2 Vg:

Theorem 1 (part 2). For n� n0.k/ and 0� l � k we have
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Thus, the statement is the same for even l and is different for odd l . The value of g.n; m1; m2/ seems
to be very difficult to determine in general. We have studied this quantity in [Frankl and Kupavskii
2018a; 2018b]. In the former one, we determined the value of g.n; m1; 1/ for any n; m1. This allows us
to determine exactly the value of F.n; k;�1/. In the latter one, we obtained the bounds�n
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We go on to the proof. The proof is correct until (and including) Claim 3. Let us give the corrected
version of the remainder of the proof. We first deal with the case of even l .

Claim 4. Let l be even. If I �
� Œn�
lC1

�
is bad, then for at least

�
n�k

k�l�1

�
sets S � I, S 2

�Œn�
k

�
, we have

jVg.S/j � f .k; l/� 1.

Proof. Consider the family A� 2S of subsets of S defined as AD fN.w/\S Ww 2 Vg.S/g. In view of
the uniqueness part of Katona’s theorem, it is sufficient to show that A does not contain one of the sets
from the extremal family U l for at least

�
n�k

k�l�1

�
choices of S .
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If I is bad then there exists a vector v of length lC1 such that both V.I; v/ and V.I; Nv/ are nonempty.
Assume without loss of generality that jN.v/j � l=2 and take a vector w 2 V such that wjI D Nv. Then for
any S such that S\S.w/D I the set N.v/ is missing from A (and, consequently, jVg.S/j � f .k; l/�1).
There are exactly

�
n�k

k�l�1
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such sets. �
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have

jVj �f .k; l/
�n

k

�
� �t

�
n�k

k�l�1

��
k

lC1

� CX
bad I

1

2

X
v2f˙1glC1

.jV.I; v/jC jV.I; Nv/j/

� �t

 �
n�k

k�l�1

��
k

lC1

� � 2k.k � l/

�
n� l � 2

k � l � 2

�!
< 0;

provided n > 2kk2
�

k
lC1

�
. We note that taking n > 4kk2 makes the choice of n for which the proof works

independent of l .
The case of odd l turns out to be harder. We shall need the following variant of Katona’s theorem.
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Proof. Without loss of generality, we may assume that F is shifted (we discuss the effect of this assump-
tion on the uniqueness at the end of the proof). The proof is by induction. The statement is clear for
mD 0; moreover, the extremal family is unique. For nD 2mC 2, it is easy to see that 2Œn� n

�
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�
splits

into pairs of complementary sets, which implies the statement.
Assume that the statement holds for .n � 1; m/ and .n � 1; m � 1/, and let us prove it for .n; m/,

n > 2mC 2. We have jF j D jF.n/jC jF. Nn/j. By induction, we have
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Moreover, by shiftedness it follows that jF [Gj � 2m� 1 for any F; G 2 F.n/, and thus jF.n/j �Pm�1
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We remark that if F was not shifted initially, then it could not shift into
Sm
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; thus the uniqueness

part holds for nonshifted families as well. �

Let us return to the case of odd l . Consider the subfamily V 0� V of all vectors from V that have exactly
lC1

2
minus ones, and put V 00 WD V nV 0. Arguing as in the case of even l , but applying Theorem I, we get
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and the inequality is sharp if V 00 ¤ U , where U consists of all f�1; 0; 1g-vectors with k nonzero coordi-
nates and at most l�1

2
minus ones.

Note also that any vector with lC1
2

minus ones has scalar product at least �l with any vector from U .
It is clear that V 0 must avoid scalar product �l � 1. Moreover, it is sufficient for V 0[U to have all scalar
products at least �l . Therefore, jV 0j � g
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