Connected Components of the Moduli of Elliptic K3 Surfaces

Ichiro Shimada

Abstract

The combinatorial type of an elliptic $K 3$ surface with a zero section is the pair of the $A D E$-type of the singular fibers and the torsion part of the Mordell-Weil group. We determine the set of connected components of the moduli of elliptic $K 3$ surfaces with fixed combinatorial type. Our method relies on the theory of Miranda and Morrison on the structure of a genus of even indefinite lattices and on computer-aided calculations of p-adic quadratic forms.

1. Introduction

Elliptic $K 3$ surfaces have been intensively studied by many authors from various points of view, not only in algebraic and arithmetic geometry, but also in theoretical physics of string theory. In this paper, we investigate certain moduli of complex elliptic $K 3$ surfaces and determine the connected components of the moduli.

An elliptic $K 3$ surface is a triple (X, f, s), where X is a complex $K 3$ surface, $f: X \rightarrow \mathbb{P}^{1}$ is a fibration whose general fiber is a curve of genus 1 , and $s: \mathbb{P}^{1} \rightarrow$ X is a section of f. An elliptic $K 3$ surface (X, f, s) is sometimes denoted simply by f with X and s being understood.

Let (X, f, s) be an elliptic $K 3$ surface. Then the set of sections of f has a natural structure of Abelian group with zero element s. This group is called the Mordell-Weil group. We denote by A_{f} the torsion part of the Mordell-Weil group of (X, f, s). If an irreducible curve C on X is contained in a fiber of f and is disjoint from the zero section s, then C is a smooth rational curve. The set Φ_{f} of the classes of these smooth rational curves form an $A D E$-configuration of vectors of square-norm -2 in $H^{2}(X, \mathbb{Z})$. (See Section 2.4 for the definition of an $A D E$ configuration.) The combinatorial type of an elliptic $K 3$ surface (X, f, s) is the pair (Φ_{f}, A_{f}). Let Φ be an $A D E$-configuration, and let A be a finite Abelian group. We say that an elliptic $K 3$ surface (X, f, s) is of type (Φ, A) if $\Phi \cong \Phi_{f}$ and $A \cong A_{f}$.

In our previous papers $[25 ; 20$], we made the complete list of (Φ, A) that can be realized as combinatorial type of elliptic $K 3$ surfaces. The cardinality of this list is 3693 . In this paper, we refine this result in the following:

[^0]Theorem 1.1. The moduli of elliptic $K 3$ surfaces of type (Φ, A) has more than one connected component if and only if (Φ, A) appears in Tables 2 and 3 in Section 7.

See Section 3.1 for a precise definition of the connected components of the moduli of elliptic $K 3$ surfaces of fixed type (Φ, A). In Tables 2 and 3, the $A D E-$ configuration Φ is presented by the $A D E$-type of the configuration. The finite Abelian group $\mathbb{Z} / a \mathbb{Z}$ is denoted by $[a]$, and $\mathbb{Z} / a \mathbb{Z} \times \mathbb{Z} / b \mathbb{Z}$ is denoted by $[a, b]$.

Tables 2 and 3 are obtained by machine computation. The purpose of this paper is explaining the algorithm to calculate the set of connected components of the moduli.

The nonconnectedness of the moduli is caused by two totally different reasons; one is algebraic, and the other is transcendental.

For a $K 3$ surface X, we denote by $\operatorname{NS}(X):=H^{1,1}(X) \cap H^{2}(X, \mathbb{Z})$ the NéronSeveri lattice of X and by $T(X)$ the transcendental lattice of X; that is, $T(X)$ is the orthogonal complement of $\operatorname{NS}(X)$ in $H^{2}(X, \mathbb{Z})$.

Let (X, f, s) be an elliptic $K 3$ surface. We denote by $U_{f} \subset H^{2}(X, \mathbb{Z})$ the sublattice generated by the class of a fiber of f and the class of the section s, by $L\left(\Phi_{f}\right)$ the sublattice of $H^{2}(X, \mathbb{Z})$ generated by $\Phi_{f} \subset H^{2}(X, \mathbb{Z})$, and by $M\left(\Phi_{f}\right)$ the primitive closure of $L\left(\Phi_{f}\right)$ in $H^{2}(X, \mathbb{Z})$. It is well known that A_{f} is isomorphic to $M\left(\Phi_{f}\right) / L\left(\Phi_{f}\right)$. We then denote by T_{f} the orthogonal complement of $U_{f} \oplus M\left(\Phi_{f}\right)$ in $H^{2}(X, \mathbb{Z})$. We obviously have $\mathrm{NS}(X) \supset U_{f} \oplus M\left(\Phi_{f}\right)$ and $T(X) \subset T_{f}$.

Definition 1.2. Let \mathcal{C} be a connected component of the moduli of elliptic $K 3$ surfaces of type (Φ, A). Suppose that an elliptic $K 3$ surface (X, f, s) corresponds to a point of \mathcal{C}. The Néron-Severi lattice of \mathcal{C} is defined to be the isomorphism class of the lattice $U_{f} \oplus M\left(\Phi_{f}\right)$, and the transcendental lattice of \mathcal{C} is defined to be the isomorphism class of the lattice T_{f}.

It is obvious that the Néron-Severi lattice and the transcendental lattice of a connected component \mathcal{C} do not depend on the choice of the member (X, f, s) of \mathcal{C}. It will be seen that if (X, f, s) is chosen generally in \mathcal{C}, then the Néron-Severi lattice of \mathcal{C} is isomorphic to $\operatorname{NS}(X)$, and the transcendental lattice of \mathcal{C} is isomorphic to $T(X)$. (See the proof of Theorem 3.5.)

Definition 1.3. We say that two elliptic $K 3$ surfaces (X, f, s) and ($X^{\prime}, f^{\prime}, s^{\prime}$) of the same type (Φ, A) are algebraically equivalent if there exists an isomorphism $\Phi_{f} \cong \Phi_{f^{\prime}}$ of $A D E$-configurations such that the induced isometry $L\left(\Phi_{f}\right) \cong L\left(\Phi_{f^{\prime}}\right)$ maps the even overlattice $M\left(\Phi_{f}\right)$ of $L\left(\Phi_{f}\right)$ to the even overlattice $M\left(\Phi_{f^{\prime}}\right)$ of $L\left(\Phi_{f^{\prime}}\right)$. If there exist no such isomorphisms $\Phi_{f} \cong \Phi_{f^{\prime}}$, then we say that (X, f, s) and $\left(X^{\prime}, f^{\prime}, s^{\prime}\right)$ are algebraically distinguished.

If (X, f, s) and $\left(X^{\prime}, f^{\prime}, s^{\prime}\right)$ are algebraically distinguished, then the intersection patterns of the torsion sections and the irreducible components of the reducible
fibers for (X, f, s) and for $\left(X^{\prime}, f^{\prime}, s^{\prime}\right)$ are different, and hence they cannot be in the same connected component of the moduli.

Definition 1.4. We say that two connected components \mathcal{C}_{1} and \mathcal{C}_{2} are algebraically distinguished if an elliptic $K 3$ surface belonging to \mathcal{C}_{1} and an elliptic $K 3$ surface belonging to \mathcal{C}_{2} are algebraically distinguished. Otherwise, we say that \mathcal{C}_{1} and \mathcal{C}_{2} are algebraically equivalent.

