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Families of Elliptic Curves in P3 and Bridgeland Stability
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Abstract. We study wall crossings in Bridgeland stability for the
Hilbert scheme of elliptic quartic curves in the three-dimensional pro-
jective space. We provide a geometric description of each of the mod-
uli spaces we encounter, including when the second component of
this Hilbert scheme appears. Along the way, we prove that the princi-
pal component of this Hilbert scheme is a double blowup with smooth
centers of a Grassmannian, exhibiting a completely different proof of
this known result by Avritzer and Vainsencher. This description allows
us to compute the cone of effective divisors of this component.

Introduction

The global geometry of a given Hilbert scheme is generally very difficult to
study. Recently, the theory of Bridgeland stability has provided a new set of tools
to study the geometry of these Hilbert schemes. For instance, the study of the
Hilbert scheme of points on surfaces has benefited from these new tools (see
[A+13; BM14; CHW17; LZ16; MM13; Nue16; YY14]). A sensible step forward
is now to apply these tools to examine families of curves contained in threefolds.
The first instance of this was carried out by the last author in [Sch15], where
he studies the Hilbert scheme of twisted cubics. In this paper, we continue this
investigation about curves in P3 and analyze the global geometry, as well as wall-
crossing phenomena, of the Hilbert scheme Hilb4t (P3), which parameterizes sub-
schemes of P3 of genus 1 and degree 4.

A smooth curve of genus 1 and degree 4 in P3, which we refer to as an elliptic
quartic, is the transversal intersection of two quadric surfaces. By considering the
pencil that these quadrics generate, we realize the family of smooth elliptic quar-
tics as an open subset of G(1,9), the Grassmannian of lines in the space |OP3(2)|
of quadric surfaces in P3. We show that the Hilbert scheme Hilb4t (P3) is a moduli
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space of Bridgeland stable objects, and moreover, one of its components is related
through birational transformations to the Grassmannian G(1,9) via wall-crossing.

Let us recall the notion of Bridgeland stability in order to state this re-
sult precisely. For classical slope stability with respect to a given polarization
H on a smooth projective complex variety X, the number μH (E) = (Hn−1 ·
ch1(E))/(Hn · ch0(E)) is called the slope for any coherent sheaf E ∈ Coh(X).
A coherent sheaf is then called slope semistable if all proper nontrivial subsheaves
have smaller slope. For Bridgeland stability, one replaces the category of coherent
sheaves with a different Abelian subcategory A ⊂ Db(X) and replaces the slope
with a homomorphism Z : K0(X) → C, mapping A to the upper half-plane or
the negative real line, where K0(X) is the Grothendieck group. The slope is then
given by

μ(E) = −�Z(E)

�Z(E)

for any E ∈ A. In addition, one demands that every object in Db(X) has a canon-
ical filtration into semistable factors called the Harder–Narasimhan filtration and
the so-called support property, which ensures that the set of stability conditions
Stab(X) can be naturally given the structure of a complex manifold.

We can now state our main result. Let us fix a class v ∈ K0(X). Then there is a
locally finite wall and chamber structure in Stab(X) such that the set of semistable
objects of class v is constant within each chamber. Our main result describes
the wall and chamber structure of a subspace of Stab(P3) and the corresponding
moduli spaces of semistable objects in the case of elliptic quartics in P3.

Theorem A. Let v = (1,0,−4,8) = ch(IC), where C ⊂ P3 is an elliptic quartic
curve. There is a path γ : [0,1] → R>0 × R ⊂ Stab(P3) such that the moduli
spaces of semistable objects with Chern character v in its image outside of walls
are given in the following order.

(0) The empty space M0 = ∅.
(1) The Grassmannian M1 = G(1,9) parameterizing pencils of quadrics. The

only nonideal sheaves in the moduli space come from the case where a 2-
plane is contained in the base locus of the pencil.

(2) The second moduli space M2 is the blow up of G(1,9) along a smooth lo-
cus isomorphic to G(1,3) × (P3)∨ parameterizing the nonideal sheaves in
M1. The exceptional divisor generically parameterizes unions of a line and
a plane cubic intersecting themselves in a single point. The only nonideal
sheaves in this moduli space come from the case where the line is contained
in the plane.

(3) The third moduli space M3 has two irreducible components M1
3 and M2

3 . The
first component M1

3 is the blowup of M2 along the smooth incidence variety
parameterizing length two subschemes in a plane in P3. The second compo-
nent M2

3 is a P14-bundle over Hilb2(P3)×(P3)∨. It generically parameterizes
unions of plane quartics with two points, either outside the curve or embed-
ded. The two components intersect transversally along the exceptional locus
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of the blowup. The only nonideal sheaves occur in the case where at least one
of the two points is not scheme-theoretically contained in the plane.

(4) The fourth moduli space M4 has two irreducible components M1
4 and M2

4 .
The first component is equal to M1

3 . The second component is birational to
M2

3 . The new locus parameterizes plane quartics with two points such that
exactly one point is scheme-theoretically contained in the plane.

(5) The fifth moduli space is the Hilbert scheme Hilb4t (P3), which has two com-
ponents Hilb4t

1 and Hilb4t
2 . The principal component Hilb4t

1 contains an open
subset of elliptic quartic curves and is equal to M1

3 . The second component
is of dimension 23 and is birational to M2

3 . Moreover, the two components
intersect transversally along a locus of dimension 15. The component Hilb4t

2
differs from M2

4 in the locus of plane cubics together with two points scheme-
theoretically contained in the plane.

As a consequence of Theorem A, we obtain that the Hilbert scheme Hilb4t (P3) has
two components. This is a well-known fact (see [CN12; Got08]). More interest-
ingly, the previous result describes what is called the principal component, which
parameterizes smooth elliptic curves along with their flat limits. We will denote
this component by Hilb4t

1 , and our next result describes its global geometry.

Theorem B ([VA92]). The closure of the family of smooth elliptic quartics in
the Hilbert scheme Hilb4t (P3), is a double blowup of the Grassmannian G(1,9)

along smooth centers.

A comment is in order about the previous theorem. The description of Hilb4t
1 (P3)

was proved in [VA92] by Vainsencher and Avritzer using classical methods. Our
techniques to reprove their result are distinct, as we make use of the bounded
derived category of coherent sheaves on P3 and Bridgeland stability.

Since the principal component Hilb4t
1 (P3) is a double blowup, it is natural to

ask what are the subschemes of P3 that the exceptional divisors parameterize
and whether they span extremal rays in the cone of effective divisors Eff(Hilb4t

1 ).
Proposition 4.11 and the following result answer these two questions. Conse-
quently, we have a moduli interpretation for the generators of Eff(Hilb4t

1 ), which
is the following.

Let E1 be the closure of the locus parameterizing subschemes of P3 that are
the unions of a plane cubic and an incident line. By E2 we denote the closure of
the locus parameterizing plane quartics with two nodes and two embedded points
at such nodes. Let � denote the closure of the locus of nodal elliptic curves.

Theorem C. The cone of effective divisors of Hilb4t
1 is generated by Eff(Hilb4t

1 ) =
〈E1,E2,�〉.

Ingredients

The notion of tilt stability on a smooth projective threefold was introduced in
[BMT14]. It is defined in a similar way one defines Bridgeland stability on a
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surface. Thus, these two notions of stability share computational properties. Tilt
stability is intended as a stepping stone to Bridgeland stability. The proof of The-
orem A is mostly based on this theory.

In contrast to the surface case, computing which objects destabilize at a given
wall is difficult due to the lack of unique stable factors in the Jordan–Hölder fil-
tration of a strictly semistable object. Computing the walls numerically in tilt
stability is of similar difficulty as in the surface case and is often possible. On the
other hand, although it is generally difficult to determine all walls in Bridgeland
stability on a given path, it is not so difficult to determine which objects desta-
bilize at a given wall. To resolve this issue, we apply a technique from [Sch15],
which allows us to translate walls from tilt stability into Bridgeland stability.

