Moscow Journal of Combinatorics and Number Theory Jovel 8 no. 4

On polynomial-time solvable linear Diophantine problems

Iskander Aliev

Abstract

We obtain a polynomial-time algorithm that, given input (A, \boldsymbol{b}), where $A=(B \mid N) \in \mathbb{Z}^{m \times n}$, $m<n$, with nonsingular $B \in \mathbb{Z}^{m \times m}$ and $\boldsymbol{b} \in \mathbb{Z}^{m}$, finds a nonnegative integer solution to the system $A \boldsymbol{x}=\boldsymbol{b}$ or determines that no such solution exists, provided that \boldsymbol{b} is located sufficiently "deep" in the cone generated by the columns of B. This result improves on some of the previously known conditions that guarantee polynomial-time solvability of linear Diophantine problems.

1. Introduction and statement of results

Consider the linear Diophantine problem:

> Given (A, \boldsymbol{b}), where $A \in \mathbb{Z}^{m \times n}, m<n, \operatorname{rank}(A)=m$ and $\boldsymbol{b} \in \mathbb{Z}^{m}$, find a nonnegative integer solution to the system $A \boldsymbol{x}=\boldsymbol{b}$ or determine that no such solution exists.

The problem (1-1) is referred to as the multidimensional knapsack problem and is NP-hard already for $m=1$; see [Papadimitriou and Steiglitz 1982, Section 15.7].

Let $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n} \in \mathbb{Z}^{m}$ be the columns of the matrix A and let

$$
\mathcal{C}_{A}=\left\{\lambda_{1} \boldsymbol{v}_{1}+\cdots+\lambda_{n} \boldsymbol{v}_{n}: \lambda_{1}, \ldots, \lambda_{n} \geq 0\right\}
$$

be the cone generated by $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$. In this paper, we are interested in the problem of determining subsets $\mathcal{S} \subset \mathcal{C}_{A}$ such that (1-1) is solvable in polynomial time provided $\boldsymbol{b} \in \mathcal{S}$. We will use the general approach of [Gomory 1969], which was originally applied to study asymptotic integer programs, and combine it with results from discrete geometry.

We may assume, without loss of generality, that the matrix A is partitioned as

$$
A=(B \mid N)
$$

where $B \in \mathbb{Z}^{m \times m}$ is nonsingular and $N \in \mathbb{Z}^{m \times(n-m)}$. In what follows, we will denote by l_{B} and l_{N} the Euclidean lengths of the longest columns in the matrices B and N, respectively.

Let $\mathcal{C}_{B} \subset \mathcal{C}_{A}$ be the cone generated by the columns of the matrix B. The main result of this paper shows that (1-1) is solvable in polynomial time when the right-hand-side vector \boldsymbol{b} is located deep enough in the cone \mathcal{C}_{B}.

Let $\mathcal{C}_{B}(t) \subset \mathcal{C}_{B}$ denote the affine cone of points in \mathcal{C}_{B} at Euclidean distance $\geq t$ from the boundary of \mathcal{C}_{B}. We will denote by $\operatorname{gcd}(A)$ the greatest common divisor of all $m \times m$ subdeterminants of A.

[^0]Theorem 1.1. There exists a polynomial-time algorithm which, given input (A, \boldsymbol{b}), where $A=(B \mid N) \in$ $\mathbb{Z}^{m \times n}$, with nonsingular $B \in \mathbb{Z}^{m \times m}$, and

$$
\begin{equation*}
\boldsymbol{b} \in \mathbb{Z}^{m} \cap \mathcal{C}_{B}\left(l_{N}\left(\frac{|\operatorname{det}(B)|}{\operatorname{gcd}(A)}-1\right)\right) \tag{1-2}
\end{equation*}
$$

finds a nonnegative integer solution to the system $A \boldsymbol{x}=\boldsymbol{b}$ or determines that no such solution exists.
We will now consider a special case where the matrix A satisfies the following conditions:

$$
\begin{align*}
& \text { (i) } \operatorname{gcd}(A)=1 \\
& \text { (ii) }\left\{\boldsymbol{x} \in \mathbb{R}_{\geq 0}^{n}: A \boldsymbol{x}=\mathbf{0}\right\}=\{\mathbf{0}\} \text {. } \tag{1-3}
\end{align*}
$$

Notice that condition (i) in (1-3) guarantees that the system $A \boldsymbol{x}=\boldsymbol{b}$ has an integer solution for each $\boldsymbol{b} \in \mathbb{Z}^{m}$; see [Schrijver 1986, Corollary 4.1(c)]. The condition (ii) in (1-3) guarantees that the polyhedron $\left\{\boldsymbol{x} \in \mathbb{R}_{\geq 0}^{n}: A \boldsymbol{x}=\boldsymbol{b}\right\}$ is bounded.

