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Discrete analogues of John’s theorem

Sören Lennart Berg and Martin Henk

As a discrete counterpart to the classical theorem of Fritz John on the approximation of symmetric
n-dimensional convex bodies K by ellipsoids, Tao and Vu introduced so called generalized arithmetic
progressions P(A, b)⊂ Zn in order to cover (many of) the lattice points inside a convex body by a simple
geometric structure. Among others, they proved that there exists a generalized arithmetic progressions
P(A, b) such that P(A, b)⊂ K ∩Zn

⊂ P(A, O(n)3n/2b). Here we show that this bound can be lowered to
nO(ln n) and study some general properties of so called unimodular generalized arithmetic progressions.

1. Introduction

Let Kn
(s) be the set of all o-symmetric convex bodies in Rn , i.e., K ∈ Kn

(s) is a compact convex set in Rn

with nonempty interior and K = −K . By Bn ∈ Kn
(s) we denote the n-dimensional Euclidean unit ball,

i.e., Bn = {x ∈ Rn
: 〈x, x〉 ≤ 1}, where 〈 · , · 〉 is the standard inner product.

For K ∈ Kn
(s), John’s (ellipsoid) theorem states that there exists an ellipsoid E ∈ Kn

(s) such that

E ⊆ K ⊆
√

n E . (1-1)

(See, e.g., [Artstein-Avidan et al. 2015, Theorem 2.1.3] and [Schneider 2014, Theorem 10.12.2].) It
turns out that the volume maximal ellipsoid contained in K gives the desired approximation, and in the
nonsymmetric (or general) case the factor

√
n has to be replaced by n (after a suitable translation of K ).

This theorem has numerous applications in convex geometry or in the local theory of Banach spaces
(see the two works just cited for examples). It allows one to get a first quick estimate on the value f (K )
of any homogenous and monotone functional f on Kn

(s) by the value of the functional at ellipsoids. For
instance, if vol denotes the n-dimensional volume, i.e., n-dimensional Lebesgue measure, than (1-1)
implies that for K ∈ Kn

(s) there exists an ellipsoid E such that

vol E ≤ vol K ≤ nn/2 vol E . (1-2)

In particular, the volume of an ellipsoid can easily be evaluated as E = A Bn for some A ∈GL(n,R), and
thus vol E = |det A| vol Bn .

Tao and Vu [2006] started to study a discrete version of John’s theorem, where the aim of the
approximation is the set of lattice points in K , i.e., the set K ∩Zn . The approximation itself is carried out
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not by lattice points in ellipsoids, which are hard to control or to compute, but by a so called symmetric
generalized arithmetic progression (GAP for short)

P(A, b)= {A z : z ∈ Zn, |zi | ≤ bi , 1≤ i ≤ n},

where A ∈ Zn×n , det A 6= 0, and b ∈ Rn . Hence, P(A, b) consists of the lattice points of the lattice AZn

in the parallelepiped
∑n

i=1 conv {−bi ai , bi ai }, where ai is the i-th column of A and conv denotes the
convex hull.

The same authors proved an improvement of an earlier result of theirs, [Tao and Vu 2006, Lemma 3.36]:

Theorem [Tao and Vu 2008, Theorem 1.6]. Let K ∈ Kn
(s). There exists a GAP P(A, b)⊂ K such that

K ∩Zn
⊂ P(A,O (n)3n/2b), (1-3a)

|K ∩Zn
|< O (n)7n/2

|P(A, b)|. (1-3b)

(If C is a finite set, |C | denotes its cardinality.) Observe that |P(A, b)| =
∏n

i=1(2bbic+1) can be easily
computed. Obviously, (1-3a) and (1-3b) may be regarded as discrete counterparts to (1-1) and (1-2).

A first qualitative version of such a theorem, without mentioning explicit constants, was given in
[Bárány and Vershik 1992, Theorem 3]. Here we prove:

Theorem 1.1. Let K ∈ Kn
(s).

