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Sets of inhomogeneous linear forms
can be not isotropically winning

Natalia Dyakova

We give an example of irrational vector θ ∈ R2 such that the set

Badθ :=
{
(η1, η2) : inf

x∈N
x1/2 max

i=1,2
‖xθi − ηi‖> 0

}
is not absolutely winning with respect to McMullen’s game.

1. Introduction

We consider a problem related to inhomogeneous Diophantine approximation. Given θ = (θ1, θ2) ∈ R2

we study the set of pairs (η1, η2) ∈ R2 such that the system of two linear forms

‖xθ1− η1‖, ‖xθ2− η2‖,

where ‖·‖ stands for the distance to the nearest integer, is badly approximable. We prove a statement
complementary to our recent result from [Bengoechea et al. 2017]. We construct θ such that the set

Badθ :=
{
(η1, η2) : inf

x∈N
x1/2 max

i=1,2
‖xθi − ηi‖> 0

}
is not isotropically winning.

Our paper is organized as follows. In Section 2 we discuss different games appearing in Diophantine
problems. In Section 3 we give a brief survey on inhomogeneous badly approximable systems of linear
forms and formulate our main result, Theorem 3.1. Sections 4 and 5 are devoted to some auxiliary
observations. In Sections 6, 7, and 8 we give a proof for Theorem 3.1.

2. Schmidt’s game and its generalizations

The following game was introduced by Schmidt [1966; 1969; 1980]. Let 0 < α, β < 1. Suppose that
two players A and B choose in turn a nested sequence of closed balls:

B1 ⊃ A1 ⊃ B2 ⊃ A2 ⊃ · · ·

with the property that the diameters |Ai |, |Bi | of the balls Ai , Bi satisfy

|Ai | = α|Bi |, |Bi+1| = β|Ai | for all i = 1, 2, 3, . . . ,

The author is supported by RFBR Grant No. 18-01-00886a.
MSC2010: 11J13.
Keywords: inhomogeneous diophantine approximation, winning sets.

3

http://msp.org
http://msp.org/moscow
http://dx.doi.org/10.2140/moscow.2019.8-1
http://dx.doi.org/10.2140/moscow.2019.8.3


4 NATALIA DYAKOVA

for fixed 0< α, β < 1. A set E ⊂ Rn is called (α, β)-winning if player A has a strategy which guarantees
that intersection

⋂
Ai meets E regardless of the way B chooses to play. A set E ⊃ Rn is called an

α-winning set if it is (α, β)-winning for all 0< β < 1.
There are different modifications of Schmidt’s game: the strong game and absolute game introduced in

[McMullen 2010], the hyperplane absolute game introduced in [Kleinbock and Weiss 2010], the potential
game considered in [Fishman et al. 2013], and some others. In [Bengoechea et al. 2017], we introduced
isotropically winning sets. Let us describe here some of these generalizations in more detail.

The definition of an absolutely winning set was given in [McMullen 2010]. Consider the following
game. Suppose A and B choose in turn a sequence of balls Ai and Bi such that the sets

B1 ⊃ (B1\A1)⊃ B2 ⊃ (B2\A2)⊃ B3 ⊃ · · ·

are nested. For fixed 0< β < 1
3 we suppose

|Bi+1| ≥ β|Bi |, |Ai | ≤ β|Bi |.

We say E is an absolute winning set if for all β ∈
(
0, 1

3

)
, player A has a strategy which guarantees

that ∩Bi meets E regardless of how B chooses to play. Mcmullen proved that an absolute winning set
is α-winning for all α < 1

2 . Several examples of absolute winning sets were exhibited by McMullen
[2010]. In particular, a set of badly approximable numbers in R is absolutely winning. However the set
of simultaneously badly approximable vectors in Rn for n > 1 is not absolutely winning.

In [Bengoechea et al. 2017] another strong variant of the winning property was given. We say that a
set E ⊂ Rn is isotropically winning if for each d ≤ n and for each d-dimensional affine subspace A⊂ Rn

the intersection E ∩A is 1
2 -winning for Schmidt’s game considered as a game in A. It is clear that an

absolute winning set is isotropically winning for each α ≤ 1
2 .