By definition, if \mathcal{C}_{1} and \mathcal{C}_{2} are algebraically equivalent, then their Néron-Severi lattices are isomorphic, but their transcendental lattices may be nonisomorphic.

An elliptic $K 3$ surface (X, f, s) is called extremal if the rank of $L\left(\Phi_{f}\right)$ attains the possible maximum 18. Suppose that (X, f, s) is extremal. Then the transcendental lattice $T(X)$ of X is an even positive definite lattice of rank 2, and $T(X)$ is equal to the transcendental lattice of the connected component containing (X, f, s).

Explanation of the Entries of Tables 2 and 3

Table 2 is the list of nonconnected moduli of extremal elliptic $K 3$ surfaces. The horizontal line in columns $4-5$ separates the connected components that are algebraically distinguished. (This separating line appears only in nos. 27 and 64. See Section 6.1 for the details of no. 64.) Column 4 shows the list of components [a, b, c] of the transcendental lattice

$$
T=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

written in the reduced form in the sense of Gauss (see [25]). Column 5 displays [r, c], where r (resp. c) is the number of connected components that are (resp. are not) invariant under complex conjugation. In particular, the number c is always even.

Table 3 is the list of nonconnected moduli of nonextremal elliptic $K 3$ surfaces. Column 2 shows the rank of $L\left(\Phi_{f}\right)$. The list $\left[c_{1}, \ldots, c_{k}\right]$ in column 5 indicates that there exist exactly k algebraic equivalence classes of connected components and that each algebraic equivalence class has exactly c_{i} connected components. Examining Table 3 and investigating the set of connected components further (see Remark 4.16), we obtain the following:

Corollary 1.5. The moduli of nonextremal elliptic $K 3$ surfaces of type (Φ, A) has more than one connected component that cannot be algebraically distinguished if and only if A is trivial and Φ is one of the following:

$$
\begin{aligned}
& E_{7}+2 A_{5}, \quad E_{6}+A_{11}, \quad E_{6}+A_{6}+A_{5}, \quad E_{6}+2 A_{5}+A_{1}, \\
& D_{5}+2 A_{6}, \quad D_{4}+2 A_{6}+A_{1}, \quad A_{11}+A_{5}+A_{1}, \quad A_{7}+2 A_{5}, \\
& 2 A_{6}+A_{3}+2 A_{1}, \quad A_{6}+2 A_{5}+A_{1}, \quad E_{6}+2 A_{5}, \quad 3 A_{5}+A_{1} .
\end{aligned}
$$

For each of these types (Φ, A), the moduli has exactly two connected components, and they are complex conjugate to each other.

If (X, f, s) is extremal, then the $K 3$ surface X is singular in the sense of [26]. It is known that a pair of singular $K 3$ surfaces with isomorphic Néron-Severi lattices and nonisomorphic transcendental lattices has some interesting properties. See [19;23] for arithmetic properties, and [2;7;22] for topological properties. On the other hand, for nonextremal elliptic $K 3$ surfaces, Corollary 1.5 implies the following:

Corollary 1.6. The transcendental lattice of a connected component of the moduli of nonextremal elliptic K3 surfaces of fixed type is determined by the algebraic equivalence class of the connected component.

In fact, we present an algorithm to calculate the set $\mathfrak{C}(\Phi, A, G)$ of G-connected components of the moduli of marked elliptic $K 3$ surfaces of type (Φ, A), where G is a subgroup of the automorphism group $\operatorname{Aut}(\Phi)$ of the $A D E$-configuration Φ. (See Section 3.1 for the definition of the set $\mathfrak{C}(\Phi, A, G)$.) Theorem 1.1 and Corollaries 1.5 and 1.6 are the statements for the case where G is the full automorphism group $\operatorname{Aut}(\Phi)$, which means that elliptic $K 3$ surfaces are not marked. See Section 6.2.

The Torelli theorem for the period map of complex $K 3$ surfaces [18] enables us to study moduli of $K 3$ surfaces by lattice-theoretic tools. To investigate moduli of lattice polarized $K 3$ surfaces, we have to determine the set of primitive embeddings of the polarizing lattice into the $K 3$ lattice. This task is easy when the $K 3$ surfaces are singular, because the transcendental lattices are positive definite of rank 2 in this case. When the transcendental lattices are indefinite of rank ≥ 3, we use Miranda-Morrison theory [15;16;14]. Let L be an even indefinite lattice of rank ≥ 3, let \mathcal{G} be the genus containing L, and let $\mathrm{O}(L) \rightarrow \mathrm{O}\left(D_{L}, q_{L}\right)$ be the natural homomorphism from the orthogonal group of L to the automorphism group of the discriminant form $\left(D_{L}, q_{L}\right)$ of L. Miranda and Morrison defined a certain finite Abelian group \mathcal{M} that fits in an exact sequence

$$
0 \longrightarrow \operatorname{Coker}\left(\mathrm{O}(L) \rightarrow \mathrm{O}\left(D_{L}, q_{L}\right)\right) \longrightarrow \mathcal{M} \longrightarrow \mathcal{G} \longrightarrow 0
$$

Then they gave a method to calculate this exact sequence in terms of the spinor norms of certain isometries of the p-adic lattices $L \otimes \mathbb{Z}_{p}$. When we apply this theory to the study of moduli of elliptic $K 3$ surfaces, the genus \mathcal{G} is the genus containing the transcendental lattices of algebraic equivalence classes of connected components of the moduli. We have to incorporate the positive sign structures of L in the theory and to explicitly calculate the action on \mathcal{M} of a subgroup of $\operatorname{Aut}(\Phi)$. The flipping of positive sign structures corresponds to the complex conjugation, and the action of a subgroup of $\operatorname{Aut}(\Phi)$ corresponds to changing the marking.

Miranda-Morrison theory was first applied to the study of moduli of $K 3$ surfaces by Akyol and Degtyarev [1] in their study of equisingular family of irreducible plane sextics. Recently, Güneş Aktaş [10] used it to the study of certain classes of quartic surfaces. In these works, the calculation of isometries of p adic lattices and their spinor norms was not fully automated, and a case-by-case
method was employed at several points. The complete list of $A D E$-types of singularities of these normal $K 3$ surfaces had been obtained by Yang [28; 29].

A new ingredient of this paper is a refinement of the Miranda-Morrison group \mathcal{M}, which enables us to treat the positive sign structures in a simplified way. Another new ingredient is an algorithm to lift a given automorphism of the discriminant form ($D_{L \otimes \mathbb{Z}_{p}}, q_{L \otimes \mathbb{Z}_{p}}$) of a p-adic lattice $L \otimes \mathbb{Z}_{p}$ to an isometry of $L \otimes \mathbb{Z}_{p}$ and to calculate the spinor norm of this isometry. Our method employs approximate calculations in p-adic topology. To obtain precise results, the estimation of approximation errors is in need. Using this algorithm, we can compute the set $\mathfrak{C}(\Phi, A, G)$ of connected components of our moduli by computer.

