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Henkin Measures for the Drury–Arveson Space

Michael Hartz

Abstract. We exhibit Borel probability measures on the unit sphere
in C

d for d ≥ 2 that are Henkin for the multiplier algebra of the
Drury–Arveson space, but not Henkin in the classical sense. This pro-
vides a negative answer to a conjecture of Clouâtre and Davidson.

1. Introduction

Let Bd denote the open unit ball in C
d , and let A(Bd) be the ball algebra, which

is the algebra of all analytic functions on Bd that extend to be continuous on Bd .
A regular complex Borel measure μ on the unit sphere Sd = ∂Bd is said to be
Henkin if the functional

A(Bd) →C, f �→
∫
Sd

f dμ,

extends to a weak-∗ continuous functional on H∞(Bd), the algebra of all bounded
analytic functions on Bd . Equivalently, whenever (fn) is a sequence in A(Bd) that
is uniformly bounded on Bd and satisfies limn→∞ fn(z) = 0 for all z ∈ Bd , then

lim
n→∞

∫
Sd

fn dμ = 0.

Henkin measures play a prominent role in the description of the dual space of
A(Bd) and of peak interpolation sets for the ball algebra; see Chapters 9 and 10
of [17] for background material. Such measures are completely characterized by
a theorem of Henkin [14] and Cole and Range [8]. To state the theorem, recall
that a Borel probability measure τ on Sd is said to be a representing measure for
the origin if ∫

Sd

f dτ = f (0)

for all f ∈ A(Bd).

Theorem 1.1 (Henkin, Cole–Range). A regular complex Borel measure μ on Sd

is Henkin if and only if it is absolutely continuous with respect to some represent-
ing measure for the origin.

If d = 1, then the only representing measure for the origin is the normalized
Lebesgue measure on the unit circle, and hence the Henkin measures on the unit
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circle are precisely those measures that are absolutely continuous with respect to
the Lebesgue measure.

In addition to their importance in complex analysis, Henkin measures also play
a role in multivariable operator theory [13]. However, it has become clear over the
years that, for the purposes of multivariable operator theory, the “correct” gen-
eralization of H∞, the algebra of bounded analytic functions on the unit disc,
to higher dimensions is not H∞(Bd), but the multiplier algebra of the Drury–
Arveson space H 2

d . This is the reproducing kernel Hilbert space on Bd with re-
producing kernel

K(z,w) = 1

1 − 〈z,w〉 .

A theorem of Drury [11] shows that H 2
d hosts a version of von Neumann’s in-

equality for commuting row contractions, that is, tuples T = (T1, . . . , Td) of com-
muting operators on a Hilbert space H such that the row operator [T1, . . . , Td ] :
Hd → H is a contraction. The corresponding dilation theorem is due to Müller
and Vasilescu [15] and Arveson [5]. The Drury–Arveson space is also known as
the symmetric Fock space [5; 10]; it plays a distinguished role in the theory of
Nevanlinna–Pick spaces [1; 2] and is an object of interest in harmonic analysis
[4; 9]. An overview of various features of this space can be found in [18].

Clouâtre and Davidson [7] generalize much of the classical theory of Henkin
measures to the Drury–Arveson space. Let Md denote the multiplier algebra of
H 2

d , and let Ad be the norm closure of the polynomials in Md . In particular,
functions in Ad belong to A(Bd). Clouâtre and Davidson define a regular Borel
measure μ on Sd to be Ad -Henkin if the associated integration functional

Ad →C, f �→
∫
Sd

f dμ,

extends to a weak-∗ continuous functional on Md (see Section 2.1 for the defini-
tion of weak-∗ topology). Equivalently, whenever (fn) is a sequence in Ad such
that ‖fn‖Md

≤ 1 for all n ∈ N and limn→∞ fn(z) = 0 for all z ∈ Bd , then

lim
n→∞

∫
Sd

fn(z) dμ = 0;

see [7, Thm. 3.3]. This notion, along with the complementary notion of Ad -totally
singular measures, is crucial in the study of the dual space of Ad and of peak
interpolation sets for Ad in [7].