To identify the global structure of the Bridgeland moduli spaces, a careful anal-
ysis of its singularities is necessary. We apply deformation theory to these prob-
lems, and large parts of it reduce to heavy Ext-computation. Even though this can
be done by hand, computer calculations with [M2] turn out to be tremendously
helpful. The situation is more involved when it comes to the intersection of the
two components. We reduce the question to a single ideal in that case and apply
the technique of [PS85]. We make use of the Macaulay2 implementation [Ilt12]
of this technique.

The proof of Theorem C uses the description of the exceptional divisors pro-
vided in Proposition 4.11 and exhibits the dual curves to them in order to con-
clude.

Organization

In Section 1, we recall basic definitions about stability conditions. In Section 2,
we carry out numerical computations in tilt stability needed to understand walls
in Bridgeland stability. In Section 3, we describe the equations of some ideals
depending on the exact sequences they fit in. We use this description to under-
stand the local geometry of the intersection of the two components of our Hilbert
scheme. In Section 4, we translate the computations in tilt stability to Bridgeland
stability. Furthermore, we analyze singularities to provide proofs of Theorem A
and Theorem B. In Section 5, we prove Theorem C. contains our Macaulay2 code.

Notation

We work over the field of the complex numbers throughout. We also use the fol-
lowing notation.

IZ/X , IZ ideal sheaf of a closed subscheme Z ⊂ X

Db(X) bounded derived category of coherent sheaves on X

chX(E), ch(E) Chern character of an object E ∈ Db(X)

ch≤l,X(E), ch≤l (E) (ch0,X(E), . . . , chl,X(E))

G(r, k) the Grassmannian parameterizing subspaces Pr ⊂ Pk

Hilb4t
1 closure of the locus of elliptic quartic curves in Hilb(P3)
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Hilb4t
2 closure in Hilb(P3) of the locus of unions of plane quartic curves with two

points in P3

1. Preliminaries on Stability Conditions

In this section, we recall the construction of Bridgeland stability conditions on P3

due to [BMT14; Mac14b]. We refer the reader to [Bri07] for a detailed introduc-
tion to the theory of Bridgeland stability. Let X be a smooth projective threefold.
A Bridgeland stability condition on Db(X) is a pair (Z,A), where A is the heart
of a bounded t-structure, and Z : K0(X) = K0(A) → C is an additive homomor-
phism that maps any nontrivial object in A to the upper half-plane or the nega-
tive real line. Additionally, technical properties such as the existence of Harder–
Narasimhan filtrations and the support property have to be fulfilled. Bridgeland’s
main result is that the set of stability condition can be given the structure of a
complex manifold. We will denote this stability manifold by Stab(X).

Let H be the very ample generator of Pic(P3). Due to the simplicity of the
cohomology of P3, we will abuse notation by writing chi (E) = H 3−i chi (E) for
any E ∈ Db(X). For β ∈ R, we define the twisted Chern character by chβ :=
e−βH · ch. In more detail, we have

chβ

0 = ch0, chβ

1 = ch1 −β ch0, chβ

2 = ch2 −β ch1 +β2

2
ch0,

chβ

3 = ch3 −β ch2 +β2

2
ch1 −β3

6
ch0 .

We write a twisted version of the classical slope function as

μβ(ch0, ch1) := chβ

1

chβ

0

= ch1

ch0
− β,

where division by 0 is interpreted as +∞. In [BMT14] the notion of tilt stability
has been introduced as an auxiliary notion in between classical slope stability and
Bridgeland stability on threefolds. We will recall this construction and a few of
its properties. Tilting is used to obtain a new heart of a bounded t-structure. For
more information on the general theory of tilting, we refer to [HRS96]. A torsion
pair is defined by

Tβ := {E ∈ Coh(P3) : any quotient E � G satisfies μβ(G) > 0},
Fβ := {E ∈ Coh(P3) : any subsheaf F ⊂ E satisfies μβ(F ) ≤ 0}.

A new heart of a bounded t-structure is given by the extension closure
Cohβ(P3) := 〈Fβ [1],Tβ〉. Equivalently, the objects in Cohβ(P3) are complexes
E ∈ Db(X) satisfying Hi(E) = 0 for i = 0,−1, H−1(E) ∈ Fβ , and H 0(E) ∈ Tβ .
Let α > 0 be a positive real number. The new slope function is

να,β(ch0, ch1, ch2) := chβ

2 −α2

2 chβ

0

chβ

1

= ch2 −β ch1 +β2

2 ch0 −α2

2 ch0

ch1 −β ch0
.
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As in classical slope stability, an object E ∈ Cohβ(P3) is called να,β -(semi)stable
or tilt (semi)stable with respect to (α,β) if for all short exact sequences 0 → F →
E → G → 0 in Cohβ(P3), the inequality να,β(F ) < (≤)να,β(G) holds. Note that
in regard to [BMT14] this slope has been modified by switching α with

√
3α.

We prefer this point of view because it makes the walls semicircular. In concrete
computations, it becomes relevant to restrict the Chern characters of semistable
objects. One of the main tools to perform this restriction is the following inequal-
ity for semistable objects.

Theorem 1.1 (Bogomolov–Gieseker inequality for tilt stability, [BMT14, Corol-
lary 7.3.2]). Any να,β -semistable object E ∈ Cohβ(P3) satisfies

Qtilt(E) := (chβ

1 (E))2 − 2 chβ

0 (E) chβ

2 (E)

= (ch1(E))2 − 2 ch0(E) ch2(E) ≥ 0.

Let v = ch≤2(E) = (v0, v1, v2) for some object E ∈ Db(P3). A numerical wall
in tilt stability for v is by definition induced by a class (r, c, d) ∈ Z2 × 1

2Z as the
set of solutions (α,β) to the equation να,β(v) = να,β(r, c, d), where we assume
that this is a nontrivial proper solution set. For example, throughout this article,
we will always choose v = ch≤2(IC), where C ⊂ P3 is an elliptic quartic curve,
and study moduli spaces involving these objects.

A subset of a numerical wall is an actual wall if the set of stable or semistable
objects with class v changes at it. Numerical walls in tilt stability satisfy Bertram’s
nested wall theorem. For surfaces, it was proved in [Mac14a]. A proof in the
threefold case can be found in [Sch15].

Theorem 1.2 (Structure theorem for walls in tilt stability). All numerical walls
in the following statements are for fixed v = (v0, v1, v2).

(1) Numerical walls in tilt stability are of the form

xα2 + xβ2 + yβ + z = 0

for x = v0c − v1r , y = 2(v2r − v0d), and z = 2(v1d − v2c). In particular,
they are either semicircular walls with center on the β-axis or vertical rays.

(2) If two numerical walls given by να,β(r, c, d) = να,β(v) and να,β(r ′, c′, d ′) =
να,β(v) intersect for any α ≥ 0, then (r, c, d), (r ′, c′, d ′), and v are linearly
dependent. In particular, the two walls are completely identical.

(3) The curve να,β(v) = 0 is given by the hyperbola

v0α
2 − v0β

2 + 2v1β − 2v2 = 0.

Moreover, this hyperbola intersects all semicircular walls at their top point.
(4) If v0 = 0, then there is exactly one vertical numerical wall given by β = v1/v0.

If v0 = 0, then there is no vertical wall.
(5) If a numerical wall has a single point at which it is an actual wall, then all of

it is an actual wall.
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On smooth projective surfaces tilt stability is enough to get a Bridgeland stability
condition (see [Bri08; AB13]). On threefolds, Bayer, Macrì, and Toda proposed
another tilt to obtain a suitable category to define a Bridgeland stability condition
as follows. Let

T ′
α,β := {E ∈ Cohβ(P3) : any quotient E � G satisfies να,β(G) > 0},

F ′
α,β := {E ∈ Cohβ(P3) : any subobject F ↪→ E satisfies να,β(F ) ≤ 0}

and set Aα,β := 〈F ′
α,β [1],T ′

α,β〉. For any s > 0, they define

Zα,β,s := − chβ

3 +
(

s + 1

6

)
α2 chβ

1 +i

(
chβ

2 −α2

2
chβ

0

)
,

λα,β,s := −�(Zα,β,s)

�(Zα,β,s)
.

