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Transcendence of numbers related with Cahen’s constant

Daniel Duverney, Takeshi Kurosawa and Iekata Shiokawa

Cahen’s constant is defined by the alternating sum of reciprocals of terms of Sylvester’s sequence minus 1.
Davison and Shallit proved the transcendence of the constant and Becker improved it. In this paper, we
study rationality of functions satisfying certain functional equations and generalize the result of Becker
by a variant of Mahler’s method.

1. Introduction

Sylvester’s sequence {Sn}n≥0 is defined by the recurrence

S0 = 2, Sn+1 = S2
n − Sn + 1 (n ≥ 0).

It is well known that
∞∑

n=0

1
Sn
= 1. (1)

Cahen [1891] showed that the number

C =
∞∑

n=0

(−1)n

Sn − 1
, (2)

which is now called Cahen’s constant, is irrational. Davison and Shallit [1991] established the transcen-
dence of Cahen’s constant. They constructed a class of alternating series each of which can be expanded
in an explicit simple continued fraction having irrationality exponent greater than 2.5 and showed that
the series (2) belongs to this class. Here, for an irrational number α, the irrationality exponent µ(α) is
defined by the least upper bound of the set of numbers µ for which the inequality∣∣∣∣α− p

q

∣∣∣∣< 1
qµ

has infinitely many irreducible rational solutions p/q. Thus, the transcendence of Cahen’s constant C
follows from Roth’s theorem. Becker [1992, Corollary 3] improved the result by a variant of Mahler’s
method. Indeed, he proved the following: Let p(z) be a polynomial with algebraic coefficients and
deg p(z) ≥ 2 and q(z) = z − γ with an algebraic number γ . Let x be an algebraic number such that
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limn→∞ pn(x) = ∞ and q(pn(x)) 6= 0 for all n ≥ 0, where p0(z) = z, pn(z) = p(pn−1(z)) (n ≥ 1).
Then, the number

∞∑
n=0

(−1)n

q(pn(x))

is transcendental except when q(p(z))= λ−1q(z)2+ q(z)− λ for some constant λ 6= 0, in which case

∞∑
n=0

(−1)n

q(pn(z))
=

1
q(z)+ λ

.

For example, if p(z)= z2
− z+ 1 and α = S0, then the number

∞∑
n=0

(−1)n

Sn − γ

is transcendental for any algebraic γ with Sn 6= γ for all n ≥ 0.
In this paper, we consider the function

f (z)=
∞∑

n=0

an

q(pn(z))
, (3)

where a 6= 0 is a complex number, p(z) ∈ C[z] with deg p(z) ≥ 2, and q(z) ∈ C[z] with deg q(z) ≥ 1.
We note that the right-hand side of (3) is convergent at any z ∈ C for which limn→∞ pn(z) =∞ and
q(pn(z)) 6= 0 for all n ≥ 0. Furthermore, there exists a constant C f > 1 such that f (z) is analytic in
D f = {z ∈ C | |z|> C f } and f (D f )⊂ D f .

The function f (z) satisfies the functional equation

a f (p(z))= f (z)−
1

q(z)
, (4)

and more generally

f (pn(z))=
1
an

(
f (z)−

n−1∑
j=0

a j

q(p j (z))

)
(n ≥ 1). (5)

We now state our results.

Theorem 1.1. Let f (z) be the function defined by

f (z)=
∞∑

n=0

an

q(pn(z))
,

where a ∈ C×, p(z) ∈ C[z] with deg p(z) ≥ 2 and q(z) ∈ C[z] is monic with deg q(z) ≥ 1. Then, the
function f (z) is algebraic over the field C(z) of rational functions if and only if deg p(z)= 2 and p(z)
and q(z) satisfy the relation

blq(p(z))− a = blq(z)(blq(z)− a), (6)
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where b is the leading coefficient of p(z) and l = deg q(z), and if so

f (z)=
bl

blq(z)− a
. (7)

Theorem 1.2. With the same notation as in Theorem 1.1, assume that a and the coefficients of p(z) and
q(z) are algebraic. Then the number

f (x)=
∞∑

n=0

an

q(pn(x))

is transcendental for any algebraic x with limn→∞ pn(x) =∞ and q(pn(x)) 6= 0 for all n ≥ 0, except
when d = 2 and p(z) and q(z) satisfy the relation (6), in which case f (z) is the rational function given
by (7).