(i) There exists a GAP P(A, b)⊂ K such that

K ∩Zn
⊂ P(A, nO(ln n) b). (1-4)

(ii) There exists a GAP P(A, b)⊂ K such that

|K ∩Zn
|< O (n)n|P(A, b)|. (1-5)

In comparison to the volume case (John’s ellipsoid) a GAP contained in K ∈ Kn
(s) that is optimal for the

cardinality bound (1-5), i.e., covering most of the lattice points in K , does not need to be optimal for the
inclusion bound (1-4) as well. We will give an example of this in Proposition 2.1. In fact, also the two
GAPs leading to the bounds in (1-4) and (1-5) are different (in general).

Regarding a GAP P(A, b) which is simultaneously good with respect to inclusion and cardinality we
have the following slight improvement on the above theorem of Tao and Vu.

Theorem 1.2. Let K ∈ Kn
(s). There exists a GAP P(A, b)⊂ K such that

K ∩Zn
⊂ P(A,O (n)2n/ ln n b), (1-6a)

|K ∩Zn
|< O (n)2n

|P(A, b)|. (1-6b)

An unconditional convex body K ∈ Kn
(s) is one that is symmetric with respect to all coordinate hyper-

planes. For such K , the inclusion bound can be made linear:
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Proposition 1.3. Let K ∈ Kn
(s) be an unconditional convex body. There exists a GAP P(A, b)⊂ K with

K ∩Zn
⊆ P(A, n b), (1-7a)

|K ∩Zn
|< O(n)n|P(A, b)|. (1-7b)

As we will show in Proposition 3.4, the linear inclusion bound in Proposition 1.3 is essentially best
possible, and it might be even true that the bound of order nO(ln n) in (1-4) can be replaced by a linear or
polynomial bound in n. In general, it seems to be a hard problem to construct explicitly a best possible
GAP for one of the bounds; in fact, even the proofs yielding the results in the theorems above are rather
nonconstructive. For unconditional bodies, however, the GAP behind the bounds in Proposition 1.3 can
easily be described; see the proof of Proposition 1.3 on page 376 and the subsequent discussion.

For some other recent results regarding discretization of well-known inequalities from convex geom-
etry we refer to, e.g., [Alexander et al. 2017; Hernández Cifre et al. 2018; Ryabogin et al. 2017].

The paper is organized as follows. In Section 2 we introduce and collect some basic properties of
GAPs approximating the lattice points in symmetric convex bodies. In turns out that GAPs where the
columns of A form a lattice basis of Zn are of particular interest and we study them in Section 3. Finally,
Section 4 contains the proofs of the theorems and of the proposition above.

2. Preliminaries and GAPs

For the proof of Theorem 1.1 it is more convenient to introduce GAPs for general lattices 3⊂ Rn , i.e.,
3 = B Zn , B ∈ Rn×n with det B 6= 0. Let Ln be the set of all these lattices. Following [Tao and Vu
2008], and adapting their definition to our special geometric situation, we define a generalized symmetric
arithmetic progression with respect to 3, or GAP, as the set of lattice points in 3 given by

P(A, b)= {Az : −b≤ z ≤ b, z ∈ Zn
},

where A ∈ Rn×n is a matrix with columns ai ∈3, 1≤ i ≤ n, and b ∈ Rn
>0.

Actually, Tao and Vu defined GAPs more generally, namely, for general n×m matrices A. In our
geometric setting, however, this would make the inclusion bound needless as A may consist of all (up
to ±) lattice points in K ∈ Kn

(s). Then, letting b= (1− ε)1, where 1 is the appropriate all 1-vector and ε
an arbitrary positive number less than 1, gives the trivial inclusions

{0} = P(A, b)⊂ K ∩Zn
⊂ P(A, (1− ε)−1b)

Tao and Vu were mainly interested in so called infinitely proper GAPs which here means m = rank(A),
and so we restrict the definition to the case A ∈ Rn×n , det A 6= 0.