To prove that this yields a Bridgeland stability condition, Bayer, Macrì, and Toda
conjectured a generalized Bogomolov–Gieseker inequality involving third Chern
characters for tilt semistable objects with να,β = 0. In [BMS16], it was shown that
the conjecture is equivalent to a more general inequality that drops the hypothesis
να,β = 0. In the case of P3 the inequality was proved in [Mac14b]. Recall the
definition of Qtilt from Theorem 1.1.

Theorem 1.3 (BMT Inequality). Any να,β -stable object E ∈ Cohβ(P3) satisfies

α2Qtilt(E) + 4(chβ

2 (E))2 − 6 chβ

1 (E) chβ

3 (E) ≥ 0.

Similar inequalities were proved for the smooth quadric threefold [Sch14] and
all Abelian threefolds [BMS16; MP13a; MP13b]. Recently, the inequality has
also been generalized to all Fano threefolds of Picard rank 1 in [Li15]. By using
the definition of chβ(E), we find x(E), y(E) ∈ R such that the BMT inequality
becomes

α2Qtilt(E) + β2Qtilt(E) + x(E)β + y(E) ≥ 0.

This means that the solution set is given by the complement of a semidisc with
center on the β-axis or a quadrant to one side of a vertical line.

Using the same proof as in the surface case in [Bri08, Proposition 14.1] leads
to the following lemma. It allows us to identify the moduli space of slope stable
sheaves as a moduli space of tilt stable objects.

Lemma 1.4. Let v = (v0, v1, v2, v3) ∈ K0(P
3) be such that β < μ(v) and (v0, v1)

is primitive. Then an object E with ch(E) = v is να,β -stable for all α � 0 if and
only if E is a slope stable sheaf.

An important question is how moduli spaces change set theoretically at walls
in Bridgeland stability. In case the destabilizing subobject and quotient are both
stable, this has a satisfactory answer, and a proof can, for example, be found in
[Sch15, Lemma 3.10]. Note that this does not work in the case of tilt stability due
to the lack of unique Jordan–Hölder filtrations.
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Lemma 1.5. Let σ = (A,Z) ∈ Stab(P3) be such that there are stable objects
F,G ∈ A with μσ (F ) = μσ (G). Then there is an open neighborhood U around
σ where nontrivial extensions 0 → F → E → G → 0 are stable for all σ ′ ∈ U ,
where F ↪→ E does not destabilize E.

Another crucial issue is the construction of reasonably behaved moduli spaces
of Bridgeland stable objects. A recent result by Piyaratne and Toda is a major
step toward this. It applies in particular to the case of P3, since the conjectural
BMT-inequality is known.

Theorem 1.6 ([PT15]). Let X be a smooth projective threefold such that the
conjectural construction of Bridgeland stability from [BMT14] works. Then any
moduli space of semistable objects for such a Bridgeland stability condition is a
universally closed algebraic stack of finite type over C.

If there are no strictly semistable objects, then the moduli space becomes a proper
algebraic space of finite type over C.

Our strategy to compute concrete wall crossing follows that of [Sch15]. We do
numerical computations in tilt stability and then translate them into Bridgeland
stability. Let v = (v0, v1, v2, v3) be the Chern character of an object in Db(X).
For any α > 0, β ∈ R, and s > 0, we denote the set of λα,β,s -semistable objects
with Chern character v by Mα,β,s(v) and the set of να,β -semistable objects with
Chern character v by M tilt

α,β,s(v). Analogously to our notation for twisted Chern

characters, we write vβ := (v
β

0 , v
β

1 , v
β

2 , v
β

3 ) = v · e−βH . We also write

Pv := {(α,β) ∈R≥0 ×R : να,β(v) > 0}.
We need the following technical statement. Under mild hypotheses, it says that on
one side of the hyperbola {να,β(v) = 0} all the chambers and walls of tilt stability
occur in Bridgeland stability. Note that να,β(v) = 0 implies λα,β,s(v) = ∞. This
is a crucial fact in establishing the following relation between walls in tilt stability
and walls in Bridgeland stability.

Theorem 1.7 ([Sch15, Theorem 6.1]). Let α0 > 0, β0 ∈ R, and s > 0, be such
that να0,β0(v) = 0 and v

β0
1 > 0.

(1) Assume there is an actual wall in Bridgeland stability for v at (α0, β0) given
by

0 → F → E → G → 0.

That means λα0,β0,s(F ) = λα0,β0,s(G) and ch(E) = −v for semistable
E,F,G ∈ Aα0,β0(P3). Further, assume that there is a neighborhood U of
(α0, β0) such that the same sequence also defines an actual wall in U ∩ Pv ,
that is, E, F , G remain semistable in U ∩ Pv ∩ {λα,β,s(F ) = λα,β,s(G)}.
Then E[−1],F [−1],G[−1] ∈ Cohβ0(P3) are να0,β0 -semistable. In particu-
lar, there is an actual wall in tilt stability at (α0, β0).
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(2) Assume that all να0,β0 -semistable objects with class v are stable. Then there
is a neighborhood U of (α0, β0) such that

Mα,β,s(v) = M tilt
α,β(v)

for all (α,β) ∈ U ∩ Pv . Moreover, in this case, all objects in Mα,β,s(v) are
λα,β,s -stable.

(3) Assume that there is an actual wall in tilt stability for v at (α0, β0) given by

0 → Fn → E → Gm → 0

such that F,G ∈ Cohβ0(P3) are να0,β0 -stable objects, ch(E) = v, and
να0,β0(F ) = να0,β0(G). Assume further that the set

Pv ∩ Pch(F ) ∩ Pch(G) ∩ {λα,β,s(F ) = λα,β,s(G)}
is nonempty. Then there is a neighborhood U of (α0, β0) such that F , G are
λα,β,s -stable for all (α,β) ∈ U ∩Pv ∩ {λα,β,s(F ) = λα,β,s(G)}. In particular,
there is an actual wall in Bridgeland stability in U ∩ Pv defined by the same
sequence.

This theorem will be used as follows in the the remainder of the article. Assume
that we have determined all exact sequences that give walls in tilt stability for
objects with a fixed Chern character v. By part (1) of the theorem, we know that
on one side of the hyperbola να,β(v) = 0 the only walls in Bridgeland stability
have to be defined by an exact sequence giving a wall in tilt stability. We will
then use part (3) to show that every such sequence does indeed define a wall in
Bridgeland stability. At this point, we know all exact sequences defining walls
on a path close to one side of the hyperbola να,β(v) = 0. Finally, we have to use
part (2) to show that all the moduli spaces of tilt stable objects actually occur in
Bridgeland stability on this path.

By doing this, we can translate simple computations in tilt stability into the
more complicated framework of Bridgeland stability. Sometimes there are exact
sequences giving identical numerical walls in tilt stability, but different numeri-
cal walls in Bridgeland stability. Therefore, this translation allows us to observe
additional chambers that are hidden in tilt stability.

2. Tilt Stability for Elliptic Quartics

Let C be the complete intersection of two quadrics in P3, that is, an elliptic quartic
curve. We will compute all walls in tilt stability for β < 0 with respect to v =
ch(IC). There is a locally free resolution 0 → O(−4) → O(−2)⊕2 → IC → 0.
This leads to

chβ(IC) =
(

1,−β,
β2

2
− 4,−β3

6
+ 4β + 8

)
.

We denote the set of tilt semistable objects with respect to (α,β) and class v by
M tilt

α,β(v).



