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Relative Q-Gradings from Bordered Floer Theory

Robert Lipshitz, Peter Ozsváth, & Dylan P. Thurston

Abstract. In this paper, we show how to recover the relative Q-
grading in Heegaard Floer homology from the noncommutative grad-
ing on bordered Floer homology.

1. Introduction

Heegaard Floer homology, introduced by the second author and Z. Szabó, is an
invariant for a closed connected oriented three-manifold equipped with a spinc

structure [12]. Heegaard Floer homology is defined as Lagrangian intersection
Floer homology groups of certain Lagrangians in a symmetric product of a Rie-
mann surface and as such is most naturally only relatively cyclicly graded. In-
deed, the Heegaard Floer homology of a three-manifold equipped with the spinc

structure s is graded by the group Z/div(c1(s)), where div(c1(s)) denotes the di-
visibility of the first Chern class of the spinc structure s. In particular, if the first
Chern class of s is torsion, then the corresponding Heegaard Floer homology is
relatively Z-graded.

With the help of the functoriality properties of Heegaard Floer homology,
the relative Z-grading on Heegaard Floer homology can be lifted to an abso-
lute Q-grading when the underlying spinc structure is torsion [14]. (Compare
Frøyshov [2].) This absolute Q-grading contains subtle topological information;
for a beautiful recent application, see Greene’s paper [1]. See Gripp and Huang [4]
for an interpretation of the absolute Q-grading in terms of homotopy classes of 2-
plane fields; cf. [5]. Although, by works of Sarkar and Wang [17] and Sarkar [16],
the absolute Q-grading is algorithmically computable, it remains somewhat mys-
terious and hard to compute.

By contrast, the relative Q-grading induced by the absolute Q-grading is much
simpler. In this paper, we show how to use bordered Floer homology to compute
this relative Q-grading between different torsion spinc structures, by decompos-
ing a 3-manifold along a connected surface; it turns out that the noncommutative
grading on bordered Floer homology contains the necessary information. (An-
other way of computing the relative Q-grading, using covering spaces, was given
by D. Lee and the first author [6].)

Finally, note that Heegaard Floer homology has several variants, ĤF, HF−,
HF∞, and HF+. Although we focus on the relative Q-grading on ĤF (as that is
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the version with a corresponding bordered theory), this determines the relative
Q-grading on HF+, HF−, and HF∞ via the exact triangles

· · · −→ ĤF(Y ) −→ HF+(Y )
·U−→ HF+(Y )

[1]−→ · · ·
and

· · · −→ HF−(Y ) −→ HF∞(Y ) −→ HF+(Y )
[1]−→ · · · .

Remark 1.1. Rustamov computed the Euler characteristic of the reduced Hee-
gaard Floer homology HFred(Y ) of a rational homology sphere Y in terms of the
absolute grading and the Casson–Walker invariant [15, Theorem 3.3]:∑

s∈spinc(Y )

[
χ(HFred(Y, s)) − d(Y, s)

2

]
= |H1(Y )|λ(Y ).

(Here, d(Y, s) is the correction term from [11], which is determined by HF+(Y, s)

as an absolutely Q-graded F2[U ]-module.) Turning this around, given HF+(Y )

as a relatively Q-graded F2[U ]-module, and the Casson–Walker invariant of Y ,
we can compute the absolute Q-grading on Y . (This observation was pointed out
by the referee.)

2. Background

2.1. The Relative Q-Grading

The absolute Q-grading on ĤF(Y, s) is defined as follows. Choose a spinc cobor-
dism (W 4, t) from (S3, s0) to (Y, s). Associated with the cobordism W is a map
F̂W,s : ĤF(S3, s0) → ĤF(Y, s). The absolute grading on ĤF(Y, s) is character-
ized by the property that the generator of ĤF(S3) ∼= Z lies in degree 0 and the
map F has degree

c1(t)
2 − 2χ(W) − 3σ(W)

4
.

(Actually, since F̂W,s might be trivial on homology, it is more accurate to say
the grading is characterized by the property that Maslov index 0 triangles in the
definition of F̂W,s have this degree.) See [14, Section 7].