Compelling evidence of the importance of Ad -Henkin measures in multivari-
able operator theory can be found in [6], where Clouâtre and Davidson extend
the Sz.-Nagy–Foias H∞-functional calculus to commuting row contractions. Re-
call that every contraction T on a Hilbert space can be written as T = Tcnu ⊕ U ,
where U is a unitary operator, and Tcnu is completely nonunitary (i.e., has no uni-
tary summand). Sz.-Nagy and Foias showed that in the separable case, T admits
a weak-∗ continuous H∞-functional calculus if and only if the spectral measure
of U is absolutely continuous with respect to the Lebesgue measure on the unit
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circle; see [19] for a classical treatment. Clouâtre and Davidson obtain a com-
plete generalization of this result. The appropriate generalization of a unitary is
a spherical unitary, which is a tuple of commuting normal operators whose joint
spectrum is contained in the unit sphere. Every commuting row contraction ad-
mits a decomposition T = Tcnu ⊕ U , where U is a spherical unitary, and Tcnu is
completely nonunitary (i.e., has no spherical unitary summand); see [6, Thm. 4.1].
The following result is then a combination of Lemma 3.1 and Theorem 4.3 of [6].

Theorem 1.2 (Clouâtre–Davidson). Let T be a commuting row contraction act-
ing on a separable Hilbert space with decomposition T = Tcnu ⊕ U as before.
Then T admits a weak-∗ continuous Md -functional calculus if and only if the
spectral measure of U is Ad -Henkin.

This result shows that, for the theory of commuting row contractions, Ad -Henkin
measures are a more suitable generalization of absolutely continuous measures
on the unit circle than classical Henkin measures. Thus, a characterization of Ad -
Henkin measures is desirable.

Since the unit ball of Ad is contained in the unit ball of A(Bd), it is trivial
that every classical Henkin measure is also Ad -Henkin. Clouâtre and Davidson
conjectured [7, Conj. 5.1] that, conversely, every Ad -Henkin measure is also a
classical Henkin measure, so that these two notions agree. If true, the classical
theory would apply to Ad -Henkin measures, and, in particular, the Henkin and
Cole–Range theorem would provide a characterization of Ad -Henkin measures.
They also formulate a conjecture for the complementary notion of a totally sin-
gular measure, which turns out to be equivalent to their conjecture on Henkin
measures [7, Thm. 5.2]. Note that the conjecture is vacuously true if d = 1, as
M1 = H∞.

The purpose of this note is to provide a counterexample to the conjecture of
Clouâtre and Davidson for d ≥ 2. To state the main result more precisely, we
require one more definition. A compact set K ⊂ Sd is said to be totally null if it is
null for every representing measure of the origin. By the Henkin and Cole–Range
theorem, a totally null set cannot support a nonzero classical Henkin measure.

Theorem 1.3. Let d ≥ 2 be an integer. There exists a Borel probability measure
μ on Sd that is Ad -Henkin and whose support is totally null.

In fact, every measure which is supported on a totally null set is totally singular
(i.e., it is singular with respect to every representing measure of the origin). The
measure in Theorem 1.3 therefore also serves at the same time as a counterexam-
ple to the conjecture of Clouâtre and Davidson on totally singular measures, even
without invoking [7, Thm. 5.2].

It is not hard to see that if μ is a measure on Sd satisfying the conclusion of
Theorem 1.3, then so does the trivial extension of μ to Sd ′ for any d ′ ≥ d (see
Lemma 2.3), and hence it suffices to prove Theorem 1.3 for d = 2. In fact, the
construction of such a measure μ is easier in the case d = 4, so we will consider
that case first.
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The remainder of this note is organized as follows. In Section 2, we recall some
necessary background material. Section 3 contains the construction of a measure
μ that satisfies the conclusion of Theorem 1.3 in the case d = 4. In Section 4, we
prove Theorem 1.3 in general.