796 P. Gallardo, C. Lozano Huerta, & B. Schmidt

Theorem 2.1. There are three walls for M tilt
α,β(1,0,−4,8) for α > 0 and β < 0.

Moreover, the following table lists pairs of tilt semistable objects whose exten-
sions completely describe all strictly semistable objects at each of the corre-
sponding walls. Let L be a line in P3, V a plane in P3, Z ⊂ P3 a length two
zero-dimensional subscheme, Z′ ⊂ V a length two zero-dimensional subscheme,
and let P ∈ P3 and, Q ∈ V be points.

α2 + (β + 3)2 = 1 O(−2)⊕2, O(−4)[1]
α2 + (β + 7

2 )2 = 17
4 IL(−1), OV (−3)

IZ(−1), OV (−4)

α2 + (β + 9
2 )2 = ( 7

2 )2 IP (−1), IQ/V (−4)

O(−1), IZ′/V (−4)

The hyperbola να,β(1,0,−4) = 0 is given by the equation

β2 − α2 = 8.

Moreover, there are no semistable objects for (α,β) inside the smallest semicircle.

It is interesting to note that all relevant objects in this theorem are sheaves and
not actual 2-term complexes. The key difference to the classical picture, as we
will see later, is that some sheaves of positive rank with torsion will turn out to be
stable and replace ideal sheaves of heavily singular curves in some chambers.

The fact that the smallest wall is given by the equation α2 + (β + 3)2 = 1
was already proved in [Sch15, Theorem 5.1] in more generality. Moreover, it was
shown there that all semistable objects E at the wall are given by extensions of
the form 0 → O(−2)⊕2 → E →O(4)[1] → 0 and that there are no tilt semistable
objects inside this semicircle.

To prove the remainder of Theorem 2.1, we need to put numerical restric-
tions on potentially destabilizing objects. This can be done by the following two
lemmas.

Lemma 2.2 ([Sch14, Lemma 5.4]). Let E ∈ Cohβ(P3) be tilt semistable with re-
spect to some β ∈ Z and α ∈R>0.

(1) If chβ(E) = (1,1, d, e), then d − 1/2 ∈ Z≤0. In the case d = −1/2, we get
E ∼= IL(β + 1) where L is a line plus 1/6 − e (possibly embedded) points
in P3. If d = 1/2, then E ∼= IZ(β + 1) for a zero-dimensional subscheme
Z ⊂ P3 of length 1/6 − e.

(2) If chβ(E) = (0,1, d, e), then d −1/2 ∈ Z and E ∼= IZ/V (β +d +1/2), where
Z is a dimension zero subscheme of length 1/24 + d2/2 − e.

The next lemma determines the Chern characters of possibly destabilizing objects
for β = −2.
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Lemma 2.3. If an exact sequence 0 → F → E → G → 0 in Coh−2(P3) defines
a wall for β = −2 with ch≤2(E) = (1,0,−4), then

ch−2
≤2(F ), ch−2

≤2(G) ∈
{(

1,1,−1

2

)
,

(
0,1,−3

2

)
,

(
1,1,

1

2

)
,

(
0,1,−5

2

)}
.

Proof. The four possible Chern characters group into two cases that add up to
ch−2

≤2(E) = (1,2,−2).

Let ch−2
≤2(F ) = (r, c, d). By the definition of Coh−2(P3), we have 0 ≤ c ≤ 2.

If c = 0, then να,−2(F ) = ∞, and this is in fact not wall for any α > 0. If c = 2,
then the same argument for the quotient G shows that there is no wall. Therefore,
c = 1 must hold. We can compute

να,−2(E) = −1 − α2

4
, να,−2(F ) = d − rα2

2
.

The wall is defined by να,−2(E) = να,−2(F ). This leads to

α2 = 4d + 4

2r − 1
> 0. (1)

The next step is to rule out the cases r ≥ 2 and r ≤ −1. If r ≥ 2, then ch0(G) ≤
−1. By exchanging the roles of F and G in the following argument, it is enough
to deal with the situation r ≤ −1. In that case, we use (1) and the Bogomolov–
Gieseker inequality to get the contradiction 2rd ≤ 1, d < −1, and r ≤ −1.

Therefore, we know r = 0 or r = 1. By again interchanging the roles of F

and G if necessary we only have to handle the case r = 1. Equation (1) implies
d > −1. By Lemma 2.2 we get d − 1/2 ∈ Z≤0. Therefore, we are left with the
cases claimed. �

Proof of Theorem 2.1. By assumption we are only dealing with walls that inter-
sect the branch of the hyperbola with β < 0. As explained before, we already
know the smallest wall. This semicircle intersects the β-axis at β = −4 and
β = −2. Therefore, all other walls intersecting this branch of the hyperbola also
have to intersect the ray β = −2. By Lemma 2.3 there are at most two walls in-
tersecting the line β = −2. They correspond to the two solutions claimed to exist.

Let 0 → F → E → G → 0 define a wall in Coh−2(P3) with ch(E) =
(1,0,−4,8). We can compute ch−2(E) = (1,2,−2, 4

3 ). A direct computation
shows that the middle wall is given by ch−2(F ) = (1,1,−1/2, e) and ch−2(G) =
(0,1,−3/2,4/3 − e). By Lemma 2.2 we get F ∼= IL(−1), where L is a line plus
1/6 − e (possibly embedded) points in P3. In particular, the inequality e ≤ 1/6
holds. The same lemma also implies that G ∼= IZ/V (−3), where Z is a dimension
zero subscheme of length e − 1/6. Overall, this shows that e = 1/6. Therefore, L

is a just a line, and E ∼= OV (−3).
The outermost wall is given by ch−2(F ) = (1,1,1/2, e) and ch−2(G) =

(0,1,−5/2,4/3 − e). We use again Lemma 2.2 to get F ∼= IZ(−1) for a zero-
dimensional subscheme Z ⊂ P3 of length 1/6 − e. Therefore, we have e − 1/6 ∈
Z≥0. The lemma also shows that G ∼= IZ/V (−4), where Z is a dimension zero
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subscheme of length e + 11/6. Overall, we get e ∈ {−11/6,−5/6,1/6}. That
corresponds exactly to the three cases in the theorem. �

3. Curves on the Intersection of the Two Components

Let Hilb4t
1 ⊂ Hilb4t (P3) be the closure of the locus of smooth elliptic quartic

curves. By Hilb4t
2 ⊂ Hilb4t (P3) we denote the closure of the locus of plane quar-

tics curves plus two disjoint points. A straightforward dimension count shows that
dim Hilb4t

1 = 16 and dim Hilb4t
2 = 23. In this section, will prove some preliminary

results about the intersection of the two components. We will do this following
the approach of Piene and Schlessinger [PS85], which requires a careful analysis
of the equations of the curves along this intersection.

Proposition 3.1. Let IC be the ideal of a subscheme C ⊂ P3 of dimension 1
that fits into an exact sequence of the form 0 → IZ′(−1) → IC →OV (−4) → 0,
where V is a plane in P3, and Z′ ⊂ V is a zero-dimensional subscheme of length
two.
(1) The ideal IC is projectively equivalent to one of the ideals

(x2, xy, xzw,f4(x, y, z,w)),

(x2, xy, xz2, g4(x, y, z,w)),

where f4 ∈ (x, y, zw), respectively, g4 ∈ (x, y, z2) is of degree 4.
(2) The ideal

(x2, xy, xz2, y4)

lies in the closure of the orbit of IC under the action of PGL(4) for any IC

as above.