This paper is organized as follows. In Section 2, we collect preliminaries about lattices. In particular, we recall the theory of discriminant forms due to Nikulin [17] and its application to the genus theory. In Section 3, we define the set $\mathfrak{C}(\Phi, A, G)$ of G-connected components of the moduli of marked elliptic $K 3$ surfaces of fixed type (Φ, A), where G is a subgroup of $\operatorname{Aut}(\Phi)$. We then introduce the set $\mathcal{Q}(\Phi, A) / \sim_{G}$, which is defined in purely lattice-theoretic terms. Using the theory of refined period map of marked $K 3$ surfaces [3, Chapter VIII], we show that there exists a natural bijection between $\mathfrak{C}(\Phi, A, G)$ and $\mathcal{Q}(\Phi, A) / \sim_{G}$. In Section 4, we formulate a refinement of Miranda-Morrison theory and interpret the set $\mathcal{Q}(\Phi, A) / \sim_{G}$ as a finite disjoint union of certain finite-dimensional \mathbb{F}_{2} vector spaces $\mathcal{T}_{\mathcal{G}} / \sim_{\bar{G}}$, which are closely related to the Miranda-Morrison group \mathcal{M}. Section 5 is the technical core of our algorithm. We present an algorithm to calculate the spinor norm of an isometry of a p-adic lattice that induces a given automorphism of the discriminant form. The results in Sections 4 and 5 establish an algorithm to calculate the \mathbb{F}_{2}-vector spaces $\mathcal{T}_{\mathcal{G}} / \sim_{\bar{G}}$. Using this algorithm combined with the results in Section 3, we can compute the set $\mathfrak{C}(\Phi, A, G)$. Applying this calculation to the case $G=\operatorname{Aut}(\Phi)$, we obtain Tables 2 and 3 in Section 7. In Section 6, we investigate some examples in detail.

The data computed in this paper are available from the author's web-page [24]. For the computation, we used GAP [9].

Thanks are due to Alex Degtyarev, Klaus Hulek, and Michael Lönne for many discussions. The author also thanks the referee for many comments and suggestions on the first version of this paper.

Convention. In this paper, a homomorphism $f: M \rightarrow M^{\prime}$ of Abelian groups is written as $v \mapsto v^{f}$. In particular, we denote the composite of $f: M \rightarrow M^{\prime}$ and $f^{\prime}: M^{\prime} \rightarrow M^{\prime \prime}$ by $f f^{\prime}$ or $f \cdot f^{\prime}$.

2. Lattices

We fix notions and notation about lattices and recall some classical results. Let R be either $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}_{p}, \mathbb{Q}_{p}$, or \mathbb{R}, and let k be the quotient field of R.

2.1. Gram Matrix

An R-lattice is a free R-module L of finite rank equipped with a nondegenerate symmetric bilinear form

$$
\langle,\rangle: L \times L \rightarrow R .
$$

Let L be an R-lattice of rank n. By choosing a basis e_{1}, \ldots, e_{n} of the free R module L, the form \langle,$\rangle is expressed by a symmetric matrix M$ of size n whose (i, j)-component is $\left\langle e_{i}, e_{j}\right\rangle$. This matrix M is called the Gram matrix of L with respect to the basis e_{1}, \ldots, e_{n}. The discriminant $\operatorname{disc}(L)$ of L is defined by

$$
\operatorname{disc}(L):=\operatorname{det}(M) \bmod \left(R^{\times}\right)^{2} \in(R \backslash\{0\}) /\left(R^{\times}\right)^{2}
$$

We denote by $\mathrm{O}(L)$ the group of isometries of L. By our convention, the group $\mathrm{O}(L)$ acts on L from the right. The determinant of matrices representing isometries of L gives rise to a homomorphism

$$
\operatorname{det}: \mathrm{O}(L) \rightarrow \operatorname{Det}:=\{ \pm 1\}
$$

Note that $L \otimes k$ has a natural structure of k-lattice, and $\mathrm{O}(L)$ is naturally embedded in $\mathrm{O}(L \otimes k)$.

2.2. Positive Sign Structure

Let L be an \mathbb{R}-lattice. It is well known that L has a diagonal Gram matrix M whose diagonal components are ± 1 and that the number s_{+}of +1 (resp. s_{-}of $-1)$ on the diagonal is independent of the choice of M. The signature $\operatorname{sign}(L)$ of L is $\left(s_{+}, s_{-}\right)$. We say that L is indefinite if $s_{+}>0$ and $s_{-}>0$, whereas L is positive or negative definite if $s_{-}=0$ or $s_{+}=0$, respectively. We say that L is hyperbolic if $s_{+}=1$.

According to [13], we define a positive sign structure of L to be a choice of one of the connected components of the manifold parameterizing oriented s_{+-} dimensional subspaces Π of L such that the restriction $\left.\langle\rangle\right|_{,\Pi}$ of \langle,$\rangle to \Pi$ is positive definite. Unless L is negative definite, L has exactly two positive sign structures.

The signature and the positive sign structures of a \mathbb{Z} - or \mathbb{Q}-lattice L are defined to be those of $L \otimes \mathbb{R}$. The orthogonal group $\mathrm{O}(L)$ acts on the set of positive sign structures of L in a natural way.

2.3. Discriminant Form

The theory of discriminant forms was developed by Nikulin [17]. A finite quadratic form is a quadratic form

$$
q: D \rightarrow \mathbb{Q} / 2 \mathbb{Z}
$$

where D is a finite Abelian group. The length leng (D) of D is the minimal number of generators of D. Let (D, q) be a finite quadratic form. We say that (D, q)
is nondegenerate if the associated symmetric bilinear form $b: D \times D \rightarrow \mathbb{Q} / \mathbb{Z}$ is nondegenerate, where

$$
b(x, y):=\frac{1}{2}(q(x+y)-q(x)-q(y)) .
$$

We denote by $\mathrm{O}(D, q)$ the automorphism group of (D, q). Note again that $\mathrm{O}(D, q)$ acts on (D, q) from the right.

Suppose that R is either \mathbb{Z} or \mathbb{Z}_{p}, and let L be an R-lattice of rank n. The dual lattice L^{\vee} of L is defined by

$$
\begin{equation*}
L^{\vee}:=\{x \in L \otimes k \mid\langle x, v\rangle \in R \text { for all } v \in L\} \tag{2.1}
\end{equation*}
$$

which is a free R-module of rank n containing L as a submodule of finite index. The dual lattice L^{\vee} has a natural k-valued nondegenerate symmetric bilinear form that extends the R-valued form \langle,$\rangle on L$. We put

$$
D_{L}:=L^{\vee} / L
$$

and call it the discriminant group of L. We say that L is unimodular if D_{L} is trivial. When R is \mathbb{Z}, the order of D_{L} is equal to $|\operatorname{disc}(L)|$.

