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Admissible endpoints of gaps in the Lagrange spectrum

Dmitry Gayfulin

For any irrational number α define the Lagrange constant µ(α) by

µ−1(α)= lim inf
p∈Z, q∈N

|q(qα− p)|.

The set of all values taken by µ(α) as α varies is called the Lagrange spectrum L. An irrational α is
called attainable if the inequality ∣∣∣α− p

q

∣∣∣6 1
µ(α)q2

holds for infinitely many integers p and q. We call a real number λ ∈ L admissible if there exists
an irrational attainable α such that µ(α) = λ. In a previous paper we constructed an example of a
nonadmissible element in the Lagrange spectrum. In the present paper we give a necessary and sufficient
condition for admissibility of a Lagrange spectrum element. We also give an example of an infinite
sequence of left endpoints of gaps in L which are not admissible.

1. Introduction

The Lagrange spectrum L is usually defined as the set of all values of the Lagrange constants

µ(α)=
(

lim inf
p∈Z, q∈N

|q(qα− p)|
)−1

as α runs through the set of irrational numbers. Consider the continued fraction expansion of α

α = [a0; a1, a2, . . . , an, . . .].

For any positive integer i define

λi (α)= [ai ; ai+1, ai+2, . . .] + [0; ai−1, ai−2, . . . , a1].

It is well-known fact that
lim sup

i→∞
λi (α)= µ(α). (1)

The equation (1) provides an equivalent definition of the Lagrange constant µ(α).
The following properties of L are well known. The Lagrange spectrum is a closed set [Cusick 1975]

with minimal point
√

5. All the numbers of L which are less than 3 form a discrete set. The Lagrange
spectrum contains all elements greater than

√
21; see [Freiman 1973; Schecker 1977]. The complement
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of L is a countable union of maximal gaps of the spectrum. The maximal gaps are open intervals (a, b)
such that (a, b)∩ L=∅, but a and b both lie in the Lagrange spectrum. There are infinitely many gaps
in the nondiscrete part of the Lagrange spectrum [Gbur 1976].

Let α be an arbitrary irrational number. If the inequality∣∣∣∣α− p
q

∣∣∣∣6 1
µ(α)q2

has infinitely many solutions for integer p and q , we call α attainable. This definition was first given in
[Malyshev 1977]. One can easily see [Gayfulin 2017] that α is attainable if and only if λi (α) > µ(α)
for infinitely many indices i . We also call a real number λ ∈ L admissible if there exists an irrational
attainable number α such that µ(α)= λ.

Let B denote a doubly infinite sequence of positive integers

B = (. . . , b−n, . . . , b−1, b0, b1, . . . , bn, . . .).

For an arbitrary integer i define

λi (B)= [bi ; bi−1, . . .] + [0; bi+1, bi+2, . . .].

We will call a doubly infinite sequence B purely periodic if there exists a finite sequence P such that
B = (P). A doubly infinite sequence B is called eventually periodic if there exist three finite sequences
Pl, R, Pr such that B = (P l, R, Pr ). One can also consider an equivalent definition of the Lagrange
spectrum using the doubly infinite sequences. We use the notation from [Cusick and Flahive 1989]:

L(B)= lim sup
i→∞

λi (B), M(B)= sup λi (B).

The Lagrange spectrum L is exactly the set of values taken by L(B) as B runs through the set of doubly
infinite sequences of positive integers. The set of values taken by M(B) is called the Markoff spectrum.
We will denote this set by M.

We will call a doubly infinite sequence B weakly associated with an irrational number α= [a0; a1, . . . ,

an, . . .] if the following condition holds:

(1) For any natural i the pattern (b−i , b−i+1, . . . , b0, . . . , bi ) occurs in the sequence a1, a2, . . . , an, . . .

infinitely many times.

We will call B strongly associated with α if, additionally,

(2) µ(α)= λ0(B)= M(B).

One can easily see that if B is weakly associated with α then µ(α) > M(B). As we will show in
Lemma 4.1, if α has bounded partial quotients, it has at least one strongly associated sequence.