When $m=1$ in the setting (1-3), the problem (1-1) is linked to the well-known Frobenius problem; see [Ramírez Alfonsín 2005]. By condition (i) in (1-3), we have $\operatorname{gcd}\left(a_{11}, \ldots, a_{1 n}\right)=1$ and by (ii) we may assume that the entries of A are positive. For such A the largest integer b such that (1-1) is infeasible is called the Frobenius number associated with A, denoted by $F(A)$. It is an interesting question to determine whether there exists a polynomial-time algorithm that solves (1-1) provided that

$$
b>F(A)
$$

see Conjecture 1.1 in [Aliev and Henk 2012].
The best known result in this direction is due to [Brimkov 1989]; see also [Aliev and Henk 2012; Brimkov 1988; Brimkov and Barneva 2001]. Specifically, set

$$
\begin{equation*}
f_{1}=a_{11}, \quad f_{i}=\operatorname{gcd}\left(a_{11}, \ldots, a_{1 i}\right), \quad i \in\{2, \ldots, n\} \tag{1-4}
\end{equation*}
$$

A classical upper bound of [Brauer 1942] for the Frobenius numbers states that

$$
\begin{equation*}
F(A) \leq G(A):=a_{12} \frac{f_{1}}{f_{2}}+\cdots+a_{1 n} \frac{f_{n-1}}{f_{n}}-\sum_{i=1}^{n} a_{1 i} \tag{1-5}
\end{equation*}
$$

Brauer [1942] and, subsequently, Brauer and Seelbinder [1954] proved that the bound (1-5) is sharp and obtained a necessary and sufficient condition for the equality $F(A)=G(A)$. Brimkov [1989] gave a polynomial-time algorithm that solves (1-1) provided that

$$
\begin{equation*}
b>G(A) \tag{1-6}
\end{equation*}
$$

We will show that an algorithm obtained in the proof of Theorem 1.1 matches the bound (1-6).
Corollary 1.2. There exists a polynomial-time algorithm which, given input (A, b), where $A \in \mathbb{Z}_{>0}^{1 \times n}$ satisfies (1-3) and $b \in \mathbb{Z}$ satisfies

$$
b>G(A)
$$

computes a nonnegative integer solution to the equation $A \boldsymbol{x}=b$.

Recall that the Minkowski sum $X+Y$ of the sets $X, Y \subset \mathbb{R}^{m}$ consists of all points $\boldsymbol{x}+\boldsymbol{y}$ with $\boldsymbol{x} \in X$ and $\boldsymbol{y} \in Y$. For $m \geq 2$, Aliev and Henk [2012] considered the problem of estimating the minimal $t=t(A) \geq 0$ such that the problem (1-1) is solvable in polynomial time provided that A satisfies (1-3) and

$$
\boldsymbol{b} \in \mathbb{Z}^{m} \cap\left(t \boldsymbol{v}+\mathcal{C}_{A}\right)
$$

where $\boldsymbol{v}=\boldsymbol{v}_{1}+\cdots+\boldsymbol{v}_{n}$ is the sum of columns of A.
Theorem 1.1 in [Aliev and Henk 2012] gives the bound

$$
\begin{equation*}
t \leq 2^{(n-m) / 2-1} p(m, n)\left(\operatorname{det}\left(A A^{T}\right)\right)^{1 / 2} \tag{1-7}
\end{equation*}
$$

where

$$
p(m, n)=2^{-1 / 2}(n-m)^{1 / 2} n^{1 / 2}
$$

Furthermore, Theorem 1.2 in [Aliev and Henk 2012] shows that the exponential factor $2^{(n-m) / 2-1}$ in (1-7) is redundant for matrices with

$$
\begin{equation*}
\operatorname{det}\left(A A^{T}\right)>\frac{(n-m) 2^{2(n-m-2)} \gamma_{n-m}^{n-m}}{n^{2}} \tag{1-8}
\end{equation*}
$$

Here γ_{k} is the k-dimensional Hermite constant, for which we refer to [Martinet 2003, Definition 2.2.5].
Let us now consider the case $m=2$. Condition (1-3)(ii) implies that the cone \mathcal{C}_{A} is pointed. Thus we may assume without loss of generality that $A=(B \mid N)$ with $\mathcal{C}_{B}=\mathcal{C}_{A}$. The last result of this paper gives an estimate on the function $t(A)$ that is independent on the dimension n and allows a refinement of (1-7) when the ratio $l_{B} l_{N} /|\operatorname{det}(B)|$ is relatively small.
Corollary 1.3. There exists a polynomial-time algorithm which, given input (A, \boldsymbol{b}), where $A=(B \mid N) \in$ $\mathbb{Z}^{2 \times n}, B \in \mathbb{Z}^{2 \times 2}$ is nonsingular with $\mathcal{C}_{B}=\mathcal{C}_{A}, A$ satisfies (1-3) and

$$
\begin{equation*}
\boldsymbol{b} \in \mathbb{Z}^{2} \cap\left(\frac{l_{B} l_{N}}{|\operatorname{det}(B)|}(|\operatorname{det}(B)|-1) \boldsymbol{v}+\mathcal{C}_{A}\right), \tag{1-9}
\end{equation*}
$$

computes a nonnegative integer solution to the system $A \boldsymbol{x}=\boldsymbol{b}$.
Noticing that $|\operatorname{det}(B)| \leq\left(\operatorname{det}\left(A A^{T}\right)\right)^{1 / 2}$, condition (1-9) improves on (1-7) provided that $l_{B} l_{N} /|\operatorname{det}(B)| \leq$ $2^{(n-m) / 2-1} p(m, n)$. For matrices A satisfying (1-8) an improvement occurs when $l_{B} l_{N} /|\operatorname{det}(B)| \leq$ $p(m, n)$.