Proof. Up to the action of PGL(4), we can assume that either IZ′ = (x, y, zw)

or IZ′ = (x, y, z2) and IV = (x). The exact sequence 0 → IZ′(−1) → IC →
OV (−4) → 0 implies that either l(x, y, z,w) · (x, y, zw) ⊂ IC or l(x, y, z,w) ·
(x, y, z2) ⊂ IC for a linear polynomial l(x, y, z,w) ∈ C[x, y, z,w]. Since the
quotient is supported on V , we must have l = x. Therefore, either (x2, xy, xzw) ⊂
IC or (x2, xy, xz2) ⊂ IC . Since the quotient is OV (−4), there has to be another
degree 4 generator f4(x, y, z,w) with xf4(x, y, z,w) ∈ (x2, xy, xzw), respec-
tively, g4(x, y, z,w) with xg4(x, y, z,w) ∈ (x2, xy, xz2). That proves (1).

By (1) we can assume that either IC = (x2, xy, xzw,f4(x, y, z,w)) for f4 ∈
(x, y, zw) or IC = (x2, xy, xz2, g4(x, y, z,w)) for g4 ∈ (x, y, z2). We can take
the limit as t → 0 for the action of the element gt ∈ PGL(4) that fixes x, y, z and
maps w �→ (1 − t)z + tw. Thus, we can assume that IC = (x2, xy, xz2, g4(y, z)),
where g4 ∈C[y, z]. Pick λ ∈C\{0} such that g4(λ,1) = 0. We analyze the action
of gt ∈ PGL(4) that fixes x, w, maps y �→ λy, and maps z �→ (1 − t)y + tz. We
get

gt · (x2, xy, xz2, g4(y, z))

= (x2, λxy, (1 − t)2xy2 + 2(1 − t)txyz + t2xz2, g4(λy, (1 − t)y + tz))

= (x2, xy, xz2, g4(λy, (1 − t)y + tz)).



Families of Elliptic Curves and Bridgeland Stability 799

Since g4(λ,1) = 0, we have g4(λy, y) = 0, and we can finish the proof of (2) by
taking the limit as t → 0. �

Next, we want to analyze the singularities of the point on the Hilbert scheme cor-
responding to (x2, xy, xz2, y4). We will use [M2] and the techniques developed
in [PS85].

Proposition 3.2. If IC = (x2, xy, xz2, y4), then IC lies on the intersection of
two irreducible components of Hilb(P3) and is a smooth point on each of them.
Moreover, the intersection is locally of dimension 15 and transversal.

Proof. Let pC ∈ Hilb(P3) be the point parameterizing C. Next, we use the com-
parison theorem [PS85, p. 764], which claims that the Hilbert scheme Hilb(P3)

and the universal deformation space that parameterizes all homogeneous ideals
with Hilbert function equal to that of IC are isomorphic in an étale neighborhood
of the point pC if (

C[x, y, z,w]
IC

)
d

∼= H 0(C,OC(d))

for d = deg(fi), where fi are generators of IC . For our particular ideal, this equal-
ity can, for example, directly be checked with help of Macaulay2 or by hand. The
comparison theorem allows us to find local equations of the Hilbert scheme near
pC by using the same strategy as the proof of [PS85, Lemma 6]. In fact, this pro-
cedure has been implemented in the Macaulay2 package “VersalDeformations”
(see [Ilt12]). In particular, the routine localHilbertScheme generates an ideal of
the form (see Appendix A)

(−t5t24,−t6t24,−t7t24,−t8t24, t15t24, t16t24, t17t24 − 2t22t24, t18t24 − 2t23t24)

∈C[t1, . . . , t24].
Then, étale locally at pC , the Hilbert scheme is the transversal intersection of the
hyperplane (t24 = 0) and a 16-dimensional linear subspace. �

It is not hard to see that the two components (x2, xy, xz2, y4) is lying on are
Hilb4t

1 and Hilb4t
2 by giving explicit degenerations. However, it is also a direct

consequence of the results in the next section.

4. Bridgeland Stability

The goal of this section is to translate the computations in tilt stability to actual
wall crossings in Bridgeland stability. We will analyze the singular loci of the
occurring moduli spaces and use this to reprove the global description of the main
component of the Hilbert scheme as in [VA92].

As a consequence of Theorem 1.7 and Theorem 2.1, we obtain the following
corollary. In this application of Theorem 1.7, all exact sequences giving walls in
tilt stability to the left-hand side of the unique vertical wall are of the form in (3).
Therefore, we do not have more sequences giving walls in tilt stability than in
Bridgeland stability to the left-hand side of the left branch of the hyperbola.
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Figure 1 Wall and chamber structure in a subspace of Stab(P3) for
Hilb4t (P3) and their associated models according to Theorem A

Corollary 4.1. There is a path γ : [0,1] → R>0 × R ⊂ Stab(P3) that crosses
the following walls for v = (1,0,−4,8) in the given order. The walls are defined
by the two given objects having the same slope. Moreover, all strictly semistable
objects at each of the walls are extensions of those two objects. Let L be a line in
P3, V a plane in P3, Z ⊂ P3 a length two zero dimensional subscheme, Z′ ⊂ V a
length two zero dimensional subscheme, and let P ∈ P3 and Q ∈ V be points.

(1) O(−2)⊕2, O(−4)[1].
(2) IL(−1), OV (−3).
(3) IZ(−1), OV (−4).
(4) IP (−1), IQ/V (−4).
(5) O(−1), IZ′/V (−4).

We denote the moduli space of Bridgeland stable objects with Chern character
(1,0,−4,8) in the chambers from inside the smallest wall to outside the largest
wall by M0, . . . ,M5. The goal of this section is to give some description of these
spaces. By Theorem 2.1 we have M0 = ∅. After the largest wall, we must have
M5 = Hilb4t (P3). More precisely, it is the moduli of ideal sheaves, which is the
same as the Hilbert scheme due to [M+06, p. 1265]. See Figure 1 for a visualiza-
tion of the walls.

Proposition 4.2. The first moduli space M1 is isomorphic to the Grassmannian
G(1,9).

Proof. All extensions in Ext1(O(−4)[1],O(−2)⊕2) are cokernels of morphisms
O(−4) → O(−2)⊕2. The stability condition ensures that the two quadrics defin-
ing it are not collinear. Therefore, these extensions parameterize pencils of
quadrics, and the moduli space is the Grassmannian G(1,9). �

The tangent space of a moduli space of Bridgeland stable objects at any stable
complex E is given by Ext1(E,E) (see [Ina02] and [Lie06] for the deformation
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theory of moduli spaces of complexes). Obtaining these groups requires a sub-
stantial amount of diagram chasing and computations. To minimize the distress
on the reader and the authors, we will prove the following lemma with heavy
usage of [M2].

Lemma 4.3. Let the notation be as in Theorem 4.1. We have the following equal-
ities:

Ext1(IL(−1),OV (−3)) = C, Ext1(OV (−3),IL(−1)) = C9,

Ext1(IL(−1),IL(−1)) = C4, Ext1(OV (−3),OV (−3)) = C3,

Ext1(IZ(−1),OV (−4)) =
{
C, Z ⊂ V,

0 otherwise,

Ext1(OV (−4),IZ(−1)) = C15,

Ext1(IZ(−1),IZ(−1)) = C6, Ext1(OV (−4),OV (−4)) = C3,

Ext1(IP (−1),IQ/V (−4)) =
{
C3, P = Q,

C, P = Q,

Ext1(IQ/V (−4),IP (−1)) =
{
C17, P = Q,

C15, P = Q,

Ext1(IP (−1),IP (−1)) = C3, Ext1(IQ/V (−4),IQ/V (−4)) = C5,

Ext1(O(−1),IZ′/V (−4)) = C2, Ext1(IZ′/V (−4),O(−1)) = C15,

Ext1(O(−1),O(−1)) = 0, Ext1(IZ′/V (−4),IZ′/V (−4)) = C7.

If Z ⊂ V is a double point supported at P , then

Ext1(IZ(−1),IP/V (−4)) = C3, Ext1(OV (−4)),IP/V (−4)) = C2,

Ext1(IZ(−1),IP (−1)) = C3, Ext1(OV (−4)),IP (−1)) = C15.