We say that L is even if $\langle x, x\rangle \in 2 R$ for all $x \in L$. (When $R=\mathbb{Z}_{p}$ with p odd, every R-lattice is even. A \mathbb{Z}-lattice L is even if and only if the \mathbb{Z}_{2}-lattice $L \otimes \mathbb{Z}_{2}$ is even.) Note that we have a natural isomorphism

$$
\mathbb{Q} / 2 \mathbb{Z} \cong \bigoplus_{p} \mathbb{Q}_{p} / 2 \mathbb{Z}_{p}
$$

Hence, when $R=\mathbb{Z}_{p}$, we can regard $k / 2 R$ as a submodule of $\mathbb{Q} / 2 \mathbb{Z}$. Suppose that L is even. Then the discriminant form

$$
q_{L}: D_{L} \rightarrow \mathbb{Q} / 2 \mathbb{Z}
$$

of L is a finite quadratic form defined by $q_{L}(\bar{x}):=\langle x, x\rangle \bmod 2 R$, where $\bar{x} \in D_{L}$ denotes $x \bmod L$ for $x \in L^{\vee}$. Since \langle,$\rangle is nondegenerate, the finite quadratic$ form $\left(D_{L}, q_{L}\right)$ is nondegenerate. If $\varphi: L \xrightarrow{\sim} L^{\prime}$ is an isometry of even R-lattices, then φ induces an isomorphism $L^{\vee} \xrightarrow{\sim} L^{\prime \vee}$ and hence an isomorphism

$$
q_{\varphi}:\left(D_{L}, q_{L}\right) \xrightarrow{\sim}\left(D_{L^{\prime}}, q_{L^{\prime}}\right)
$$

of their discriminant forms. In particular, we have a natural homomorphism

$$
\mathrm{O}(L) \rightarrow \mathrm{O}\left(D_{L}, q_{L}\right)
$$

Remark 2.1. If we adapt $L^{\vee}:=\operatorname{Hom}(L, R)$ as the definition of the dual lattice, then it is natural to say that an isometry $\varphi: L \xrightarrow{\sim} L^{\prime}$ induces contravariantly an isomorphism $\left(D_{L^{\prime}}, q_{L^{\prime}}\right) \xrightarrow{\sim}\left(D_{L}, q_{L}\right)$. Under the present definition (2.1), however, the functor $\varphi \mapsto q_{\varphi}$ is covariant.

2.4. Roots

Let L be an even \mathbb{Z}-lattice. A vector $r \in L$ is said to be a root of L if $\langle r, r\rangle=-2$. We put

$$
\operatorname{Roots}(L):=\{r \in L \mid\langle r, r\rangle=-2\}
$$

Let $\Phi=\left\{r_{1}, \ldots, r_{m}\right\}$ be a set of roots of L. Suppose that $\left\langle r_{i}, r_{j}\right\rangle \in\{0,1\}$ for any $i \neq j$. The dual graph of Φ is the graph whose set of vertices is Φ and whose set of edges is the set of pairs $\left\{r_{i}, r_{j}\right\}$ such that $\left\langle r_{i}, r_{j}\right\rangle=1$. We say that Φ is an $A D E$ configuration if each connected component of the dual graph of Φ is a Dynkin diagram of type $A_{l}(l \geq 1), D_{m}(m \geq 4)$, or $E_{n}(n=6,7,8)$. (See [8, Figure 1.7] for the definition of these Dynkin diagrams.) Let Φ be an $A D E$-configuration. The formal sum of types A_{l}, D_{m}, and E_{n} of the connected components of the dual graph is called the $A D E$-type of Φ. An isomorphism of $A D E$-configurations Φ and Φ^{\prime} is a bijection $\gamma: \Phi \xrightarrow{\sim} \Phi^{\prime}$ such that $\left\langle r^{\gamma}, r^{\prime \gamma}\right\rangle=\left\langle r, r^{\prime}\right\rangle$ for all $r, r^{\prime} \in \Phi$. An isomorphism class of $A D E$-configurations is determined by the $A D E$-type. The automorphism group $\operatorname{Aut}(\Phi)$ of an $A D E$-configuration Φ is just the automorphism group of the dual graph of Φ.

A negative definite even \mathbb{Z}-lattice L is said to be a root lattice if L is generated by $\operatorname{Roots}(L)$. We have the following classical result. See, for example, [8, Theorem 1.2].

Proposition 2.2. Let L be a root lattice. Then there exists an ADE-configuration $\Phi \subset \operatorname{Roots}(L)$ that forms a basis of L.

The $A D E$-configuration Φ in this proposition is called a fundamental root system of the root lattice L. When an $A D E$-configuration Φ is given, we denote by $L(\Phi)$ the root lattice with a fundamental root system Φ.

2.5. Even \mathbb{Z}_{p}-Lattices

Let p be a prime integer. The isomorphism classes of even \mathbb{Z}_{p}-lattices and their discriminant forms are well understood. See [17] or [14, Chapter IV] for details.

We say that a finite quadratic form $q: D \rightarrow \mathbb{Q} / 2 \mathbb{Z}$ is p-adic if the order of D is a power of p. If (D, q) is p-adic, then the image of q is included in the subgroup $\mathbb{Q}_{p} / 2 \mathbb{Z}_{p} \subset \mathbb{Q} / 2 \mathbb{Z}$. It is obvious that the discriminant form $\left(D_{L}, q_{L}\right)$ of an even \mathbb{Z}_{p}-lattice L is p-adic. We have the normal form theorems for nondegenerate p adic finite quadratic forms and for even \mathbb{Z}_{p}-lattices.

Proposition 2.3. A nondegenerate p-adic finite quadratic form is isomorphic to an orthogonal direct sum of indecomposable p-adic finite quadratic forms listed in Table 1.

More precisely, we have an algorithm to decompose a given nondegenerate p adic finite quadratic form into an orthogonal direct sum of indecomposable ones. See [14, Chapter IV].

Table 1 Indecomposable p-adic finite quadratic forms

Name	(D, q)	Brown invariant
When p is odd:		
$w_{p, v}^{1}$	$\left(\mathbb{Z} / p^{\nu} \mathbb{Z},\left[\frac{2}{p^{\nu}}\right]\right)$	$\begin{cases}0 & \text { if } v \text { is even, } \\ 1-(-1)^{(p-1) / 2} & \text { if } v \text { is odd. }\end{cases}$
$w_{p, v}^{-1}$	$\left(\mathbb{Z} / p^{\nu} \mathbb{Z},\left[\frac{2 n_{p}}{p^{\nu}}\right]\right)$	$\begin{cases}0 & \text { if } v \text { is even, } \\ -3-(-1)^{(p-1) / 2} & \text { if } v \text { is odd. }\end{cases}$
When $p=2$:		
$w_{2, v}^{\varepsilon}$	$\left(\mathbb{Z} / 2^{\nu} \mathbb{Z},\left[\frac{\varepsilon}{2^{v}}\right]\right)$	$\varepsilon+\nu\left(\varepsilon^{2}-1\right) / 2$
u_{v}	$\left(\mathbb{Z} / 2^{\nu} \mathbb{Z} \times \mathbb{Z} / 2^{\nu} \mathbb{Z}, \frac{1}{2^{\nu}}\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right)$	0
v_{ν}	$\left(\mathbb{Z} / 2^{\nu} \mathbb{Z} \times \mathbb{Z} / 2^{\nu} \mathbb{Z}, \frac{1}{2^{v}}\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]\right)$	$4 v$

In this table, ν runs through $\mathbb{Z}_{>0}$. When p is odd, $n_{p} \in \mathbb{Z}$ represents a nonsquare residue in \mathbb{F}_{p}^{\times}. When $p=2, \varepsilon \in\{1,3,5,7\}$ if $v>1$, whereas $\varepsilon \in\{1,3\}$ if $v=1$.