Theorem 1.3. Let f (z) be the function defined by

f (z)=
∞∑

n=0

an

(pn(z)− γ )l
, (8)

where p(z) ∈ C[z] with deg p(z) ≥ 2 and l is a positive integer. Assume that a 6= 0, γ , and the coeffi-
cients of p(z) are algebraic numbers. Then the value f (x) is transcendental for any algebraic x with
limn→∞ pn(x)=∞ and pn(x) 6= γ for all n ≥ 0, except in the following two cases:

(i) l = 1, p(γ )− γ + b−1 p′(γ )= 0 and a =−p′(γ ), in which case

f (x)=
b

b(x − γ )− a
. (9)

(ii) l = 2, p(γ )− γ =−2b−1, p′(γ )= 0 and a = 4, in which case

f (x)=
b2

b2(x − γ )2− 4
. (10)

Remark 1.4. The case (ii) can be obtained as a special case of (i). Indeed, if a = 4 in case (ii), we have
by Taylor’s formula p(z)= b(x−γ )2−4(x−γ )+γ +4b−1, and therefore p(z)−γ = b(x−γ −2b−1)2.
Hence

f (x)=
1

x − γ
+

∞∑
n=1

4n

p(pn−1(x))− γ
=

1
x − γ

+ 4b−1
∞∑

n=0

4n

(pn(x)− γ − 2b−1)2
.

Replacing f (x) by using (9) and γ + 2b−1 by γ yields

b
b(x − γ )− 2

=
b

b(x − γ )+ 2
+ 4b−1

∞∑
n=0

4n

(pn(x)− γ )2
,

which is exactly (10).

We give some examples of Theorem 1.3.
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Example 1.5. Let {Sn}n≥0 be Sylvester’s sequence defined by

Sn+1 = S2
n − Sn + 1 (n ≥ 0)

with arbitrary S0 ∈ Z\ {0, 1}. Here p(z)= z2
− z+1, p′(z)= 2z−1 and b= 1. Let us study first case (i)

in Theorem 1.3. The equation p(γ )− γ + b−1 p′(γ )= 0 is equivalent to γ 2
= 0. Therefore γ = 0 and

a =−p′(γ )= 1. Case (ii) cannot occur. Hence for any algebraic numbers a 6= 0 and γ with Sn 6= γ for
all n ≥ 0 and a positive integer l, the number

∞∑
n=0

an

(Sn − γ )l

is transcendental except when l = a = 1 and γ = 0, and if so
∞∑

n=0

1
Sn
=

1
S0− 1

.

Example 1.6. Let {Tn}n≥0 be the recurrence

T0 ∈ Z, |T0|> 2, Tn+1 = T 2
n − 2 (n ≥ 0).

Here p(z) = z2
− 2, p′(z) = 2z and b = 1. By Theorem 1.3, we see that, for any algebraic numbers

a 6= 0 and γ with Tn 6= γ for all n ≥ 0 and a positive integer l, the number
∞∑

n=0

an

(Tn − γ )l

is transcendental except in the following three cases:

(i) l = 1, γ = 1, and a =−2, in which case
∞∑

n=0

(−2)n

Tn − 1
=

1
T0+ 1

. (11)

(ii) l = 1, γ =−2, and a = 4, in which case
∞∑

n=0

4n

Tn + 2
=

1
T0− 2

. (12)

(iii) l = 2, γ = 0, and a = 4, in which case
∞∑

n=0

4n

T 2
n
=

1
(T0− 2)(T0+ 2)

.

As mentioned in Remark 1.4, (iii) is intrinsically the same as (ii).