2. Tools from discrete geometry

For linearly independent $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{k}$ in \mathbb{R}^{d}, the set $\Lambda=\left\{\sum_{i=1}^{k} \lambda_{i} \boldsymbol{b}_{i}: \lambda_{i} \in \mathbb{Z}\right\}$ is a k-dimensional lattice with basis $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{k}$ and determinant $\operatorname{det}(\Lambda)=\left(\operatorname{det}\left(\boldsymbol{b}_{i} \cdot \boldsymbol{b}_{j}\right)_{1 \leq i, j \leq k}\right)^{1 / 2}$, where $\boldsymbol{b}_{i} \cdot \boldsymbol{b}_{j}$ is the standard inner product of the basis vectors \boldsymbol{b}_{i} and \boldsymbol{b}_{j}. For a lattice $\Lambda \subset \mathbb{R}^{d}$ and $\boldsymbol{y} \in \mathbb{R}^{d}$, the set $\boldsymbol{y}+\Lambda$ is an affine lattice with determinant $\operatorname{det}(\Lambda)$.

Let Λ be a lattice in \mathbb{R}^{d} with basis $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}$ and let $\hat{\boldsymbol{b}}_{i}$ be the vectors obtained from the Gram-Schmidt orthogonalisation of $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}$:

$$
\begin{equation*}
\hat{\boldsymbol{b}}_{1}=\boldsymbol{b}_{1}, \quad \hat{\boldsymbol{b}}_{i}=\boldsymbol{b}_{i}-\sum_{j=1}^{i-1} \mu_{i, j} \hat{\boldsymbol{b}}_{j}, \quad j \in\{2, \ldots, d\} \tag{2-1}
\end{equation*}
$$

where $\mu_{i, j}=\left(\boldsymbol{b}_{i} \cdot \hat{\boldsymbol{b}}_{j}\right) /\left|\hat{\boldsymbol{b}}_{j}\right|^{2}$.

We will associate with the basis $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}$ of Λ the box

$$
\widehat{\mathcal{B}}\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}\right)=\left[0, \hat{\boldsymbol{b}}_{1}\right) \times\left[0, \hat{\boldsymbol{b}}_{2}\right) \times \cdots \times\left[0, \hat{\boldsymbol{b}}_{d}\right)
$$

Lemma 2.1. There exists a polynomial-time algorithm that, given a basis $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}$ of a d-dimensional lattice $\Lambda \subset \mathbb{Q}^{d}$ and a point \boldsymbol{x} in \mathbb{Q}^{d}, finds a point $\boldsymbol{y} \in \Lambda$ such that $\boldsymbol{x} \in \boldsymbol{y}+\widehat{\mathcal{B}}\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}\right)$.

A proof of Lemma 2.1 is implicitly contained, for instance, in the description of the classical nearestplane procedure of [Babai 1986]. For completeness, we include a proof that follows along an argument of the proof of Theorem 5.3.26 in [Grötschel et al. 1988].

Proof. Let \boldsymbol{x} be any point of \mathbb{Q}^{d}. We need to find a point $\boldsymbol{y} \in \Lambda$ such that

$$
\begin{equation*}
\boldsymbol{x}-\boldsymbol{y}=\sum_{i=1}^{d} \lambda_{i} \hat{\boldsymbol{b}}_{i}, \quad \lambda_{i} \in[0,1), i \in\{1, \ldots, d\} \tag{2-2}
\end{equation*}
$$

This can be achieved using the following procedure. First, we find the rational numbers $\lambda_{i}^{0}, i \in\{1, \ldots, d\}$, such that

$$
\boldsymbol{x}=\sum_{i=1}^{d} \lambda_{i}^{0} \hat{\boldsymbol{b}}_{i}
$$

This can be done in polynomial time by Theorem 3.3 in [Schrijver 1986]. Then we subtract $\left\lfloor\lambda_{d}^{0}\right\rfloor \boldsymbol{b}_{d}$ to get a representation

$$
\boldsymbol{x}-\left\lfloor\lambda_{d}^{0}\right\rfloor \boldsymbol{b}_{d}=\sum_{i=1}^{d} \lambda_{i}^{1} \hat{\boldsymbol{b}}_{i},
$$

where $\lambda_{d}^{1} \in[0,1)$. Next subtract $\left\lfloor\lambda_{d-1}^{1}\right\rfloor \boldsymbol{b}_{d-1}$ and so on until we obtain the representation (2-2).
Let now Λ be a d-dimensional sublattice of \mathbb{Z}^{d}. By Theorem I(A) and Corollary 1 in Chapter I of [Cassels 1959], there exists a unique basis $\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{d}$ of the sublattice Λ of the form

$$
\begin{align*}
\boldsymbol{g}_{1} & =v_{11} \boldsymbol{e}_{1} \\
\boldsymbol{g}_{2} & =v_{21} \boldsymbol{e}_{1}+v_{22} \boldsymbol{e}_{2}, \\
& \vdots \tag{2-3}\\
\boldsymbol{g}_{d} & =v_{d 1} \boldsymbol{e}_{1}+\cdots+v_{d d} \boldsymbol{e}_{d}
\end{align*}
$$

where \boldsymbol{e}_{i} are the standard basis vectors of \mathbb{Z}^{d} and the coefficients $v_{i j}$ satisfy the conditions $v_{i j} \in \mathbb{Z}, v_{i i}>0$ for $i \in\{1, \ldots, d\}$ and $0 \leq v_{i j}<v_{j j}$ for $i, j \in\{1, \ldots, d\}, i>j$.