Proof. Under the action of PGL(4), there are two orbits of pairs of a line and
a plane (L,V ). Either we have L ⊂ V or not. By choosing representatives
defined over Q, we can use [M2] to compute Ext1(IL(−1),OV (−3)) = C,
Ext1(OV (−3),IL(−1)) = C9, Ext1(OV (−3),OV (−3)) = C3, and
Ext1(IL(−1),IL(−1)) = C4. All other equalities follow in the same way. The
Macaulay2 code can be found in Appendix A. �
Since the dimension of tangent spaces is bounded from below by the dimension
of the space, the following lemma can sometimes simplify computations.

Lemma 4.4. Let 0 → Fn → E → Gm → 0 be an exact sequence at a wall
in Bridgeland stability, where F and G are distinct stable objects of the same
Bridgeland slope, and E is semistable to one side of the wall. Then

ext1(E,E) ≤ n2 ext1(F,F ) + m2 ext1(G,G)

+ nm ext1(F,G) + nm ext1(G,F ) − n2.
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Proof. The stability to one side of the wall implies Hom(E,F ) = 0. Since F

is stable, we also know that Hom(F,F ) = C. By the long exact sequence com-
ing from applying Hom(·,F ) to the above exact sequence, we get ext1(E,F ) ≤
m ext1(G,F ) + n ext1(F,F ) − n. Moreover, we can use Hom(·,G) to get
ext1(E,G) ≤ m ext1(G,G) + n ext1(F,G). These two inequalities, together with
application of Hom(E, ·), lead to the claim. �

We also have to handle the issue of potentially new components after crossing a
wall. The following result will solve this issue in some cases.

Lemma 4.5. Let M and N be two moduli spaces of Bridgeland semistable objects
separated by a single wall. Assume that A ⊂ M and B ⊂ N are the loci desta-
bilized at the wall. If A intersects an irreducible component H of M nontrivially
and H is not contained in A, then B must intersect the closure of H\A inside N .

Proof. This follows from the fact that moduli spaces of Bridgeland semistable
objects are universally closed. If B would not intersect the closure of H\A inside
N , then this would correspond to a component in N that is not universally closed.

�

To identify the global structure of some of the moduli spaces as blowups, we need
the following classical result by Moishezon. Recall that the analytification of a
smooth proper algebraic spaces of finite type over C of dimension n is a complex
manifold with n independent meromorphic functions.

Theorem 4.6 ([Moi67]). Any birational morphism f : X → Y between smooth
proper algebraic spaces of finite type over C such that the contracted locus E is
irreducible and the image f (E) is smooth is the blowup of Y in f (E).

Proposition 4.7. The second moduli space M2 is the blow up of G(1,9) along
the smooth locus G(1,3) × (P3)∨ parameterizing pairs (IL(−1),OV (−3)). The
center of the blow up parameterizes pencils whose base locus is not of dimension
one. A generic point of the exceptional divisor parameterizes the union of a line
and a plane cubic that intersect themselves at a point. The only nonideal sheaves
in the moduli space come from the case where the line is contained in the plane.

Proof. We know that M1 is smooth. The wall separating M1 and M2 has
strictly semistable objects given by extensions between IL(−1) and OV (−3). By
Lemma 4.3 we have Ext1(IL(−1),OV (−3)) = C, Ext1(OV (−3),IL(−1)) = C9,
Ext1(OV (−3),OV (−3)) = C3, and Ext1(IL(−1),IL(−1)) = C4.

This means the locus of semistable objects occurring as extensions in
Ext1(IL(−1),OV (−3)) for any L and V is isomorphic to G(1,3) × (P3)∨, that
is, it is smooth and irreducible. By Lemma 1.5 this is the locus destabilized at the
wall in G(1,9). By Lemma 4.4 any extension E in Ext1(OV (−3),IL(−1)) satis-
fies ext1(E,E) ≤ 16. Lemma 4.5 shows that M2 has to be connected, that is, it is
smooth and irreducible. The locus of semistable objects that can be written as ex-
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tensions in Ext1(OV (−3),IL(−1)) for any L, and V is irreducible of dimension
15, that is, it is a divisor in M2. An immediate application of Theorem 4.6 implies
the fact that M2 is the blowup of G(1,9) in the smooth locus G(1,3) × (P3)∨.

The description of the exceptional divisor is immediate from the fact that
curves C with ideal sheaves fitting into an exact sequence

0 → IL(−1) → IC →OV (−3) → 0

have to be unions of lines with a plane cubic intersecting in one point. If L ⊂ V ,
then no such extension can be an ideal sheaf, since the line would intersect the
cubic in three points giving the wrong genus. �

The next moduli space will acquire a second component.

Proposition 4.8. The third moduli space M3 has two irreducible components
M1

3 and M2
3 . The first component M1

3 is the blowup of M2 in the smooth inci-
dence variety parameterizing length two subschemes in a plane in P3. The sec-
ond component M2

3 is a P14-bundle over Hilb2(P3)× (P3)∨ parameterizing pairs
(IZ(−1),OV (−4)). It generically parameterizes unions of plane quartics with
two generic points in P3. The two components intersect transversally along the
exceptional locus of the blowup. The only nonideal sheaves occur in the case
where at least one of the two points is not scheme-theoretically contained in the
plane.

Proof. By Lemma 4.3 we have

Ext1(IZ(−1),OV (−4)) =
{
C, Z ⊂ V,

0 otherwise,

Ext1(OV (−4),IZ(−1)) = C15.

This means that the locus destabilized in M2 is of dimension 7 and that the new
locus appearing in M3 is of dimension 23. Since M2 is of dimension 16, the locus
appearing in M3 must be a new component M2

3 . The closure of what is left of M2

is denoted by M1
3 . If M2

3 is reduced, then it is a P14-bundle over Hilb2(P3)×(P3)∨
parameterizing pairs (IZ(−1),OV (−4)). We will more strongly show that it is
smooth.

Suppose Z is not scheme theoretically contained in V . Then Lemma 4.4
implies that any nontrivial extension E in Ext1(OV (−4),IZ(−1)) satisfies
ext1(E,E) ≤ 23. Therefore, it is a smooth point and can in particular not lie on
M1

3 . Let E be an extension of the form 0 → IZ(−1) → E → OV (−4) → 0,
where Z ⊂ V . Any point on the intersection must satisfy ext1(E,E) ≥ 24. Sup-
pose E is not an ideal sheaf. If E fits into an exact sequence 0 → IZ/V (−4) →
E → O(−1) → 0 or 0 → IQ/V (−4) → E → IP (−1) → 0 for P = Q, then a
direct application of Lemma 4.4 to these sequences shows ext1(E,E) ≤ 23, a
contradiction. Therefore, E must fit into an exact sequence 0 → IP/V (−4) →
E → IP (−1) → 0. Then we have the following commutative diagram with short
exact rows and columns:
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0 IP/V (−4) IP/V (−4)

IZ(−1) E OV (−4)

IZ(−1) IP (−1) OP

Therefore, Z has to be a double point supported at P . By Lemma 4.3 we have

Ext1(IZ(−1),IP/V (−4)) = C3, Ext1(OV (−4)),IP/V (−4)) = C2,

Ext1(IZ(−1),IP (−1)) = C3, Ext1(OV (−4)),IP (−1)) = C15.

Next, we apply Hom(·,IP/V (−4)) to 0 → IZ(−1) → E → OV (−4) → 0 to get
ext1(E,IP/V (−4)) ≤ 5. By applying Hom(·,IP (−1)) to the same sequence, we
get ext1(E,IP (−1)) ≤ 18. Finally, we can apply Hom(E, ·) to 0 → IP/V →
E → IP (−1) → 0 to get ext1(E,E) ≤ 23.