Example 1.7. Fermat numbers Fn = 22n
+ 1 satisfy the recurrence relation

Fn+1 = F2
n − 2Fn + 2 (n ≥ 0)
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with F0 = 3. By Theorem 1.3, for any algebraic numbers a 6= 0 and γ with Fn 6= γ for all n ≥ 0 and a
positive integer l, the number

∞∑
n=0

an

(Fn − γ )l
(13)

is transcendental except when l = 1, a = 2, and γ = 0, and if so

∞∑
n=0

2n

Fn
=

1
F0− 2

= 1. (14)

Remark 1.8. Formulas (11), (12), and (14) are known; see formulas (2.22), (2.25), and (2.26) in [Du-
verney 2001]. In fact, let α and β with |α|> |β| be roots of the equations x2

− T0x − 1= 0. Then the
Lucas-type sequence

Tn = α
2n
+β2n

satisfies Tn+1 = T 2
n − 2 (n ≥ 1). Therefore the series (11) and (12), as well as (14), can also be seen

as examples of exceptional cases related to the classical Mahler’s method; see [Duverney et al. 2002,
Theorem 1.3; Kanoko et al. 2009, Example 1].

2. Proof of Theorems 1.1 and 1.3

To prove the theorems, we study rational solutions of a functional equation which generalizes (4).

Lemma 2.1. Let a, c ∈C×, p(z) ∈C[z] with d = deg p(z)≥ 2 and leading coefficient b, and q(z) ∈C[z]
be monic with l = deg q(z)≥ 1. Assume that a rational function g(z) satisfies the functional equation

ag(p(z))= g(z)−
δ

q(z)
. (15)

Then d = 2, and p(z) and q(z) satisfy the relation

blq(p(z))− a = blq(z)(blq(z)− a), (16)

in which case:

(i) If a 6= 1, then (15) has one and only one rational solution, which is

g(z)=
δ

q(z)− ab−l . (17)

(ii) If a = 1, then (15) has infinitely many rational solutions given by

g(z)= α+
δ

q(z)− b−1 (α ∈ C). (18)

Proof. Let R(z) and S(z) be two coprime monic polynomials and α ∈ C× be such that

g(z)= α
R(z)
S(z)

.
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As g(z) satisfies (15), we have for c = δα−1

a
R(p(z))
S(p(z))

=
R(z)
S(z)
−

c
q(z)

. (19)

Put for brevity r = deg R(z) and s = deg S(z). If s = 0, then there is no solution satisfying (19) since
g(z)− ag(p(z))= c/(q(z)) 6∈ C[z]. Hence, s ≥ 1. The functional equation (19) can be written as

a R(p(z))S(z)q(z)= R(z)S(p(z))q(z)− cS(z)S(p(z)). (20)

Since (R(p(z)), S(p(z)))= 1, we have

S(p(z)) | S(z)q(z). (21)

Hence, ds ≤ s+ l. Therefore, we obtain

1≤ s ≤
l

d − 1
. (22)

Comparing the degrees of both sides of (20), we get r ≤ s.
If r < s, the degree of the first term of the right-hand side in (20) is greater than that of the left-hand

side. Therefore, the degree of the first term of the right-hand side is equal to that of the second term of
the right-hand side. Then, we have using (22)

0= r + ds+ l − (s+ ds)≥ r − s+ (d − 1)s = r + (d − 2)s ≥ 0.