2. Results of [Gayfulin 2017]

Theorem I. The quadratic irrationality λ0 = [3; 3, 3, 2, 1, 1, 2]+ [0; 2, 1, 1, 2] belongs to L, but if α is
such that µ(α)= λ0 then α is not attainable.

Theorem II. If λ ∈ L is not a left endpoint of some maximal gap in the Lagrange spectrum then there
exists an attainable α such that µ(α)= λ.
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One can easily formulate these theorems using the concept of admissible numbers, introduced above.

Theorem I′. The quadratic irrationality λ0 = [3; 3, 3, 2, 1, 1, 2] + [0; 2, 1, 1, 2] belongs to L, but is not
admissible.

Theorem II′. If λ ∈ L is not a left endpoint of some maximal gap in the Lagrange spectrum then λ is an
admissible number.

3. Main results

Our first theorem is a small generalization of Theorem 3 in [Gayfulin 2017]. The proof will be quite
similar and use some lemmas from that paper.

Theorem 1. Let a be a left endpoint of a gap (a, b) in the Lagrange spectrum and α be an irrational
number such that µ(α)= a. Consider a doubly infinite sequence B strongly associated with α. Then B
is an eventually periodic sequence.

It follows from Theorems I and II that there exist nonadmissible elements in the Lagrange spectrum
but all such numbers are left endpoints of some maximal gaps in L. The following theorem gives a
necessary and sufficient condition of admissibility of a Lagrange spectrum element.

Theorem 2. A left endpoint of a gap in the Lagrange spectrum a is admissible if and only if there exists
a quadratic irrationality α such that µ(α)= a.

Of course, every quadratic irrationality is strongly associated with the unique sequence, which is
purely periodic. Therefore Theorem 2 is equivalent to the following statement.

Corollary 3.1. A left endpoint of a gap in the Lagrange spectrum a is not admissible if and only if there
does not exist a purely periodic sequence B such that λ0(B)= M(B)= a.

Theorem 2 provides an instrument to verify nonadmissible points in L. Define

α∗n = 2+ [0; 1, . . . , 1︸ ︷︷ ︸
2n−2

, 2, 2, 1, 2] + [0; 1, . . . , 1︸ ︷︷ ︸
2n−1

, 2, 1, . . . , 1︸ ︷︷ ︸
2n−2

, 2, 2, 1, 2],

βn = 2+ 2[0; 1, . . . , 1︸ ︷︷ ︸
2n

, 2].

The fact that (α∗n , βn) is the maximal gap in the Markoff spectrum was proved in [Gbur 1976]. It is easy
to show that α∗n and βn belong to L; we will do this in Section 6. Hence, as L⊂M [Cusick 1975], the
interval (α∗n , βn) is the maximal gap in L too.

Theorem 3. For any integer n > 2 the irrational number α∗n is not admissible.

One can easily see that α∗1 = 2+[0; 2, 2, 1, 2]+[0; 1, 2, 2, 2, 1, 2] =µ([0; 2, 2, 1, 2])= M(2, 2, 1, 2).
Thus, α∗1 is an admissible number by Theorem 2.
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4. Proof of Theorem 1

The following statement is well known. See the proof in [Cusick and Flahive 1989, Chapter 1, Lemma 6].

Lemma 4.1. Let A = . . . , a−1, a0, a1, . . . be any doubly infinite sequence. If M(A) is finite, then there
exists a doubly infinite sequence B such that M(A)= M(B)= λ0(B).

Using the same argument for the sequence A = (a1, a2, . . . , an, . . .), one can easily show:

Lemma 4.2. Let α = [0; a1, . . . , an, . . .] be an arbitrary irrational number and ai < c for all i ∈N, for
some positive real number c. Then there exists a doubly infinite sequence B which is strongly associated
with α.

As α 6
√

21, all elements of B are bounded by 4. For any natural n define εn = 2−(n−1), δn = 5−2(n+2).
We need the following lemmas from [Gayfulin 2017].

