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Some remarks on the asymmetric sum-product phenomenon

Ilya D. Shkredov

Using some new observations connected to higher energies, we obtain quantitative lower bounds on
maxfjABj; jACC jg and maxfjABj; j.AC˛/C jg, where ˛¤ 0, in the regime when the sizes of the finite
subsets A;B;C of a field differ significantly.

1. Introduction

Let p be a prime number and A;B � Fp D Z=pZ be finite sets. Define the sum set, the difference set,
the product set, and the quotient set of A and B as

ACB WD faC b W a 2 A; b 2 Bg; A�B WD fa� b W a 2 A; b 2 Bg;

AB WD fab W a 2 A; b 2 Bg; A=B WD fa=b W a 2 A; b 2 B; b ¤ 0g:

One of the central problems in arithmetic combinatorics [Tao and Vu 2006] is the sum-product problem,
which asks for estimates of the form

maxfjACAj; jAAjg � jAj1Cc (1)

for some positive c. This question was originally posed by Erdős and Szemerédi [1983] for finite sets of
integers; they conjectured that (1) holds for all c < 1. The sum-product problem has since been studied
over a variety of fields and rings; see, e.g., [Bourgain 2003; 2005b; 2007, Bush and Croot 2014; Bourgain
et al. 2004; Erdős and Szemerédi 1983; Tao and Vu 2006]. We focus on the case of Fp (and sometimes
consider R), where the first estimate of the form (1) was proved by Bourgain, Katz, and Tao [Bourgain
et al. 2004]. At the moment the best results in this direction are contained in [Roche-Newton et al. 2016;
Konyagin and Shkredov 2016].

In this article we study an asymmetric variant of the sum-product question, in the spirit of the funda-
mental paper [Bourgain 2005c]: namely, sum-product theorems in Fp for sets of distinct sizes. We recall
two results from that paper:

Theorem 1. Given 0 < " < 1
10

, there is ı > 0 such that the following holds. Let A � Fp be such that
p" < jAj< p1�": Then either

jABj> pı jAj for all B � Fp with jBj> p"

or

jACC j> pı jAj for all C � Fp with jC j> p":
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Theorem 2. Given 0 < " < 1
10

, there is ı > 0 such that the following holds. Let A � Fp be such that
p" < jAj< p1�": Then for any x ¤ 0 either

jABj> pı jAj for all B � Fp with jBj> p"

or

j.AC x/C j> pı jAj for all C � Fp with jC j> p":

Theorems 1 and 2 were derived in [Bourgain 2005c] from the following result from [Bourgain 2005a].
Given a set A� Fp denote by TC

k
.A/ WD jf.a1; : : : ; ak; a

0
1; : : : ; a

0
k
/2A2k Wa1C� � �CakDa

0
1C� � �Ca

0
k
gj.

We write EC.A/ for TC2 .A/.

Theorem 3. For a positive integer Q, there are a positive integer k and a real � > 0 such that if H � F�p
and jHH j< jH j1C� , then

TC
k
.H/ < jH j2k.p�1C1=QC cQjH j

�Q/;

where cQ > 0 depends on Q only.

The aim of this paper is to obtain explicit bounds in the theorems above. Our arguments are different
and more elementary than those of [Bourgain 2005c; Bourgain et al. 2006; Garaev 2010]. In the proof
we almost do not use the Fourier approach and that is why we do not need lower bounds for sizes of
A;B;C in terms of the characteristic p, but, of course, these sets must be comparable somehow. Another
difference between this article and [Bourgain 2005c] is that our arguments work in R as well.

We now formulate our variants of Theorems 1 and 2 (see also Corollary 33). One can show that
Theorem 4 implies Theorems 1 and 2 if jAj< p1=2�"; see Remark 36.

Theorem 4. Let A;B;C � Fp be arbitrary sets, and k � 1 be such that jAjjBj1C
kC1
2.kC4/

2�k
� p and

jBj
k
8
C 1
2.kC4/ � jAj �C

.kC4/=4
� logk.jAjjBj/; (2)

where C� > 0 is an absolute constant. Then

maxfjABj; jACC jg � 2�3jAj �minfjC j; jBj
1

2.kC4/
2�k
g; (3)

and for any ˛ ¤ 0

maxfjABj; j.AC˛/C jg � 2�3jAj �minfjC j; jBj
1

2.kC4/
2�k
g: (4)

Actually, we prove that the lower bounds for jACC j, j.AC ˛/C j in (3), (4) could be replaced by
similar upper bounds for the energies EC.A; C /, E�.AC ˛; C /; see the second part of Corollary 33.
We call Theorem 4 an asymmetric sum-product result because A can be much larger than B and C
(say, jAj> .jBjjC j/100) in contrast with the usual quadratic restrictions which follow from the classical
Szemerédi–Trotter theorem; see [Szemerédi and Trotter 1983; Tao and Vu 2006] for the real setting and
see [Bourgain et al. 2004; Garaev 2010; Rudnev 2017b] for prime fields. On the other hand, the roles
of B , C are not symmetric as well. The thing is that the method of the proof intensively uses the fact
that if jABj is small comparable to jAj, then, roughly speaking, for any integer k, the size of .kA/B is
small comparable to kA, roughly speaking (rigorous formulation can be found in Section 5). Of course
this observation is not true in any sense if we replace � to C and vice versa.
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Also, we obtain a “quantitative” version of Theorem 3.

Theorem 5. Let A;B � Fp be sets, M � 1 be a real number and jABj �M jAj. For any k � 2 such that
216kM 2kC1C 2� log8 jAj � jBj, one has

TC
2k
.A/�

24kC6C� log4 jAj �M
2k jAj2

kC1

p
C 16k

2

M 2kC1C k�1� log4.k�1/ jAj � jAj2
kC1�4

jBj�
k�1
2 EC.A/: (5)

Here, C� > 0 is an absolute constant.

As a by-product, we obtain the best constants in the problem of estimating the exponential sums over
multiplicative subgroups [Bourgain 2005a; Garaev 2010] (see Corollary 16 below) and relatively good
bounds in the question of basis properties of multiplicative subgroups [Glibichuk and Konyagin 2007].
Also, we find a wide series of “superquadratic expanders in R” [Balog et al. 2017] with four variables;
see Corollary 35.

In contrast to [Bourgain 2005c], we prove Theorem 4 and Theorem 5 independently. We realize that
Theorem 4 is equivalent to estimating energies of another sort, namely,

EC
k
.A/ WD

ˇ̌
f.a1; : : : ; ak; a

0
1; : : : ; a

0
k/ 2 A

2k
W a1� a

0
1 D � � � D ak � a

0
kg
ˇ̌

(see the definitions in Section 2). Thus, a new feature of this paper is an upper bound for EC
k
.A/ for

sets A with jABj � jAj for some large B; see Theorem 27 below. Such an upper bound can be of
independent interest. Let us formulate our result about EC

k
.A/.

Theorem 6. Let A;B � Fp be two sets, k � 0 be an integer, and put M WD jABkC1j=jAj. Then for any
k � 0 such that

jBjk=8C1=2 � jAj �M 2kC123kC1C
.kC4/=4
� logk jABkj;

where C� > 0 is an absolute constant, we have

EC
2kC1

.A/� 2jABkj2
kC1

: (6)

Our approach develops the ideas from [Bourgain 2005c; Shkredov 2014] (see especially Section 4
there) and uses several sum-product observations of course. We avoid repeating Bourgain’s combinatorial
arguments (although we use a similar inductive proof strategy) but the method relies on recent geometrical
sum-product bounds from [Rudnev 2017b] and further papers such as [Yazici et al. 2017; Murphy et al.
2017; Roche-Newton et al. 2016; Shkredov 2017]. In some sense we introduce a new approach of
estimating moments Mk.f / (e.g., TC

k
.H/ in Theorem 3 or EC

k
.A/ in Theorem 6) of some specific

functions f : instead of calculating Mk.f / in terms of suitable norms of f , we compare Mk.f / and
Mk=2.f /. If Mk.f / is much less than Mk=2.f /, then we use induction, and if not, then thanks some
special nature of the function f , we derive from this fact that the additive energy EC of a level set of
f is huge and it gives a contradiction. Clearly, this process can be applied at most O.log k/ number of
times and that is why we usually have logarithmic savings (compare the index in TC

2k
.A/ and the gain

jBj�.k�1/=2 in estimate (5), say).
The paper is organized as follows. Section 2 contains all required definitions. In Section 3 we give

a list of the results, which will be further used in the text. In Section 4, we consider a particular case
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of multiplicative subgroups � and obtain an upper estimate for TC
k
.�/. This technique is developed in

Section 5 although we avoid using the Fourier approach as was done in [Bourgain 2005c] and in the
previous Section 4. Section 5 contains all main Theorems 4–6.