The paper [6] shows that the relative Q-grading can be reformulated as follows.
Suppose that x and y are generators for ĈF(Y ) (computed via some pointed Hee-
gaard diagram H = (�,α,β, z)) so that c1(s(x)) and c1(s(y)) are torsions. Then
there is a finite-order covering space p : Ỹ → Y such that p∗s(x) = p∗s(y) [6,
Corollary 2.10]. The Heegaard diagram H for Y lifts to a (multipointed) Heegaard
diagram H̃ for Ỹ . The generators x and y have preimages p−1(x) and p−1(y)

in H̃, so that s(p−1(x)) = p∗s(x) and s(p−1(y)) = p∗s(y). Thus, p−1(x) and
p−1(y) have a well-defined Z-grading difference. Then

grQ(y) − grQ(x) = (1/n)grZ(p−1(x),p−1(y)),

where n is the order of the cover Ỹ → Y .



Relative Q-Gradings 829

More concretely, let π2(x,y) denote the set of domains connecting x and y
with multiplicity 0 at the basepoint z. Even though x and y may not be connected
by a domain (i.e., π2(x,y) may be empty), if we allow rational multiples of the
regions in �, then they can be connected. That is, let π

Q
2 (x,y) denote the set of

rational linear combinations B of components of � \ (α ∪ β) not containing the
basepoint z and satisfying the condition

∂(∂B ∩ α) = −∂(∂B ∩ β) = y − x.

Elements of π
Q
2 (x,y) are rational domains connecting x to y and satisfying

nz = 0. If c1(s(x)) − c1(s(y)) is a torsion, then π
Q
2 (x,y) is nonempty, and

grQ(y) − grQ(x) = e(B) + nx(B) + ny(B)

for any B ∈ π
Q
2 (x,y). Here, e(B) denotes the Euler measure of B , and nx(B)

and ny(B) denote the point measure of B at the points x and y; compare [7,
Section 4.2]. This agrees with the formulas in [6, Section 2.3].

2.2. The Structure of Bordered Floer Theory

Bordered Floer theory assigns to a connected oriented surface F = F(Z) rep-
resented by a pointed matched circle Z (Figure 1) a dg algebra A = A(Z) [10,
Chapter 3]. With a connected oriented 3-manifold Y with boundary parameterized
by F(Z) it associates invariants ĈFA(Y )A(Z), a right A∞-module over A(Z),
and A(−Z)ĈFD(Y ), a left projective dg module over A(−Z) [10, Chapters 6, 7].
Both ĈFA(Y ) and ĈFD(Y ) are well-defined up to homotopy equivalence. These
modules are related to the invariants of a closed 3-manifold by a pairing theorem:

Theorem 2.1 ([10, Theorem 1.3]). If Y1 and Y2 are 3-manifolds with boundaries
parameterized by F(Z) and −F(Z), respectively, then

ĈF(Y1 ∪F Y2) 	 ĈFA(Y1) ⊗̃A(Z) ĈFD(Y2).

Here ⊗̃A(Z) denotes the A∞-tensor product over A(Z). There is a particularly
convenient model � for the A∞-tensor product, so that ĈF(Y1 ∪F Y2) is in fact
isomorphic as an F2-vector space to ĈFA(Y1) � ĈFD(Y2) (for corresponding
choices of auxiliary data, as discussed further).

The isomorphism in Theorem 2.1 is, in an appropriate sense, an isomorphism
of relatively graded groups. This will be discussed in Section 2.3.

For the purposes of this paper, we will use the following basic facts about
A(Z), ĈFA(Y ) and ĈFD(Y ):

• The invariants ĈFA(Y ) and ĈFD(Y ) are defined in terms of a bordered Hee-
gaard diagram H = (�,α,β, z) for Y . Here � is a compact orientable surface
of some genus g with one boundary component; α consists of pairwise-disjoint
embedded arcs αa and circles αc in � with ∂αa ⊂ ∂�, whereas β consists of
embedded circles only; and z is a basepoint in ∂�, not lying on any α-arc. The
boundary ∂H of a bordered Heegaard diagram is a pointed matched circle. See
Figure 2 for an example and [10, Chapter 4] for more detail.
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Figure 1 The surface represented by a pointed matched circle. Left:
a pointed matched circle Z , consisting of a circle Z, 4k points a (the
case k = 2 is shown) matched in pairs via a matching M , and with a
basepoint z. Right: the surface with boundary F ◦(Z) represented by
Z . The surface F(Z) represented by Z is obtained by gluing a disk
to F ◦(Z). As such, it contains a distinguished disk and a basepoint on
the boundary of that disk

• If the bordered Heegaard diagrams H1 and H2 represent Y1 and Y2, respec-
tively, and ∂Y1 = F(Z) = −∂Y2, then H = H1 ∪∂ H2 represents Y = Y1 ∪∂ Y2.