Therefore, we deduce d = 2 and r = 0. This together with (20) leads to

aS(z)q(z)= S(p(z))q(z)− cS(z)S(p(z)). (23)

The degree of the left-hand side is less than that of the first term of the right-hand side. Hence, the
degrees of the two terms in the right-hand side are equal, and so s = l. This and (21) with d = 2 imply

S(p(z))= blq(z)S(z). (24)

Substituting (24) in (23), we get a = bl(q(z)− cS(z)). Comparing the leading coefficients of both sides,
we find c = 1 and

S(z)= q(z)− ab−l . (25)

Substituting into (24) yields (16). In this case, as R(z) is monic and deg R(z)= 0, we have R(z)= 1 and

g(z)= α
R(z)
S(z)
= c−1δ

1
q(z)− ab−l ,

which proves that (17) holds (also for a = 1).
Now, let r = s. Then we get a = 1 by comparing the leading coefficients of both sides in (20). Put

T (z)= R(z)− S(z). Then, by (20),

T (p(z))S(z)q(z)= T (z)S(p(z))q(z)− cS(z)S(p(z)). (26)

Noting that deg T (z) < s and (S(z), T (z)) = 1, we apply the above discussion for S(z) and T (z), and
thus we obtain d = 2, T (z) is a constant, and (24). Let T (z)= k 6= 0. Substituting (24) into (26), we get

1= bl(q(z)− ck−1S(z)).
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Comparing the leading coefficients of both sides, we find k = c, and we see that (25) holds again.
Therefore (16) holds. In this case R(z)− S(z)= c, whence

g(z)= α
R(z)
S(z)
= α+

αc
q(z)− b−l ,

which proves (18). �

Now we prove Theorem 1.1 by using Lemma 2.1.

Proof of Theorem 1.1. Assume that the function (3) is algebraic over the field C(z) of rational functions.
Then we have

( f (z))δ + g(z)( f (z))δ−1
+ · · · = 0, (27)

where the degree δ is chosen to be minimal and g(z) is a rational function with complex coefficients.
Replacing z by p(z) in (27) yields(

1
a

(
f (z)−

1
q(z)

))δ
+ g(p(z))

(
1
a

(
f (z)−

1
q(z)

))δ−1

+ · · · = 0

by using (4). This can be written as

f (z)δ +
(

ag(p(z))−
δ

q(z)

)
f (z)δ−1

+ · · · = 0. (28)

As δ is minimal, comparison with (27) and (28) yields

ag(p(z))= g(z)+
δ

q(z)
.

Since g(z) satisfies the functional equation (15), we can apply Lemma 2.1 and obtain (6). Replacing z
by pn(z) in (6) yields

abl

blq(pn+1(z))− a
=

a
q(pn(z))(blq(pn(z))− a)

=
bl

blq(pn(z))− a
−

1
q(pn(z))

.

After multiplying by an, the function f (z) appears as a telescoping series and we have

f (z)= bl
∞∑

n=0

(
an

blq(pn(z))− a
−

an+1

blq(pn+1(z))− a

)
=

bl

blq(z)− a
. �

Lemma 2.2. Make the same assumptions as in Lemma 2.1. Let q(z)= (z− γ )l , where l ≥ 1. Then l = 1
or 2:

(i) If l = 1, then b(p(γ )− γ )+ p′(γ )= 0 and a =−p′(γ ).

(ii) If l = 2, then p′(γ )= 0, p(γ )− γ =−2b−1, and a = 4.

Proof. By Lemma 2.1, (16) holds and we get

(p(z)− γ )l − ab−l
= bl(z− γ )2l

− a(z− γ )l . (29)



64 DANIEL DUVERNEY, TAKESHI KUROSAWA AND IEKATA SHIOKAWA

Differentiating both sides of (29), we get

p′(z)(p(z)− γ )l−1
= 2bl(z− γ )2l−1

− a(z− γ )l−1. (30)

If l = 1, then taking z = γ yields p(z)− γ − ab−l
= 0 and p′(γ ) = −a. Replacing a in the first

equality gives b(p(γ )− γ )+ p′(γ )= 0, as claimed.
Let l ≥ 2. By (29), we have

(p(γ )− γ )l = ab−l
6= 0. (31)

Since p(γ ) 6= γ by (31), (z− γ )l−1 divides p′(z). Hence l = 2, and so (30) is reduced to

p(z)− γ = b(z− γ )2− 1
2ab−1. (32)

Substituting z = γ in (32) and using (31), we find a = 4 and p(γ )− γ =−2b−1. Substituting z = γ in
(30) and using (31), we obtain p′(γ )= 0. �

Finally, we prove Theorem 1.3 by using Lemma 2.2 and Theorem 1.2, which will be shown indepen-
dently in the next section using Theorem 1.1.