2. Notation

In this paper p is an odd prime number, Fp D Z=pZ, and F�p D Fp n f0g. We denote the Fourier transform
of a function f W Fp! C by Of ,

Of .�/D
X
x2Fp

f .x/e.�� � x/; (7)

where e.x/D e2�ix=p. We rely on the following basic identities. The first one is called the Plancherel
formula and its particular case f D g is called the Parseval identity:X

x2Fp

f .x/g.x/D
1

p

X
�2Fp

Of .�/ Og.�/: (8)

A particular case of (8) is X
y2Fp

ˇ̌̌̌X
x2Fp

f .x/g.y � x/

ˇ̌̌̌2
D
1

p

X
�2Fp

j Of .�/j2j Og.�/j2; (9)

and the formula
f .x/D

1

p

X
�2Fp

Of .�/e.� � x/ (10)

is called the inversion formula. Further let f; g W Fp! C be two functions. Put

.f �g/.x/ WD
X
y2Fp

f .y/g.x�y/ and .f ıg/.x/ WD
X
y2Fp

f .y/g.yC x/: (11)

Then
1f �g D Of Og and 1f ıg D NOf Og: (12)

Put EC.A;B/ for the common additive energy of two sets A;B � Fp (see, e.g., [Tao and Vu 2006]); that is,

EC.A;B/D
ˇ̌
f.a1; a2; b1; b2/ 2 A�A�B �B W a1C b1 D a2C b2g

ˇ̌
:

If AD B we simply write EC.A/ instead of EC.A;A/ and EC.A/ is called the additive energy in this
case. Clearly,

EC.A;B/D
X
x

.A�B/.x/2 D
X
x

.A ıB/.x/2 D
X
x

.A ıA/.x/.B ıB/.x/

and by (9),

E.A;B/D
1

p

X
�

j OA.�/j2j OB.�/j2: (13)

Also, notice that
EC.A;B/�minfjAj2jBj; jBj2jAj; jAj3=2jBj3=2g: (14)
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Sometimes we write EC.f1; f2; f3; f4/ for the additive energy of four real functions, namely,

EC.f1; f2; f3; f4/D
X
x;y;z

f1.x/f2.y/f3.xC z/f4.yC z/:

It can be shown using the Hölder inequality (see, e.g., [Tao and Vu 2006]) that

EC.f1; f2; f3; f4/� .E
C.f1/E

C.f1/E
C.f1/E

C.f1//
1=4: (15)

In the same way define the common multiplicative energy of two sets A;B � Fp:

E�.A;B/D
ˇ̌
f.a1; a2; b1; b2/ 2 A�A�B �B W a1b1 D a2b2g

ˇ̌
:

Certainly, the multiplicative energy E�.A;B/ can be expressed in terms of multiplicative convolutions
similar to (11).

Sometimes we use representation function notations like rAB.x/ or rACB.x/, which counts the number
of ways x 2 Fp can be expressed as a product ab or a sum aC b with a 2 A, b 2 B , respectively. For
example, jAj D rA�A.0/ and EC.A/ D rACA�A�A.0/ D

P
x r

2
ACA.x/ D

P
x r

2
A�A.x/. In this paper,

we use the same letter to denote a set A � Fp and its characteristic function A W Fp ! f0; 1g. Thus,
rACB.x/D .A�B/.x/, say.

Now consider two families of higher energies. Firstly, let

TC
k
.A/ WD

ˇ̌
f.a1; : : : ; ak; a

0
1; : : : ; a

0
k/ 2 A

2k
W a1C � � �C ak D a

0
1C � � �C a

0
kg
ˇ̌
D
1

p

X
�

j OA.�/j2k : (16)

It is useful to note that

TC
2k
.A/D

ˇ̌
f.a1; : : : ; a2k; a

0
1; : : : ; a

0
2k/ 2 A

4k
W .a1C � � �C ak/C .akC1C � � �C a2k/

D .a01C � � �C a
0
k/C .a

0
kC1C � � �C a

0
2k/g

ˇ̌
D

X
x;y;z

rkA.x/rkA.y/rkA.xC z/rkA.yC z/; (17)

so one can rewrite TC
2k
.A/ via the additive energy of the function rkA.x/. Secondly, for k � 2, we put

EC
k
.A/D

X
x2Fp

.A ıA/.x/k D
X
x2Fp

rkA�A.x/D EC.�k.A/; A
k/; (18)

where
�k.A/ WD f.a; a; : : : ; a/ 2 A

k
g:

Thus, EC2 .A/ D TC2 .A/ D EC.A/. Also, notice that we always have jAjk � EC
k
.A/ � jAjkC1 and

moreover
EC
k
.A/� jAjk�lEC

l
.A/ for all l � k: (19)

Finally, let us remark that by definition (18) one has EC1 .A/D jAj
2. Some results about the properties

of the energies EC
k

can be found in [Schoen and Shkredov 2013]. Sometimes we use TC
k
.f / and EC

k
.f /

for an arbitrary function f and the first formula from (18) allows us to define EC
k
.A/ for any positive k.

It was proved in [Shkredov 2017, Proposition 16] that .EC
k
.f //1=2k is a norm for even k and a real
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function f . The fact that .TC
k
.f //1=2k is a norm is contained in [Tao and Vu 2006] and follows from a

generalization of inequality (15).
Let A be a set. Put

RŒA� WD

�
a1� a

a2� a
W a; a1; a2 2 A; a2 ¤ a

�
and

QŒA� WD

�
a1� a2

a3� a4
W a1; a2; a3; a4 2 A; a3 ¤ a4

�
:

All logarithms are base 2. The signs� and� are the usual Vinogradov symbols. When the constants
in the signs depend on some parameter M , we write �M and �M . For a positive integer n, we set
Œn�D f1; : : : ; ng.

3. Preliminaries

We begin with a variation on the famous Plünnecke–Ruzsa inequality; see [Ruzsa 2009, Chapter 1].

Lemma 7. Let G be a commutative group. Also, let A;B1; : : : ; Bh � G , jACBj j D j̨ jAj, j 2 Œh�.
Then there is a nonempty set X � A such that

jX CB1C � � �CBhj � ˛1 : : : ˛hjX j: (20)

Further for any 0 < ı < 1 there is X � A such that jX j � .1� ı/jAj and

jX CB1C � � �CBhj � ı
�h˛1 : : : ˛hjX j: (21)

We need a result from [Rudnev 2017b] or see [Murphy et al. 2017, Theorem 8]. By the number of
point-plane incidences I.P;…/ between a set of points P � F3p and a collection of planes … in F3p we
mean

I.P;…/ WD
ˇ̌
f.p; �/ 2 P �… W p 2 �g

ˇ̌
:

Theorem 8. Let p be an odd prime, P � F3p be a set of points and … be a collection of planes in F3p.
Suppose that jPj D j…j and that k is the maximum number of collinear points in P . Then the number of
point-plane incidences satisfies

I.P;…/�
jPj2

p
CjPj3=2C kjPj: (22)

Notice that in R we do not need in the first term in estimate (22).
Let us derive a consequence of Theorem 8.

Lemma 9. Let A;Q � Fp be two sets, A;Q¤ f0g, M � 1 be a real number, and jQAj �M jQj. Then

EC.Q/� C�

�
M 2jQj4

p
C
M 3=2jQj3

jAj1=2

�
; (23)

where C� � 1 is an absolute constant.
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Proof. Put AD A n f0g. We have

EC.Q/D jfq1C q2 D q3C q4 W q1; q2; q3; q4 2Qgj

� jA�j
�2
jfq1C Qq2=aD q3C Qq4=a

0
W q1; q3 2Q; Qq2; Qq4 2QA; a; a

0
2 A�gj:

The number of the solutions to the last equation can be interpreted as the number of incidences between
the set of points P DQ�QA�A�1� and planes … with jPj D j…j D jA�jjQjjQAj. Here k D jQAj
because A;Q¤ f0g. Using Theorem 8 and a trivial inequality jQAj � jQjjAj, we obtain

EC.Q/� jAj�2
�
jAj2jQj2jQAj2

p
CjQj3=2jQAj3=2jAj3=2

�
�
M 2jQj4

p
C
M 3=2jQj3

jAj1=2
;

as required. �

Finally, we need a purely combinatorial Lemma 10. It is a new (for k > 2) and simple tool which
allows us to estimate the restricted higher energy

P
x2P r

k
A�A.x/ via some energies of A and P ; see

(25), for example.

Lemma 10. Let G be a finite abelian group and A;P subsets of G . For any k � 1 one has�X
x2P

rkA�A.x/

�2
� jAjk

X
x

rkA�A.x/rP�P .x/: (24)

In particular, �X
x2P

rkA�A.x/

�4
� jAj2kEC

2k
.A/EC.P /: (25)

Proof. Clearly, inequality (25) follows from (24) by the Cauchy–Schwarz inequality. To prove estimate
(24), we observe that�X

x2P

rkA�A.x/

�2
D

� X
x1;:::;xk2A

jP \ .A� x1/\ � � � \ .A� xk/j

�2
� jAjk

X
x1;:::;xk

jP \ .A� x1/\ � � � \ .A� xk/j
2
D jAjk

X
x

rP�P .x/r
k
A�A.x/;

as required. �

Combining Theorem 8 and Lemma 10, we obtain a corollary.

Corollary 11. Let A� Fp, and B;P � F�p be sets. Then for any k � 1 one has�X
x2P

rkA�A.x/

�4
� C�jAj

2kEC
2k
.AB/

�
jP j4

p
C
jP j3

jBj1=2

�
: (26)

Proof. By Lemma 10, we have�X
x2P

rkA�A.x/

�2
� jAjk

X
x

rkA�A.x/rP�P .x/:
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Further, clearly for any b 2 B we have

rA�A.x/� rAB�AB.xb/:

Hence�X
x2P

rkA�A.x/

�2
�
jAjk

jBj

X
x

X
b2B

rkAB�AB.xb/rP�P .x/D
jAjk

jBj

X
x

rkAB�AB.x/rB.P�P/.x/:

Using the Cauchy–Schwarz inequality, we obtain�X
x2P

rkA�A.x/

�4
�
jAj2k

jBj2
EC
2k
.AB/

X
x

r2B.P�P/.x/:

To estimate the sum
P
x r

2
B.P�P/

.x/, we use Theorem 8 similar to the proof of Lemma 9 (see [Yazici et al.
2017]). Indeed, taking P D .p1; b0p2; b0/, …D .b; p01; bp2/, where .b; b0; p1; p2; p01; p

0
2/ 2 B

2 �P 4,
we haveX

x

r2B.P�P/.x/D jf.b; b
0; p1; p2; p

0
1; p
0
2/ 2 B

2
�P 4 W b.p1�p2/D b

0.p01�p
0
2/gj

D jf.x; y; z/ 2 P; .b; p01; bp2/ 2… W bxCy �p
0
1z D bp2gj D I.P;…/

� C�

�
jBj2jP j4

p
CjBj3=2jP j3

�
:

Thus, �X
x2P

rkA�A.x/

�4
� C�jAj

2kEC
2k
.AB/

�
jP j4

p
C
jP j3

jBj1=2

�
: �

4. Multiplicative subgroups

In this section we obtain the best upper bounds for TC
k
.�/, EC

k
.�/ and for the exponential sums over

multiplicative subgroups � . We begin with the quantity TC
k
.�/.