2. Preliminaries

2.1. The Drury–Arveson Space

As mentioned in the Introduction, the Drury–Arveson space H 2
d is the reproducing

kernel Hilbert space on Bd with reproducing kernel

K(z,w) = 1

1 − 〈z,w〉 .
For background material on reproducing kernel Hilbert spaces, see [16] and
[3]. We will require a more concrete description of H 2

d . Recall that if α =
(α1, . . . , αd) ∈N

d is a multiindex and if z = (z1, . . . , zd) ∈C
d , one writes

zα = z
α1
1 . . . z

αd

d , α! = α1! . . . αd !, |α| = α1 + · · · + αd.

The monomials zα form an orthogonal basis of H 2
d , and

‖zα‖2
H 2

d

= α!
|α|!

for every multiindex α; see [5, Lemma 3.8].
Let (xn) and (yn) be sequences of positive numbers. We write xn � yn to mean

that there exist C1,C2 > 0 such that

C1yn ≤ xn ≤ C2yn for all n ∈N.

The following well-known result can be deduced from Stirling’s formula; see [5,
p. 19].

Lemma 2.1. Let d ∈N. Then

‖(z1z2 . . . zd)n‖2
H 2

d

� d−nd(n + 1)(d−1)/2

for all n ∈ N.

The multiplier algebra of H 2
d is

Md = {ϕ : Bd → C : ϕf ∈ H 2
d for all f ∈ H 2

d }.
Every ϕ ∈ Md gives rise to a bounded multiplication operator Mϕ on H 2

d , and
we set ‖ϕ‖Md

= ‖Mϕ‖. Moreover, we may identify Md with a unital subalgebra
of B(H 2

d ), the algebra of bounded operators on H 2
d . It is not hard to see that Md

is WOT-closed, and hence weak-∗ closed, inside B(H 2
d ). Thus, Md becomes a

dual space in this way, and we endow it with the resulting weak-∗ topology. In
particular, for every f,g ∈ H 2

d , the functional

Md → C, ϕ �→ 〈Mϕf,g〉,
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is weak-∗ continuous. Moreover, it is well known and not hard to see that on
bounded subsets of Md , the weak-∗ topology coincides with the topology of
pointwise convergence on Bd .

2.2. Henkin Measures and Totally Null Sets

Let K ⊂ Sd be a compact set. A function f ∈ A(Bd) is said to peak on K if f = 1
on K and |f (z)| < 1 for all z ∈ Bd \ K . Recall that K is said to be totally null if
it is null for every representing measure of the origin. In particular, if d = 1, then
K is totally null if and only if it is a Lebesgue null set. We will make repeated use
of the following characterization of totally null sets, see [17, Theorem 10.1.2].

Theorem 2.2. A compact set K ⊂ Sd is totally null if and only if there exists a
function f ∈ A(Bd) that peaks on K .

If d ′ ≥ d , then we may regard Sd ⊂ Sd ′ in an obvious way. Thus, every regular
Borel measure μ on Sd admits a trivial extension μ̂ to Sd ′ defined by

μ̂(A) = μ(A ∩ Sd)

for Borel sets A ⊂ Sd ′ . The following easy lemma shows that it suffices to prove
Theorem 1.3 in the case d = 2.

Lemma 2.3. Let μ be a Borel probability measure on Sd , let d ′ ≥ d , and let μ̂ be
the trivial extension of μ to Sd ′ .

(a) If μ is Ad -Henkin, then μ̂ is Ad ′ -Henkin.
(b) If the support of μ is a totally null subset of Sd , then the support of μ̂ is a

totally null subset of Sd ′ .

Proof. (a) Let P : Cd ′ → C
d denote the orthogonal projection onto the first d

coordinates. It follows from the concrete description of the Drury–Arveson space
at the beginning of Section 2.1 that

V : H 2
d → H 2

d ′ , f �→ f ◦ P,

is an isometry. Moreover, V ∗MϕV = Mϕ|Bd
for every ϕ ∈ Md ′ , so that

Md ′ �→Md , ϕ �→ ϕ|Bd
,

is weak-∗-weak-∗ continuous and maps Ad ′ into Ad .
Suppose now that μ is Ad -Henkin. Then there exists a weak-∗ continuous

functional � on Md that extends the integration functional given by μ, and thus∫
Sd′

ϕ dμ̂ =
∫
Sd

ϕ dμ = �(ϕ|Bd
)

for ϕ ∈ Ad ′ . Since the right-hand side defines a weak-∗ continuous functional on
Md ′ , we see that μ̂ is Ad ′ -Henkin.