Lemma 4.3. Suppose α = [a0; a1, . . . , an, b1, . . .] and β = [a0; a1, . . . , an, c1, . . .], where n > 0, a0 is
an integer, and a1, . . . , an, b1, b2, . . . , c1, c2, . . . are positive integers bounded by 4 with b1 6= c1. Then
for n odd, α > β if and only if b1 > c1; for n even, α > β if and only if b1 < c1. Also,

δn < |α−β|< εn.

Lemma 4.4. Let γ = [0; c1, c2, . . . , cN , . . .] and γ ′ = [0; c′1, c′2, . . . , c′N , . . .] be two irrational numbers
with partial quotients not exceeding 4. Suppose that every sequence of partial quotients of length 2n+ 1
which occurs in the sequence (c′1, c′2, . . . , c′N , . . .) infinitely many times also occurs in the sequence
(c1, c2, . . . , cN , . . .) infinitely many times. Then µ(γ ′) < µ(γ )+ 2εn .

The following technical lemma was formulated in [Gayfulin 2017] for N = (2n+ 1)(42n+1
+ 1) and

the proof was incorrect. However, this is not crucial for the results of that paper, as we just need N to be
bounded from above by some growing function of n. In this paper, we give a new version of the lemma
with correct proof.

Lemma 4.5. Let n be an arbitrary positive integer. Define N = N (n) = (2n + 2)(42n+2
+ 1). If

b1, b2, . . . , bN is an arbitrary integer sequence of length N such that 1 6 bi 6 4 for all 1 6 i 6 N,
then there exist two integers n1, n2 such that bn1+i = bn2+i for all 06 i 6 2n+ 1 and n1 ≡ n2 (mod 2).

Proof. There exist only 42n+2 distinct sequences of length 2n + 2 with elements 1, 2, 3, 4. Consider
42n+2

+ 1 sequences: (b1, . . . , b2n+2), (b2n+3, . . . , b4n+4), . . . , (b(2n+2)42n+2+1, . . . , b(2n+2)42n+2+2n+2).
Dirichlet’s principle implies that there exist two coinciding sequences among them. Denote these se-
quences by (bn1, . . . , bn1+2n+1) and (bn2, . . . , bn2+2n+1). Note that the index of the first element of each
sequence is odd; hence n1 ≡ n2 ≡ 1 (mod 2), which finishes the proof. �

If n1 ≡ n2 (mod 2) then the sequence (bn1, bn1+1, . . . , bn2−1) has even length. This fact will be useful
in our argument.

Lemma 4.6. Let B be an arbitrary integer sequence of even length. Let A be an arbitrary finite integer
sequence and C an arbitrary nonperiodic infinite sequence. Then

min([0; A, B, B,C], [0; A,C]) < [0; A, B,C]<max([0; A, B, B,C], [0; A,C]). (2)
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Proof. As the sequence C is nonperiodic, the continued fractions in (2) are not equal. Without loss of
generality, one can say that the sequence A is empty. Suppose that

[0; B,C]> [0; B, B,C].

As the length of B is even, one can see that [0;C]> [0; B,C], which is exactly the right-hand side of (2).
The case when [0; B,C]< [0; B, B,C] is treated in exactly the same way. �

Lemma 4.7. Let γ = [0;b1,b2, . . . ,bN , . . .] be an arbitrary irrational number, not a quadratic irrational-
ity. Consider the sequence BN = (b1, b2, . . . , bN ) and define two numbers n1 and n2 from Lemma 4.5.
Define two new sequences of positive integers

B1
N = (b1, b2, . . . , bn1−1, bn2, bn2+1, . . . , bN ),

B2
N = (b1, b2, . . . , bn1−1, bn1, . . . , bn2−1, bn1, . . . , bn2−1, bn2, bn2+1, . . . , bN ).

Let us also define two new irrational numbers:

γ 1
= [0;b1,b2, . . . ,bn1−1,bn2,bn2+1, . . . ,bN ,bN+1, . . .] = [0; B1

N ,bN+1, . . .],

γ 2
= [0;b1,b2, . . . ,bn1−1,bn1, . . . ,bn2−1,bn1, . . . ,bn2−1,bn2,bn2+1, . . . ,bN , . . .] = [0; B2

N ,bN+1, . . .].