Proposition 2.4. An even \mathbb{Z}_{p}-lattice is isomorphic to an orthogonal direct sum of indecomposable even \mathbb{Z}_{p}-lattices whose Gram matrices are listed below.

When p is odd:

$$
\left[2 p^{\nu}\right] \text { or }\left[2 p^{\nu} n_{p}\right],
$$

where v runs through $\mathbb{Z}_{\geq 0}$, and $n_{p} \in \mathbb{Z}$ represents a nonsquare residue in \mathbb{F}_{p}^{\times}.
When $p=2$:

$$
2^{v}[2 \varepsilon], \quad \text { or } \quad 2^{v}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \text { or } \quad 2^{v}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

where v runs through $\mathbb{Z}_{\geq 0}$, and $\varepsilon \in\{1,3,5,7\}$.
An indecomposable even \mathbb{Z}_{p}-lattice L in the list is unimodular if and only if $v=0$ and $L \not \approx[2 \varepsilon]$.

Moreover, we have an algorithm to determine whether two given orthogonal direct sums of these indecomposable objects are isomorphic or not. (See [14, Chapter IV].) In particular, for a given positive integer r, a given element $d \in$ $\left(\mathbb{Z}_{p} \backslash\{0\}\right) /\left(\mathbb{Z}_{p}^{\times}\right)^{2}$, and a given nondegenerate p-adic finite quadratic form (D, q), we can easily determine whether there exists an even \mathbb{Z}_{p}-lattice L such that $\operatorname{rank}(L)=r, \operatorname{disc}(L)=d$, and $\left(D_{L}, q_{L}\right) \cong(D, q)$, and if it exists, we can write a Gram matrix of such an even \mathbb{Z}_{p}-lattice explicitly (see Section 5.2). As corollaries, we obtain the following:

Proposition 2.5. The isomorphism class of an even \mathbb{Z}_{p}-lattice L is determined by $\operatorname{rank}(L), \operatorname{disc}(L) \in\left(\mathbb{Z}_{p} \backslash\{0\}\right) /\left(\mathbb{Z}_{p}^{\times}\right)^{2}$, and the isomorphism class of the discriminant form $\left(D_{L}, q_{L}\right)$.

Proposition 2.6. If L is an even \mathbb{Z}_{p}-lattice, then the natural homomorphism $\mathrm{O}(L) \rightarrow \mathrm{O}\left(D_{L}, q_{L}\right)$ is surjective.

2.6. Even Overlattices

Suppose that L is an even \mathbb{Z}-lattice. An even overlattice of L is a \mathbb{Z}-submodule M of L^{\vee} containing L such that the natural \mathbb{Q}-valued symmetric bilinear form on L^{\vee} takes values in \mathbb{Z} on M and such that M is an even \mathbb{Z}-lattice by this \mathbb{Z}-valued form. The following theorem is due to Nikulin [17].

Proposition 2.7. Let L be an even \mathbb{Z}-lattice, and let $\operatorname{pr}_{L}: L^{\vee} \rightarrow D_{L}$ denote the natural projection. Then the mapping $K \mapsto \operatorname{pr}_{L}^{-1}(K)$ gives rise to a bijection from the set of totally isotropic subgroups $K \subset D_{L}$ of $\left(D_{L}, q_{L}\right)$ to the set of even overlattices of L.

A submodule A of a free \mathbb{Z}-module M is said to be primitive if M / A is torsion free. The primitive closure of A in M is the primitive submodule $(A \otimes \mathbb{Q}) \cap M$ of M. As a corollary of Proposition 2.7 , we obtain the following:

Corollary 2.8. Let S and T be even \mathbb{Z}-lattices. Then there exists a canonical bijective correspondence between the set of even unimodular overlattices H of the orthogonal direct sum $S \oplus T$ such that S and T are primitive in H and the set of anti-isometries $\left(D_{S},-q_{S}\right) \xrightarrow{\sim}\left(D_{T}, q_{T}\right)$.

The correspondence is given as follows. Let $\gamma:\left(D_{S},-q_{S}\right) \xrightarrow{\sim}\left(D_{T}, q_{T}\right)$ be an anti-isometry of the discriminant forms. Then the pull-back of the graph of γ in $D_{S} \oplus D_{T}$ by the natural projection $S^{\vee} \oplus T^{\vee} \rightarrow D_{S} \oplus D_{T}$ is an even unimodular overlattice of $S \oplus T$.

2.7. Genus of Even \mathbb{Z}-Lattices

Let (D, q) be a nondegenerate finite quadratic form. For each prime divisor p of $d:=|D|$, let D_{p} denote the p-part

$$
\left\{x \in D \mid p^{v} x=0 \text { for some integer } v \geq 0\right\}
$$

of D, and let q_{p} denote the restriction of q to D_{p}. Then (D_{p}, q_{p}) is a nondegenerate p-adic finite quadratic form. We say that $\left(D_{p}, q_{p}\right)$ is the p-part of (D, q). If $p \neq p^{\prime}$, then D_{p} and $D_{p^{\prime}}$ are orthogonal with respect to the bilinear form b of (D, q). Hence we obtain a canonical orthogonal direct-sum decomposition

$$
\begin{equation*}
(D, q)=\bigoplus_{p \mid d}\left(D_{p}, q_{p}\right) \tag{2.2}
\end{equation*}
$$

Suppose that L is an even \mathbb{Z}-lattice. Then the even \mathbb{Z}_{p}-lattice $L \otimes \mathbb{Z}_{p}$ is not unimodular if and only if p divides the order $\left|D_{L}\right|$ of the discriminant group, and the p-part of the discriminant form $\left(D_{L}, q_{L}\right)$ is isomorphic to $\left(D_{L \otimes \mathbb{Z}_{p}}, q_{L \otimes \mathbb{Z}_{p}}\right)$. Moreover, the discriminant $\operatorname{disc}\left(L \otimes \mathbb{Z}_{p}\right)$ is equal to $\operatorname{disc}(L) \bmod \left(\mathbb{Z}_{p}^{\times}\right)^{2}$. If
$\operatorname{sign}(L)=\left(s_{+}, s_{-}\right)$, then we have $\operatorname{disc}(L)=(-1)^{s_{-}}\left|D_{L}\right|$. Hence, by the results we have stated so far, we obtain the following:

Proposition 2.9. Let L and L^{\prime} be even \mathbb{Z}-lattices. Then the following conditions are equivalent:
(i) $\operatorname{sign}(L)=\operatorname{sign}\left(L^{\prime}\right)$ and $\left(D_{L}, q_{L}\right) \cong\left(D_{L^{\prime}}, q_{L^{\prime}}\right)$.
(ii) $L \otimes \mathbb{R} \cong L^{\prime} \otimes \mathbb{R}$, and $L \otimes \mathbb{Z}_{p} \cong L^{\prime} \otimes \mathbb{Z}_{p}$ for all p.

Definition 2.10. We say that even \mathbb{Z}-lattices L and L^{\prime} are in the same genus if the two conditions in Proposition 2.9 are satisfied.