The size or cardinality of a GAP P(A, b) is given

|P(A, b)| =
n∏

i=1
(2bbic+ 1),

where b · c denotes the floor function. In general, for a vector b∈Rn we denote by bbc= (bb1c, . . . , bbnc)
ᵀ

its integral part. The parallelepiped associated to P(A, b) is denoted by

PR(A, b)= {Ax : −b≤ x ≤ b, x ∈ Rn
} =

n∑
i=1

conv {−bi ai , bi ai }.
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Observe that
PR(A, bbc)= conv P(A, b). (2-1)

Whenever we are interested in a GAP P(A, b) covering most of the lattice points in a convex body, i.e.,
a GAP which is optimal with respect to the cardinality bound, then it suffices to assume b∈Nn . However,
for an optimal GAP with respect to the inclusion bound it might be essential to consider nonintegral
vectors b ∈ Rn

>0. This is also reflected by the next example showing that those GAPs yielding an optimal
cardinality bound can be different from those leading to an optimal inclusion bound.

Proposition 2.1. Let n ≥ 2. There exists a K ∈ Kn
(s) such that any GAP P(A, b) ⊂ K covering most of

the lattice points of K is not an optimal GAP with respect to inclusions, i.e., there exists another GAP
P(A, b̄)⊂ K such that for any t > 1 with K ∩Zn

⊆ P(A, t b) there exits a t < t with K ∩Zn
⊆ P(A, t b̄).

Proof. We start with dimension 2, and let K = conv {±(3, 0)ᵀ,±(−3, 1)ᵀ,±(−1, 1)ᵀ}, the hexagon in
the figure.

We will argue that an optimal cardinality GAP P(A, b)⊆ K contains 9 out of the 13 lattice points in
K . To this end we may assume that the columns ai of A belong to K , i.e., ai ∈ K and b≥ 1. Otherwise,
we could only cover lattice points on a line which would be at most 7. Since for all x ∈ K we have
|x2| ≤ 1, and since also the sum a1+ a2 has to belong to K , there is at most one column ai of A having
a nonzero last coordinate.

If there would be none, then again only the 7 points with last coordinate 0 could be covered.
Next assume that a2 is the vector having last coordinate nonzero and let a1 be the vector with last

coordinate 0. The only possibility so that a1± a2 belong to K is (up to sign) the one depicted in the left
figure, i.e., a1 = (1, 0)ᵀ and a2 = (−2, 1)ᵀ, and for any b with 1 ≤ bi < 2, i = 1, 2, the GAP P(A, b)
covers 9 out of the 13 lattice points of K . Hence, the GAPs covering the maximal amount of lattice
points of K are given – up to ± and permutations of the columns of A – by P(A, b) for any b with
1 ≤ bi < 2, i = 1, 2. Since (3, 0)ᵀ ∈ K , we observe that in order to cover all the points of K ∩ Z2 by
P(A, t b) we must have t > 3

2 .
On the other hand, if we take for the columns of A the vectors (1, 0)ᵀ and (0, 1)ᵀ and setting b̄ =

(3, 1− ε)ᵀ we get |P(A, b̄)| = 7, but K ∩Z2
⊂ P(A, (1− ε)−1 b̄) for any ε ∈ (0, 1) (see the right half of

the figure above).
This verifies the assertion in the plane. By building successively prisms over Q the example can be

extended to all dimensions. �

3. Unimodular GAPs

Without loss of generality we consider here only the case 3= Zn . The group of all unimodular matrices,
i.e., integral n× n-matrices of determinant ±1, is denoted by GL(n,Z); it consists of all lattice bases of
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Zn . Apparently, if K ∩Zn contains a lattice basis of Zn and K ∩Zn
⊆ P(A, b) then A ∈ GL(n,Z). This

basically shows that for the inclusion bound it suffices to consider GAPs P(U, b) with U ∈ GL(n,Z).
We will call such a GAP an unimodular GAP.