(b) We have to show that if K ⊂ Sd is totally null, then K is also totally null
as a subset of Sd ′ . This is immediate from Theorem 2.2 and the observation that
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if f ∈ A(Bd) peaks on K , then f ◦ P ∈ A(Bd ′) peaks on K as well, where P

denotes the orthogonal projection from (a). �

3. The Case d = 4

The goal of this section is to prove Theorem 1.3 in the case d = 4 (and hence
for all d ≥ 4 by Lemma 2.3). To prepare and motivate the construction of the
measure μ, we begin by considering analogues of Henkin measures for more
general reproducing kernel Hilbert spaces on the unit disc. Suppose that H is a
reproducing kernel Hilbert space on the unit disc D with reproducing kernel of
the form

K(z,w) =
∞∑

n=0

an(zw)n, (1)

where a0 = 1 and an > 0 for all n ∈ N. If
∑∞

n=0 an < ∞, then series (1) converges
uniformly on D×D, and H becomes a reproducing kernel Hilbert space of con-
tinuous functions on D in this way. In particular, evaluation at 1 is a continuous
functional on H and hence a weak-∗ continuous functional on Mult(H). Indeed,

ϕ(1) = 〈Mϕ1,K(·,1)〉H
for ϕ ∈ Mult(H). Therefore, the Dirac measure δ1 induces a weak-∗ continuous
functional on Mult(H), but it is not absolutely continuous with respect to the
Lebesgue measure and hence not Henkin. (In fact, every regular Borel measure
on the unit circle induces a weak-∗ continuous functional on Mult(H).)

The main idea of the construction is to embed a reproducing kernel Hilbert
space as in the preceding paragraph into H 2

4 .
To find the desired space H on the disc, recall that by the inequality of arith-

metic and geometric means,

sup{|z1z2 . . . zd | : z ∈ Bd} = d−d/2,

and the supremum is attained if and only if |z1| = · · · = |zd | = d−1/2. Hence,

r : B4 →D, z �→ 16z1z2z3z4,

indeed takes values in D, and it maps B4 onto D. For n ∈ N, let

an = ‖r(z)n‖−2
H 2

4
,

and let H be the reproducing kernel Hilbert space on D with reproducing kernel

K(z,w) =
∞∑

n=0

an(zw)n.

Lemma 3.1. The map

V : H → H 2
4 , f �→ f ◦ r,

is an isometry, and
∑∞

n=0 an < ∞.
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Proof. It is well known that for any space on D with kernel as in equation (1), the
monomials zn form an orthogonal basis and ‖zn‖2 = 1/an for n ∈ N. Thus, with
our choice of (an), we have

‖zn‖2 = 1

an

= ‖r(z)n‖2
H 2

4
.

Since the sequence r(z)n is an orthogonal sequence in H 2
4 , it follows that V is an

isometry. Moreover, an application of Lemma 2.1 shows that

‖r(z)n‖2 = 44n‖(z1, . . . , z4)
n‖2 � (n + 1)3/2,

so that an � (n + 1)−3/2, and hence
∑∞

n=0 an < ∞. �

Let
h : T3 → S4, (ζ1, ζ2, ζ3) �→ 1/2(ζ1, ζ2, ζ3, ζ1ζ2ζ3),

and observe that the range of h is contained in r−1({1}). Let μ be the pushforward
of the normalized Lebesgue measure m on T

3 by h, that is,

μ(A) = m(h−1(A))

for a Borel subset A of S4. We will show that μ satisfies the conclusion of Theo-
rem 1.3.

Lemma 3.2. The support of μ is totally null.

Proof. Let X = r−1({1}), which is compact, and define f = 1+r
2 . Then f belongs

to the unit ball of A(B4) and peaks on X, and hence X is totally null by Theo-
rem 2.2. Since h(T3) ⊂ X, the support of μ is contained in X, so the support of
μ is totally null as well. �

The following lemma finishes the proof of Theorem 1.3 in the case d = 4.