• Given a genus g bordered Heegaard diagram H representing Y , the modules
ĈFD(Y ) and ĈFA(Y ) are generated by all sets x = {x1, . . . , xg} of g points in
α ∩ β so that exactly one xi lies on each α- or β-circle and at most one xi lies
on each α-arc. (Again, see Figure 2.) Let S(H) denote the set of generators x
in H.

• Given generators x and y in S(H), a domain connecting x to y is a linear
combination B of components of � \ (α ∪ β) such that ∂((∂B) ∩ β) = x −
y, ∂((∂B) ∩ (α ∪ ∂�)) = y − x, and multiplicity 0 at z. (See Figure 2.) Let
π2(x,y) denote the set of domains connecting x to y. For B ∈ π2(x,y), let
∂αB = (∂B) ∩ α, ∂βB = (∂B) ∩ β , and ∂∂B = (∂B) ∩ (∂�).

• Given a bordered Heegaard diagram H for Y , associated with each gen-
erator x ∈ S(H) is a spinc structure s(x) on Y . The modules ĈFD(Y )

and ĈFA(Y ) decompose according to these spinc structures, ĈFD(Y ) =⊕
s∈spinc(Y ) ĈFD(Y, s) and ĈFA(Y ) = ⊕

s∈spinc(Y ) ĈFA(Y, s). Let S(H, s) =
{x ∈ S(H) | s(x) = s} denote the set of generators for ĈFA(Y, s) and
ĈFD(Y, s).

• Given bordered Heegaard diagrams H1 and H2 with ∂H1 = −∂H2, let H =
H1 ∪∂ H2. There is an obvious embedding S(H) →S(H1)×S(H2) of the set
of generators S(H) of ĈF(H). The image of this embedding is the set of pairs
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Figure 2 A bordered Heegaard diagram. The circles labeled A

and B are connected by tubes. This bordered Heegaard diagram rep-
resents the trefoil complement (with a particular parameterization of
its boundary). Two generators in S(H) are marked, one by solid disks
and the other by empty squares. A domain B ∈ π2(x,y) connecting x
and y is also shown, shaded

(x1,x2) ∈S(H1)×S(H2) such that x1 and x2 occupy complementary α-arcs.

It turns out that these are exactly the generators of ĈFA(H1)� ĈFD(H2).

There is an extension of bordered Floer theory to manifolds with two boundary
components, which are assigned various types of bimodules [8]. The generaliza-
tions of the results of this paper to the bimodule case are straightforward, and we
shall not discuss them.

2.3. The (Noncommutative) Grading in Bordered Floer

As noted in the Introduction, the grading on bordered Floer homology is noncom-
mutative.

Definition 2.2. Let G be a group, and let λ a central element in G. If A is a
differential algebra, then a grading of A by G consists of a decomposition (as
Abelian groups) A = ⊕

g∈GAg of A into homogeneous parts so that, for any
homogeneous algebra elements a and b,

gr(ab) = gr(a)gr(b) if ab = 0, (2.1)

gr(∂a) = λ−1 gr(a) if ∂a = 0. (2.2)

Let S be a left G-set. If AM is a left differential A-module, then a grading of

AM by S consists of a decomposition (as Abelian groups) M = ⊕
s∈S Ms of M

into homogeneous parts such that, for homogeneous elements x ∈ M and a ∈ A,

gr(ax) = gr(a)gr(x) if ax = 0, (2.3)

gr(∂x) = λ−1 gr(x) if ∂x = 0. (2.4)
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More generally, if S is an A∞-module over A, equations (2.3) and (2.4) become

gr(mk+1(a1, . . . , ak, x)) = λk−1 gr(a1) · · ·gr(ak)gr(x),

if mk+1(a1, . . . , ak, x) = 0.
Gradings on right modules by right G-sets are defined similarly.