Proposition 3.1. Let c = c(n) ∈ R>0 be a constant depending on n. The following statements are
equivalent.

(i) For every K ∈ Kn
(s) there exists a GAP P(A, b)⊂ K such that K ∩Zn

⊂ P(A, c b).

(ii) For every K ∈ Kn
(s) there exists an unimodular GAP P(U, b)⊂ K such that K ∩Zn

⊂ P(U, c b).

Proof. Obviously, we only have to show that (i) implies (ii). To this end let l ∈ N such that l K contains
a basis of Zn . By assumption there exists a GAP P(U, b)⊂ l K such that l K ∩Zn

⊆ P(U, c b) and since
l K contains a basis of Zn we have U ∈ GL(n,Z). Next we claim that

P(U, l−1b)⊆ K ∩Zn
⊆ P(U, c l−1b). (3-1)

Let u ∈ P(U, l−1b). Then there exists a z ∈ Zn with u = U z and −l−1b ≤ z ≤ l−1b. Thus lu = U l z
and since l z ∈ Zn we get lu ∈ P(U, b) ⊂ l K . Hence u ∈ K ∩ Zn which shows the first inclusion in
(3-1). For the second let a ∈ K ∩Zn . Then l a ∈ l K ∩Zn

⊆ P(U, c b) and so there exists a z ∈ Zn with
−c b≤ z ≤ c b with l a=U z. Hence, a=U l−1z and since U ∈GL(n,Z) we conclude l−1z ∈ Zn which
shows a ∈ P(U, c l−1b). �

Next we want to point out a relation between GAPs and approximations of a convex body by an
“unimodular” parallelepiped PR(U, u), U ∈ GL(n,Z). To this we first note that

Lemma 3.2. Let K ∈ Kn
(s) containing n linearly independent points βai with β ∈ R>0 and ai ∈ Zn ,

1≤ i ≤ n. Then for any unimodular GAP P(U, u) with K ⊆ PR(U, u) we have ui ≥ β, 1≤ i ≤ n.

Proof. Let βai =U xi with −u ≤ xi ≤ u, xi ∈ Rn . Since U ∈ GL(n,Z) we get xi ∈ βZn , which shows
that for each nonzero coordinate j , say, of xi we have u j ≥ β. Since x1, . . . , xn are linearly independent
for each coordinate k we can find a vector xl whose k-th coordinate is nonzero. �

Observe, for an unimodular GAP P(U, u) we have P(U, u)= PR(U, u)∩Zn .

Proposition 3.3. Let c = c(n) ∈ R>0 be a constant depending on n. The following statements are
equivalent.

(i) For every K ∈ Kn
(s) there exists a GAP P(A, b)⊂ K such that K ∩Zn

⊆ P(A, c b).

(ii) For every K ∈ Kn
(s) there exists an unimodular GAP P(U, u)⊂ K such that

PR(U, u)⊆ K ⊂ PR(U, c u).

Proof. We start by showing that (i) implies (ii). Let ε > 0, and let Q ⊆ K be a o-symmetric rational
polytope with K ⊂ (1+ ε)Q (see, e.g., [Schneider 2014, Theorem 1.8.19]). Moreover, let m ∈N be such
that m Q is an integral polytope (all its vertices are in Zn) and contains the scaled unit vectors c(1+c/ε)ei ,
1≤ i ≤ n. In view of Proposition 3.1 there exists an unimodular GAP P(U, u) such that

P(U, u)⊂ m Q ∩Zn
⊆ P(U, c u).
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The polytopes PR(U, buc) and m Q are integral and so we get

PR(U, buc)= conv (PR(U, buc)∩Zn)= conv P(U, buc)

⊆ conv P(U, u)⊆ conv (m Q ∩Zn)= m Q ⊆ mK . (3-2)