Lemma 2.2. There exists a polynomial-time algorithm that, given a basis $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}$ of a lattice $\Lambda \subset \mathbb{Z}^{d}$, finds the basis of Λ of the form (2-3).
Proof. Let $V=\left(v_{i j}\right) \in \mathbb{Z}^{d \times d}$ be the matrix formed by the coefficients $v_{i j}$ in (2-3) with $v_{i j}=0$ for $j>i$. Observe that after a straightforward renumbering of the rows and columns of V we obtain a matrix in the row-style Hermite normal form. Now it is sufficient to notice that the Hermite normal form can be computed in polynomial time using an algorithm of [Kannan and Bachem 1979].

The Gram-Schmidt orthogonalisation (2-1) of the basis (2-3) of Λ has the form $\hat{\boldsymbol{g}}_{1}=v_{11} \boldsymbol{e}_{1}, \ldots, \hat{\boldsymbol{g}}_{d}=$ $v_{d d} \boldsymbol{e}_{d}$. Therefore, noticing that the basis (2-3) is unique, we can associate with Λ the box

$$
\mathcal{B}(\Lambda)=\widehat{\mathcal{B}}\left(\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{d}\right)=\left[0, v_{11}\right) \times\left[0, v_{22}\right) \times \cdots \times\left[0, v_{d d}\right)
$$

Lemma 2.3. For any $\boldsymbol{w}=\left(w_{1}, \ldots, w_{d}\right)^{T} \in \mathcal{B}(\Lambda) \cap \mathbb{Z}^{d}$ we have

$$
\prod_{i=1}^{d}\left(1+w_{i}\right) \leq \operatorname{det}(\Lambda)
$$

Proof. It is sufficient to notice that by $(2-3) \operatorname{det}(\Lambda)=v_{11} \cdots v_{d d}$.

3. Proof of Theorem 1.1

Given $A \in \mathbb{Z}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{Z}^{m}$, we will denote by $\Gamma(A, \boldsymbol{b})$ the set of integer points in the affine subspace

$$
\mathcal{S}(A, \boldsymbol{b})=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: A \boldsymbol{x}=\boldsymbol{b}\right\}
$$

that is

$$
\Gamma(A, \boldsymbol{b})=\mathcal{S}(A, \boldsymbol{b}) \cap \mathbb{Z}^{n}
$$

The set $\Gamma(A, \boldsymbol{b})$ is either empty or is an affine lattice of the form $\Gamma(A, \boldsymbol{b})=\boldsymbol{r}+\Gamma(A)$, where \boldsymbol{r} is any integer vector with $A \boldsymbol{r}=\boldsymbol{b}$ and $\Gamma(A)=\Gamma(A, \mathbf{0})$ is the lattice formed by all integer points in the kernel of the matrix A. We will call the system $A \boldsymbol{x}=\boldsymbol{b}$ integer feasible if it has integer solutions or, equivalently, $\Gamma(A, \boldsymbol{b}) \neq \varnothing$. Otherwise the system is called integer infeasible.

Let π denote the projection map from \mathbb{R}^{n} to \mathbb{R}^{n-m} that forgets the first m coordinates. Recall that Theorem 1.1 applies to $A=(B \mid N)$, where B is nonsingular. It follows that the restricted map $\left.\pi\right|_{\mathcal{S}(A, b)}$: $\mathcal{S}(A, \boldsymbol{b}) \rightarrow \mathbb{R}^{n-m}$ is bijective. Specifically, for any $\boldsymbol{w} \in \mathbb{R}^{n-m}$ we have

$$
\left.\pi\right|_{\mathcal{S}(A, b)} ^{-1}(\boldsymbol{w})=\binom{\boldsymbol{u}}{\boldsymbol{w}}, \quad \text { with } \boldsymbol{u}=B^{-1}(\boldsymbol{b}-N \boldsymbol{w})
$$

For technical reasons, it is convenient to consider the projected set $\Lambda(A, \boldsymbol{b})=\pi(\Gamma(A, \boldsymbol{b}))$ and the projected lattice $\Lambda(A)=\pi(\Gamma(A))$. Since the map $\left.\pi\right|_{\mathcal{S}(A, 0)}$ is bijective, we obtain the following lemma.

Lemma 3.1. Let $\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{n-m}$ be a basis of $\Gamma(A)$. The vectors $\boldsymbol{b}_{1}=\pi\left(\boldsymbol{g}_{1}\right), \ldots, \boldsymbol{b}_{n-m}=\pi\left(\boldsymbol{g}_{n-m}\right)$ form a basis of the lattice $\Lambda(A)$.

Using notation of Lemma 3.1, let $G \in \mathbb{Z}^{n \times(n-m)}$ be the matrix with columns $\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{n-m}$. We will denote by F the $(n-m) \times(n-m)$-submatrix of G consisting of the last $n-m$ rows; hence, the columns of F are $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n-m}$. Then $\operatorname{det}(\Lambda(A))=|\operatorname{det}(F)|$. The rows of the matrix A span the m-dimensional rational subspace of \mathbb{R}^{n} orthogonal to the $(n-m)$-dimensional rational subspace spanned by the columns of G. Therefore, by Lemma 5G and Corollary 5I in [Schmidt 1991], we have $|\operatorname{det}(F)|=|\operatorname{det}(B)| / \operatorname{gcd}(A)$ and, consequently,

$$
\begin{equation*}
\operatorname{det}(\Lambda(A))=\frac{|\operatorname{det}(B)|}{\operatorname{gcd}(A)} \tag{3-1}
\end{equation*}
$$

Consider the following algorithm.