In the case of bordered Floer homology, for each pointed matched circle Z =
(Z,a,M, z), there is a group G′(Z) such that A(Z) is graded by G′(Z). Let
Z′ = Z \ {z}, so Z′ is an oriented interval, and the points in a inherit an or-
dering from the orientation on Z′. The group G′(Z) is a Z-central extension of
H1(Z

′,a). To specify it, given a point p ∈ a and homology class c ∈ H1(Z
′,a),

define μ(c,p) to be the average local multiplicity of c near p. Extend μ to a
bilinear map H1(Z

′,a) ⊗ H0(a) → 1
2Z. Then G′ is defined by the commutation

relation
g · h = λ2μ([h],∂[g])h · g,

where [·] : G′(Z) → H1(Z
′,a) is the canonical projection, and λ is a generator of

the central Z.
Explicitly, we can write elements of G′(Z) as certain pairs (m,α) where m ∈

Q and α ∈ H1(Z
′,a), with multiplication given by

(m1, α1) · (m2, α2) = (m1 + m2 + μ(α2, ∂α1), α1 + α2). (2.5)

Let [i, i + 1] denote the interval in Z′ between the ith and (i + 1)th points in a.
Define G′(Z) to be the group generated by the element λ = (1,0) and the |a| − 1
elements (− 1

2 , [i, i + 1]), with multiplication given by formula (2.5).
The grading on ĈFA(H, s) is given as follows. Given a Heegaard diagram H

with ∂H = Z and a spinc structure s on Y = Y(H), fix a base generator x0 ∈
S(H, s). For a domain B ∈ π2(x,y), define

g′(B) = (−e(B) − nx(B) − ny(B), ∂∂B) ∈ G′(Z). (2.6)

If B1 ∈ π2(x,y) and B2 ∈ π2(y, z), let B1 ∗ B2 ∈ π2(x, z) denote the concatena-
tion of B1 and B2. Then g′(B1 ∗ B2) = g′(B1) · g′(B2) [10, Lemma 10.4]. In par-
ticular, P ′(x0) = {g′(B) | B ∈ π2(x0,x0)} is a subgroup of G′(Z). The module
ĈFA(H, s) is graded by the right G′(Z)-set G′

A(H, s) := P ′(x0)\G′(Z). (This
construction depends on x0, but different choices of x0 give canonically isomor-
phic grading sets; see [10, Lemma 10.14].) The grading of an element x ∈S(H, s)

is given by g′(B) for any B ∈ π2(x0,x), thought of as an element of the coset
space G′

A(H, s) := P ′(x0)\G′(Z).
The invariant ĈFD(H) is a module over A(−∂H) rather than ∂H. So, in grad-

ing ĈFD(H), we will use the antihomomorphism R : G′(−Z) → G′(Z) given
by R(j,α) = (j, r∗(α)), where r : −Z → Z is the (orientation-reversing) iden-
tity map. The grading on ĈFD(H, s) is then defined similarly to the grading
on ĈFA(H, s), except that the left module ĈFD(H, s) is graded by the left G′-
set G′

D(H, s) := G′(Z)/R(P ′(x0)), where Z = −∂H, and the grading of an
element x ∈ S(H, s) is given by (the equivalence class of) R(g′(B)) for any
B ∈ π2(x0,x).
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The tensor product ĈFA(H1, s1)� ĈFD(H2, s2) is graded by the amalgamated
product of the grading sets G′

A(H1) ×G′ G′
D(H2); the grading of x1 ⊗ x2 is

gr′(x1 ⊗ x2) = (gr′(x1),gr′(x2)). (In fact, certain results are cleaner if we work
instead with a certain subset of this amalgamated product that contains the grad-
ings of all tensor products of generators; compare Theorem 2.3.) Note that since
λ is central in G′, the set G′

A(H1) ×G′ G′
D(H2) retains an action by λ, which we

will think of as a Z-action.
A graded version of the pairing theorem states the following:

Theorem 2.3 ([10, Theorem 10.42]). If Y1 and Y2 are 3-manifolds with bound-
aries parameterized by F and −F , respectively, then there is a map


 : ĈFA(Y1)� ĈFD(Y2) → ĈF(Y1 ∪F Y2)

such that:

(1) 
 is a homotopy equivalence.
(2) Given generators x1 ⊗ x2 and y1 ⊗ y2 for ĈFA(Y1) � ĈFD(Y2), s(
(x1 ⊗

x2)) = s(
(y1 ⊗ y2)) if and only if:

• s(x1) = s(y1) =: s1,
• s(x2) = s(y2) =: s2, and
• the generators g′(x1) ×G′ g′(x2) and g′(y1) ×G′ g′(y2) lie in the same Z-

orbit of G′
A(H1, s1) ×G′ G′

D(H2, s2).