Since m Q is integral we have m Q ⊆ PR(U, c u) and due to Lemma 3.2 we know for the entries of u that
ui ≥ 1+ c/ε, 1≤ i ≤ n, which implies that

ui

buic
≤

ui

ui − 1
≤ 1+

ε

c
,

and thus c u ≤ (c+ ε)buc. Hence,

m Q = conv (m Q ∩Zn)⊆ conv P(U, c u)
⊆ PR(U, c u)⊆ PR(U, (c+ ε) buc),

and with (3-2)
PR(U,m−1

buc)⊆ K ⊆ PR(U, (1+ ε) (c+ ε)m−1
buc). (3-3)

Observe, that actually m=mε, U =Uε as well as u= uε depend on the chosen ε. Now, since K is bounded
and all entries of U are integral, the first inclusion above shows that the sequence m−1

ε buεc, ε > 0, has
to be bounded. Therefore, we may assume that it converges to ū as ε approaches 0. Next assume that a
sequence of a (fixed) column vector of the unimodular matrices Uε is unbounded. Since vol PR(Uε, 1)=
2n and since m−1

ε buεc is bounded this shows that the inradius of PR(Uε, (1+ ε) (c+ ε)m−1
ε buεc) must

converge to 0 as ε tends to 0. This contradicts the second inclusion above and hence, also Uε converges
to an unimodular matrix U . So we have shown

PR(U , ū)⊆ K ⊆ PR(U , c ū).

For the reverse implication we assume that there exists an unimodular GAP P(U, u) fulfiling (ii). Then

PR(U, u)∩Zn
⊆ K ∩Zn

⊆ PR(U, c u)∩Zn,

and by the unimodularity of U we have PR(U, u)∩Zn
= P(U, u) as well as PR(U, c u)∩Zn

= P(U, c u).
�

We close this section with lower bounds on the factors in (1-4) and (1-5) of Theorem 1.1.

Proposition 3.4.

(i) Let τ = τ(n) ∈ R>0 be a constant depending on n such that for every K ∈ Kn
(s) there exists a GAP

P(A, b)⊂ K such that K ∩Zn
⊆ P(A, τ b). Then τ ≥ n!1/n > 1

e n.

(ii) Let ν = ν(n) ∈ R>0 be a constant depending on n such that for every K ∈ Kn
(s) there exists a GAP

P(A, b)⊂ K such that |K ∩Zn
| ≤ ν |P(A, b)|. Then ν ≥ (2n

+ 1)/3.

Proof. For (i) we consider for an integer m ∈N the cross-polytope mC?
n = {x ∈Rn

: |x1|+ · · ·+ |xn| ≤m}
and let P(U, u) be a GAP such that

P(U, u)⊆ mC?
n ∩Zn

⊆ P(U, τ u). (3-4)
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In view of Proposition 3.1, or since mC?
n contains the unit vectors e1, . . . , en we have U ∈ GL(n,Z).

Moreover, since mei ∈ mC?
n , 1≤ i ≤ n, we get from the second inclusion in (3-4) and Lemma 3.2 that

m ≤ τ ui , 1≤ i ≤ n, and so

vol (mC?
n)= mn 2n

n!
≤ τ n 2n

n!

n∏
i=1

ui . (3-5)

On the other hand, the first inclusion in (3-4) implies

PR(U, buc)= conv P(U, u)⊆ mC?
n,

and so

2n
n∏

i=1

buic = vol PR(U, buc)≤ vol (mC?
n).

Combined with (3-5) we obtain

τ ≥ n!1/n
( n∏

i=1

buic

ui

)1/n

.

This is true for any m ∈ N, and since ui →∞ for m→∞, we find τ ≥ n!1/n > n/e.