Algorithm 1. Input: (A, \boldsymbol{b}), where $A=(B \mid N) \in \mathbb{Z}^{m \times n}, m<n$, with nonsingular $B \in \mathbb{Z}^{m \times m}$ and $\boldsymbol{b} \in \mathbb{Z}^{m}$. Output: Solution $\boldsymbol{x} \in \mathbb{Z}^{n}$ to an integer feasible system $A \boldsymbol{x}=\boldsymbol{b}$.
Step 0: If $\Gamma(A, \boldsymbol{b})=\varnothing$ then the system $A \boldsymbol{x}=\boldsymbol{b}$ is integer infeasible. Stop.
Step 1: Compute a point z of the affine lattice $\Lambda(A, \boldsymbol{b})$.
Step 2: Find a point $\boldsymbol{y} \in \Lambda(A)$ such that $z \in \boldsymbol{y}+\mathcal{B}(\Lambda(A))$.
Step 3: Set $\boldsymbol{w}=\boldsymbol{z}-\boldsymbol{y}$ and output the vector

$$
\begin{equation*}
\boldsymbol{x}=\binom{\boldsymbol{u}}{\boldsymbol{w}}, \quad \text { with } \boldsymbol{u}=B^{-1}(\boldsymbol{b}-N \boldsymbol{w}) \tag{3-2}
\end{equation*}
$$

Note that Algorithm 1 will be also used in the proof of Corollary 1.2, where the condition (1-2) is replaced by its refinement (1-6). For this reason, we do not require that the input of the algorithm satisfies (1-2) and, as a consequence, the algorithm outputs a certain integer, but not necessarily nonnegative, solution to an integer feasible system $A \boldsymbol{x}=\boldsymbol{b}$ or detects integer infeasibility.

To complete the proof of Theorem 1.1, it is sufficient to show that Algorithm 1 is polynomial-time and that this algorithm computes a nonnegative integer solution to any integer feasible system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ that satisfies its input conditions together with (1-2).

Let us show that all steps of Algorithm 1 can be computed in polynomial time. By Corollaries 5.3(b,c) in [Schrijver 1986] we can compute in polynomial time integer vectors $\boldsymbol{r}, \boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{n-m}$ such that

$$
\begin{equation*}
\Gamma(A, \boldsymbol{b})=\boldsymbol{r}+\sum_{i=1}^{n-m} \lambda_{i} \boldsymbol{g}_{i}, \quad \lambda_{i} \in \mathbb{Z}, i \in\{1, \ldots, n-m\} \tag{3-3}
\end{equation*}
$$

or determine that $\Gamma(A, \boldsymbol{b})$ is empty. This settles Steps 0 and 1 . Further, the vectors $\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{n-m}$ in (3-3) form a basis of the lattice $\Gamma(A)$. In Step 2 we first find the projected vectors $\boldsymbol{b}_{1}=\pi\left(\boldsymbol{g}_{1}\right), \ldots, \boldsymbol{b}_{n-m}=$ $\pi\left(g_{n-m}\right)$ that form a basis of the lattice $\Lambda(A)$ by Lemma 3.1. Then the point \boldsymbol{y} can be computed in polynomial time using Lemmas 2.2 and 2.1. Finally, the lifted point \boldsymbol{x} in Step 3 is computed in polynomial time by a straightforward calculation (3-2).

We will now show that Algorithm 1 computes a nonnegative integer solution to any integer feasible system $A \boldsymbol{x}=\boldsymbol{b}$ with (A, \boldsymbol{b}) satisfying its input conditions together with (1-2). By Step 0 , we may assume that $\Gamma(A, \boldsymbol{b}) \neq \varnothing$ and hence at Step 1 we can find a point $z \in \Lambda(A, \boldsymbol{b})$. At Step 2 we can find a point $\boldsymbol{y} \in \Lambda(A)$ with $z \in \boldsymbol{y}+\mathcal{B}(\Lambda(A))$ by Lemma 2.1. Hence, the point $\boldsymbol{w}=\boldsymbol{z}-\boldsymbol{y}$ at Step 3 is a nonnegative point of the affine lattice $\Lambda(A, \boldsymbol{b})$. Further, since $\boldsymbol{w} \in \Lambda(A, \boldsymbol{b})$ and $\left.\pi\right|_{\mathcal{S}(A, \boldsymbol{b})}$ is bijective, the point $\boldsymbol{x}=\left.\pi\right|_{\mathcal{S}(A, b)} ^{-1}(\boldsymbol{w})$ is integer. Summarising, we have

$$
\begin{equation*}
\boldsymbol{x}=\binom{\boldsymbol{u}}{\boldsymbol{w}} \in \mathcal{S}(A, \boldsymbol{b}) \cap \mathbb{Z}^{n} \quad \text { and } \quad \pi(\boldsymbol{x})=\boldsymbol{w} \geq \mathbf{0} \tag{3-4}
\end{equation*}
$$

It is now sufficient to show that $\boldsymbol{u} \geq \mathbf{0}$.
Observe that, by construction, $\boldsymbol{w} \in \mathcal{B}(\Lambda(A))$. Hence, Lemma 2.3, applied to \boldsymbol{w} and $\Lambda=\Lambda(A)$, implies

$$
\begin{equation*}
\prod_{i=1}^{n-m}\left(1+w_{i}\right) \leq \operatorname{det}(\Lambda(A)) \tag{3-5}
\end{equation*}
$$