Theorem 12. Let � � F�p be a multiplicative subgroup. Then for any k � 2, 264kC 4� � j�j one has

TC
2k
.�/� 24kC6C� log4 j�j � j�j

2kC1

p
C 16k

2

C k�1� log4.k�1/ j�j � j�j2
kC1�

kC7
2 EC.�/; (27)

where C� is the absolute constant from Lemma 9.

Proof. Fix any s � 2. Our intermediate aim is to prove

TC2s.�/� 32C�s
4 log4 j�j �

�
j�j4s

p
Cj�j2s�1=2TCs .�/

�
: (28)

By (17), we have

TC2s.�/D
X
x;y;z

rs�.x/rs�.y/rs�.xC z/rs�.yC z/:
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Put �D TC2s.�/=.16j�j
3s/. SinceX

x;y;zWrs�.x/��

rs�.x/rs�.y/rs�.xC z/rs�.yC z/� �j�j
3s
D TC2s.�/=16

it follows that
TC2s.�/�

4

3

X0

kx;y;zrs�.x/rs�.y/rs�.xC z/rs�.yC z/C E ;

where the sum
P0 is taken over nonzero variables x; y; z with rs�.x/; rs�.y/; rs�.xCz/; rs�.yCz/ > �

and
E � 4rs�.0/

X
y;z

rs�.y/rs�.z/rs�.yC z/� 4rs�.0/j�j
sTCs .�/� 4j�j

2s�1TCs .�/: (29)

Put Pj D fx W �2j�1 < rs�.x/ � �2
j g � F�p . If (28) does not hold, then, in particular, TC2s.�/ �

25j�j2s�1=2TCs .�/ � 2
5j�j3s�1=2 and hence the possible number of sets Pj does not exceed L WD

s log j�j. Indeed, for any x one has rs�.x/ � j�js�1 and hence �2j�1 D 2j�5TC2s.�/j�j
�3s must be

less than j�js�1 otherwise the correspondent set Pj is empty. In other words,

2j�5 � j�j4s�1=TC2s.�/� j�j
s�1=2=25 � j�js=25

as required. By the Dirichlet principle there is �D �2j0 , and a set P D Pj0 such that

TC2s.�/�
4
3
L4.2�/4EC.P /C E D T02s.�/C E :

Indeed, putting fi .x/D Pi .x/rs�.x/, and using (15), we get

0X
x;y;z

rs�.x/rs�.y/rs�.xCz/rs�.yCz/�

LX
i;j;k;lD1

X
x;y;z

fi .x/fj .y/fk.xCz/fl.yCz/

�

LX
i;j;k;lD1

.EC.fi /E
C.fj /E

C.fk/E
C.fl//

1=4

D

� LX
iD1

.EC.fi //
1=4

�4
� L3

LX
iD1

EC.fi /� L
4 max

i
EC.fi /:

Moreover we always have jP j�2 � TCs .�/ and jP j�� j�js . Using Lemma 9, we obtain

EC.P /� C�

�
jP j4

p
C
jP j3

j�j1=2

�
:

Hence,

T02s.�/�
4
3
.16C�/L

4�4
�
jP j4

p
C
jP j3

j�j1=2

�
�
4
3
.16C�/L

4

�
j�j4s

p
C
jP j3�4

j�j1=2

�
: (30)

Let us consider the second term in (30). Then in view of jP j�2 � TCs .�/ and jP j�� j�js , we have

jP j3�4 D .P�/2P�2 � j�j2sTCs .�/:
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In other words, by (29), we get

TC2s.�/�
4
3
.16C�/L

4

�
j�j4s

p
Cj�j2s�1=2TCs .�/

�
C 4j�j2s�1TCs .�/

� 32C�s
4 log4 j�j �

�
j�j4s

p
Cj�j2s�1=2TCs .�/

�
and inequality (28) is proved.

Now applying formula (28) successively k�1 times, we obtain

TC
2k
.�/� 24kC6C� log4 j�j �

j�j2
kC1

p
C 16k

2

C k�1� log4.k�1/ j�j � j�j2
kC���C4�k�1

2 EC.�/

� 24kC6C� log4 j�j �
j�j2

kC1

p
C 16k

2

C k�1� log4.k�1/ j�j � j�j2
kC1�

kC7
2 EC.�/: (31)

To get the first term in the last formula we have used our condition 264kC 4� � j�j to ensure that j�j1=2 �
24kC1C� log4 j�j. �

Remark 13. The condition 264kC 4� � j�j can be dropped, but in that case we will have the factor
16k

2

.C� log j�j/k�1 in the first term of (27).

Splitting any �-invariant set onto cosets over � and applying the norm property of TC
l

, we obtain:

Corollary 14. Let � � F�p be a multiplicative subgroup, and Q � F�p be a set with Q� DQ. Then for
any k � 2, 264kC 4� � j�j one has

TC
2k
.Q/� 24kC6C� log4 j�j �

jQj2
kC1

p
C 16k

2

C k�1� log4.k�1/ j�j � j�j�
kC7
2 EC.�/jQj2

kC1

: (32)

Let � be a subgroup of size less than
p
p. Considering the particular case k D 2 of the formula in

Theorem 12 and using EC.�/� j�j5=2�c , where c > 0 is an absolute constant (see [Shkredov 2013]),
one has:

Corollary 15. Let � be a multiplicative subgroup, j�j �
p
p. Then

TC4 .�/�
j�j8 log4 j�j

p
Cj�j6�c :

In particular, j4�j � j�j2Cc .

Previous results on TC
k
.�/, j�j �

p
p with small k had the form TC

k
.�/� j�j2k�2Cck with some

ck > 0; see, e.g., [Konyagin and Shparlinski 1999]. The best upper bound for TC3 .�/ can be found in
[Shteinikov 2015].

Now we prove a corollary about exponential sums over subgroups, which is parallel to results from
[Bourgain and Garaev 2009; Bourgain et al. 2006; Garaev 2010]. The difference between the previous
estimates and Corollary 16 is just a slightly better constant C in (34).
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Corollary 16. Let � be a multiplicative subgroup, j�j � pı , ı > 0. Then for all sufficiently large p one
has

max
�¤0
j O�.�/j � j�j �p�ı=2

7C2ı�1

: (33)

Further we have a nontrivial upper bound o.j�j/ for the maximum in (33) if

log j�j � C logp
log logp

; (34)

where C > 2 is any constant.

Proof. We can assume that j�j<
p
p, say, because otherwise the estimate (33) is known; see [Konyagin

and Shparlinski 1999]. By � denote the maximum in (33). Then by Theorem 12, a trivial bound EC.�/�

j�j3 and (16), we obtain

j�j�2
kC1

�pT2k .�/� 2
4kC6C� log4 j�j�j�j2

kC1

C16k
2

C k�1� log4.k�1/ j�j�j�j2
kC1�.kC1/=2p; (35)

provided 264kC 4� � j�j. Put k D d2 logp= log j�jC 4e � 2=ıC 5. Also, notice that

p log4.k�1/ j�j
j�jk=2

� 1; (36)

because k � 2 logp= log j�jC 4 and p is a sufficiently large number depending on ı (the choice of k is
slightly larger than 2 logp= log j�j to “kill” p by division by j�jk=2 as well as logarithms log4.k�1/ j�j).
Also, since j�j � pı , it follows that 264kC 4� � j�j for sufficiently large p. Taking a power 1=2kC1 from
both parts of (35), we see in view of (36) that

�� j�j.j�j�1=2
kC2

Cj�j�1=2
kC2

/� j�j1�1=2
kC2

� j�j �p
� ı

27C2ı
�1 :

To prove the second part of our corollary just notice that the same choice of k gives something nontrivial
if 2kC2 � " log j�j for any " > 0. In other words, it is enough to have

kC 2�
2 logp
log j�j

C 7� log log j�j � log.1="/:

It means that the inequality log j�j � C logp=.log logp/ for any C > 2 is enough. �

Remark 17. One can improve some constants in the proof (but not the constant C in (34)), probably,
but we did not make such calculations.

Now we estimate a “dual” quantity ECs .Q/ for �-invariant setQ (about duality of TC
k=2
.A/ and EC

k
.A/;

see [Schoen and Shkredov 2013] and (40)–(43)). We give even two bounds and both of them use the
Fourier approach. Our first estimate (37) relatively quickly follows from Corollary 14 and the price for
it is the appearance p in the bounds. The second estimate (39) is more delicate but requires more work.