To prove (ii), let Q be the o-symmetric lattice polytope given by Q = conv (±([0, 1]n−1
×{1})). Then

it is easy to see that Q ∩Zn
= ±({0, 1}n−1

× {1})∪ {0} and hence, Q does not contain x, y ∈ Zn
\ {0},

x 6= − y, and x+ y ∈ Q. Thus for any GAP P(A, b)⊂ Q we have |P(A, b)| ≤ 3 and so

2n
+ 1= |Q ∩Zn

| ≤ ν |P(A, b)| ≤ 3 ν,

yielding the desired lower bound. �

4. Proofs of the theorems

For the proof of the inclusion bound (1-4) of Theorem 1.1 we follow essentially the proof of [Tao and Vu
2008], but we apply a different lattice reduction taking into account also the polar lattice. More precisely,
for a lattice 3 ∈ Ln with basis B = (b1, . . . , bn), i.e., 3= BZn , we denote by

3? = { y ∈ Rn
: 〈x, y〉 ∈ Z for all x ∈3} = B−ᵀZn

its polar lattice. In particular, if B−T
= (b?1, . . . , b?n), then

〈b?i , b j 〉 = δi, j , (4-1)

where δi, j denotes the Kronecker-symbol. Now a basis B of a lattice 3 is called Seysen reduced if

S(B)=
n∑

i=1

‖bi‖
2
‖b?i ‖

2

is minimal among all bases of 3 (cf. [Seysen 1993]). Here, ‖ · ‖ denotes the Euclidean norm.
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Theorem 4.1 [Seysen 1993, Theorem 7]. Let 3 ∈ Ln . There exists a basis B = (b1, . . . , bn) of 3 such
that S(B)≤ nO(ln n). In particular, for 1≤ i ≤ n,

‖bi‖ ‖b?i ‖ ≤ nO(ln n). (4-2)

For an explicit bound we refer to [Maze 2010] and for more information on lattice reduction and
geometry of numbers we refer to [Gruber and Lekkerkerker 1987; Cassels 1959]. For the sake of com-
prehensibility we split the proof of Theorem 1.1 into two parts, one covering the inclusion bound and
one the cardinality bound.

Proof of Theorem 1.1(i). In view of John’s theorem (1-1) we may apply a linear transformation T to K
such that with K̃ = T K

Bn ⊆ K̃ ⊆
√

nBn. (4-3)

With 3= T Zn the problem is now to find a GAP P(A, b) in 3 such that P(A, b)⊂ K̃ and

K̃ ∩3⊂ P(A, nO(ln n)b).

Let B = (b1, . . . , bn) be a Seysen reduced basis of 3 with associated basis B−ᵀ = (b?1, . . . , b?n) of the
polar lattice and let u ∈ Rn be given by ui = (1/n)‖bi‖

−1, 1≤ i ≤ n.
First, for x ∈ PR(B, u) we have x=

∑n
i=1 λi bi with |λi |≤ ui and by the triangle inequality we conclude

‖x‖ ≤ 1. Hence, with (4-3) we certainly have P(B, u)⊂ K̃ . On the other hand, given x =
∑n

i=1 βi bi ∈ K̃
we get by Cramer’s rule and (4-3)

|βi | =
|det(x, b1, . . . , bi−1, bi+1, bn)|

|det B|
≤
√

n
vol n−1(b1, . . . , bi−1, bi+1, bn)

vol (b1, . . . , bn)
,

where vol k(c1, . . . , ck) denotes the k-dimensional volume of the parallelepiped
{∑k

i=1 µi ci : 0≤µi ≤ 1
}
.

By (4-1) we find that

vol (b1, . . . , bn)= vol n−1(b1, . . . , bi−1, bi+1, bn)
〈b?i , bi 〉

‖b?i ‖
= vol n−1(b1, . . . , bi−1, bi+1, bn)

1
‖b?i ‖

,

and thus for 1≤ i ≤ n
|βi | ≤

√
n‖b?i ‖. (4-4)

Together with the definition of ui and Seysen’s bound (4-2) we conclude that |βi | ≤ n3/2nO(ln n)ui , for
1≤ i ≤ n. Hence,

K̃ ∩3⊆ PR(B, nO(ln n)u)∩3= P(B, nO(ln n)u),

since B is a basis of 3. �

Remark 4.2. The optimal upper bound in Theorem 4.1 for a Seysen reduced basis is not known, but any
improvement on this bound would immediately yield an improvement of (1-4).