Expanding the product in (3-5) gives

$$
\sum_{i=1}^{n-m} w_{i} \leq \operatorname{det}(\Lambda(A))-1
$$

Hence, denoting by $\|\cdot\|_{2}$ the Euclidean norm, we obtain the inequality

$$
\begin{equation*}
\|N \boldsymbol{w}\|_{2} \leq l_{N} \sum_{i=1}^{n-m} w_{i} \leq l_{N}(\operatorname{det}(\Lambda(A))-1) \tag{3-6}
\end{equation*}
$$

By (3-1), $\boldsymbol{b} \in \mathcal{C}_{B}\left(l_{N}(\operatorname{det}(\Lambda(A))-1)\right)$ and by $(3-6), \boldsymbol{b}-N \boldsymbol{w} \in \mathcal{C}_{B}$. The cone \mathcal{C}_{B} can be written as

$$
\mathcal{C}_{B}=\left\{\boldsymbol{y} \in \mathbb{R}^{m}: B^{-1} \boldsymbol{y} \geq \mathbf{0}\right\}
$$

and therefore

$$
\boldsymbol{u}=B^{-1}(\boldsymbol{b}-N \boldsymbol{w}) \geq \mathbf{0}
$$

4. Proof of Corollary 1.2

Let $A=\left(a_{11}, \ldots, a_{1 n}\right) \in \mathbb{Z}^{1 \times n}$ satisfy (1-3). Then the lattice $\Lambda(A)$ can be written in the form

$$
\Lambda(A)=\left\{\boldsymbol{x} \in \mathbb{Z}^{n-1}: a_{12} x_{1}+\cdots+a_{1 n} x_{n-1} \equiv 0\left(\bmod a_{11}\right)\right\}
$$

Note also that $\operatorname{det}(\Lambda(A))=a_{11}$ by (3-1).
The next lemma shows that the box $B(\Lambda(A))$ is entirely determined by the parameters f_{i} defined by (1-4).

Lemma 4.1. The box $B=B(\Lambda(A))$ has the form

$$
B=\left[0, \frac{f_{1}}{f_{2}}\right) \times\left[0, \frac{f_{2}}{f_{3}}\right) \times \cdots \times\left[0, \frac{f_{n-1}}{f_{n}}\right)
$$

Proof. By the definition of the box $B(\Lambda(A))$, it is sufficient to show that

$$
\begin{equation*}
v_{11}=\frac{f_{1}}{f_{2}}, \quad v_{22}=\frac{f_{2}}{f_{3}}, \quad \ldots, \quad v_{n-1 n-1}=\frac{f_{n-1}}{f_{n}} \tag{4-1}
\end{equation*}
$$

Let $\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{n-1}$ be the basis of the form (2-3) of the lattice $\Lambda(A)$. Let $\Lambda_{i}(A)$ denote the sublattice of $\Lambda(A)$ generated by the first i basis vectors $\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{i}$. We can write $\Lambda_{i}(A)$ in the form

$$
\Lambda_{i}(A)=\left\{\left(x_{1}, \ldots, x_{i}, 0, \ldots, 0\right)^{T} \in \mathbb{Z}^{n-1}: \frac{a_{12}}{f_{i+1}} x_{1}+\cdots+\frac{a_{1 i+1}}{f_{i+1}} x_{i} \equiv 0\left(\bmod \frac{a_{11}}{f_{i+1}}\right)\right\}
$$

Hence, $\operatorname{det}\left(\Lambda_{i}(A)\right)=a_{11} / f_{i+1}, i \in\{1, \ldots, n-1\}$. On the other hand, (2-3) implies

$$
\operatorname{det}\left(\Lambda_{i}(A)\right)=v_{11} v_{22} \cdots v_{i i}, \quad i \in\{1, \ldots, n-1\}
$$

Since $a_{11}=\operatorname{det}(\Lambda(A))=v_{11} v_{22} \cdots v_{n-1 n-1}$, we have

$$
f_{i+1}=v_{i+1 i+1} \cdots v_{n-1 n-1} \quad \text { for } i \in\{1, \ldots, n-2\} .
$$

Noticing that $f_{1}=a_{11}$ and $f_{n}=1$, we obtain (4-1).

Suppose that $b>G(A)$. Condition (1-3)(i) implies that the equation $A \boldsymbol{x}=b$ has integer solutions. Therefore, it is sufficient to show that the vector \boldsymbol{x} computed by Algorithm 1 is nonnegative. When $m=1,(3-2)$ sets $\boldsymbol{x}=\left(u, w_{1}, \ldots, w_{n-1}\right)^{T}$ with

$$
\begin{equation*}
u=\frac{b-a_{12} w_{1}-\cdots-a_{1 n} w_{n-1}}{a_{11}} \tag{4-2}
\end{equation*}
$$

Further, (3-4) implies that $\boldsymbol{w}=\left(w_{1}, \ldots, w_{n-1}\right)^{T} \in \Lambda(A, b)$ is nonnegative and $u \in \mathbb{Z}$.
To see that $u \geq 0$, we observe first that the points of the affine lattice $\Lambda(A, b)$ are split into layers of the form

$$
\begin{equation*}
a_{12} x_{1}+\cdots+a_{1 n} x_{n-1}=b+k a_{11}, \quad k \in \mathbb{Z} \tag{4-3}
\end{equation*}
$$