Theorem 18. Let � � F�p be a multiplicative subgroup, andQ� F�p be a set withQ�DQ and jQj2j�j �
p2. Then for 0� k, 264kC 4� � j�j one has

EC
2kC1

.Q/

� 22
kC2C3.log jQj/2

kC1

jQj2
kC1�

24kC6C� log4 jQjC 16k
2

C k�1� log4.k�1/ jQj � j�j�
kC1
2 p

�
: (37)
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Further let k � 1 be such that
�j.kC2/=2 � jQj log4k jQj: (38)

Then
EC
2kC1

.Q/� .28C�/
kC1
jQj2

kC1

j�j1=2: (39)

Proof. We begin with (37) and we prove this inequality by induction. For k D 0 the result is trivial in
view of our condition jQj2j�j � p2. Put s D 2k , k � 1. By the Parseval identity and (12), we have

EC2s.Q/D
1

p2s�1

X
x1C���Cx2sD0

j OQ.x1/j
2 : : : j OQ.x2s/j

2 (40)

�
2sjQj2EC2s�1.Q/

p
C

1

p2s�1

X
x1C���Cx2sD0
xj¤0 for all j

j OQ.x1/j
2 : : : j OQ.x2s/j

2 (41)

D
2sjQj2EC2s�1.Q/

p
CE02s.Q/: (42)

Put LD log jQj. By the Parseval identity

1

p2s�1

X
x1C���Cx2sD0
xj¤0 for all j

j OQ.x1/j
2 : : : j OQ.x2s/j

2

�max
x¤0
j OQ.x/j2 �

1

p2s�1

X
x1C���Cx2sD0
xj¤0 for all j

j OQ.x1/j
2 : : : j OQ.x2s�1/j

2
�max
x¤0
j OQ.x/j2 � jQj2s�1:

Hence, as in the proof of Theorem 12, consider �2 D EC2s.Q/=.4sjQj
2s�1/ and the sets

Pj D fx W �2
j�1 < j OQ.x/j � �2j g � F�p:

Using the Dirichlet principle, we find �D �2j0 � � and P D Pj0 such that

E02s.Q/�
4L2s.2�/4s

p2s�1
TCs .P /: (43)

Here we bound the number of sets Pj by the number L because of

22j�2 � jQj2=�2 � 4sjQj2sC1=EC2s.Q/� jQj=4

and the last inequality follows if (37) does not hold. Clearly, P� D P (and this is the crucial point of
the proof, actually). Applying Corollary 14, we get

E02s.Q/�

24sC2L2s�4s

p2s�1

�
24kC6C� log4 j�j �

jP j2s

p
C 16k

2

C k�1� log4.k�1/ j�j � j�j�
kC7
2 EC.�/jP j2s

�
: (44)

By the Parseval identity, we see that
�2jP j � jQjp: (45)
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Hence

E02s.Q/� 2
4sC2L2sjQj2s � .24kC6C�L

4
C 16k

2

C k�1� L4.k�1/ � j�j�
kC7
2 EC.�/p/: (46)

Using a trivial bound EC.�/� j�j3, we get

E02s.Q/� 2
4sC2L2sjQj2s � .24kC6C�L

4
C 16k

2

C k�1� L4.k�1/ � j�j�
kC1
2 p/: (47)

Applying a crude bound (19), namely, EC2s�1.Q/ � jQj
s�1ECs .Q/, the condition jQj2j�j � p2, and

induction assumption, we get

2sjQj2EC2s�1.Q/

p
�
2sjQjsC1ECs .Q/

p

�
2sjQjsC1

p
�LsjQjs � 22sC3.24kC2C�L

4
C 16.k�1/

2

C k�2� L4.k�2/ � j�j�k=2p/

� 24sC2L2sjQj2s � .24kC6C�L
4
C 16k

2

C k�1� L4.k�1/ � j�j�
kC1
2 p/:

Hence combining the last estimate with (47), we derive

EC
2kC1

.Q/� 22
kC2C3L2

kC1

jQj2
kC1

� .24kC6C�L
4
C 16k

2

C k�1� L4.k�1/ � j�j�
kC1
2 p/

and thus we have obtained (37).
To get (39), put l D 2k�1, k � 1 and consider EC

4l
.Q/. Further define g.x/D r lQ�Q.x/ and notice

that Og.�/� 0, Og.0/D EC
l
.Q/. Moreover, taking the Fourier transform as in (40) and using the Dirichlet

principle, we get

EC
4l
.Q/D

X
x

.Q ıQ/4l.x/D
X
x

g4.x/D
EC. Og/

p3
D

1

p3

X
x;y;z

Og.x/ Og.y/ Og.xC z/ Og.yC z/

�
4 Og.0/

p3

X
y;z

Og.y/ Og.z/ Og.yC z/C
1

p3

X
x¤0;y¤0;z¤0

Og.x/ Og.y/ Og.xC z/ Og.yC z/

�
4EC
l
.Q/EC

3l
.Q/

p
C
4L4.2!/4

p3
EC.G/; (48)

where GD f� W! < Og.�/� 2!g � F�p , and ! � 2�3EC
4l
.Q/jQj�3l WD �� because the sum over Og.�/ < ��

by (10) does not exceed

4��

p3
�

X
x;y;z

Og.y/ Og.xC z/ Og.yC z/D 4��g
3.0/D 4��jQj

3l :

Further in view of the Parseval identity, we see that

!2jGj �
X
�2G

Og.�/2 � pEC
2l
.Q/; (49)

and by (10),
!jGj �

X
�2G

Og.�/D pg.0/D pjQjl : (50)
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Clearly, G is a �-invariant set (again, this is the crucial point of the proof). Further returning to (48) and
applying Lemma 9, we see that

EC
4l
.Q/�

4EC
l
.Q/EC

3l
.Q/

p
C
26L4!4

p3
EC.G/�

4EC
l
.Q/EC

3l
.Q/

p
C
26C�L

4!4

p3

�
jGj4

p
C
jGj3

j�j1=2

�
D
4EC
l
.Q/EC

3l
.Q/

p
CE04l.Q/:

Applying (49) and (50), we get

E04l.Q/� 2
6C�L

4
jQj4l C

26C�L
4.!jGj/2!2jGj

j�j1=2p3
� 26C�L

4
jQj4l C 26C�L

4
jQj2lEC

2l
.Q/j�j�1=2:

It follows that

EC
4l
.Q/�

4EC
l
.Q/EC

3l
.Q/

p
C 26C�L

4
jQj2lEC

2l
.Q/

�
jQj2l

EC
2l
.Q/
C

1

j�j1=2

�
: (51)

Further estimating the first term of (51) very roughly as

EC
l
.Q/EC

3l
.Q/

p
�
jQjlC1EC

3l
.Q/

p
�
jQj2lC1EC

2l
.Q/

p
;

we get in view of our condition jQj2j�j � p2 that this term is less than L4jQj2lEC
2l
.Q/j�j�1=2. Hence

EC
4l
.Q/� 27C�L

4
jQj2lEC

2l
.Q/

�
jQj2l

EC
2l
.Q/
C

1

j�j1=2

�
: (52)

Notice that the term jQj2l=EC
2l
.Q/C1=j�j1=2 � 2 �maxfjQj2l=EC

2l
.Q/; 1=j�j1=2g � 2. Applying bound

(52) exactly 0 � s � k times, where s is the maximal number (if it exists) such that the second term
1=j�j1=2 in (52) dominates, we obtain

EC
2kC1

.Q/� .28C�/
sL4sj�j�s=2jQj2

kC���C2k�sC1EC
2k�sC1

.Q/

�
jQj2

k�sC1

EC
2k�sC1

.Q/
C

1

j�j1=2

�
: (53)

Now by the definition of s, we see that the first term in (53) dominates. Hence, using (51), (52) one more
time (if s < k), we get

EC
2kC1

.Q/� 2.28C�/
sL4sj�j�s=2jQj2

kC1�2k�sC1
� jQj2

k�sC1

D 2.28C�/
sL4sj�j�s=2jQj2

kC1

: (54)

From the assumption j�j.kC2/=2 � jQj log4k jQj, it follows that j�j � jQj2=.kC2/ log8k=.kC2/ jQj.
Hence bound (54) is much better than (39) if s < k. If s D k, then by the same calculations, we
derive

EC
2kC1

.Q/� .28C�/
kL4kj�j�k=2EC2 .Q/jQj

2kC1�2:

Since jQj2j�j � p2 by Lemma 9, it follows that EC.Q/� 2C�jQj3=j�j1=2 and hence

EC
2kC1

.Q/� .28C�/
kC1L4kj�j�.kC1/=2jQj2

kC1C1:
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Further by the choice of k, namely, j�j.kC2/=2 � jQj log4k jQj we see that the last bound is bet-
ter than (39). Finally, if s D 0, then by definition EC

2k
.Q/ � jQj2

k

j�j1=2 and hence EC
2kC1

.Q/ �

jQj2
kC1

j�j1=2. �
Remark 19. From the second part of the arguments above one can derive explicit bounds for the energies
ECs .Q/ for small s. For example,

E4.Q/�
jQj2E3.Q/

p
C .log j�j/4jQj4C .log j�j/4jQj2E.Q/j�j�1=2:

Now we obtain a uniform upper bound for the size of the intersection of an additive shift of any �-
invariant set. Our bound (56) is especially effective if the sizes of Q1,Q2 are comparable with the size
of � , namely, jQ1j; jQ2j � j�jC , where C is an absolute constant (which can be large). In this case the
number k below is a constant as well.