3. Inhomogeneous approximations

The first important result on inhomogeneous approximations in the one-dimensional case is due to Khin-
chine [1926]. He proved that there exists an absolute constant γ such that for every θ ∈ R there exists
η ∈ R such that

inf
q∈Z

q‖qθ − η‖> γ.

Later (see [Khinchin 1937; 1948]) he proved that for given positive numbers n,m ∈ Z there exists a
positive constant γnm such that for any m× n real matrix θ there exists a vector η ∈ Rn such that

inf
x∈Zm\{0}

(‖θx− η‖Zn )n‖x‖m > γnm

(here ‖·‖Zn stands for the distance to the nearest integral point in sup-norm). These results are presented
in a wonderful book by Cassels [1957].

Jarník [1941], proved a generalization of this statement. Suppose ψ(t) is a function decreasing to zero
as t→+∞. Let ρ(t) be the function inverse to the function t 7→ 1/ψ(t). Suppose that for all t > 1 one
has ψθ (t)≤ ψ(t). Then there exists a vector η ∈ Rn such that

inf
x∈Zm\{0}

(‖θx− η‖Zn ) · ρ(8m · ‖x‖) > γ
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with appropriate γ = γ (n,m).
Denote by

Badθ =
{
α ∈ [0, 1) : inf

q∈N
q · ‖qθ −α‖> 0

}
.

It happens that the winning property of this inhomogeneous Diophantine set was considered quite recently.
Tseng [2009] showed that Badθ is winning for all real numbers θ in classical Schmidt’s sense. For the
corresponding multidimensional sets

Bad(n,m)=
{
θ ∈Matn×m(R) : inf

q∈Zm
6=0

max
1≤i≤n

(|q|m/n
‖θi (q)‖) > 0

}
.

the winning property is shown, for example, in [Einsiedler and Tseng 2011; Moshchevitin 2011]. In
[Broderick et al. 2013] it was shown that the set Bad(n,m) is hyperplane absolutely winning. The
methods used in [Broderick et al. 2013] come from [Broderick et al. 2011].

Further generalizations deal with the twisted sets

Bad(i, j)=
{
(θ1, θ2) ∈ R2

: inf
q∈N

max(q i
‖qθ1‖, q j

‖qθ2‖) > 0
}
,

where i, j are real positive numbers satisfying i + j = 1, introduced by Schmidt. In [An 2016] it was
proved that Bad(i, j) is winning for the standard Schmidt game. In higher dimension, we fix an n-tuple
k = (k1, . . . , kn) of real numbers satisfying

k1, . . . , kn > 0 and
n∑

i=1

ki = 1, (1)

and define
Bad(k, n,m)=

{
θ ∈Matn×m(R) : inf

q∈Zm
6=0

max
1≤i≤n

(|q|mki‖θi (q)‖) > 0
}
.

Here, | · | denotes the supremum norm, θ = (θi j ), and θi (q) is the product of the i-th line of θ with the
vector q , i.e.,

θi (q)=
m∑

j=1

q jθi j .

In the twisted setting, much less is known. In particular up to now the winning property of the set
Bad(k, n,m) in dimension greater that two is not proved.

Given θ ∈Matn×m(R), we define

Badθ (k, n,m)=
{

x ∈ Rn
: inf

q∈Zm
6=0

max
1≤i≤n

(|q|mki‖θi (q)− xi‖) > 0
}
.

Harrap and Moshchevitin [2017] showed that this set is winning provided that θ ∈ Bad(k, n,m). In
[Bengoechea et al. 2017] it was proved that if we suppose that θ ∈ Bad(k, n,m), the set Badθ (k, n,m)
is isotropically winning.1

We should note that even in the case n = 2,m = 1 it is not known if the set Badθ (k, 2, 1) is α-winning
for some positive α without the condition θ ∈ Bad(k, 2, 1).

1In fact, the approach from [Bengoechea et al. 2017] gives a little bit more. Instead of property that for any subspace A the
intersection E ∩A is 1

2 -winning in A, one can see that it is α-winning for all α ∈
(
0, 1

2
]
. It is not completely clear for the author

if these two properties are equivalent. (For a closely related problem, see [Dremov 2002].)
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In this article we show that the condition θ be from Bad(k, n,m) is essential for the isotropically
winning property, and prove the following theorem.