Proof of Theorem 1.3. If the function f (z) defined in Theorem 1.3 is not a rational function, then the
value f (x) is transcendental by Theorem 1.2. Assume to the contrary that f (z) is a rational function.
Then Lemma 2.2 with (7) yields the exceptional cases. �

3. Proof of Theorem 1.2

Becker’s result mentioned in Section 1 is a special case of the main theorem in [Becker 1992], which es-
tablishes algebraic independence of the values of power series f1(z), . . . , fm(z) satisfying the functional
equations

fi (z)= ai (z) fi (T z)+ bi (z) (i = 1, . . . ,m),

where ai (z), bi (z) are rational functions with algebraic coefficients and T z = p(z−1)−1 for a polynomial
p(z) with algebraic coefficients and deg p(z)≥ 2. The proof of this theorem is based on a deep result due
to Philippon [1986] on a criterion for algebraic independence of complex numbers and is rather involved.
Although Theorem 1.2 can also be deduced from [Becker 1992, Theorem], we give here a self-contained
proof for completeness.

We prove Theorem 1.2 by a variant of Mahler’s method. In the proof we will have to estimate the
denominators and houses of algebraic numbers. We will use the following lemmas.

Lemma 3.1. Let K be any algebraic field of degree k, and let h ∈ K[z]. Let δ = deg h. Then there exists
µ= µ(h)≥ 1 such that, for every θ ∈ K×,

(i) den h(θ)≤ µ(den θ)δ,

(ii) |h(θ)| ≤ µ(max(1, |θ |))δ.

Proof. Put h(z)=
∑δ

i=0ai zi, with aδ 6= 0. Then clearly

den h(θ)≤ D(den θ)δ,
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where D = LCM(den a1, den a2, . . . , den aδ). Moreover, denote by σ1 = Id, σ2, . . . , σk the monomor-
phisms of K. Then for every j = 1, 2, . . . , k, we have∣∣∣∣ δ∑

i=0

σ j (ai )(σ j (θ))
i
∣∣∣∣≤ δ∑

i=0

|σ j (ai )|(|θ |)
i
≤

( δ∑
i=0

|σ j (ai )|

)
(max(1, |θ |))δ, �

Lemma 3.2. Let K be any algebraic field of degree k, and let h ∈ K[z]. Let δ = deg h. Then for every
θ ∈ K× such that h(θ) 6= 0, there exist ν = ν(h)≥ 1 such that

max
(

den
(

1
h(θ)

)
,

∣∣∣∣ 1
h(θ)

∣∣∣∣)≤ ν(den θ ×max(1, |θ |))kδ.

Proof. First we have

den
(

1
h(θ)

)
= den

(
den h(θ)

den h(θ)× h(θ)

)
= den

(den h(θ)
∏

i 6=1 σi (den h(θ)× h(θ))

N (den h(θ)× h(θ))

)
,

where N (α) is the norm of α ∈K over Q. The numerator of the fraction is an integer of K, and therefore

den
(

1
h(θ)

)
≤ |N (den h(θ)× h(θ))| ≤ (den h(θ))k × |h(θ)|k,

which proves the first part of Lemma 3.2 by using Lemma 3.1(i).
For the second part, for every i = 1, 2, . . . , k, we have∣∣∣∣σi

(
1

h(θ)

)∣∣∣∣= ∣∣∣∣ den h(θ)
den h(θ)× σi (h(θ))

∣∣∣∣= ∣∣∣∣(den h(θ))k ×
∏

j 6=i σ j (h(θ))

N (den h(θ)× h(θ))

∣∣∣∣.
Now |N (den h(θ)× h(θ))| ≥ 1 since (den h(θ)× h(θ)) is a nonzero integer of K. Consequently∣∣∣∣σi

(
1

h(θ)

)∣∣∣∣≤ (den h(θ))k × |h(θ)|k−1 (1≤ i ≤ k),

which proves Lemma 3.2 by using again Lemma 3.1. �

Now we prove Theorem 1.2. For every z ∈ C satisfying |z|> 1/C f and every n ≥ 0, put

q(pn(z))=
ldn∑
i=0

αn,i zi , αn,ldn = b(d
n
−1)/(d−1)

6= 0.