Lemma 3.3. The measure μ is A4-Henkin.

Proof. Let α ∈N
4 be a multiindex. Then∫

S4

zα dμ =
∫
T3

zα ◦ hdm = 2−|α|
∫
T3

ζ
α1−α4
1 ζ

α2−α4
2 ζ

α3−α4
3 dm.

This integral is zero unless α4 = α1 = α2 = α3 =: k, in which case it equals 2−4k .
Let g = K(·,1) ◦ r , where K denotes the reproducing kernel of H. Then g ∈

H 2
4 by Lemma 3.1, and it is a power series in z1z2z3z4. Thus, zα is orthogonal to

g unless α1 = · · · = α4 =: k, in which case

〈zα, g〉H 2
4

= 2−4k〈r(z)k, g〉H 2
4

= 2−4k〈zk,K(·,1)〉H = 2−4k,

where we have used Lemma 3.1 again.
Hence, ∫

S4

ϕ dμ = 〈Mϕ1, g〉H 2
4
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for all polynomials ϕ and hence for all ϕ ∈ A4. Since the right-hand side obvi-
ously extends to a weak-∗ continuous functional in ϕ on M4, we see that μ is
A4-Henkin. �

4. The Case d = 2

In this section, we prove Theorem 1.3 in the case d = 2 and hence in full general-
ity by Lemma 2.3. To this end, we will also embed a reproducing kernel Hilbert
space on D into H 2

2 . Let

r : B2 → D, z �→ 2z1z2,

and observe that r maps B2 onto D. For n ∈N, let

an = ‖r(z)n‖−2
H 2

2
,

and consider the reproducing kernel Hilbert space on D with reproducing kernel

K(z,w) =
∞∑

n=0

an(zw)n.

This space turns out to be the well-known weighted Dirichlet space D1/2,
which is the reproducing kernel Hilbert space on D with reproducing kernel
(1 − zw)−1/2. This explicit description is not strictly necessary for what follows,
but it provides some context for the arguments involving capacity below.

Lemma 4.1. The kernel K satisfies K(z,w) = (1 − zw)−1/2.

Proof. The formula for the norm of monomials in Section 2 shows that

an = ‖r(z)n‖−2 = 4−n (2n)!
(n!)2

= (−1)n
(−1/2

n

)
,

so that

K(z,w) =
∞∑

n=0

(−1)n
(−1/2

n

)
(zw)n = (1 − zw)−1/2

by the binomial series. �

The analogue of Lemma 3.1 in the case d = 2 is the following result.

Lemma 4.2. The map

V : D1/2 → H 2
2 , f �→ f ◦ r,

is an isometry. Moreover, an � (n + 1)−1/2 and ‖zn‖2
D1/2

� (n + 1)1/2.

Proof. As in the proof of Lemma 3.1, we see that V is an isometry. Moreover,
Lemma 2.1 shows that

‖zn‖2
D1/2

= ‖r(z)n‖2
H 2

2
= 22n‖(z1z2)

n‖2
H 2

2
� (n + 1)1/2

for n ∈N. �
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The crucial difference to the case d = 4 is that the functions in D1/2 do not all
extend to continuous functions on D. This makes the construction of the measure
μ of Theorem 1.3 more complicated.

The following lemma provides a measure σ on the unit circle, which will serve
as a replacement for the Dirac measure δ1 used in the case d = 4. It is very likely
that this result is well known. Since the measure σ is crucial for the construction
of the measure μ, we explicitly indicate how such a measure on the unit circle can
arise.

Lemma 4.3. There exists a Borel probability measure σ on T such that

(a) the support of σ has Lebesgue measure 0, and
(b) the functional

C[z] →C, p �→
∫
T

p dσ,

extends to a bounded functional on the space D1/2.

To prove Lemma 4.3, we require the notion of capacity. Background material on
capacity can be found in [12, Ch. 2]. Let k(t) = t−1/2. The 1/2-energy of a Borel
probability measure ν on T is defined to be

Ik(ν) =
∫
T

∫
T

k(|x − y|) dν(x) dν(y).