Theorem 3.1. There exists a vector θ = (θ1, θ2) such that:

(1) 1, θ1, θ2 are linearly independent over Z.

(2) Badθ := {(η1, η2) : infx∈N x1/2 maxi=1,2 ‖xθi − ηi‖> 0} is not isotropically winning.

4. Some more remarks

In the sequel, x = (x0, x1, x2) is a vector in R3, | · | stands for the Euclidean norm of the vector, and by
(w, t) we denote the inner product of vectors w and t .

The proof of Theorem 3.1 we will give in Section 6. There we will construct a special θ and a one-
dimensional affine subspace P such that θ ∈ P and for the segment D = P ∩ {|z − θ | ≤ 1} one has
D∩Badθ =∅. Moreover, given an arbitrary positive function ω(t) monotonically (slowly) increasing
to infinity we can ensure that for all η = (η1, η2) ∈ D there exist infinitely many x ∈ Z such that

max
i=1,2
‖xθi − ηi‖<

ω(x)
x
.

To explain the construction of the proof it is useful to consider the case when θ1, θ2, 1 are linearly
dependent. This case we will discuss in Section 5.

Remark 4.1. From the result of the paper [Bengoechea et al. 2017] it follows that the vector θ constructed
in Theorem 3.1 does not belong to the set

Bad=
{
(θ1, θ2) | inf

x∈N
x1/2 max(‖θ1x‖, ‖θ2x‖) > 0

}
.

Remark 4.2. Let θ = (a1/q, a2/q) be rational. Let η = (η1, η2) /∈
1
q ·Z

2; then for any x ∈ Z,

max
i=1,2

∥∥∥∥x
ai

q
− ηi

∥∥∥∥≥ dist
(
η, 1

q ·Z
2)> 0.

So the set

B =
{
η : inf

x∈Z
max
i=1,2

∥∥∥∥x
ai

q
− ηi

∥∥∥∥> 0
}

contains R2
\

1
q ·Z

2 and is trivially winning. It is clear that for any one-dimensional affine subspace ` we
have B∩ `⊃

(
R2
\

1
q ·Z

2
)
∩ `. So obviously B∩ ` is also winning in `.

5. Linearly dependent case

Let 1, θ1, θ2 be linearly dependent and at least one of θ j is irrational. This means that there exists
z = (z0, z1, z2) ∈ Z3 such that (z, θ)= 0. Let us consider the two-dimensional rational subspace

π = {x ∈ R3
: (x, z)= 0},

so θ ∈ π .
Let us define the one-dimensional subspace P = {(x1, x2) : (1, x1, x2) ∈ π} ⊂ R2.
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We will prove that there exists a constant γ such that for any η = (η1, η2) ∈ P the inequality

max
i=1,2
‖θi x − ηi‖<

γ

x

has infinitely many solutions in x ∈ N. (This statement is similar to Chebyshev’s theorem [Khinchin
1964, Theorem 24, Chapter 2].)

Denote by 3 = π ∩ Z3 the integer lattice with the determinant d := det3 = |z|. Denote by {gν =
(qν, a1ν, a2ν)}ν=1,2,3,... ⊂3 the sequence of the best approximations of θ by the lattice 3 and the corre-
sponding parallelograms

5ν =
{

x = (x0, x1, x2) ∈ π : 0≤ x0 ≤ qν, dist(x, l(θ))≤ dist(gν−1, l(θ))
}
,

which contains a fundamental domain of the two-dimensional 3. Obviously, vol5ν ≤ 4d . So,

dist(gν−1, l(θ))�
d
qν
, (2)

with an absolute constant in the sign�. It is clear that for any point η ∈ π , the shift η+5ν contains a
point of 3.

For any η = (η1, η2) ∈ P and for any positive integer ν the planar domain η+5ν , η = (1,−η1,−η2)

contains an integer point y = (x, y1, y2) ∈3.
It is clear that

1≤ x ≤ 1+ qν (3)
and

max
i=1,2
‖θi x − ηi‖� dist( y, l(θ)+ η)� dist(l(θ), gν−1),

and by (2),

max
i=1,2
‖θi x − ηi‖�

d
qν
. (4)

From (3), (4) it follows that the inequality

max
i=1,2
‖θi x − ηi‖�

d
x

has infinitely many solutions and everything is proved.