For the cardinality bound (1-5) of Theorem 1.1 we need another tool from geometry of numbers:
Minkowski’s successive minima λi (K ,3), which for K ∈ Kn

(s), 3 ∈ L
n and 1≤ i ≤ n are defined by

λi (K ,3)=min{λ > 0 : dim(λK ∩3)≥ i}.
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In words, λi (K ,3) is the smallest dilation factor λ such that λ K contains i linearly independent lat-
tice points of 3. Minkowski’s fundamental second theorem on successive minima (e.g., [Gruber and
Lekkerkerker 1987, §9, Theorem 1]) states that

vol K ≤ det3
n∏

i=1

2
λi (K ,3)

, (4-5)

and here we need a discrete version of it. In [Henk 2002] it was shown that

|K ∩3| ≤ 2n−1
n∏

i=1

⌊
2

λi (K ,3)
+ 1

⌋
, (4-6)

and for an improvement on the constant 2n−1 and related results we refer to [Malikiosis 2010; Malikiosis
2012]. It is conjectured in [Betke et al. 1993] that (4-6) holds without any additional factor in front of
the product which would, in particular, imply Minkowski’s volume bound.

Proof of Theorem 1.1(ii). Let ai ∈ Zn , 1≤ i ≤ n, be linearly independent lattice vectors corresponding
to the successive minima λi = λi (K ,Zn), i.e., ai ∈ λi K , 1≤ i ≤ n. Since λ−1

i ai ∈ K it follows{ n∑
i=1

µi
1

nλi
ai : −1≤ µi ≤ 1

}
⊂ conv {±λ−1

i ai : 1≤ i ≤ n} ⊆ K .

Thus, denoting by A the matrix with columns ai and letting b be the vector with entries bi = (nλi )
−1 we

have P(A, b)⊂ K and

|P(A, b)| =
n∏

i=1

(
2
⌊ 1

nλi

⌋
+ 1

)
.

Now it is not hard to see that
2
⌊ 1

nλi

⌋
+ 1≥ 1

3
1
n

⌊ 2
λi
+ 1

⌋
, (4-7)

and with (4-6) we get

|P(A, b)| ≥
( 1

3n

)n(1
2

)n−1
2n−1

n∏
i=1

⌊ 2
λi
+ 1

⌋
> (6n)−n

|K ∩Zn
|.

This shows (1-5). �

Remark 4.3. The columns of the matrix A of the GAP in the proof of the cardinality bound of Theorem 1.1
do not in general build a basis of Zn; hence this GAP cannot be used in order to obtain an inclusion bound.

Now the proof of Theorem 1.2 is a kind of combination of the two proofs leading to (1-4) and (1-5).
Instead of a Seysen reduced basis we exploit properties of a so called Hermite–Korkin–Zolotarev (HKZ)
reduced basis b1, . . . , bn of the lattice 3. For such a basis it was shown by Mahler (see, e.g., [Lagarias
et al. 1990, Theorem 2.1]) that for 1≤ i ≤ n

‖bi‖ ≤

√
i + 3
2

λi (Bn,3). (4-8)
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Håstad and Lagarias [1990] pointed out that for a HKZ-basis one has

‖bi‖ ‖b?i ‖ ≤
(3

2

)n
< n

1
2 n/ ln n. (4-9)

This bound is worse than the one given in (4-2), but the advantage of a HKZ reduced basis is its close
relation to the successive minima (4-8).

Proof of Theorem 1.2. First we may assume that λn(K ,Zn)≤ 1, i.e., that K contains n linearly indepen-
dent lattice points. Otherwise, all lattice points of K lying in a hyperplane H and it would be sufficient
to prove the theorem with respect to the n− 1-dimensional convex body K ∩ H and lattice H ∩Zn .