Corollary 20. Let � � F�p be a multiplicative subgroup, j�j � pı , ı > 0, and Q1;Q2 � F�p be two sets
with Q1� DQ1, Q2� DQ2, jQ1j2j�j � p2, jQ2j2j�j � p2. Put QDmaxfjQ1j; jQ2jg. Then for any
x ¤ 0, one has

jQ1\ .Q2C x/j �
p
jQ1jjQ2j logQ �p�ı=2

7C2ı�1

: (55)

Further choose k � 1 such that j�j.kC2/=2 �Q log4kQ. Then, for an arbitrary x ¤ 0,

jQ1\ .Q2C x/j �
p
jQ1jjQ2j � j�j

�1=4�2�k : (56)

Proof. From the conditions jQ1j2j�j � p2, jQ2j2j�j � p2, it follows that j�j � p2=3. Put LD logQ.
On the one hand, applying the Cauchy–Schwarz inequality, we obtainX

y

r2
kC1

Q1�Q2
.y/� .EC

2kC1
.Q1//

1=2.EC
2kC1

.Q2//
1=2:

On the other hand, by formula (37) of Theorem 18 and �-invariance of Q1, Q2, we have

j�jjQ1\ .Q2C x/j
2kC1

�

X
y

r2
kC1

Q1�Q2
.y/

� 22
kC2C3L2

kC1

.jQ1jjQ2j/
2k .24kC6L4C 16k

2

C k�1� L4.k�1/ � j�j�
kC1
2 p/;

provided 264kC 4� � j�j. As in Corollary 16 choosing k D d2 logp= log j�jC4e � 2=ıC5 and applying
an analogue of (36) which holds for large p, namely,

pL4.k�1/

j�jk=2
� 1

we obtain

jQ1\ .Q2C x/j � L
p
jQ1jjQ2j � .j�j

�1=2kC2
Cj�j�1=2

kC2

/

� L
p
jQ1jjQ2jj�j

�1=2kC2
� L

p
jQ1jjQ2jp

�ı=27C2ı
�1

;

and it easy to ensure that inequality 264kC 4� � j�j takes place for sufficiently large p.
To derive (56), we just use the second formula (39) of Theorem 18 and the previous calculations. �
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Remark 21. It is known (see, e.g., [Konyagin and Shparlinski 1999]) that if � � F�p is a multiplicative
subgroup with j�j< p3=4, then for any x ¤ 0 one has j� \ .�C x/j � j�j2=3 and this bound is tight in
some regimes. One can extend this to larger �-invariant sets and obtain a lower bound of a comparable
quality. It gives a lower estimate in (55).

Indeed, let � � F�p be a multiplicative subgroup with j�j< p1=2. Consider RDRŒ�� and QDQŒ��.
It was proved in [Shkredov 2016b] that jRj � j�j2= log j�j and one can check that RD 1�R; see, e.g.,
[Murphy et al. 2017]. Finally, the set Q is �-invariant and it is easy to check [Shkredov 2016a] that
jQj � j�j3. Hence

jQ\ .1�Q/j � jRj �
j�j2

log j�j
�
jQj2=3

log jQj
:

Also, notice that if j�j< p1=2 and jQŒ��j2j�j � p2, then jQŒ��j � j�j2Cc for some c > 0; see the
first part of Corollary 35 from the next section.

Corollary 20 gives a nontrivial upper bound for the common additive energy of an arbitrary invariant
set and any subset of Fp.

Corollary 22. Let � � F�p be a multiplicative subgroup, j�j � pı , ı > 0, and Q � F�p be a set with
Q� DQ, jQj2j�j � p2. Then for any set A� Fp, one has

EC.A;Q/� jQjjAj2 �p�ı=2
7C2ı�1

log jQjC jAjjQj: (57)

Further, for an arbitrary ˛ ¤ 0,

E�.A;QC˛/� jQjjAj2 �p�ı=2
7C2ı�1

log jQjC jAjjQj: (58)

In particular,

jACQj � jQj �minfjAj; p
ı

27C2ı
�1 log�1 jQjg; (59)

and

jA.QC˛/j � jQj �minfjAj; p
ı

27C2ı
�1 log�1 jQjg: (60)

If k � 1 is chosen as j�j.kC2/=2 � jQj log4k jQj, then one can replace the quantity p
ı

27C2ı
�1 log�1 jQj

above by j�j�1=4�2
�k

.

Proof. Inequalities (59), (60) follow from (57), (58) via the Cauchy–Schwarz inequality, so it is enough
to obtain the required upper bound for the additive energy of A and Q and for the multiplicative energy
of A and QC˛. By Corollary 20, we have

EC.A;Q/D
X
x

rA�A.x/rQ�Q.x/D jAjjQjC
X
x¤0

rA�A.x/rQ�Q.x/

� jAjjQjC jQjjAj2 �p�ı=2
7C2ı�1

log jQj;

as required. Similarly

E�.A;QC˛/� jAjjQjC
X
x¤0;1

rA=A.x/r.QC˛/=.QC˛/.x/� jAjjQjC jQjjAj
2
�p�ı=2

7C2ı�1

log jQj;
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because in view of Corollary 20 one has

r.QC˛/=.QC˛/.x/D jQ\ .xQC˛.x� 1//j � jQj �p
�ı=27C2ı

�1

log jQj:

So, we have obtained bounds (57)–(60) with p
ı

27C2ı
�1 log�1 jQj, and to replace it by j�j�1=4�2

�k

one
should use the second part of Corollary 20. �

From (59) one can obtain that for any multiplicative subgroup � � F�p there is N such that N� D Fp

and N � ı�14ı
�1

. The results of comparable quality were obtained in [Glibichuk and Konyagin 2007].

5. The proof of the main result

In this section we obtain an upper bound for TC
k
.A/ (see Theorem 23) and an upper bound for EC

k
.A/

(see Theorem 27) in the case when the size of the product set AB is small comparable to A, where B is a
sufficiently large set. From the last result we derive our quantitative asymmetric sum-product Theorem 5
from the introduction. Let us begin with an upper bound for TC

k
.A/.

Theorem 23. Let A;B � Fp be sets, M � 1 be a real number, and jABj �M jAj, jAj> 1. Then for any
k � 2, 216kM 2kC1C 2� log8 jAj � jBj, one has

TC
2k
.A/� 24kC6C� log4 jAj�

M 2k jAj2
kC1

p
C16k

2

C k�1� M 2kC1 log4.k�1/ jAj�jAj2
kC1�4

jBj�
k�1
2 EC.A/:

(61)

Proof. We have B ¤ f0g by the condition 216kM 2kC1C 2� log8 jAj � jBj, for instance. We apply the
arguments and the notation of the proof of Theorem 12. Fix any s � 2 and put L WD s log jAj. Our
intermediate aim is to prove

TC2s.A/� Cs
4M 2s log4 jAj �

�
jAj4s

p
C
jAj2sp
jBj

TCs .A/

�
; (62)

where C D 25C�. As in the proof of Theorem 12, we get

TC2s.A/�
4
3
L4.2�/4EC.P /C E ;

where
E � 4jAj2s�1TCs .A/: (63)

Further, �> TC2s.A/=.16jAj
3s/ is a real number and P D fx W�< rsA.x/� 2�g � F�p . Moreover, we

always have jP j�2 � TCs .A/. Notice also

jP j��
X
x2P

rsA.x/�
X
x

rsA.x/� jAj
s:

To proceed as in the proof of Theorem 12, we need to estimate jPBj. Observe that for any x 2 PB
one has rsAB.x/��. Thus, we have

jPBj��
X
x2PB

rsAB.x/� jABj
s
�M s

jAjs: (64)
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Hence using Lemma 9, we obtain

EC.P /� C�

�
M 2sjAj2sjP j2

�2p
C
M 3s=2jAj3s=2jP j3=2

�3=2jBj1=2

�
:

Hence in view of estimate (63), combining with jP j�� jAjs and jP j�2 � TCs .A/, we get

TC2s.A/�
4
3
.16C�/L

4�4
�
M 2sjAj2sjP j2

�2p
C
M 3s=2jAj3s=2jP j3=2

�3=2jBj1=2

�
C 4jAj2s�1TCs .A/

D
4
3
.16C�/L

4

�
M 2sjAj2sjP j2�2

p
C
M 3s=2jAj3s=2jP j3=2�5=2

jBj1=2

�
C 4jAj2s�1TCs .A/

�
4
3
.16C�/L

4

�
M 2sjAj4s

p
C
M 3s=2jAj3s=2.jP j�2/.jP j�/1=2

jBj1=2

�
C 4jAj2s�1TCs .A/

� 32C�L
4

�
M 2sjAj4s

p
C
M 3s=2jAj2sTCs .A/

jBj1=2

�
;

and inequality (62) is proved. Here, we have used a trivial inequality jBj1=2 � jAj which follows from
jBj � jABj �M jAj � jBj1=2jAj because M 2 � 216kM 2kC1C 2� log8 jAj � jBj.

Now applying formula (62) successively k�1 times, we obtain

T2k .A/

� 24kC6C� log4jAj �
M 2kjAj2

kC1

p
C 16k

2

M 2kC1C k�1� log4.k�1/jAj � jAj2
kC1�4

jBj�
k�1
2 EC.A/; (65)

where the exponent 2kC1 � 4 comes from the sum 2k C � � � C 4; to get the first term on the right-hand
side of (65), we used 216kM 2kC1C 2� � jBj to ensure that jBj1=2 � 24kC1C�M 2k log4 jAj. �

Remark 24. It is easy to see that instead of the assumption jABj � jAj we can assume a weaker
condition jAs ��s.B/j � jAjs , 1 < s � 2k�1; see (64).

The same arguments work in the case of real numbers. In this situation we have no characteristic p
and hence we have no any restrictions on the parameter k.

Theorem 25. Let A;B � R be finite sets, M � 1 be a real number, and jABj �M jAj. Then for any
k � 2, one has

TC
2k
.A/� 16k

2

C k�1� M
3
2
.2k�1/ log4.k�1/ jAj � jAj2

kC1�1
jBj�k=2: (66)

Corollary 26. Let A� R be a finite set, M � 1 be a real number, and jAAj �M jAj or jA=Aj �M jAj.
Then for any k � 2, one has

j2kAj �k jAj
1Ck=2M�3=2 .2

k�1/
� log�4.k�1/ jAj: (67)

Bounds of such a sort were obtained in [Konyagin 2014] by another method. The best results con-
cerning lower bounds for multiple sum sets kA, k!1 of sets A with a small product/quotient set can
be found in [Bush and Croot 2014].
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To obtain an analogue of Theorem 18 for sets with jAAj � jAj, we cannot use the same arguments as
in Section 4 because the spectrum is not an invariant set in this case. Moreover, in R there is an additional
difficulty with using Fourier transform: the dual group of R does not coincide with R of course. That is
why we suggest another method which works in “physical space” but not in the dual group.