Therefore, the intersection of M1
3 and M2

3 parameterizes some of the ideals fit-
ting into an exact sequence 0 → IZ(−1) → IC → OV (−4) → 0, where Z ⊂ V .
The intersection must have a closed orbit. By Proposition 3.1, there is precisely
one such closed orbit. If the intersection was disconnected, then it would have at
least two closed orbits. If it is reducible, then the closed orbit must lie on the inter-
section of all irreducible components. By Proposition 3.2 the intersection along
the closed orbit is transversal of dimension 15, and its points are smooth on both
components. That would be impossible if the intersection is not irreducible at the
closed orbit. The singular locus on either component is closed and must therefore
contain a closed orbit. Thus, the whole intersection must consist of points that are
smooth on each of the two components individually. The induced map M1

3 → M2

contracts the intersection, which is an irreducible divisor, onto a locus isomorphic
to the smooth incidence variety parameterizing length two subschemes in a plane
in P3. Theorem 4.6 implies the description of M1

3 .
The description of the curves parameterized by M2

3 is again a consequence of
the exact sequence that the ideal sheaves fit into. �

To reprove the description of the main component of the Hilbert scheme from
[VA92], we have to make sure that none of the remaining walls modifies the first
component.

Proposition 4.9. The fourth moduli space M4 has two irreducible components
M1

4 and M2
4 . The first component is equal to M1

3 . The second component is bira-
tional to M2

3 .

Proof. Lemma 4.3 says that

Ext1(IP (−1),IQ/V (−4)) =
{
C3, P = Q,

C, P = Q,



Families of Elliptic Curves and Bridgeland Stability 805

Ext1(IQ/V (−4),IP (−1)) =
{
C17, P = Q,

C15, P = Q.

Moreover, the moduli space of pairs (IP (−1),IQ/V (−4)) is irreducible of di-
mension 8, whereas the sublocus where P = Q is of dimension 5. Therefore, the
closure of the locus of extensions in Ext1(IQ/V (−4),IP (−1)) for P = Q is ir-
reducible of dimension 22. The locus of extensions in Ext1(IP/V (−4),IP (−1))

for P ∈ V is irreducible of dimension 21. Let M1
4 be the closure of what is left

from M1
3 in M4, and let M2

4 be the closure of what is left from M2
3 .

If P = Q, then Lemma 4.4 implies smoothness. In particular, we can use
Lemma 4.5 to show that all points in Ext1(IQ/V (−4),IP (−1)) for P = Q are
in M2

4 and no other component. Suppose we have a general nontrivial extension
0 → IP (−1) → E → IP/V (−4) → 0. Then E = IC is an ideal sheaf of a plane
quartic curve plus a double point in the plane. We can assume that the double
point is not an embedded point due to the fact that E is general. Clearly, IC is
the flat limit of elements in Ext1(IQ/V (−4),IP (−1)) by choosing P /∈ V and
regarding the limit as P → Q. Therefore, E is a part of M2

4 .
We showed that M4 = M1

4 ∪ M1
4 and that M2

4 is birational to M2
3 . We are

left to show that M1
4 = M2

4 . If not, there is an object E with a nontrivial ex-
act sequence 0 → IP (−1) → E → IP/V (−4) → 0 in M1

4 . By Lemma 4.5
this implies that there is also an object E′ with nontrivial exact sequence
0 → IP/V (−4) → E′ → IP (−1) → 0 lying on M1

3 . But we already established
that all those extensions are smooth points on M2

3 in the previous proof. �

We can now prove the following theorem.

Theorem 4.10. The Hilbert scheme Hilb4t (P3) has two components Hilb4t
1 and

Hilb4t
2 . The main component Hilb4t

1 contains an open subset of elliptic quartic
curves and is a smooth double blowup of the Grassmannian G(1,9). The second
component is of dimension 23. Moreover, the two components intersect transver-
sally in a locus of dimension 15.

Proof. By Lemma 4.3 we have

Ext1(O(−1),IZ′/V (−4)) = C2,

Ext1(IZ′/V (−4),O(−1)) = C15,

Ext1(IZ′/V (−4),IZ′/V (−4)) = C7.

The moduli space of objects IZ′/V is irreducible of dimension 5. Lemma 4.4
implies that all strictly semistable objects at the largest wall are smooth points on
either M4 or M5 = Hilb4t (P3). Therefore, we can again use Lemma 4.5 to see
that Hilb4t (P3) has exactly two components birational to M1

4 and M2
4 . Moreover,
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this argument shows that the ideals that destabilize at the largest wall cannot lie
on the intersection of the two components, and we have M1

5 = M1
4 . �

We denote the exceptional divisor of the first blowup of the main component by
E1 and the exceptional divisor of the second blow up by E2. We finish this section
by describing which curves in fact lie in E1 and E2.

Proposition 4.11. The general point in E1 parameterizes subschemes of P3 that
are the union of a plane cubic and an incident line. The general point in E2

parameterizes subschemes of P3 that are plane quartics with two nodes and two
embedded points at such nodes.

Proof. By Corollary 4.1, any ideal sheaf IC of a scheme in E1 fits into an exact
sequence of the form 0 → IL(−1) → IC → OV (−3) → 0, where L ⊂ P3 is a
line, and V ⊂ P3 is a plane. By Proposition 4.7 the reverse holds, that is, all ideal
sheaves fitting into this sequence correspond to curves in E1. For the general ele-
ment in E1, the line L is not contained V . Then the above sequence implies that
C ⊂ L ∪ V . If C ⊂ V , then there would be a morphism O(−1) → IC destabiliz-
ing the curve earlier, a contradiction. Thus, L is an irreducible component of C,
and another component of degree 3 lies in V .

By Theorem 4.10, the last two walls do not modify the main component. There-
fore, Corollary 4.1 implies that any ideal sheaf IC of a scheme in E2 fits into an
exact sequence of the form 0 → IZ(−1) → IC → OV (−4) → 0, where Z ⊂ P3

is a zero-dimensional subscheme of length 2, and V ⊂ P3 is a plane. This implies
that C is plane quartic curve plus two points. The two points have to be embed-
ded, since otherwise the curve cannot be smoothened. Moreover, a classical result
by Hironaka [Hir58, p. 360] implies that the two embedded points must occur at
singularities of the plane quartic. �

5. Effective Divisors of the Principal Component Hilb4t
1

In this section, we compute the cone of effective divisors Eff(Hilb4t
1 ), where

Hilb4t
1 denotes the principal component of the Hilbert scheme Hilb4t (P3). By

Theorem B, there is an isomorphism Pic(Hilb4t
1 ) ∼= Z3 with generators H , E1,

and E2. Here, H denotes the pullback of the class σ1 ∈ A1(G(1,9)), whereas
E1 is the exceptional divisor of the first blowup, and E2 is the exceptional di-
visor of the second blowup. Set-theoretically, E1 is the closure in Hilb4t

1 of the
locus parameterizing subschemes of P3 that consist of a smooth plane cubic
with an incident line. Moreover, E2 is the closure in Hilb4t

1 of the locus pa-
rameterizing plane quartics with two nodes and two embedded points at such
nodes.

As a consequence of Theorem B, we also have that Pic(Hilb4t
1 ) ⊗ Q ∼=

N1(Hilb4t
1 ) ⊗ Q, where N1(Hilb4t

1 ) ⊗ Q denotes the Néron–Severi group of
Cartier divisors with rational coefficients up to numerical equivalence.
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To describe the cone of effective divisors Eff(Hilb4t
1 ), we need an additional

divisor � defined as the closure of the locus of irreducible nodal elliptic quartics.

Theorem C. The cone of effective divisors of Hilb4t
1 is generated by Eff(Hilb4t

1 ) =
〈�,E1,E2〉.
The strategy of the proof is to construct a dual basis of curves to �, E1, and E2 in
N1(Hilb4t

1 ), the space of 1-cycles up to numerical equivalence. Since the closure
of the convex cone of movable curves is dual to the effective cone, we will then
observe that these curves are movable, which allows us to conclude the proof. In
our context, a curve in a smooth algebraic variety X is called movable if it lies in
a family that covers a dense open subset of X. We refer the reader to [B+13] for a
detailed exposition on movable curves.