(3) If s(
(x1 ⊗ x2)) = s(
(y1 ⊗ y2)), then

g′(y1) ×G′ g′(y2) = λgr(
(x1⊗x2),
(y1⊗y2))g′(x1) ×G′ g′(x2).

For this paper, we will use a slightly larger grading group and the corresponding
grading sets. Given a pointed matched circle Z = (Z,a,M, z), let G′

Q
(Z) denote

the Q-central extension of H1(Z
′,a;Q) with multiplication given by

(m1, α1) · (m2, α2) = (m1 + m2 + μ(α2, ∂α1), α1 + α2),

that is, the same formula as equation (2.5).
There is an obvious inclusion G′ → G′

Q
, so the G′-grading on A(Z) induces

a G′
Q

-grading on A(Z). Also, note that, for g ∈ G′
Q

and q ∈ Q, there is a well-
defined element q · g ∈ G′

Q
obtained by multiplying all the coefficients in g by q .

If H is a Heegaard diagram with ∂H = Z (respectively, ∂H = −Z), then
we can define a G′

Q
-grading on ĈFA(H) (respectively, ĈFD(H)) using for-

mula (2.6). Given x ∈ S(H), let P ′
Q
(x) denote the subgroup of G′

Q
generated

by {q · g′(B) | B ∈ π2(x,x), q ∈ Q}. Fix a base generator x0 ∈ S(H, s). For
any x ∈ S(H, s), choose B ∈ π2(x0,x) and define gr′

Q
(x) = g′(B) (respectively,

gr′
Q
(x) = R(g′(B))), viewed as an element of G′

A,Q
(H, s) := P ′

Q
(x0)\G′

Q
(Z)

(respectively, G′
D,Q

(H, s) := G′
Q
(Z)/R(P ′

Q
(x0))).

There is also a refined grading on the algebra by a group G that is a Z-central
extension of H1(F (Z)) and the corresponding gradings on the modules; see [10,
Section 3.3] or [8, Section 3.2.1]. Generally, we will work with the larger grading
group in this paper, but see also Remark 3.4.
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Remark 2.4. Recall that the grading in monopole Floer homology of Y is by
homotopy classes of 2-plane fields on Y [5]. The refined grading group for Z can
be understood in terms of homotopy classes of 2-plane fields on [0,1] × F(Z).
In fact, it was proved recently that the G-set gradings on the modules can also be
understood in terms of 2-plane fields [3].

3. From Bordered Floer to the Relative Q-Grading

Theorem 3.1. Suppose that Y is a closed 3-manifold decomposed along a con-
nected surface as Y = Y1 ∪F Y2. Let H = H1 ∪Z H2 be the corresponding de-
composition of a Heegaard diagram for Y . Suppose that x,y ∈ S(H) are such
that s(x) and s(y) are torsion and s(x)|Yi

= s(y)|Yi
=: si for i = 1,2. Write

x = 
(x1 ⊗ x2) and y = 
(y1 ⊗ y2), where xi and yi are in S(Hi ). Then

(1) the generators gr′
Q
(x1)×G′

Q
gr′

Q
(x2) and gr′

Q
(y1)×G′

Q
gr′

Q
(y2) lie in the same

Q-orbit of G′
A,Q

(H1, s1) ×G′
Q

G′
D,Q

(H2, s2), and

(2) gr′
Q
(y1) ×G′

Q
gr′

Q
(y2) = λgrQ(x,y) gr′

Q
(x1) ×G′

Q
gr′

Q
(x2).

Proof. Since the statements are independent of the base generators used to define
the grading sets for ĈFA(H1, s1) and ĈFD(H2, s2), we may choose xi to be the
base generator for Hi .

Since s(x) and s(y) are torsions, it follows from [6] (cf. Section 2.1) that there
is a rational domain B ∈ π

Q
2 (x,y) connecting x and y. Intersecting B with H1

and H2, we obtain rational domains Bi ∈ π
Q
2 (xi ,yi ).