To formulate our main result about EC
k
.Q/ for sets Q with small product Q� for some relatively large

set � we need some notation. Let us write Q.k/ D jQ�k�1j for k � 1 and Q.k/ D jQj for k D�1.

Theorem 27. Let �;Q� Fp be two sets, and k � 0 be an integer. Suppose that jQ�kC1jjQ�kjj�j �p2;
further Q.k/j�j � p, and M D jQ�kC1j=jQj. Then either

EC
2kC1

.Q/� .M 2kC123kC1C
.kC4/=4
� logkQ.k// � jQj2

kC1C1
j�j�k=8�1=2 (68)

or
EC
2kC1

.Q/� 2.Q.k//2
kC1

:

In particular, if we choose k such that j�jk=8C1=2 � jQj �M 2kC123kC1C
.kC4/=4
� logkQ.k/, then

EC
2kC1

.Q/� 2.Q.k//2
kC1

: (69)

Proof. Without loss of generality one can assume that 0 … � . Fix an integer l � 1 and prove that either

EC
5l=2

.Q/� 8C
1=4
� log jQj � jQjl=2EC

2l
.Q�/j�j�1=8 (70)

or
EC
5l=2

.Q/� 2jQj5l=2: (71)

Put g.x/D r lQ�Q.x/, LD log jQj, and E0
5l=2

.Q/D EC
5l=2

.Q/�jQj5l=2 � 0. We will assume below that

E0
5l=2

.Q/� 2�1EC
5l=2

.Q/ because otherwise we obtain (71) immediately. Using the Dirichlet principle,
we find a set P and a positive number � such that P D fx W�< g.x/� 2�g � F�p and

E05l=2.Q/� L
X
x2P

r
5l=2
Q�Q.x/:

Applying Corollary 11, we obtain

E05l=2.Q/� L.2�/
3=2

X
x2P

r lQ�Q.x/� 3C
1=4
� L�3=2jQjl=2.EC

2l
.Q�//1=4

�
jP j4

p
C
jP j3

j�j1=2

�1=4

� 3C
1=4
� LjQjl=2.EC

2l
.Q�//1=4

�
�6jP j4

p
C
�6jP j3

j�j1=2

�1=4
:

We have �jP j � EC
l
.Q/, �2jP j � EC

2l
.Q/ and hence �6jP j4 � .EC

2l
.Q//2.EC

l
.Q//2. It follows that

E05l=2.Q/� 3C
1=4
� LjQjl=2.EC

2l
.Q�//1=4

�
.EC
2l
.Q//2.EC

l
.Q//2

p
C
.EC
2l
.Q//3

j�j1=2

�1=4
:

To prove that the first term .EC
2l
.Q//2.EC

l
.Q//2=p is less than .EC

2l
.Q//3=j�j1=2, we need to check that

.EC
l
.Q//2j�j1=2 � EC

2l
.Q/p:
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But using the Hölder inequality, we see that the required estimate follows from

.EC
l
.Q//2j�j1=2 � .EC

2l
.Q//

2.l�1/
2l�1 jQj

4l
2l�1 j�j1=2 � EC

2l
.Q/p

or, in other words, from
jQj4l j�j.2l�1/=2 � EC

2l
.Q/p2l�1: (72)

Finally, we can suppose that for any s � 2 one has, say,

ECs .Q/� jQj
sC1
j�j�1=8 log s�1=2;

because otherwise estimate (68) follows easily. Our assumption Q.k/j�j � p implies that jQjj�j � p
and whence

jQj2l�1j�j
1
8

log2lCl
� p2l�1j�j1C1=8 log2l�l

� p2l�1;

and thus (72) takes place for l � 2. For l D 1, see the calculations below. Hence under this assumption
and the inequality E0

5l=2
.Q/� 2�1EC

5l=2
.Q/, we have

EC
5l=2

.Q/� 8C
1=4
� log jQj � jQjl=2EC

2l
.Q�/j�j�1=8

and we have proved (70). Trivially, it implies that

EC
4l
.Q/� 8C

1=4
� log jQj � jQj2lEC

2l
.Q�/j�j�1=8

and subsequently using this bound, we obtain

EC
2kC1

.Q/� .23kC
k=4
� logk jQ�k�1j/ �M 2k�1C���C2

jQj2
kC���C2EC.Q�k/j�j�k=8

D .23kM 2k�2C
k=4
� logk jQ�k�1j/ � jQj2

kC1�2EC.Q�k/j�j�k=8:

At the last step, we need to check jQ�k�1jj�j � p, and it is guaranteed by our assumption Q.k/j�j � p
(for k D �1 we just need jQjj�j � p). Now recalling the assumption jQ�kC1jjQ�kjj�j � p2 and
applying Lemma 9, we get

EC
2kC1

.Q/� .M 2kC123kC1C
.kC4/=4
� logk jQ�k�1j/ � jQj2

kC1C1
j�j�k=8�1=2:

In particular, this final step covers the remaining case l D 1 above. �

Remark 28. Let � be a multiplicative subgroup and Q� DQ. Then by Theorem 27 if jQjj�j � p and
a number k1 is chosen as j�jk1=8C1=2 � jQj logk1 jQj, then EC

2k1C1
.Q/�k1 jQj

2k1C1 . Let us compare
this with Theorem 18. By the second part of this result (see condition (38)), choosing k2 such that
j�j.k2C2/=2 � jQj log4k2 jQj, we get EC

2k2C1
.Q/�k2 jQj

2k2C1 j�j1=2. After that applying the second

part of Corollary 20 n WD 2k2C1 times, we obtain

EC
22k2C2

.Q/�k2 jQj
22k2C2

CEC
2k2C1

.Q/.jQjj�j�1=4�2
�k2

/n

�k2 jQj
22k2C2

CjQj2
k2C1

j�j1=2jQjnj�j�1=2� jQj2
2k2C2

:

Thus, Theorem 18 gives a slightly better bound (in the case of multiplicative subgroups), but of the same
form.
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Remark 29. From formula (40), it follows that for any l one has EC
l
.Q/ � jQj2l=pl�1. Hence the

upper bound (69) has a place just for small sets Q. For example, taking the smallest possible l D 2 and
comparing jQj2 with jQj4=p we see that the condition jQj<

p
p is enough. If QDQ� , where � is a

multiplicative subgroup, then it is possible to refine this condition because in the proof of Theorem 18
another method (the Fourier approach) was used. We did not make such calculations.

Now we can obtain analogues of Corollaries 20 and 22.

Corollary 30. Let �;Q1;Q2 � Fp be sets. Take k � 0 such that for j D 1; 2, one has

jQj�
kC2
jjQj�

kC1
jj�j � p2; jQj�

k
jj�j � p; jQj�j �M�jQj j; jQj�

kC2
j �M jQj j;

and
j�jk=8C1=2 � jQj j �M�M

2kC123kC1C
.kC4/=4
� logk jQj�kj: (73)

Then, for any x ¤ 0,

jQ1\ .Q2C x/j � 2M�M
p
jQ1jjQ2j � j�j

�1=2 .2�k/: (74)

Proof. Denote by � the quantity jQ1 \ .Q2 C x/j. On the one hand, applying the Cauchy–Schwarz
inequality and the second part of Theorem 27 for sets �Q1 and �Q2, we obtainX

y

r2
kC1

�Q1��Q2
.y/� .EC

2kC1
.�Q1//

1=2.EC
2kC1

.�Q2//
1=2

� 23kC2M 2kC1.jQ1�jjQ2�j/
2k
� 23kC2M 2kC1M 2kC1

� .jQ1jjQ2j/
2k :

On the other hand, it is easy to see that for any y 2 �x one has r�Q1��Q2.y/� �. Thus,

�2
kC1

j�j � 23kC2M 2kC1M 2kC1

� .jQ1jjQ2j/
2k ;

and hence
� � 2M�M

p
jQ1jjQ2j � j�j

�1=2.2�k/:

Here we have used the inequality k � 5, which easily follows from j�j � jQj�j �M jQj j and (73). �

In the next two corollaries we show how to replace the condition jQ�kj � jQj with a condition with
a single multiplication, namely, jQ�j � jQj.