Definition 2.11. Let $\left(s_{+}, s_{-}\right)$be a pair of nonnegative integers such that $r:=$ $s_{+}+s_{-}>0$, and let (D, q) be a nondegenerate finite quadratic form. The genus determined by $\left(s_{+}, s_{-}\right)$and (D, q) is the set of isomorphism classes of even \mathbb{Z} lattices L of rank r such that $\operatorname{sign}(L)=\left(s_{+}, s_{-}\right)$and $\left(D_{L}, q_{L}\right) \cong(D, q)$.

We have the following criterion by Nikulin [17] for the genus determined by $\left(s_{+}, s_{-}\right)$and (D, q) to be nonempty. (See also Theorem 5.2 in [14, Chapter V].) The Brown invariant $\operatorname{Br}(D, q)$ of a nondegenerate finite quadratic form (D, q) is defined to be the element of $\mathbb{Z} / 8 \mathbb{Z}$ that satisfies

$$
\exp \left(\frac{2 \pi \sqrt{-1}}{8} \operatorname{Br}(D, q)\right)=\frac{1}{\sqrt{|D|}} \sum_{x \in D} \exp (\sqrt{-1} \pi q(x))
$$

(See [14, Chapter III] for the existence of the Brown invariant.) The Brown invariant is additive under the operation of orthogonal direct sum of nondegenerate finite quadratic forms, and the values of this invariant for the indecomposable nondegenerate p-adic finite quadratic forms are given in Table 1. Hence, using the decomposition (2.2) and Proposition 2.3, we can easily calculate $\operatorname{Br}(D, q)$ for any (D, q).

ThEOREM 2.12. Let s_{+}and s_{-}be nonnegative integers such that $s_{+}+s_{-}>0$, and let (D, q) be a nondegenerate finite quadratic form. We put $r:=s_{+}+s_{-}$and $d:=(-1)^{s_{-}}|D|$. Then the genus determined by $\left(s_{+}, s_{-}\right)$and (D, q) is nonempty if and only if the following hold:
(i) $r \geq \operatorname{leng}(D)$,
(ii) $\operatorname{Br}(D, q) \equiv s_{+}-s_{-} \bmod 8$, and
(iii) for each prime divisor p of d, there exists an even \mathbb{Z}_{p}-lattice of rank r, discriminant $d \bmod \left(\mathbb{Z}_{p}^{\times}\right)^{2}$, with the discriminant form isomorphic to the p-part (D_{p}, q_{p}) of (D, q).

REMARK 2.13. Another formulation of the criterion by means of p-excess is given by Conway and Sloan [6, Chapter 15]. In our previous papers [20; 21], we used this p-excess version.

By the weak Hasse principle, we obtain the following proposition (Theorem 1.1 in [14, Chapter VIII]).

Proposition 2.14. If even \mathbb{Z}-lattices L and L^{\prime} are in the same genus, then the \mathbb{Q}-lattices $L \otimes \mathbb{Q}$ and $L^{\prime} \otimes \mathbb{Q}$ are isomorphic.

3. Connected Components of Moduli

In this section, we fix an $A D E$-configuration Φ, a finite Abelian group A, and a subgroup G of the automorphism group $\operatorname{Aut}(\Phi)$ of Φ.

3.1. Definition of Connected Components

Let (X, f, s) be an elliptic $K 3$ surface. We consider the second cohomology group $H^{2}(X, \mathbb{Z})$ as a \mathbb{Z}-lattice by the cup-product. It is well known that $H^{2}(X, \mathbb{Z})$ is a $K 3$-lattice, that is, $H^{2}(X, \mathbb{Z})$ is an even unimodular \mathbb{Z}-lattice of signature $(3,19)$, which is unique up to isomorphism. Recall that $\Phi_{f} \subset H^{2}(X, \mathbb{Z})$ is the set of classes of smooth rational curves on X that are contracted by f and are disjoint from s, and that A_{f} is the torsion part of the Mordell-Weil group. By the classical theory of elliptic surfaces (see [11]), we know that Φ_{f} is an $A D E$-configuration. Recall that $L\left(\Phi_{f}\right)$ denotes the root sublattice of $H^{2}(X, \mathbb{Z})$ generated by Φ_{f}.

Suppose that (X, f, s) is of type (Φ, A), that is, $\Phi_{f} \cong \Phi$ and $A_{f} \cong A$. A marking of (X, f, s) is an isomorphism $\phi: \Phi \xrightarrow{\sim} \Phi_{f}$ of $A D E$-configurations. If ϕ is a marking of (X, f, s), then we denote by (X, f, s, ϕ) the marked elliptic $K 3$ surface. We say that two markings ϕ and ϕ^{\prime} of (X, f, s) are G-isomorphic if there exists an element $g \in G$ such that $\phi=g \cdot \phi^{\prime}$. More generally, we say that two marked elliptic $K 3$ surfaces (X, f, s, ϕ) and ($X^{\prime}, f^{\prime}, s^{\prime}, \phi^{\prime}$) of type (Φ, A) are G-isomorphic if there exist an isomorphism $\psi: X^{\prime} \xrightarrow{\sim} X$ of $K 3$ surfaces and an element g of G that satisfy the following:

- We have $f \circ \psi=f^{\prime}$ and $\psi \circ s^{\prime}=s$, so that ψ induces an isomorphism of elliptic $K 3$ surfaces $\left(X^{\prime}, f^{\prime}, s^{\prime}\right) \xrightarrow{\sim}(X, f, s)$. Hence the pull-back by ψ induces an isomorphism

$$
\Phi_{\psi}: \Phi_{f} \xrightarrow{\sim} \Phi_{f^{\prime}}
$$

of $A D E$-configurations.

- The diagram

commutes.
We consider the moduli space that parameterizes the G-isomorphism classes of marked elliptic $K 3$ surfaces of type (Φ, A) and define the set $\mathfrak{C}(\Phi, A, G)$ of connected components of this moduli space.

Remark 3.1. Theorem 1.1 and Corollaries 1.5 and 1.6 stated in Introduction are for the case where $G=\operatorname{Aut}(\Phi)$.

A connected family $(\mathcal{X}, F, S) / B$ of elliptic $K 3$ surfaces of type (Φ, A) is a commutative diagram

$$
\begin{gathered}
\mathcal{X} \xrightarrow{F} \mathbb{P}_{B}^{1} \\
\pi \searrow \pi_{P} \\
B
\end{gathered}
$$

with a section $S: \mathbb{P}_{B}^{1} \rightarrow \mathcal{X}$ of F such that the following hold:

- B is a connected analytic variety, $\pi: \mathcal{X} \rightarrow B$ is a family of $K 3$ surfaces, $\pi_{P}: \mathbb{P}_{B}^{1} \rightarrow B$ is a \mathbb{P}^{1}-fibration, and
- for any point $t \in B$, the pullback $\left(X_{t}, f_{t}, s_{t}\right)$ of (\mathcal{X}, F, S) by $\{t\} \hookrightarrow B$ is an elliptic $K 3$ surface of type (Φ, A).
Let $(\mathcal{X}, F, S) / B$ be a connected family as before. For a point $t \in B$, we denote by Φ_{t} the $A D E$-configuration $\Phi_{f_{t}}$ of the elliptic $K 3$ surface $\left(X_{t}, f_{t}, s_{t}\right)$. The family $\left\{\Phi_{t} \mid t \in B\right\}$ defines a locally constant system

$$
\Phi_{B} \rightarrow B
$$

of $A D E$-configurations. A marking of a connected family $(\mathcal{X}, F, S) / B$ is a choice of a base point $o \in B$ and a marking $\phi_{o}: \Phi \xrightarrow{\sim} \Phi_{o}$ of $\left(X_{o}, f_{o}, s_{o}\right)$. We say that a marked connected family $\left((\mathcal{X}, F, S) / B, \phi_{o}\right)$ is G-connected if the image of the monodromy representation

$$
m_{B}: \pi_{1}(B, o) \rightarrow \operatorname{Aut}(\Phi)
$$

obtained from the locally constant system $\Phi_{B} \rightarrow B$ and the marking $\phi_{o}: \Phi \xrightarrow{\sim}$ Φ_{o} is contained in G. Suppose that $\left((\mathcal{X}, F, S) / B, \phi_{o}\right)$ is G-connected, and let t be a point of B. Since B is connected, there exists a path $\gamma:[0,1] \rightarrow B$ from the base point o to t. The composite of $\phi_{o}: \Phi \xrightarrow{\sim} \Phi_{o}$ and the transportation $\Phi_{o} \xrightarrow{\sim} \Phi_{t}$ in the locally constant system $\Phi_{B} \rightarrow B$ along γ gives rise to a marking

$$
\phi_{t}: \Phi \xrightarrow{\sim} \Phi_{t}
$$

of $\left(X_{t}, f_{t}, s_{t}\right)$. This marking depends on the choice of the path γ, but the G isomorphism class of ϕ_{t} is independent of the choice of γ. Therefore, a G connected family parameterizes a family of G-isomorphism classes of marked elliptic $K 3$ surfaces.

We say that two marked elliptic $K 3$ surfaces (X, f, s, ϕ) and $\left(X^{\prime}, f^{\prime}, s^{\prime}, \phi^{\prime}\right)$ of type (Φ, A) are G-connected if there exists a marked G-connected family $\left((\mathcal{X}, F, S) / B, \phi_{o}\right)$ of elliptic $K 3$ surfaces of type (Φ, A) with two fibers G isomorphic to (X, f, s, ϕ) and ($X^{\prime}, f^{\prime}, s^{\prime}, \phi^{\prime}$), respectively. This relation of G connectedness is an equivalence relation. The transitivity is proved as follows. Suppose that $\left(X_{1}, f_{1}, s_{1}, \phi_{1}\right)$ and $\left(X_{2}, f_{2}, s_{2}, \phi_{2}\right)$ are G-isomorphic to the fibers of a marked G-connected family $\left((\mathcal{X}, F, S) / B, \phi_{0}\right)$ over $t_{1} \in B$ and $t_{2} \in B$, respectively, and that $\left(X_{2}, f_{2}, s_{2}, \phi_{2}\right)$ and $\left(X_{3}, f_{3}, s_{3}, \phi_{3}\right)$ are G-isomorphic to the fibers of $\left(\left(\mathcal{X}^{\prime}, F^{\prime}, S^{\prime}\right) / B^{\prime}, \phi_{o^{\prime}}\right)$ over $t_{2}^{\prime} \in B^{\prime}$ and $t_{3}^{\prime} \in B^{\prime}$, respectively. Let $B^{\prime \prime}$ be the connected analytic space obtained by gluing B and B^{\prime} at $t_{2} \in B$ and $t_{2}^{\prime} \in B^{\prime}$, and let $\left(\mathcal{X}^{\prime \prime}, F^{\prime \prime}, S^{\prime \prime}\right) / B^{\prime \prime}$ be the family obtained by gluing $(\mathcal{X}, F, S) / B$ and $\left(\mathcal{X}^{\prime}, F^{\prime}, S^{\prime}\right) / B^{\prime}$ along the fibers over $t_{2} \in B$ and $t_{2}^{\prime} \in B^{\prime}$, both of which are
isomorphic to $\left(X_{2}, f_{2}, s_{2}\right)$. Then $\left(\left(\mathcal{X}^{\prime \prime}, F^{\prime \prime}, S^{\prime \prime}\right) / B^{\prime \prime}, \phi_{o}\right)$ is a marked G-connected family, and hence $\left(X_{1}, f_{1}, s_{1}, \phi_{1}\right)$ and $\left(X_{3}, f_{3}, s_{3}, \phi_{3}\right)$ are G-connected.

We define a G-connected component of the moduli of elliptic $K 3$ surfaces of type (Φ, A) to be an equivalence class of the relation of G-connectedness of marked elliptic $K 3$ surfaces of type (Φ, A). We denote by $\mathfrak{C}(\Phi, A, G)$ the set of G-connected components of this moduli.

3.2. Lattice Invariant of Connected Components

In this section, we define a set $\mathcal{Q}(\Phi, A) / \sim_{G}$ in purely lattice-theoretic terms and establish a bijection

$$
\bar{\zeta}: \mathfrak{C}(\Phi, A, G) \xrightarrow{\sim} \mathcal{Q}(\Phi, A) / \sim_{G} .
$$

We denote by $L(\Phi)$ the root lattice with a fundamental root system Φ and put

$$
r_{\Phi}:=\operatorname{rank} L(\Phi)
$$

Let (X, f, s) be an elliptic $K 3$ surface of type (Φ, A). Recall that $M\left(\Phi_{f}\right)$ denotes the primitive closure of $L\left(\Phi_{f}\right)$ in $H^{2}(X, \mathbb{Z})$ and that U_{f} denotes the sublattice of $H^{2}(X, \mathbb{Z})$ generated by the class of a fiber of f and the class of the section s. Then U_{f} is an even unimodular hyperbolic \mathbb{Z}-lattice of rank 2, and is orthogonal to $L\left(\Phi_{f}\right)$ in $H^{2}(X, \mathbb{Z})$. Hence $U_{f} \oplus M\left(\Phi_{f}\right)$ is a primitive sublattice of $H^{2}(X, \mathbb{Z})$.

Proposition 3.2. We have $M\left(\Phi_{f}\right) / L\left(\Phi_{f}\right) \cong A$ and $\operatorname{Roots}\left(M\left(\Phi_{f}\right)\right)=$ $\operatorname{Roots}\left(L\left(\Phi_{f}\right)\right)$.

Proof. The isomorphism $M\left(\Phi_{f}\right) / L\left(\Phi_{f}\right) \cong A_{f} \cong A$ is classically known. See [27] for example. Note that $\operatorname{Roots}\left(M\left(\Phi_{f}\right)\right) \supset \operatorname{Roots}\left(L\left(\Phi_{f}\right)\right)$. Suppose that $\operatorname{Roots}\left(M\left(\Phi_{f}\right)\right)$ were strictly larger than $\operatorname{Roots}\left(L\left(\Phi_{f}\right)\right)$. Then there would be a smooth rational curve on X whose class is orthogonal to U_{f} but does not belong to Φ_{f}, which is a contradiction.