6. Inductive construction of integer points

Let ω(t) be arbitrary positive function monotonically (slowly) increasing to infinity. Here we describe
the inductive construction of integer points zν = (qν, z1ν, z2ν). The base of the induction process is trivial.
One can take an arbitrary primitive pair of integer vectors that can be completed to a basis of Z3.

Suppose that we have two primitive integer vectors

zν−1 = (qν−1, z1 ν−1, z2 ν−1) ∈ Z3, zν = (qν, z1 ν, z2 ν) ∈ Z3.

Now we explain how to construct the next integer vector zν+1.
We consider the two-dimensional subspace

πν = 〈zν−1, zν〉R.
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The pair of vectors zν−1 and zν is primitive, so the lattice spanned by them is

3ν := 〈zν−1, zν〉Z = πν ∩Z3.

By dν = det3ν we denote the two-dimensional fundamental volume of the lattice 3ν . Now we define
the vector nν = (n0ν, n1ν, n2ν) ∈ R3 from the conditions

πν = {x ∈ R3
: (x, nν)= 0}, |nν | = 1.

Put
σν = dist(zν−1, l(zν)). (5)

Obviously, |zν | � qν and

σν �
dν
qν
. (6)

We define a vector eν from the conditions

eν ∈ πν, |eν | = 1, (eν, zν)= 0, (7)

so eν is parallel to πν and orthogonal to zν .
Define the rectangle

5ν =
{

x = (x0, x1, x2) : x = t zν + r eν, 0≤ t ≤ |zν |, |r | ≤ σν
}
.

It is clear that rectangle 5ν ⊂ πν contains a fundamental domain of the lattice 3ν . We need two axillary
vectors za

ν and zb
ν defined as

za
ν = zν + aνeν, zb

ν = za
ν + bνnν,

where positive aν is chosen in such a way that

aνd2
ν ≤ ν

−1ω

(
q2
ν

d2
ν

·
1
aν

)
(8)

and

bν = aν min
(

1,
dν
qν

)
. (9)

From the construction, it follows that

|za
ν | � |z

b
ν | � |zν | � qν . (10)

The integer lattice Z3 splits into levels with respect to the two-dimensional sublattice3ν in such a way that

Z3
=

⊔
i∈Z

3ν,i ,

where3ν, j =3ν+ j z′, j ∈Z and integer vector z′ completes the couple zν−1, zν to the basis in Z3. We con-
sider the affine subspace π1

ν = πν + z′ ⊃3ν,1, which is parallel to πν . It is clear that dist(πν, π1
ν )= 1/dν .

We need to determine the next integer point zν+1. Denote by P the central projection with center 0
onto the affine subspace π1

ν . We consider the triangle 1 with vertices zν, za
ν , zb

ν and its image P1 under
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O

Zν

Za
ν

Z

π1
ν

51
ν

πν

Figure 1. The central projection P.

the projection P (Figure 1).
Define

Z =Pzb
ν . (11)

One can see that
|Z| �

qν
dνbν

. (12)

Define rays
R1 = {z = Z+ t zν : t ≥ 0} and R2 = {z = Z+ t za

ν : t ≥ 0}.

It is clear that R1 ∩R2 = {Z} and R1,R2 ⊂ π
1
ν . Moreover, the whole convex angle bounded by rays

R1,R2 form the image of the triangle 1 under the projection P:

P1= conv(R1 ∪R2).

The affine subspace π1
ν contains the affine lattice 31

ν = 3ν + z′ which is congruent to the lattice 3ν .
Thus, for any ζ ∈ π1

ν , the shift 5ν + ζ contains an integer point from 31
ν .

Put

τν =
2σν |zν |

aν
. (13)

Consider the point
ζν = Z+ τν zν + σνeν ∈ π1

ν ,

and the rectangle
51
ν =5ν + ζν ⊂ π

1
ν .

It is clear that
51
ν ⊂P1

(here Z was defined in (11), eν was defined in (7), and the parameters σν, τν come from (5) and (13)).
Now we take the integer point

zν+1 = (qν+1, z1 ν+1, z2 ν+1) ∈3
1
ν ∩5

1
ν .
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From the construction it follows that

qν+1 � |zν+1| � |z| + τν |zν | + |zν | � qν

(
1+

1
dνbν
+
σν

aν

)
� qν

(
1+

1
dνbν

)
+

dν
aν
�

qν
dνbν

.