Then
an

q(pn(1/z))
=

anzldn∑ldn

i=0 αn,i zldn−i
, (33)

so that the function

F(z)= f
(

1
z

)
=

∞∑
n=0

an

q(pn(1/z))
(34)

is analytic in E f = {z ∈ C | |z|< 1/C f }.
If f is algebraic over C(z), we have the exceptional case by Theorem 1.1. From now on let f be not

algebraic over C(z), and the coefficients of p(z) and q(z) be algebraic numbers, as well as x , a, and
f (x). We may assume without loss of generality that x ∈ D f , since otherwise we can choose n0 such
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that pn(x) ∈ D f for all n ≥ n0 and consider the value f (x ′) with x ′ = pn0(x). To prove the theorem, we
assume that the value f (x) is algebraic and deduce a contradiction.

Let K ⊂ C be the number field generated by all these numbers, let A be the ring of integers of K, and
let k = deg K. It is clear from (33) and (34) that the power series expansions of F(z) and all its powers,
namely

(F(z)) j
=

∞∑
n=0

γ j,nzn, (35)

satisfy γ j,n ∈ K for all nonnegative integers j and n. Now let r be a fixed positive integer. We claim that
there exist polynomials P0, P1, . . . , Pr ∈ A[z] of degrees at most r , not all zero, such that

P0(z)+ P1(z)F(z)+ P2(z)(F(z))2+ · · ·+ Pr (z)(F(z))r = zr2
+σ Lr (z), (36)

where σ = σ(r)≥ 0, Lr (z)∈K[[z]] with Lr (0) 6= 0. Indeed, the left-hand side is not identically 0 since F
is not algebraic. To realize (36) we have to solve a system of r2 homogeneous equations (the coefficients
of the successive powers zi of the left-hand side must be equal to 0 for i from 0 to r2

− 1) with (r + 1)2

unknowns (the coefficients of the Pi ’s). Since (F(z))h ∈ K[[z]] for every nonnegative integer h, we know
from an elementary result of linear algebra that the system has a nontrivial solution in K(r+1)2, and hence
in A(r+1)2 if we multiply by a common denominator, which proves our claim.

Replacing z by 1/pn(x) yields

θr,n =

r∑
j=0

Pj

(
1

pn(x)

)
( f (pn(x))) j

=

(
1

pn(x)

)r2
+σ

Lr

(
1

pn(x)

)
. (37)

Under our hypotheses, the left-hand side of (37), which we call θr,n , belongs to K. As usual, we will
obtain a contradiction by letting n tend to infinity for a suitable value of r and applying the size inequality
to θr,n . In what follows, we denote by C1,C2, . . . real numbers greater than 1 which do not depend on n
or r (they may depend on x , p(x) or f (x)).

Lemma 3.3. There exists C1 such that

max
(

den
(

1
q(pn(x))

)
,

∣∣∣∣ 1
q(pn(x))

∣∣∣∣)≤ Cdn

1 . (38)

Proof. An easy induction using Lemma 3.1(i) shows that, for every n ≥ 1,

den(pn(x))≤ µ(p)(d
n
−1)/(d−1)(den x)d

n
≤ Cdn

2 . (39)

Furthermore, we have by Lemma 3.1(ii)

|pn(x)| ≤ µ(p)(d
n
−1)/(d−1)(max(1, |x |))d

n
≤ Cdn

3 . (40)

For n ≥ 2, we see by Lemma 3.2 that

max
(

den
(

1
pn(x)