Then max(γ 1, γ 2) > γ .

Proof. We apply Lemma 4.6 for A=(b1,b2, . . . ,bn1−1), B=(bn1,bn1+1, . . . ,bn2−1), C=(bn2,bn2+1, . . .).
Here γ = [0; A, B,C], γ 1

= [0; A,C], and γ 2
= [0; A, B, B,C]. Note that as γ is not a quadratic

irrationality, the sequence C is not periodic. �

Now we are ready to prove Theorem 1.

Proof. Suppose that B is not periodic on the right side. Consider an increasing sequence of indices k( j)
such that for any natural j the sequence (ak( j)− j , . . . , ak( j), . . . , ak( j)+ j ) coincides with the sequence
(b− j , . . . , b0, . . . , bj ). Of course,

lim
j→∞

λk( j)(α)= λ0(B)= µ(α).

Without loss of generality, one can say that k( j + 1)− k( j)→∞ as j →∞. Consider an even n
such that εn <

1
2(b− a) and N = N (n) as defined in Lemma 4.5. Define n1 < n2 from Lemma 4.5 for

the sequence (b1, . . . , bN ). As B is not periodic to the right, define a minimal positive integer r such
that bn1+r 6= bn2+r . Consider the sequences B1

N , B2
N and the continued fractions γ1, γ2 from Lemma 4.7

applied to the continued fraction [0; b1, . . . , bn . . .] = γ . If γ2 > γ , define g = 2; otherwise we put g = 1.
Consider the doubly infinite sequence B ′ = (. . . , b−n, b0, Bg

N , bN+1, . . .). Note that

a = λ0(B) < λ0(B ′) < a+ εn < b.

Consider the corresponding continued fraction α′ which is obtained from the continued fraction α by
replacing every segment (ak( j), . . . , ak( j)+N )= (ak( j), BN ) by the segment (ak( j), Bg

N ) for every j >n2+r .
One can easily see that α′ and α satisfy the condition of Lemma 4.4 and hence µ(α′) < µ(α)+ 2εn . But
as µ(α)+ 2εn < b and (a, b) is the gap in L, we have

µ(α′)6 µ(α)= a. (3)
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On the other hand, one can easily see that the sequence B ′ is weakly associated with α′. This means that

µ(α′)> M(B)> λ0(B ′) > λ0(B)= a.

We obtain a contradiction with (3). The case when B is not periodic on the left side is considered in
exactly the same way. �

5. Proof of Theorem 2

The following lemma from [Gayfulin 2017] immediately implies the “⇐” part of the statement of
Theorem 2.

Lemma 5.1. Consider an arbitrary point a in the Lagrange spectrum. If there exists a quadratic irra-
tionality γ such that µ(γ )= a, then a is admissible.

Now it is sufficient to prove that if a is an admissible left endpoint of a gap in the Lagrange spectrum,
then there exists a quadratic irrationality α such that µ(α)= a.

Proof. Let a be an admissible left endpoint of some gap in the Lagrange spectrum. Let α = [a0; a1, . . . ,

an, . . .] be an irrational number such that µ(α) = a. Suppose that α is attainable, but not a quadratic
irrationality. Let k( j) be a growing sequence of indices such that

λk( j)(α)> µ(α). (4)
Of course,

lim
j→∞

λk( j)(α)= µ(α).

Consider a sequence B = (. . . , b−n, . . . , b−1, b0, b1, . . . , bn, . . .) strongly associated with α having the
following property: the sequence (b−i , . . . ,b0, . . . ,bi ) coincides with the sequence (ak( j)−i , . . . ,ak( j), . . . ,

ak( j)+i ) for infinitely many j’s. Theorem 1 implies that B is eventually periodic. That is, there exist a
positive integer m and two finite sequences L and R such that

B = (L, b−m, . . . , b0, . . . , bm, R).