Corollary 31. Let �;Q be subsets of Fp, M � 1 be a real number, jQ�j �M jQj. Suppose that for
k � 1 one has .2M/kC1jQjj�j � p, and

j�jk=8C1=2 � jQj � .2M/.kC3/2
k

C
.kC4/=4
� logk..2M/kjQj/: (75)

Then, for any A� Fp,

jACQj � 2�3jQj �minfjAj; 2�.4Ck/M�.kC3/j�j
1
2
2�k
g; (76)

and for any ˛ ¤ 0,

jA.QC˛/j � 2�3jQj �minfjAj; 2�.4Ck/M�.kC3/j�j
1
2
2�k
g: (77)
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Proof. Using Lemma 7, find a set X �Q, jX j � jQj=2 such that, for any l ,

jX� l j � .2M/l jX j: (78)

Also, notice that jX�j � jQ�j � 2M jX j. We apply Corollary 30 with M replacing by .2M/kC2,
M� D 2M and see that, for any x ¤ 0,

jQ1\ .Q2C x/j � 2
kC4M kC3

p
jQ1jjQ2j � j�j

�1=2 .2�k/:

Here, Q1 D X and Q2 D X or Q2 D ˛X . We will check the condition jQj�kC2jjQj�kC1jj�j � p2

of Corollary 30 later and notice that the assumptions jQj�kjj�j � p, jQj�j �M�jQj j, jQj�kC2j �
M jQj j easily follow from (78) and our condition .2M/kC1jQjj�j � p. Now using the arguments from
Corollary 22, we estimate the energies EC.A;X/, E�.A;XC˛/. In particular, we obtain lower bounds for
the sum set from (76) and the product set from (77). It remains to check condition .2M/2kC3jQj2j�j �

p2. But it follows from .2M/kC1jQjj�j � p if M � j�j=2. The last inequality is a simple consequence
of (75). �

Now we prove an analogue of Corollary 30 where we require that jQj�j, j D 1; 2 are small comparable
to jQj j. For simplicity, we formulate the next corollary in the situation jQ0j D jQj, but of course the
general bound takes place as well.

Corollary 32. Let �;Q;Q0 be subsets of Fp , jQ0jD jQj,M � 1 be a real number, jQ�j; jQ0�j �M jQj.
Suppose that for k � 1 one has .2M/kC1jQjj�j � p, and

j�j
k
8
C 1
2.kC4/ � jQj �M .kC3/2kC

.kC4/=4
� logk.j�j

k
2.kC4/

2�k
jQj/

Then for any x ¤ 0 one has

jQ\ .Q0C x/j � 4M jQj � j�j�
1

2.kC4/
2�k : (79)

Proof. Let QQ DQ\ .Q0C x/. Then j QQ�j � jQ�j �M jQj DM jQj=j QQj � j QQj WD QM j QQj. Similarly,
j. QQ� x/�j � jQ0�j �M jQj. Applying the second part of Corollary 31 with ˛ D x, Q D QQ, AD � ,
and M D QM , we get

M jQj � j. QQ� x/�j � 2�.7Ck/j QQj QM�.kC3/j�j
1
2
2�k
D 2�.7Ck/M�.kC3/j QQjkC4jQj�.kC3/j�j

1
2
2�k

provided

j�jk=8C1=2 � jQj � .2 QM/.kC3/2
k

C
.kC4/=4
� logk..2 QM/kjQj/

� j QQj � .2 QM/.kC3/2
k

C
.kC4/=4
� logk..2 QM/kj QQj/:

This gives us

j QQj � 4M jQj � j�j�
1

2.kC4/
2�k : (80)

Now if the last inequality does not hold, then

M jQj= QM D j QQj � 4M jQj � j�j�
1

2.kC4/
2�k
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and thus QM � j�j
1

2.kC4/
2�k=4. Hence the condition

j�j
k
8
C 1
2.kC4/ � jQj �M .kC3/2kC

.kC4/=4
� logk.j�j

k
2.kC4/

2�k
jQj/

is enough. �

Now we are ready to prove the main asymmetric sum-product result of this section.

Corollary 33. Let A;B;C � Fp be arbitrary sets, and k � 1 be such that jAjjBj1C
kC1
2.kC4/

2�k
� p and

jBj
k
8
C 1
2.kC4/ � jAj �C

.kC4/=4
� logk.jAjjBj/: (81)

Then
maxfjABj; jACC jg � 2�3jAj �minfjC j; jBj

1
2.kC4/

2�k
g; (82)

and for any ˛ ¤ 0,

maxfjABj; j.AC˛/C jg � 2�3jAj �minfjC j; jBj
1

2.kC4/
2�k
g: (83)

Moreover,

jABjC
jAj2jC j2

EC.A; C /
� 2�4jAj �minfjC j; jBj

1
4.kC4/

2�k
g; (84)

and, for any ˛ ¤ 0, we have

jABjC
jAj2jC j2

E�.AC˛; C /
� 2�4jAj �minfjC j; jBj

1
4.kC4/

2�k
g; (85)

provided
jBj

k
8
�1=4C 1

4.kC4/ � jAj �C
.kC4/=4
� logk.jAjjBj/:

Proof. We will prove just (82) because the same arguments hold for (83). Put jABj DM jAj, M � 1,
and apply Corollary 31 with QD A, � D B , AD C . Supposing that

jBjk=8C1=2 � jAj � 2.kC3/2
k

M .kC3/2kC
.kC4/=4
� logk..2M/kjAj/; (86)

we obtain
jACC j � 2�3jAj �minfjC j; 2�.kC4/M�.kC3/jBj

1
2
2�k
g: (87)

Put M0 D 2
�2jBj

1
2.kC4/

2�k and consider two cases: M �M0 and M <M0. If M �M0, then there is
nothing to prove. If not, then we apply (87) and obtain the same. In other words,

maxfjABj; jACC jg � 2�3jAj �minfjC j; jBj
1

2.kC4/
2�k
g:

To check (86), we use M <M0 and see that the inequality

jBjk=8C1=2 � jAj � 2.kC3/2
k

M
.kC3/2k

0 C
.kC4/=4
� logk..2M0/

k
jAj/

follows from our condition (81). The condition .2M/kC1jAjjBj � p gives us jAjjBj1C
kC1
2.kC4/

2�k
� p.

To prove (84), (85), we use Corollary 32 instead of Corollary 31 and apply the arguments of the proof
of Corollary 22. We obtain EC.A; C /;E�.AC˛; C /� 2jAjjC jC 4jAjjC j2 �M � jBj�

1
2.kC4/

2�k : After
that it remains to compare M with the optimal value M0 D 2

�1jBj
1

4.kC4/
2�k . �
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Notice that one cannot obtain any nontrivial bounds for minfE�.A;B/, EC.A; C /g. Just take B equals
a geometric progression, C equals an arithmetic progression, jBj D jC j, and AD B [C .

Remark 34. The results of this section take place in R. In this case we do not need in any conditions
containing the characteristic p.

Corollary 33 gives us a series of examples of “superquadratic expanders” [Balog et al. 2017] with four
variables, i.e., functions f .x1; : : : ; xn/ such that for any finite A� R one hasˇ̌

ff .x1; : : : ; xn/ W .x1; : : : ; xn/ 2 A
n
g
ˇ̌
� jAj2Cc ;

where c > 0 is an absolute constant. The first example of such an expander with four variables was given
in [Rudnev 2017a], namely the cross-ratio function

f .x; y; z; w/D
.y�x/.w�z/

.z�x/.w�y/

(see also [Rudnev 2017b]). It would be is interesting to find an example of a rational superquadratic
expander with three variables.

Corollary 35. Let ' W R! R be an injective function. Then for any � < 1
40
2�16 and an arbitrary finite

set A� R, one has jRŒA�'.A/j � jAj2C� . In particular,

RŒA�AD
n
.y�x/w

z�x
W x; y; z; w 2 A; x ¤ z

o
is a superquadratic expander with four variables.

Moreover, for any finite sets A;B;C;D of equal sizes one hasˇ̌̌n
.y�x/w

z�x
W x 2 A; y 2 B; z 2 C; w 2D; x ¤ z

oˇ̌̌
� jAj2C� : (88)

Proof. By a result from [Jones 2013; Roche-Newton 2015], we have jRŒA�j � jAj2= log jAj. Further
RŒA�D 1�RŒA� and R�1ŒA�D RŒA�; see Remark 21. Hence applying estimate (83) of Corollary 33
with ADRŒA�, B D C D '.A/, and ˛ D�1, we obtain

jRŒA�'.A/j � jRŒA�j � jAj
1

2.kC4/
2�k ;

provided

jAj
k
8
C 1
2.kC4/ � jRŒA�j � 22kC

.kC4/=4
� logk jAj � jRŒA�j �C .kC4/=4� logk jRŒA�'.A/j: (89)

Put jRŒA�j D C jAj2Cc= log jAj, c � 0, and C > 0 is an absolute constant. Then taking k D 16C 8c, say,
we satisfy (89) for large A. It follows that

jRŒA�'.A/j � jAj2CcC
1

2.20C8c/
2�16�8c log�1 jAj:

One can check that the optimal choice of c is c D 0. Finally, to prove (88) just notice that from the
method of [Jones 2013; Roche-Newton 2015] it follows thatˇ̌̌n

b�a

c�a
W a 2 A; b 2 B; c 2 C; c ¤ a

oˇ̌̌
� jAj2= log jAj

for any sets A;B;C of equal cardinality. After that, repeat the arguments above. �
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Remark 36. Let us show quickly how Corollary 33 implies both Theorems 1, 2 for sets A with jAj<
p1=2�" (the appearance

p
p bound was discussed in Remark 29).

Let B;C be sets of sizes greater than p" such that maxfjABj; jACC jg � pı jAj or maxfj.AC˛/Bj;
jACC jg � pı jAj for some ˛ ¤ 0. We can find sufficiently large k D k."/ such that condition (81) takes
place for B because jAj< p1=2�" � p and jBj � p". Applying Corollary 33 for A;B;C , we arrive to

a contradiction. Finally, to ensure that jAjjBj1C
kC1
2.kC4/

2�k
� p just use the assumption jAj < p1=2�",

inequality jBj � jABj � pı jAj, and take sufficiently small ı D ı."/ and sufficiently large k D k."/.

Let A� R be a finite set. We consider a characteristic of A (see, e.g., [Shkredov 2016a]) that gener-
alizes the notion of small multiplicative doubling of A. Namely, put

dC.A/ WD inf
f

min
B¤∅

jf .A/CBj2

jAjjBj
;

where the infimum is taken over convex/concave functions f .

Problem. Suppose that dC.A/� jAj" and " > 0 is a small number. Is it true that there is k D k."/ such
that EC

k
.A/� jAjk?