Suppose, to derive a contradiction, that $u<0$. Then, by (4-2),

$$
\begin{equation*}
a_{12} w_{1}+\cdots+a_{1 n} w_{n-1}>b \tag{4-4}
\end{equation*}
$$

On the other hand, by construction, $\boldsymbol{w} \in B(\Lambda(A))$ and hence, using Lemma 4.1 and noticing (1-5),

$$
\begin{equation*}
a_{12} w_{1}+\cdots+a_{1 n} w_{n-1} \leq G(A)+a_{11}<b+a_{11} . \tag{4-5}
\end{equation*}
$$

Due to (4-3), the bounds (4-4) and (4-5) imply $\boldsymbol{w} \notin \Lambda(A, b)$. The obtained contradiction shows that $u \geq 0$.

5. Proof of Corollary 1.3

We will show that a nonnegative integer solution to the system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ can be computed using Algorithm 1 from the proof of Theorem 1.1. By condition (1-3)(i), the system $A \boldsymbol{x}=\boldsymbol{b}$ is integer feasible. Following the proof of Theorem 1.1, it is sufficient to show that any \boldsymbol{b} that satisfies (1-9) must satisfy (1-2).

Let h denote the distance from the vector v to the boundary of \mathcal{C}_{B}. Observe that we can write $\boldsymbol{v}=$ $\boldsymbol{v}_{1}+\boldsymbol{v}_{2}+\boldsymbol{p}$, where $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ are the columns of B and $\boldsymbol{p} \in \mathcal{C}_{B}$. Therefore, we have

$$
h \geq \frac{|\operatorname{det}(B)|}{l_{B}}
$$

and, consequently, the points of the affine cone

$$
\frac{l_{B} l_{N}}{|\operatorname{det}(B)|}(|\operatorname{det}(B)|-1) \boldsymbol{v}+\mathcal{C}_{A}
$$

are at the distance $\geq l_{N}(|\operatorname{det}(B)|-1)$ to the boundary of \mathcal{C}_{B}.

Acknowledgement

The author is grateful to Valentin Brimkov, Martin Henk and Timm Oertel for valuable comments and suggestions.

References

[Aliev and Henk 2012] I. Aliev and M. Henk, "LLL-reduction for integer knapsacks", J. Comb. Optim. 24:4 (2012), 613-626. MR Zbl
[Babai 1986] L. Babai, "On Lovász' lattice reduction and the nearest lattice point problem", Combinatorica 6:1 (1986), 1-13. MR Zbl
[Brauer 1942] A. Brauer, "On a problem of partitions", Amer. J. Math. 64 (1942), 299-312. MR Zbl
[Brauer and Seelbinder 1954] A. Brauer and B. M. Seelbinder, "On a problem of partitions, II", Amer. J. Math. 76 (1954), 343-346. MR Zbl
[Brimkov 1988] V. E. Brimkov, "A polynomial algorithm for solving a large subclass of linear Diophantine equations in nonnegative integers", C. R. Acad. Bulgare Sci. 41:11 (1988), 33-35. MR Zbl
[Brimkov 1989] V. E. Brimkov, "Effective algorithms for solving a broad class of linear Diophantine equations in nonnegative integers", pp. 241-246 in Mathematics and education in mathematics (Albena, Bulgaria, 1989), edited by G. Gerov, Bulgar. Akad. Nauk, Sofia, 1989. In Bulgarian. MR
[Brimkov and Barneva 2001] V. E. Brimkov and R. P. Barneva, "Gradient elements of the knapsack polytope", Calcolo 38:1 (2001), 49-66. MR Zbl
[Cassels 1959] J. W. S. Cassels, An introduction to the geometry of numbers, Grundlehren der Math. Wissenschaften 99, Springer, 1959. MR Zbl
[Gomory 1969] R. E. Gomory, "Some polyhedra related to combinatorial problems", Linear Algebra and Appl. 2 (1969), 451-558. MR Zbl
[Grötschel et al. 1988] M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combinatorial optimization, Algorithms Combinator. Study Res. Texts 2, Springer, 1988. MR Zbl
[Kannan and Bachem 1979] R. Kannan and A. Bachem, "Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix", SIAM J. Comput. 8:4 (1979), 499-507. MR Zbl
[Martinet 2003] J. Martinet, Perfect lattices in Euclidean spaces, Grundlehren der Math. Wissenschaften 327, Springer, 2003. MR Zbl
[Papadimitriou and Steiglitz 1982] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and complexity, Prentice-Hall, Englewood Cliffs, NJ, 1982. MR Zbl
[Ramírez Alfonsín 2005] J. L. Ramírez Alfonsín, The Diophantine Frobenius problem, Oxford Lect. Series Math. Appl. 30, Oxford Univ. Press, 2005. MR Zbl
[Schmidt 1991] W. M. Schmidt, Diophantine approximations and Diophantine equations, Lecture Notes in Math. 1467, Springer, 1991. MR Zbl
[Schrijver 1986] A. Schrijver, Theory of linear and integer programming, Wiley, Chichester, 1986. MR Zbl
Received 15 Mar 2019. Revised 1 Jul 2019.
ISKANDER ALIEv:
alievi@cardiff.ac.uk
Mathematics Institute, Cardiff University, Cardiff, United Kingdom