It follows from (4) that one of the inequalities

[ak( j); ak( j+1), . . .]> [b0; b1, . . . , bm, R],

[0; ak( j−1), . . . , a1]> [0; b−1, . . . , b−m, L]

holds for infinitely many j’s. Note that [ak( j); ak( j+1), . . .] 6= [b0; b1, . . . , bm, R], as α is not a quadratic
irrationality and, of course, [0; ak( j−1), . . . , a1] 6= [0; b−1, . . . , b−m, L]. Suppose that

[ak( j); ak( j+1), . . .]> [b0; b1, . . . , bm, R] (5)

for infinitely many j ’s. Denote by p the length of period R. Denote by r( j) the minimal positive number
such that ak( j)+r( j) 6= br( j). Without loss of generality, one can say that:

(1) k( j + 1)− k( j)− r( j)→∞ as j→∞.

(2) [ak( j); ak( j+1), . . .]> [b0; b1, . . . , bm, R] for every j ∈ N.

(3) [ak( j); ak( j+1), . . . , ak( j)+m] = [b0; b1, . . . , bm] for every j ∈ N.
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(4) The sequence (ak( j)− j , . . . , ak( j), . . . , ak( j)+ j ) coincides with the sequence (b− j , . . . , b0, . . . , bj )

for every j ∈ N.

(5) Period length p is even.

Denote by t ( j) the number of periods P in the sequence (bm+1, . . . , br( j)). Of course,

t ( j)=
[

r( j)−m
p

]
and t ( j) tends to infinity as j→∞. Lemma 4.3 implies that since (5) holds, we have

[ak( j); ak( j+1), . . . , ak( j)+m, R, . . . , R︸ ︷︷ ︸
t ( j) times

, . . . , ak( j)+r( j), . . .]> [b0; b1, . . . , bm, R].

Denote by αn a continued fraction obtained from the continued fraction α = [a0; a1, . . . , an, . . .] as
follows: for any j ∈ N if t ( j) > n, then every pattern

ak( j), ak( j+1), . . . , ak( j)+m, R, . . . , R︸ ︷︷ ︸
t ( j) times

, . . . , ak( j)+r( j)

is replaced by the pattern

ak( j), ak( j+1), . . . , ak( j)+m, R, . . . , R︸ ︷︷ ︸
n times

, . . . , ak( j)+r( j).

As the length of the period R is even, by Lemma 4.3 one has

[ak( j); ak( j+1), . . . , ak( j)+m, R, . . . , R︸ ︷︷ ︸
n times

, . . . , ak( j)+r( j), . . .] − [b0; b1, . . . , bm, R]> δm+(n+1)p. (6)

On the other hand, as the sequence (ak( j)− j , . . . , ak( j)) coincides with the sequence (b− j , . . . , b0) for all
j ∈ N, by Lemma 4.3 one has∣∣[0; ak( j)−1, . . . , ak( j)− j , . . . , a1] − [0; b−1, . . . , b−m, L]

∣∣< εj . (7)

For any positive integers n,m, p there exists J such that for all j > J one has εj <
1
2δm+(n+1)p. Now,

from (6) and (7) we have for j > J(
[0; ak( j)−1, . . . , ak( j)− j , . . . , a1]

+ [ak( j); ak( j+1), . . . , ak( j)+m, R, . . . , R︸ ︷︷ ︸
n times

, . . . , ak( j)+r( j), . . .]
)

−
(
[0; b−1, . . . , b−m, L] + [b0; b1, . . . , bm, R]

)
> 1

2δm+(n+1)p. (8)

Considering the limit in (8) as j→∞, we can easily see that µ(αn)> µ(α)+
1
2δm+(n+1)p.

Note that
lim

n→∞
µ(αn)= µ(α)= a. (9)

Indeed, every pattern of length np which occurs in the sequence of partial quotients of α infinitely many
times occurs in the sequence of partial quotients of αn infinitely many times. Similarly, every pattern of
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length np which occurs in the sequence of partial quotients of αn infinitely many times, occurs in the
sequence of partial quotients of α infinitely many times too. Then, by Lemma 4.4,

|µ(α)−µ(αn)|< 2εnp = 2−np+2
→ 0

as n→∞. We obtain a contradiction with the fact that a is the left endpoint of the gap (a, b) in the
Lagrange spectrum. Indeed, (8) implies that µ(αn) > µ(α) for all n ∈ N. In addition, (9) implies that
there exists a positive integer N such that for any n > N one has a = µ(α) < µ(αn) < b.