)
,

∣∣∣∣ 1
pn(x)

∣∣∣∣)≤ ν(p)(den pn−1(x)×max(1, |pn−1(x)|)
)kd
.
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Therefore by (39) and (40)

max
(

den
(

1
pn(x)

)
,

∣∣∣∣ 1
pn(x)

∣∣∣∣)≤ Cdn

4 . (41)

By Lemma 3.2, this implies (38). �

Lemma 3.4. There exist C5, C6, and C7 such that

den(θr,n)≤ Crdn

5 , (42)

|θr,n| ≤ (r + 1)2χCrdn

6 , (43)

|θr,n| ≤ 2Lr (0)C−r2dn

7 , (44)

where χ is the greatest house of all the coefficients of all the polynomials Pi , which depends on r.

Proof. First we prove the inequality (42). By using (5), we have

den( f (pn(x)))= den
(

1
an

(
f (x)−

n−1∑
j=0

a j

q(p j (x))

))
≤

(
den

(
1
a

))n

× den( f (x))× (den a)n−1
×

n−1∏
j=0

den
(

1
q(p j (x))

)
.

By using (41), we obtain

den( f (pn(x)))≤ Cn
8 ×

n−1∏
j=0

Cd j

1 ≤ Cdn

9 . (45)

The polynomials Pi defined in (36) have integer coefficients and their degrees are at most r . Hence for
every i = 0, 1, . . . , r , we have by (41)

LCM
(

den
(

Pi

(
1

pn(x)

)))
≤

(
den

(
1

pn(x)

))r

≤ Crdn

4 . (46)

Now we can give an upper bound for the denominator of (θr,n):

den(θr,n)= den
( r∑

j=0

Pj

(
1

pn(x)

)
( f (pn(x))) j

)
≤ Crdn

4 ×Crdn

9 ≤ Crdn

5 .

Next, we prove the inequality (43). For every i = 0, 1, . . . , r , we have by (41)∣∣∣∣Pi

(
1

pn(x)

)∣∣∣∣≤ χ r∑
i=0

∣∣∣∣ 1
pn(x)

∣∣∣∣ i
≤ (r + 1)χCrdn

4 . (47)

For every n ≥ 0, we have by (5) and (38) above

| f (pn(x))| ≤
∣∣∣∣ 1
an

∣∣∣∣(| f (x)| +(n−1∑
j=0

|a| j
)

Cdn

1

)
≤ Cdn

10 . (48)
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By using (47) and (48), we can give an upper bound for the house of θr,n:

|θr,n| ≤

r∑
i=0

∣∣∣∣Pi

(
1

pn(x)

)∣∣∣∣× |[ f (pn(x))]i |

≤ (r + 1)χ
r∑

i=0

Crdn

4 ×Crdn

10 ≤ (r + 1)2χCrdn

6 .

Finally, we show the inequality (44). By (37), we have

|θr,n| =

(
1

|pn(x)|

)r2
+σ ∣∣∣∣Lr

(
1

pn(x)

)∣∣∣∣. (49)

Since |pn(x)| ≥ Cdn

7 , we see that

lim
n→∞

∣∣∣∣Lm

(
1

pn(x)

)∣∣∣∣= |Lr (0)| 6= 0, (50)

which proves that θr,n 6= 0 for every large n. Moreover, by (49) we have (44). �

We come now to the conclusion. Define δ = deg(θr,n). As θr,n 6= 0 for every large n, it satisfies the
size inequality:

|θr,n| ≥ (den(θr,n))
−δ
× |θr,n|

−δ+1. (51)

Using (42), (43) and (44) yields

2(γ (r + 1)2)δ−1Lr (0)≥
(

Cr
7

Cδ
5 ×Cδ

6

)rdn

. (52)

If we choose r such that Cr
7 > Cδ

5 ×Cδ
6 and fix it, we obtain a contradiction when n tends to infinity,

which proves Theorem 1.2.
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