We say that a compact subset E ⊂ T has positive Riesz capacity of degree 1/2 if
there exists a Borel probability measure ν supported on E with Ik(ν) < ∞.

Proof of Lemma 4.3. Let E ⊂ T be a compact set with positive Riesz capacity of
degree 1/2, but Lebesgue measure 0. For instance, since 1/2 < log 2/ log 3, the
circular middle-third Cantor set has this property by [12, Exercise 2.4.3(ii)]. Thus,
there exists a measure σ on T whose support is contained in E with Ik(σ ) < ∞.
Then (a) holds.

To prove (b), for n ∈ Z, let

σ̂ (n) =
∫
T

z−n dσ (z)

denote the nth Fourier coefficient of σ . Since Ik(σ ) < ∞, an application of [12,
Exercise 2.4.4] shows that

∞∑
n=0

|̂σ(n)|2
(n + 1)1/2

< ∞. (2)

Let now p be a polynomial, say

p(z) =
N∑

n=0

αnz
n.
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Then using the Cauchy–Schwarz inequality, we see that∣∣∣∣
∫
T

p dσ

∣∣∣∣ ≤
N∑

n=0

|αn||̂σ(−n)|

≤
( N∑

n=0

(n + 1)1/2|αn|2
)1/2( N∑

n=0

|̂σ(n)|2
(n + 1)1/2

)1/2

.

Since the monomials form an orthogonal basis of D1/2, Lemma 4.2 shows that the
first factor is dominated by C‖p‖D1/2 for some constant C. Moreover, the second
factor is bounded uniformly in N by (2), so (b) holds. �

Remark 4.4. The last paragraph of the proof of [12, Thm. 2.3.5] in fact shows that
the Cantor measure on the circular middle-thirds Cantor set has finite 1/2-energy,
and thus we can take σ to be this measure.

Let now σ be a measure provided by Lemma 4.3, and let E be the support of σ .
Let

h : T× E → S2, (ζ1, ζ2) �→ 1√
2
(ζ1, ζ1ζ2),

and observe that the range of h is contained in r−1(E). Define μ to be the pushfor-
ward of m×σ by h. We will show that μ satisfies the conclusion of Theorem 1.3.

Lemma 4.5. The support of μ is totally null.

Proof. Let X = r−1(E). Since E has Lebesgue measure 0 by Lemma 4.3, there
exists by the Rudin–Carleson theorem (i.e., the d = 1 case of Theorem 2.2) a
function f0 ∈ A(D) that peaks on E. Let f = f0 ◦ r . Then f belongs to A(B2)

and peaks on X, so that X is totally null by Theorem 2.2. Finally, the support of
μ is contained in X and hence is totally null as well. �

The following lemma finishes the proof of Theorem 1.3.

Lemma 4.6. The measure μ is A2-Henkin.

Proof. For all m,n ∈N, we have∫
S2

zm
1 zn

2 dμ = 2−(m+n)/2
∫
T

∫
E

ζm−n
1 ζ n

2 dm(ζ1) dσ (ζ2).

This quantity is zero unless m = n, in which case it equals

2−n

∫
E

ζn dσ(ζ ).

On the other hand, Lemma 4.3 shows that there exists f ∈D1/2 such that

〈p,f 〉D1/2 =
∫

E

p dσ
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for all polynomials p. Let g = f ◦ r . Then g belongs to H 2
d by Lemma 4.2 and is

orthogonal to zn
1zm

2 unless n = m, in which case

〈(z1z2)
n, g〉H 2

2
= 2−n〈r(z)n, g〉H 2

2
= 2−n〈zn, f 〉D1/2 = 2−n

∫
E

ζn dσ(ζ ).

Consequently, ∫
S2

ϕ dμ = 〈Mϕ1, g〉H 2
2

for all polynomials ϕ, and hence for all ϕ ∈A2, so that μ is A2-Henkin. �

Theorem 1.3 suggests the following problem, which is deliberately stated some-
what vaguely.

Problem 4.7. Find a measure theoretic characterization of Ad -Henkin measures.
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