Before proceeding with the proof, we will define and describe some proper-
ties of our movable curves. Let Q ⊂ P3 be a a fixed smooth quadric. Then, the
curve γ1 is a general pencil in |OQ(2)|. This curve is movable because a generic
curve parameterized by Hilb4t

1 is the transversal intersection of two quadric hy-
persurfaces Q1, Q2 where we can assume that one of these quadrics is smooth.
Moreover, by construction γ1 · E1 = γ1 · E2 = 0.

On the other hand, the intersection γ1 · � = 12 holds. This follows from the
fact that the parameter space of plane curves of degree d in P2 contains a divisor
of degree 3(d − 1)2 of singular curves (see [GKZ08, Ch 13.D]). The following
geometric argument is self-contained.

The base locus of a general pencil in |OQ(2)|, where Q stands for a smooth
quadric, consists of 8 points. This means that the total space of this pencil X is
the blowup of Q on these 8 points, and this implies that its topological Euler
characteristic χtop(X ) = 12. Observe that the pencil X is not a fibration over P1

due to the presence of singular fibers: if X were a fibration over P1, then the
topological Euler characteristic χtop(X ) would be zero. This means that we may
count the singular fibers of X (which are the singular members of the pencil) by
computing the topological Euler characteristic χtop(X ). Since we are considering
a general pencil, Bertini’s theorem guarantees that the singular fibers of X are all
nodal curves.

We now define two more curves γ2 and γ3. Let �1 and �2 be two 3-planes
in P7. Let s : P3 × P1 → P7 be the Segre embedding, and for any t ∈ P1, we
write st : P3 → P7 for the restriction of s to P3 × {t}. We have a projection
π : P7\�1 → �2. To summarize, we have the following diagram of maps with
vertical projections:

P3 × P1 s×id
P7 × P1 π×id

�2 × P1

P3 st
P7 π

�2 ∼= P3.

Observe that both st and π are linear maps.
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Lemma 5.1. Let t ∈ P1, and let �2 be general. If �1 ∩ st (P
3) = ∅, then π ◦ st is

an isomorphism. If �1 ∩ st (P
3) is a point, then the image of π ◦ st is a plane in

�2.

Proof. The image of π ◦ st is the intersection of �2 with the linear subspace
generated by �1 and st (P

3). �

The image of the Segre embedding s(P3 ×P1) has degree four. Hence, �1 can be
chosen general such that it intersects the Segre embedding in exactly four points.
If we also choose �2 general, then by Lemma 5.1 we have that π ◦ st : P3 →
�2 ∼= P3 is an isomorphism except for four values.

Definition 5.2. Let E be a smooth elliptic quartic in P3. Let �2 be a general
3-plane in P7.

(1) Let �1 be another general 3-plane in P7. Then γ2 is the image (π × id)◦ (s ×
id)(E ×P1). It is a flat family of smooth curves isomorphic to E everywhere,
except for four special fibers.

(2) Consider four general points in s(E × P1) and let �′
1 be the unique 3-plane

generated by them. Then γ3 is the image (π × id) ◦ (s × id)(E × P1). It is
a flat family of smooth curves isomorphic to E everywhere except for four
special fibers.

Lemma 5.3. The four singular fibers for γ2 are plane quartic curves with only two
nodes and embedded points at them. For γ3, these four fibers are smooth plane
cubic curves together with an incident line. Both γ2 and γ3 are movable.

Proof. Let t ∈ P1 correspond to one of the four singular fibers of γ2. Since �1

is chosen general, it will not intersect s(E × P1). Therefore, Lemma 5.1 implies
that the image π(st (E)) is a plane curve. Since π ◦ st is defined on all of E, the
set-theoretic support of γ2 at t is a plane curve of degree four with 2 nodes and
no other singularities. Hence, we get a plane quartic with two embedded points at
the only 2 nodes.

Let t ∈ P1 correspond to one of the four singular fibers γ3. By definition
the intersection of �′

1 with E × P1 contains four points one of which is of the
form (x, t). Choose a plane P2 ⊂ �′

1 that does not intersect the Segre embed-
ding s(P3 × P1) and a general P4 ⊂ P7. Then the projection of st (P

3) away from
P2 onto P4 is the intersection of this P4 with the linear span of st (P

3) and P2,
which is P6. In particular, it is of dimension 3, that is, E is projected isomorphi-
cally onto P3 ⊂ P4. Let P ∈ P4 be the image of (x, t) via this projection. Then
we project from this point onto a general �2 ⊂ P4. The image is isomorphic
to E. Hence, we get in Hilb4t

1 a smooth plane cubic together with an incident
line.

Both curve classes γ2 and γ3 are movable. Indeed, every smooth curve param-
eterized in Hilb4t

1 is contained in some representative of γ2 and γ3 by varying the
curve E used to define them. �
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Proof of Theorem C. Since E1, E2, and � are effective, we only need to show
the containment Eff(Hilb4t

1 ) ⊂ 〈E1,E2,�〉. Observe that this latter containment
is equivalent to the containment 〈E1,E2,�〉∨ ⊂ Eff(Hilb4t

1 )∨ of dual cones. Since
Eff(Hilb4t

1 )∨ is the cone of movable curves, it suffices to exhibit that the dual cone
〈E1,E2,�〉∨ is generated by movable curves. We already proved that γ1, γ2, γ3

are movable curves. This means we are left to show that they generate the dual
cone 〈E1,E2,�〉∨. It suffices to check that the following intersection numbers
hold. Note that, for our purposes, it is enough to show that the intersections are
zero or positive, and therefore, we will skip proving that the intersections are
transversal.

γ1 · E1 = 0, γ2 · E1 = 0, γ3 · E1 = 4,

γ1 · E2 = 0, γ2 · E2 = 4, γ3 · E2 = 0,

γ1 · � = 12, γ2 · � = 0, γ3 · � = 0.

The intersections with E1 and E2 follow directly from the definitions and
Lemma 5.3. The intersection number γ1 · � = 12 is also discussed previously.
We are left to show that γ2 · � = γ3 · � = 0.

Suppose γ2 · � = 0. Then there is a flat family π : S → Z for a smooth curve
Z such that, for general z ∈ Z, the fiber Sz is a nodal complete intersection in �

and that the special fiber S0 is a curve in γ2 ∩ E2. Therefore, S0 is a plane quartic
curve with exactly two nodes and simple embedded points at both nodes. The
normalization S̃ smooths out the nodes in the general fibers by making them into
P1. By [Bea96, Theorem III.7] this means that S̃ is birational over Z to P1 × Z.
We can resolve the rational map from P1 × Z to S by successively blowing up
points. That leads to a family X → Z factoring through S → Z such that every
fiber is a union of rational curves P1. That means that the special fiber S0 is the
set-theoretic image of such a union of rational curves. Every P1 must map to the
normalization of the reduced structure of S0. But the normalization of the reduced
structure of S0 is a smooth curve of genus 1, and P1 has no nontrivial maps to an
elliptic curve.

Suppose γ3 · � = 0. Then there is a flat family π : S → Z for a smooth curve
Z such that, for general z ∈ Z, the fiber Sz is a nodal complete intersection in �,
and the special fiber S0 is a curve in γ3 ∩ E1. This means S0 is the union of a
smooth plane cubic with an incident line. With the exact same argument as for γ2,
we can create a family X → Z factoring through S → Z such that every fiber is
a union of rational curves P1. As previously, the special fiber S0 is the image of
such a union of rational curves. Since there is no nontrivial map from P1 to any
elliptic curve, they must all map to the incident line, a contradiction. �

A. Macaulay2 Code

This appendix contains all Macaulay2 code used in Proposition 3.2 and Lemma
4.3.
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