Notice that one cannot obtain a similar bound for TC
k
.A/. Indeed, let A D f12; 22; : : : ; n2g. Then

one can show that for such A, the quantity dC.A/ is O.1/ (see, e.g., [Shkredov 2016a]) but, clearly,
jkAj �k jAj

2. This means that it is not possible to obtain any upper bound for TC
k
.A/ of the form

TC
k
.A/� jAj2k�2�c , c > 0, and hence any analogues of Theorems 23, 25 for sets A with small dC.A/.
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mathematics, edited by P. Erdős, Birkhäuser, Basel, 1983. MR

[Garaev 2010] M. Z. Garaev, “Sums and products of sets and estimates for rational trigonometric sums in fields of prime order”,
Uspekhi Mat. Nauk 65:4 (2010), 599–658. In Russian; translated in Russian Math. Surveys 65:4 (2010), 599–658. MR Zbl

[Glibichuk and Konyagin 2007] A. A. Glibichuk and S. V. Konyagin, “Additive properties of product sets in fields of prime
order”, pp. 279–286 in Additive combinatorics, edited by A. Granville et al., CRM Proc. Lecture Notes 43, Amer. Math. Soc.,
Providence, RI, 2007. MR Zbl

[Jones 2013] T. G. F. Jones, “New quantitative estimates on the incidence geometry and growth of finite sets”, preprint, 2013.
arXiv

[Konyagin 2014] S. Konyagin, “h-fold sums from a set with few products”, Mosc. J. Comb. Number Theory 4:3 (2014), 14–20.
MR Zbl

[Konyagin and Shkredov 2016] S. V. Konyagin and I. D. Shkredov, “New results on sums and products in R”, Tr. Mat. Inst.
Steklova 294 (2016), 87–98. In Russian. MR Zbl

[Konyagin and Shparlinski 1999] S. V. Konyagin and I. E. Shparlinski, Character sums with exponential functions and their
applications, Cambridge Tracts in Mathematics 136, Cambridge University Press, 1999. MR Zbl

[Murphy et al. 2017] B. Murphy, G. Petridis, O. Roche-Newton, M. Rudnev, and I. D. Shkredov, “New results on sum-product
type growth over fields”, preprint, 2017. arXiv

[Roche-Newton 2015] O. Roche-Newton, “A short proof of a near-optimal cardinality estimate for the product of a sum set”, pp.
74–80 in 31st International Symposium on Computational Geometry, vol. 34, edited by L. Arge, Schloss Dagstuhl. Leibniz-
Zent. Inform., Wadern, Germany, 2015. MR Zbl

[Roche-Newton et al. 2016] O. Roche-Newton, M. Rudnev, and I. D. Shkredov, “New sum-product type estimates over finite
fields”, Adv. Math. 293 (2016), 589–605. MR

[Rudnev 2017a] M. Rudnev, “On distinct cross-ratios and related growth problems”, preprint, 2017. arXiv

[Rudnev 2017b] M. Rudnev, “On the number of incidences between points and planes in three dimensions”, Combinatorica
(2017).

[Ruzsa 2009] I. Z. Ruzsa, “Sumsets and structure”, pp. 87–210 in Combinatorial number theory and additive group theory,
edited by M. Castellet, Birkhäuser, Basel, Switzerland, 2009. MR Zbl

[Schoen and Shkredov 2013] T. Schoen and I. D. Shkredov, “Higher moments of convolutions”, J. Number Theory 133:5
(2013), 1693–1737. MR Zbl

[Shkredov 2013] I. D. Shkredov, “Some new inequalities in additive combinatorics”, Mosc. J. Comb. Number Theory 3:3-4
(2013), 189–239. MR Zbl

[Shkredov 2014] I. Shkredov, “Energies and structure of additive sets”, Electron. J. Combin. 21:3 (2014), art. id. 3.44. MR
Zbl

[Shkredov 2016a] I. D. Shkredov, “Difference sets are not multiplicatively closed”, Discrete Anal. (2016), art. id. 17. MR Zbl

[Shkredov 2016b] I. D. Shkredov, “On tripling constant of multiplicative subgroups”, Integers 16 (2016), art. id. A75. MR
Zbl

[Shkredov 2017] I. Shkredov, “Some remarks on the Balog–Wooley decomposition theorem and quantities DC, Dx”, Proc.
Steklov Inst. Math. 298 (2017), 74–90.

[Shteinikov 2015] Y. N. Shteinikov, “Estimates of trigonometric sums over subgroups and some of their applications”, Math.
Notes 98:3-4 (2015), 606–625. MR

[Szemerédi and Trotter 1983] E. Szemerédi and W. T. Trotter, Jr., “Extremal problems in discrete geometry”, Combinatorica
3:3-4 (1983), 381–392. MR Zbl

[Tao and Vu 2006] T. Tao and V. Vu, Additive combinatorics, Cambridge Studies in Advanced Mathematics 105, Cambridge
University Press, 2006. MR Zbl

http://dx.doi.org/10.1112/S0024610706022721
http://dx.doi.org/10.1112/S0024610706022721
http://msp.org/idx/mr/2225493
http://msp.org/idx/zbl/1093.11057
http://msp.org/idx/arx/1409.7349v4
http://msp.org/idx/mr/820223
https://doi.org/10.1070/RM2010v065n04ABEH004691
http://msp.org/idx/mr/2759693
http://msp.org/idx/zbl/1293.11017
http://msp.org/idx/mr/2359478
http://msp.org/idx/zbl/1215.11020
http://msp.org/idx/arx/1301.4853
http://mjcnt.phystech.edu/en/article.php?id=84
http://msp.org/idx/mr/3341776
http://msp.org/idx/zbl/06459590
https://doi.org/10.1134/S0371968516030055
http://msp.org/idx/mr/3628494
http://msp.org/idx/zbl/1371.11027
https://doi.org/10.1017/CBO9780511542930
https://doi.org/10.1017/CBO9780511542930
http://msp.org/idx/mr/1725241
http://msp.org/idx/zbl/0933.11001
http://msp.org/idx/arx/1702.01003v2
http://msp.org/idx/mr/3392771
http://msp.org/idx/zbl/1378.11020
http://dx.doi.org/10.1016/j.aim.2016.02.019
http://dx.doi.org/10.1016/j.aim.2016.02.019
http://msp.org/idx/mr/3474329
http://msp.org/idx/arx/1705.01830v1
http://dx.doi.org/10.1007/s00493-016-3329-6
https://doi.org/10.1007/978-3-7643-8962-8
http://msp.org/idx/mr/2522038
http://msp.org/idx/zbl/1221.11026
http://dx.doi.org/10.1016/j.jnt.2012.10.010
http://msp.org/idx/mr/3007128
http://msp.org/idx/zbl/1300.11018
http://mjcnt.phystech.edu/en/article.php?id=66
http://msp.org/idx/mr/3284125
http://msp.org/idx/zbl/06367620
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v21i3p44
http://msp.org/idx/mr/3262281
http://msp.org/idx/zbl/1301.11010
https://doi.org/10.19086/da.913
http://msp.org/idx/mr/3555199
http://msp.org/idx/zbl/06637022
http://msp.org/idx/mr/3573427
http://msp.org/idx/zbl/1364.11034
http://dx.doi.org/10.1134/S0081543817070057
https://doi.org/10.4213/mzm10629
http://msp.org/idx/mr/3438516
http://dx.doi.org/10.1007/BF02579194
http://msp.org/idx/mr/729791
http://msp.org/idx/zbl/0541.05012
https://doi.org/10.1017/CBO9780511755149
http://msp.org/idx/mr/2289012
http://msp.org/idx/zbl/1127.11002


SOME REMARKS ON THE ASYMMETRIC SUM-PRODUCT PHENOMENON 41

[Yazici et al. 2017] E. A. Yazici, B. Murphy, M. Rudnev, and I. Shkredov, “Growth estimates in positive characteristic via
collisions”, Int. Math. Res. Not. 2017:23 (2017), 7148–7189.

Received 1 Dec 2017.

ILYA D. SHKREDOV:

ilya.shkredov@gmail.com
Steklov Mathematical Institute, ul. Gubkina, 9, Moscow, Russia, 119991

and

IITP RAS, Bolshoy Karetny per. 19, Moscow, Russia, 127994

and

MIPT, Institutskii per. 9, Dolgoprudnii, Russia, 141701

MJCNT — published in partnership with the
Moscow Institute of Physics and Technology msp

http://dx.doi.org/10.1093/imrn/rnw206
http://dx.doi.org/10.1093/imrn/rnw206
mailto:ilya.shkredov@gmail.com
https://mipt.ru/english/
http://msp.org


Moscow Journal of Combinatorics
and Number Theory

msp.org/moscow

EDITORS-IN-CHIEF

Nikolay Moshchevitin Lomonosov Moscow State University (Russia)
moshchevitin@gmail.com

Andrei Raigorodskii Moscow Institute of Physics and Technology (Russia)
mraigor@yandex.ru

EDITORIAL BOARD

Yann Bugeaud Université de Strasbourg (France)
Vladimir Dolnikov Moscow Institute of Physics and Technology (Russia)

Nikolay Dolbilin Steklov Mathematical Institute (Russia)
Oleg German Moscow Lomonosov State University (Russia)

Grigory Kabatiansky Russian Academy of Sciences (Russia)
Roman Karasev Moscow Institute of Physics and Technology (Russia)

Gyula O. H. Katona Hungarian Academy of Sciences (Hungary)
Alex V. Kontorovich Rutgers University (United States)

Maxim Korolev Steklov Mathematical Institute (Russia)
Christian Krattenthaler Universität Wien (Austria)
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