If (5) does not hold infinitely many times, then the inequality

[0; ak( j−1), . . . , a1]> [0; b−1, . . . , b−m, L]

holds infinitely many times. As α is not a quadratic irrationality, for any positive integer s there exists an
integer N (s) > s such that for all n > N (s) the continued fraction [0; an, an−1, . . . , as] is not convergent
to the continued fraction [0; b−1, . . . , b−m, L]. Without loss of generality, one can say that k(1) > N (1),
k( j + 1) > N (2k( j)). Denote by r( j) the minimal positive number such that ak( j)−r( j) 6= b−r( j). It is
easy to see that the number r( j) is well-defined and

r( j + 1)6 k( j + 1)− N (2k( j)) < k( j + 1)− 2k( j).

Therefore k( j + 1)− r( j + 1)− k( j)→∞ as j →∞. Now one can easily complete the proof using
exactly the same argument as we used in the first case. �

6. Proof of Theorem 3

First of all, let us show that (α∗n , βn) is the maximal gap in L. As

βn = 2+ 2[0; 1, . . . , 1︸ ︷︷ ︸
2n

, 2] = µ([0; 1, . . . , 1︸ ︷︷ ︸
2n

, 2]),

we have βn ∈ L. The proof of the fact that α∗n ∈ L when n > 2 is a little more complicated. Recall that

α∗n = 2+ [0; 1, . . . , 1︸ ︷︷ ︸
2n−2

, 2, 2, 1, 2] + [0; 1, . . . , 1︸ ︷︷ ︸
2n−1

, 2, 1, . . . , 1︸ ︷︷ ︸
2n−2

, 2, 2, 1, 2].

Denote by Cn(k) the finite sequence of integers

Cn(k)= (2, 1, 2, 2︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
2n−2

, 2, 1, . . . , 1︸ ︷︷ ︸
2n−1

, 2, 1, . . . , 1︸ ︷︷ ︸
2n−2

, 2, 2, 1, 2︸ ︷︷ ︸
k

).

A little calculation shows that

L(Cn(k))= 2+ [0; 1, . . . , 1︸ ︷︷ ︸
2n−2

, 2, 2, 1, 2︸ ︷︷ ︸
k

, . . .] + [0; 1, . . . , 1︸ ︷︷ ︸
2n−1

, 2, 1, . . . , 1︸ ︷︷ ︸
2n−2

, 2, 2, 1, 2︸ ︷︷ ︸
k

, . . .].

Therefore limk→∞ L(Cn(k))= α∗n . As L is closed set, we obtain that α∗n ∈ L.
By [Gbur 1976, Lemma 4], α∗n is a growing sequence. One can easily see that

lim
n→∞

α∗n = 2+ 2[0; 1] =
√

5+ 1≈ 3.236.
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Thus, we have
α∗2 6 α

∗

n < 1+
√

5, where n > 2.

The following lemma is a compilation of Lemmas 3 and 4 from [Gbur 1976].

Lemma 6.1. Consider a doubly infinite sequence B = (. . . , b−n, . . . , b−1, b0, b1, . . . , bn, . . .) such that
M(B) <

√
5+ 1. Then all elements of B are bounded by 2 and B does not contain patterns of the form

(2, 1, 2, 1) and (1, 2, 1, 2).

By Lemma 4.1, without loss of generality one can say that M(B) = λ0(B). Denote the continued
fractions [0; b1, . . . , bn, . . .] and [0; b−1, . . . , b−n, . . .] by x and y respectively. Then

M(B)= b0+ x + y.

Without loss of generality one can say that x 6 y. Now we need the following lemma from [Gbur 1976,
Theorem 4(i)].

Lemma 6.2. Let B be a doubly infinite sequence such that M(B)= λ0(B). Then for all n > 1 we have

βn 6 M(B)= 2+ x + y 6 α∗n+1 ⇐⇒ x = [0; 1, . . . , 1︸ ︷︷ ︸
2n

, 2, . . .] and y = [0; 1, . . . , 1︸ ︷︷ ︸
2n

, . . .].