We argue that the rational domain Bi can be used to compute the grading of
yi (which was originally defined using integral domains). Since s(xi ) = s(yi ),
π
Q
2 (xi ,yi ) = π2(xi ,yi ) ⊗Z Q. That is, any rational domain Bi connecting xi and

yi can be written as
Bi = qi,1Ci,1 + · · · + qi,�Ci,�,

where qi,j ∈ Q and Ci,j ∈ π2(xi ,yi ). (To see this, note that π2(xi ,yi ) is an affine

copy of H2(Yi, ∂Yi;Z), whereas π
Q
2 (xi ,yi ) is an affine copy of H2(Yi, ∂Yi;Q).)

Consequently, Bi differs from any integral domain in π2(xi ,yi ) by a rational pe-
riodic domain and hence has the same image in G′

A,Q
(H1, s1) or G′

D,Q
(H2, s2).

So, as an element of G′
A,Q

(H1, s1),

g′(B1) = (−e(B1) − nx1(B1) − ny1(B1), ∂
∂B1) = gr′(y1),

and, as an element of G′
D,Q

(H2, s2),

R(g′(B2)) = (−e(B2) − nx2(B2) − ny2(B2), r∗(∂∂B2)) = gr′(y2).

Note also that ∂∂B2 = −∂∂B1.
Thus, with our choice of base generator, gr′

Q
(x1) ×G′

Q
gr′

Q
(x2) = 0, whereas

gr′Q(y1) ×G′
Q

gr′Q(y2)

= (−e(B1) − nx1(B1) − ny1(B1) − e(B2) − nx2(B2) − ny2(B2),0)
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= (−e(B) − nx(B) − ny(B),0)

= λgrQ(x,y),

as desired. �

To complete the computation of the relative Q-grading on ĈF, we observe that
it is always possible to find a splitting satisfying the conditions of Theorem 3.1.
One way to do so is to take a Heegaard splitting:

Lemma 3.2. Let Y = Y1 ∪F Y2 be a Heegaard splitting of a 3-manifold Y . If s and
s′ are torsion spinc-structures on Y , then s|Y1 = s′|Y1 and s|Y2 = s′|Y2 .

Proof. Since Yi is a handlebody, H 2(Yi) = 0. Thus, there is a unique spinc-
structure on Yi . The result follows. �

Corollary 3.3. The G′-set grading gr′ defined in [10] determines the relative
Q-grading on ĤF.

Proof. By definition, the grading gr′ determines gr′
Q

, which in turn, by Lemma 3.2
and Theorem 3.1, determines the relative Q grading. �

Remark 3.4. It is sometimes convenient to work with the smaller grading group
G from [10], rather than with G′. To obtain a G-set grading on ĈFD and ĈFA,
we conjugate by grading refinement data; see [8, Section 3.2.1]. In the proof of
Theorem 3.1, since we work with the same grading refinement data on the two
sides, it cancels out in the computation. Thus, Theorem 3.1 holds with respect to
the small grading group, as well.

Remark 3.5. In [9], we give an algorithm for computing ĤF(Y ) by taking a Hee-
gaard decomposition of Y and factoring the gluing map into arc-slides. For such a
decomposition, the hypotheses of Theorem 3.1 are automatically satisfied. Thus,
keeping track of the G′

Q
-gradings along the way, [9] automatically computes the

relative Q-grading on ĤF(Y ).

Remark 3.6. Instead of defining a G′
Q

-grading on ĈFD by (roughly) tensoring
the G′-grading with Q as before, we could instead use rational domains to induce
a G′-grading. The resulting relative grading agrees with the one above when the
one above is defined, but it is defined more often. Theorem 3.1 then no longer
needs the hypothesis that s(x)|Yi

= s(y)|Yi
. The drawback is that, for this defini-

tion, gr′
Q

is no longer induced from gr′, so we would not obtain Corollary 3.3.

4. Examples

We give an application of Theorem 3.1 to computing the Q-graded Heegaard
Floer homology groups of surgeries on some knots in S3. Our knots are rather
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simple (the unknot and the trefoil), and hence the graded Heegaard Floer homol-
ogy groups on their surgeries have been known for some time; however, these
computations do give a nice illustration of the theorem.

To start, let Y denote the (−2)-framed complement of the left-handed trefoil T .
By [10, Theorem 11.27], ĈFD(Y ) is given by

x3

y2

x2 y1 x1.