Now we proceed completely analogously to the proof of Theorem 1.1(i); we just replace the Seysen
reduced basis by a HKZ-reduced basis B = (b1, . . . , bn), and the GAP is given by P(B, u) with ui =

(1/n)‖bi‖
−1, 1≤ i ≤ n. Replacing (4-2) by (4-9) in (4-4) leads then to

P(B, u)⊆ K̃ ∩3⊆ P(B, nO(n/ ln n)u),

where K̃ was a linear image of K such that

Bn ⊆ K̃ ⊆
√

nBn. (4-10)

It remains to prove the cardinality bound for the GAP P(B, u) and K̃ . Regarding the size of P(B, u) we
have

|P(B, u)| =
n∏

i=1

(
2
⌊

1
n‖bi‖

⌋
+ 1

)
≥ n−n

n∏
i=1

1
‖bi‖

. (4-11)

On the other hand, for an upper bound on K̃ ∩3 we use (4-6) and since λn(K ,3)≤ 1 we get

|K ∩3| ≤ 2n−1
n∏

i=1

(
2

λi (K ,3)
+ 1

)
≤ 6n

n∏
i=1

1
λi (K ,3)

.

In view of (4-10) and (4-8) we obtain

|K ∩3| ≤ 6n
n∏

i=1

1
λi (
√

nBn,3)
= (6
√

n)n
n∏

i=1

1
λi (Bn,3)

≤ (6n)n
n∏

i=1

1
‖bi‖

.

Combined with (4-11) we get |K ∩3| ≤ O(n)2n
|P(B, u)|. �

Next we consider unconditional bodies K ∈ Kn
(s), i.e., bodies which are symmetric with respect to

all coordinate hyperplanes. As stated in Proposition 1.3, in this special case the inclusion bound can be
made linear in the dimension. In view of Proposition 3.4 this is also the optimal order within this class
of bodies as the given example used for the lower bound in Proposition 3.4 is unconditional.

Proof of Proposition 1.3. For i = 1, . . . , n let ui be the maximal entry of the i-th coordinate of a point
of K . Then ui > 0 and

K ∩Zn
⊆ P(In, u) (4-12)

with u= (u1, . . . , un)
ᵀ and In the n×n-identity matrix. By the unconditionality of K we have±ui ei ∈ K ,

1≤ i ≤ n, and thus
PR(In, n−1u)⊂ conv {±ui ei : 1≤ i ≤ n} ⊆ K .
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Hence, P(In, n−1u)⊂ K . For the remaining cardinality bound observe that (2 ui+1) < (2bui/nc)+1) 3n
and so (4-12) implies

|K ∩Zn
| ≤

n∏
i=1

(2 buic+ 1) < (3n)n
n∏

i=1

(2bui/nc)+ 1)= (3n)n|P(In, n−1u)|. �

For instance, for p ≥ 1 and a positive vector α = (α1, . . . , αn)
ᵀ
∈ Rn

>0 let

B p
n (α)=

{
x ∈ Rn

:

n∑
i=1
α
−p
i |xi |

p
≤ 1

}
be the scaled lp-ball in Rn . Then, by the preceding argument we get

P(In, n−1/pα)⊂ B p
n (α)⊂ P(In,α).

Assuming α1 ≥ α2 ≥ · · · ≥ αn we also have λi (B
p
n (α),Zn) = α−1

i , and so the GAP corresponds to the
vectors αi ei ∈ K attaining the successive minima (compare Remark 4.3).

Finally, we remark that for a symmetric planar convex body K there always exists vectors a1, a2 ∈ Z2

such that ai ∈ λi (K ,Z2) K , i = 1, 2, and a1, a2 build a basis of Z2. Setting A= (a1, a2), it can be shown
(see [Berg 2018, Theorem 4.21]) that there exists a GAP P(A, u)⊂ K satisfying

K ∩Zn
⊆ P(A, 3 u).

It is not known, however, whether the dilation factor 3 is optimal.
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