It also follows from [Gbur 1976, Theorem 4(ii)] that

2+ [0; 1, . . . , 1︸ ︷︷ ︸
2n+1

, . . .] + [0; 1, . . . , 1︸ ︷︷ ︸
2n+1

, 2, . . .]<
√

5+ 1.

Define
w0 = [0; 2, 1, 2, 2],

x0 = [0; 1, . . . , 1︸ ︷︷ ︸
2n

, 2, 2, 1, 2] = [0; 1, . . . , 1︸ ︷︷ ︸
2n

, 2+w0],

y0 = [0; 1, . . . , 1︸ ︷︷ ︸
2n+1

, 2, 1, . . . , 1︸ ︷︷ ︸
2n

, 2, 2, 1, 2] = [0; 1, . . . , 1︸ ︷︷ ︸
2n+1

, 2, 1, . . . , 1︸ ︷︷ ︸
2n

, 2+w0].

Lemma 6.3. Let w = [0; a1, a2, . . . , an, . . .] be a continued fraction with elements equal to 1 or 2.
Suppose that the sequence (a1, a2, . . . , an, . . .) does not contain the pattern (2, 1, 2, 1). Then w > w0.

Proof. Denote the elements of the continued fraction w0 = [0; 2, 1, 2, 2] by [0; a′1, . . . , a′m, . . .]. Denote
by r the minimal index such that ar 6= a′r . Suppose that w < w0. Then either r is odd, ar = 2, a′r = 1
or r is even, ar = 1, a′r = 2. However a′r = 2 for any odd r ; thus the first case leads to a contradiction.
Consider the second case. Of course, r > 4. Then a′r−3 = ar−3 = 2, a′r−2 = ar−2 = 1, a′r−1 = ar−1 = 2.
This means that (ar−3, ar−2, ar−1, ar )= (2, 1, 2, 1) and we obtain a contradiction. �

Now we prove Theorem 3.

Proof. Suppose that α∗n is admissible for some n > 2. Consider an attainable number α such that
µ(α)= α∗n . Let B = (. . . , b−n, . . . , b−1, b0, b1, . . . , bn, . . .) be any sequence strongly associated with α.
Denote by f the increasing function

f (t)= [0; 1, . . . , 1︸ ︷︷ ︸
2n+1

, 2+ t].
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By Lemma 6.2, there exist 0< v,w < 1 such that

x = [0; 1, . . . , 1︸ ︷︷ ︸
2n

, 2+ v] and y = [0; 1, . . . , 1︸ ︷︷ ︸
2n−1

, 1+w].

Note that x 6 x0. Indeed,

x = [0; 1, . . . , 1︸ ︷︷ ︸
2n

, 2+ v]6 [0; 1, . . . , 1︸ ︷︷ ︸
2n

, 2+w0] = x0 ⇐⇒ v > w0.

The last equality follows from Lemmas 6.3 and 6.1. Therefore

y = [0; 1, . . . , 1︸ ︷︷ ︸
2n−1

, 1+w]> y0 = f (x0).

In particular, b−2n−1 = 1, b−2n−2 = 2 and there exists 0< v 6 x0 such that y = f (v)> f (x0). Hence
v > x0. On the other hand,

2+ v+ f (x)= λ−2n−2(B)6 M(B)= λ0(B)= 2+ x + f (v).

As | f (y)− f (z)| < |y − z| for any 0 < y, z < 1, one can easily see that v 6 x . Thus, v = x = x0 and
y = y0. Hence the sequence B satisfies

B = (2, 1, 2, 2, 1, . . . , 1︸ ︷︷ ︸
2n

, 2, 1, . . . , 1︸ ︷︷ ︸
2n+1

, 2, 1, . . . , 1︸ ︷︷ ︸
2n

, 2, 2, 1, 2)

and is not purely periodic. We obtain a contradiction with Corollary 3.1, as we supposed B to be an
arbitrary sequence strongly associated with α. �
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