(Here we use (6), (9), (10), (12), and (13).) From (9) we see that

qν+1�

(
qν
dν

)2 1
aν
. (14)

Now we are able to define the next two-dimensional lattice

3ν+1 = 〈zν, zν+1〉Z.

Let dν+1 be its fundamental volume. We will estimate the value of dν+1 taking into account (9) as

dν+1� qν · dist(zν+1, l(zν))�
qν
dν
·

aν
bν
�

(
qν
dν

)2

� q2
ν . (15)

From (14) and (15), we deduce that
dν+1� aνd2

νqν+1.

By the choice of aν (by formula (8)) we have

dν+1 ≤
ω(qν+1)

ν
. (16)

7. The vector θ

Now we define
θν = (θ1ν, θ2ν), θ jν =

q jν

qν
.

We consider the angles between the successive vectors nν and nν+1:

αν = angle(nν, nν+1)� tan angle(nν, nν+1).

Since zν+1 ∈P1 (see Figure 2), we have

tan angle(nν, nν+1)≤
bν
aν
,

O
Zb
ν

Za
ν

Zν

Zν+1

Figure 2. The vector zzzν+1 intersects the interior of the triangle 1= zzzνzzza
νzzz

b
ν .
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and so

αν �
bν
aν
. (17)

As zν+1 ∈P1, we have

|θν − θν+1| �

√
a2
ν + b2

ν

qν
�

aν
qν

(18)

by the same argument. There exist limits

lim
ν→∞

θν = θ = (θ1, θ2) and lim
ν→∞

nν = n,

and from (17) and (18) we deduce that

0< |θ − θν | �
aν
qν

(19)

and

angle(n, nν)�
bν
aν
. (20)

It is clear that θ 6∈ Q2. A slight modification2 of the procedure of choosing vectors zν ensures the
condition that 1, θ1, θ2 are linearly independent over Z. Define π = {x ∈ R3

: (x, n)= 0}. Then θ ∈ π
by continuity and we can assume that n 6∈Q3.

8. Winning property

Consider the one-dimensional affine subspaces

Pν = {(x1, x2) ∈ R2
: (1, x1, x2) ∈ πν} ⊂ R2

and
P = {(x1, x2) ∈ R2

: (1, x1, x2) ∈ π} ⊂ R2,

where π was defined at the end of the previous section. Let

B1(θ)= {ξ ∈ R2
: dist(ξ , θ) < 1}.

We will show that for any η= (η1, η2) ∈ P ∩ B1(θ) there exists infinitely many solutions of the inequality

max
i=1,2
‖θi x − ηi‖<

ω(x)
x

in integers x . Denote by ην = (η1ν, η2ν) the orthogonal projection of η onto Pν . From (20) we see that

|η− ην | �
bν
aν
. (21)

2A similar procedure was explained in [Moshchevitin 2012]. There, the author provides the linear independence of coordi-
nates of the limit vector by “going away from all rational subspaces” (the beginning of the proof of Theorem 1 in the case k = 1,
p. 132 and the beginning of §5, p. 146).
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For any ην = (η1ν, η2ν) ∈ Pν the planar domain ην +5ν, ην = (1,−η1ν,−η2ν) contains an integer
point yν = (xν, y1ν, y2ν) ∈3ν . It is clear that

|xν | � qν (22)
and

max
i=1,2
|θiνxν − ηiν − yiν | �

dν
qν
. (23)

By (19), (21), (22), and (23) we have

max
i=1,2
‖θi xν − ηi‖ ≤ |xν |max

i=1,2
|θi − θiν | +max

i=1,2
‖θiνxν − ηiν‖+max

i=1,2
|ηi − ηiν | � aν +

dν
qν
+

bν
aν
�

dν
qν
.

In the last inequality we use (9). By (16) we have

max
i=1,2
‖θi xν − ηi‖ ≤

ω(qν)
qν

for large ν. As η ∈ π and yν ∈ πν , maxi=1,2‖θi xν − ηi‖ 6= 0 infinitely often (in fact for all large ν).
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