Moscow Journal of Combinatorics and Number Theory

msp.org/moscow

EDITORS-IN-CHIEF

Yann Bugeaud	Université de Strasbourg (France) bugeaud@math.unistra.fr
Nikolay Moshchevitin	Lomonosov Moscow State University (Russia) moshchevitin@gmail.com
Andrei Raigorodskii	Moscow Institute of Physics and Technology (Russia) mraigor@yandex.ru
Ilya D. Shkredov	Steklov Mathematical Institute (Russia) ilya.shkredov@gmail.com
EDITORIAL BOARD	
Iskander Aliev	Cardiff University (United Kingdom)
Vladimir Dolnikov	Moscow Institute of Physics and Technology (Russia)
Nikolay Dolbilin	Steklov Mathematical Institute (Russia)
Oleg German	Moscow Lomonosov State University (Russia)
Michael Hoffman	United States Naval Academy
Grigory Kabatiansky	Russian Academy of Sciences (Russia)
Roman Karasev	Moscow Institute of Physics and Technology (Russia)
Gyula O. H. Katona	Hungarian Academy of Sciences (Hungary)
Alex V. Kontorovich	Rutgers University (United States)
Maxim Korolev	Steklov Mathematical Institute (Russia)
Christian Krattenthaler	Universität Wien (Austria)
Antanas Laurinčikas	Vilnius University (Lithuania)
Vsevolod Lev	University of Haifa at Oranim (Israel)
János Pach	EPFL Lausanne(Switzerland) and Rényi Institute (Hungary)
Rom Pinchasi	Israel Institute of Technology - Technion (Israel)
Alexander Razborov	Institut de Mathématiques de Luminy (France)
Joël Rivat	Université d'Aix-Marseille (France)
Tanguy Rivoal	Institut Fourier, CNRS (France)
Damien Roy	University of Ottawa (Canada)
Vladislav Salikhov	Bryansk State Technical University (Russia)
Tom Sanders	University of Oxford (United Kingdom)
Alexander A. Sapozhenko	Lomonosov Moscow State University (Russia)
József Solymosi	University of British Columbia (Canada)
Andreas Strömbergsson	Uppsala University (Sweden)
Benjamin Sudakov	University of California, Los Angeles (United States)
Jörg Thuswaldner	University of Leoben (Austria)
Kai-Man Tsang	Hong Kong University (China)
Maryna Viazovska	EPFL Lausanne (Switzerland)
Barak Weiss	Tel Aviv University (Israel)
PRODUCTION	
Silvio Levy	(Scientific Editor) production@msp.org

(France)

Lomonosov Moscow State University (Russia) moshchevitin@gmail.com Moscow Institute of Physics and Technology (Russia) mraigor@yandex.ru Steklov Mathematical Institute (Russia) ilya.shkredov@gmail.com

Cardiff University (United Kingdom) Moscow Institute of Physics and Technology (Russia) Steklov Mathematical Institute (Russia) Moscow Lomonosov State University (Russia) United States Naval Academy Russian Academy of Sciences (Russia) Moscow Institute of Physics and Technology (Russia) Hungarian Academy of Sciences (Hungary) Rutgers University (United States) Steklov Mathematical Institute (Russia) Universität Wien (Austria) Vilnius University (Lithuania) University of Haifa at Oranim (Israel) EPFL Lausanne(Switzerland) and Rényi Institute (Hungary) Israel Institute of Technology - Technion (Israel) Institut de Mathématiques de Luminy (France) Université d'Aix-Marseille (France) Institut Fourier, CNRS (France) University of Ottawa (Canada) Bryansk State Technical University (Russia) University of Oxford (United Kingdom) Lomonosov Moscow State University (Russia) University of British Columbia (Canada) Uppsala University (Sweden) University of California, Los Angeles (United States) University of Leoben (Austria) Hong Kong University (China) EPFL Lausanne (Switzerland) Tel Aviv University (Israel)
(Scientific Editor)
production@msp.org

Cover design: Blake Knoll, Alex Scorpan and Silvio Levy
See inside back cover or msp.org/moscow for submission instructions.
The subscription price for 2019 is US $\$ 310 /$ year for the electronic version, and $\$ 365 /$ year ($+\$ 20$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Moscow Journal of Combinatorics and Number Theory (ISSN 2640-7361 electronic, 2220-5438 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

MJCNT peer review and production are managed by EditFlow ${ }^{\circledR}$ from MSP.
PUBLISHED BY
mathematical sciences publishers
nonprofit scientific publishing
Paramodular forms of level 16 and supercuspidal representations 289Cris Poor, Ralf Schmidt and David S. Yuen
Generalized Beatty sequences and complementary triples 325
Jean-Paul Allouche and F. Michel Dekking
Counting formulas for CM-types 343
MASANARI Kida
On polynomial-time solvable linear Diophantine problems 357
ISKANDER ALIEV
Discrete analogues of John's theorem 367Sören Lennart Berg and Martin Henk
On the domination number of a graph defined by containment 379
Peter Frankl
A new explicit formula for Bernoulli numbers involving the Euler number 385
Sumit Kumar Jha
Correction to the article "Intersection theorems for $(0, \pm 1)$-vectors and 389s-cross-intersecting families"Peter Frankl and Andrey Kupavskii

[^0]: MSC2010: primary 11D04, 90C10; secondary 11H06.
 Keywords: multidimensional knapsack problem, polynomial-time algorithms, asymptotic integer programming, lattice points, Frobenius numbers.