ρ1

ρ123

ρ2 ρ3

ρ12 (4.1)

If we take x3 as the base generator, then the gradings lie in G′/〈(−3/2;−1,1,2)〉
and are given by:

gr′(x1) = (1;0,2,2)/〈(−3/2;−1,1,2)〉,
gr′(x2) = (1/2;0,1,1)/〈(−3/2;−1,1,2)〉,
gr′(x3) = (0;0,0,0)/〈(−3/2;−1,1,2)〉,
gr′(y1) = (3/2;0,2,1)/〈(−3/2;−1,1,2)〉,
gr′(y2) = (−1/2;−1,0,0)/〈(−3/2;−1,1,2)〉

(compare [10, Section 11.9]). To see this, use the fact that the type D structure is
graded, so if a ⊗ y occurs in δ1(x), then

gr′(a) · gr′(y) = (−1;0,0,0) · gr′(x) ∈ G′
D. (4.2)

So, start at the base generator x3 and walk around the diagram (4.1) using for-
mula (4.2) to determine the gradings of the other generators. On returning to x3,
we have the equation gr′(x3) = gr′(x3) · (−3/2;−1,1,2), so (−3/2;−1,1,2) is
the grading of the periodic domain.

Let H0 denote the ∞-framed solid torus. Then ĈFA(H0) has one generator n

with m3(n,ρ2, ρ1) = n. In particular,

gr′(n) = gr′(n)gr′(ρ2)gr′(ρ1)λ

= gr′(n)(−1/2;0,1,0)(−1/2;1,0,0)λ

= gr′(n)(−1/2;1,1,0).

So, gr′(n) lies in 〈(−1/2;1,1,0)〉\G′.
Tensoring the two together, we find that ĈFA(H0) � ĈFD(Y ) is generated by

n ⊗ y1 and n ⊗ y2 with no differential. It follows at once that ĤF(S3
−2(T )) ∼=

F2 ⊕ F2, that is, S3
−2(T ) has the same (ungraded) Heegaard Floer homology as a

lens space; this was, of course, known before [13].
So far, we have found that the ungraded Heegaard Floer homology of −2 sur-

gery on the trefoil and the unknot are the same. They are, however, distinguished
by their relative Q-gradings, which we can recover from the bordered invariants
as follows.
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The previous computation gives

gr′(n ⊗ y1) = 〈(−1/2;1,1,0)〉\(3/2;0,2,1)/〈(−3/2;−1,1,2)〉,
gr′(n ⊗ y2) = 〈(−1/2;1,1,0)〉\(−1/2;−1,0,0)/〈(−3/2;−1,1,2)〉.

Working in G′
Q

, we can rewrite the first of these equations as

gr′Q(n ⊗ y1) = 〈(−1/2;1,1,0)〉\(3/4;−3/2,−3/2,0) · (3/2;0,2,1)

· (3/4;1/2,−1/2,−1)/〈(−3/2;−1,1,2)〉
= 〈(−1/2;1,1,0)〉\(1;−1,0,0)/〈(−3/2;−1,1,2)〉.

Consequently, the grading difference between n ⊗ y1 and n ⊗ y2 is 3/2.
By contrast, the invariant of the −2-framed unknot has three generators:

b1

a b2.
ρ3

ρ1
ρ23

If we take a as the base generator, the gradings lie in G′/〈(1/2;−1,1,2)〉, and
are given by

gr′(a) = (0;0,0,0)/〈(1/2;−1,1,2)〉,
gr′(b1) = (−1/2;−1,0,0)/〈(1/2;−1,1,2)〉,
gr′(b2) = (−1/2;0,0,−1)/〈(1/2;−1,1,2)〉.

This gives

gr′(n ⊗ b1) = 〈(−1/2;1,1,0)〉\(−1/2;−1,0,0)/〈(1/2;−1,1,2)〉,
gr′(n ⊗ b2) = 〈(−1/2;1,1,0)〉\(−1/2;0,0,−1)/〈(1/2;−1,1,2)〉.

Working in G′
Q

, we can rewrite the first of these equations as

gr′Q(n ⊗ b1) = 〈(−1/2;1,1,0)〉\(−1;0,0,−1)/〈(1/2;−1,1,2)〉.
Consequently, the grading difference between n ⊗ b1 and n ⊗ b2 is 1/2. Thus we
see that the relative Q-grading distinguishes the Heegaard Floer homology of −2
surgery on the trefoil from −2 surgery on the unknot.
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