Since U_{f} is unimodular, we have a canonical isomorphism

$$
\left(D_{U_{f} \oplus M\left(\Phi_{f}\right)}, q_{U_{f} \oplus M\left(\Phi_{f}\right)}\right) \xrightarrow{\sim}\left(D_{M\left(\Phi_{f}\right)}, q_{M\left(\Phi_{f}\right)}\right) .
$$

Recall that T_{f} denotes the orthogonal complement of $U_{f} \oplus M\left(\Phi_{f}\right)$ in $H^{2}(X, \mathbb{Z})$. Then T_{f} is an even \mathbb{Z}-lattice of signature ($2,18-r_{\Phi}$). Moreover, Corollary 2.8 implies that we have a unique anti-isomorphism

$$
\alpha_{f}:\left(D_{M\left(\Phi_{f}\right)},-q_{M\left(\Phi_{f}\right)}\right) \xrightarrow{\sim}\left(D_{T_{f}}, q_{T_{f}}\right)
$$

of discriminant forms that gives rise to the even unimodular overlattice $H^{2}(X, \mathbb{Z})$ of $\left(U_{f} \oplus M\left(\Phi_{f}\right)\right) \oplus T_{f}$. Hence T_{f} belongs to the genus determined by the signature $\left(2,18-r_{\Phi}\right)$ and the finite quadratic form $\left(D_{M\left(\Phi_{f}\right)},-q_{M\left(\Phi_{f}\right)}\right)$. Let $\omega_{X} \in H^{2}(X, \mathbb{C})$ denote the class of a nowhere vanishing holomorphic 2-form on X, which is unique up to a nonzero multiplicative constant. We have $\omega_{X} \in T_{f} \otimes \mathbb{C}$,
$\left\langle\omega_{X}, \omega_{X}\right\rangle=0$, and $\left\langle\omega_{X}, \bar{\omega}_{X}\right\rangle>0$. Let $H^{1,1}(X, \mathbb{R})^{\perp}$ denote the orthogonal complement of $H^{1,1}(X, \mathbb{R})$ in $H^{2}(X, \mathbb{R})$. Then $H^{1,1}(X, \mathbb{R})^{\perp}$ is a positive definite two-dimensional \mathbb{R}-lattice. The two real vectors $\operatorname{Re} \omega_{X}$ and $\operatorname{Im} \omega_{X}$ in this order form an oriented orthogonal basis of the real subspace $H^{1,1}(X, \mathbb{R})^{\perp}$ of $T_{f} \otimes \mathbb{R}$. Thus the Hodge structure of $H^{2}(X)$ canonically defines a positive sign structure θ_{f} of T_{f}.

These geometric objects $M\left(\Phi_{f}\right), T_{f}, \alpha_{f}$, and θ_{f} motivate the following lattice-theoretic definitions.

Definition 3.3. For an even overlattice M of $L(\Phi)$, let $\mathcal{G}(M)$ denote the genus of even \mathbb{Z}-lattices determined by the signature $\left(2,18-r_{\Phi}\right)$ and the discriminant form $\left(D_{M},-q_{M}\right)$. Let $\mathcal{E}(\Phi, A)$ denote the set of even overlattices M of $L(\Phi)$ such that

- $M / L(\Phi) \cong A$ and $\operatorname{Roots}(M)=\operatorname{Roots}(L(\Phi))$, and
- $\mathcal{G}(M)$ is nonempty.

We define $\mathcal{Q}(\Phi, A)$ to be the set of quartets (M, T, α, θ) of the following objects: M is an element of $\mathcal{E}(\Phi, A), T$ is an even \mathbb{Z}-lattice belonging to the genus $\mathcal{G}(M)$, α is an isomorphism $\left(D_{M},-q_{M}\right) \xrightarrow{\sim}\left(D_{T}, q_{T}\right)$, and θ is a positive sign structure of T.

We define an equivalence relation \sim_{G} on the set $\mathcal{Q}(\Phi, A)$. Since we have a natural homomorphism $\operatorname{Aut}(\Phi) \rightarrow \mathrm{O}(L(\Phi))$, the subgroup G of $\operatorname{Aut}(\Phi)$ acts on the set $\mathcal{E}(\Phi, A)$. Note that this action is from the right. If $g \in G$ maps $M \in \mathcal{E}(\Phi, A)$ to $M^{\prime} \in \mathcal{E}(\Phi, A)$, then g induces an isometry $g \mid M: M \xrightarrow{\sim} M^{\prime}$ and hence an isomorphism $q_{g \mid M}:\left(D_{M}, q_{M}\right) \xrightarrow{\sim}\left(D_{M^{\prime}}, q_{M^{\prime}}\right)$.

Definition 3.4. Let (M, T, α, θ) and ($M^{\prime}, T^{\prime}, \alpha^{\prime}, \theta^{\prime}$) be elements of $\mathcal{Q}(\Phi, A)$. We put $(M, T, \alpha, \theta) \sim_{G}\left(M^{\prime}, T^{\prime}, \alpha^{\prime}, \theta^{\prime}\right)$ if there exist an automorphism $g \in G$ and an isometry $\psi: T \xrightarrow{\sim} T^{\prime}$ with the following properties:

- g maps M to M^{\prime},
- ψ maps θ to θ^{\prime}, and
- the following diagram is commutative:

Next, we define a map $\bar{\zeta}$ from $\mathfrak{C}(\Phi, A, G)$ to $\mathcal{Q}(\Phi, A) / \sim_{G}$. Let (X, f, s, ϕ) be a marked elliptic $K 3$ surface of type (Φ, A). The marking $\phi: \Phi \xrightarrow{\sim} \Phi_{f}$ induces an isometry $\phi_{L}: L(\Phi) \xrightarrow{\sim} L\left(\Phi_{f}\right)$. By Proposition 3.2 and the existence of T_{f}, there exists a unique element $M_{f, \phi}$ of $\mathcal{E}(\Phi, A)$ such that the isometry ϕ_{L} induces an isometry $\phi_{M}: M_{f, \phi} \xrightarrow{\sim} M\left(\Phi_{f}\right)$. The composite of the isomorphism $\left(D_{M_{f, \phi}}, q_{M_{f, \phi}}\right) \xrightarrow{\sim}\left(D_{M\left(\Phi_{f}\right)}, q_{M\left(\Phi_{f}\right)}\right)$ induced by ϕ_{M} and the isomorphism α_{f}
yields an isomorphism

$$
\alpha_{f, \phi}:\left(D_{M_{f, \phi}},-q_{M_{f, \phi}}\right) \xrightarrow{\sim}\left(D_{T_{f}}, q_{T_{f}}\right) .
$$

Thus we obtain a quartet

$$
\zeta(X, f, s, \phi):=\left(M_{f, \phi}, T_{f}, \alpha_{f, \phi}, \theta_{f}\right) \in \mathcal{Q}(\Phi, A)
$$

Suppose that marked elliptic $K 3$ surfaces (X, f, s, ϕ) and $\left(X^{\prime}, f^{\prime}, s^{\prime}, \phi^{\prime}\right)$ are G isomorphic. Then we obviously have $\zeta(X, f, s, \phi) \sim_{G} \zeta\left(X^{\prime}, f^{\prime}, s^{\prime}, \phi^{\prime}\right)$ by definitions. Let $\left((\mathcal{X}, F, S) / B, \phi_{o}\right)$ be a marked G-connected family of elliptic $K 3$ surfaces of type (Φ, A). For a point $t \in B$, let $\left(X_{t}, f_{t}, s_{t}\right)$ denote the fiber of $(\mathcal{X}, F, S) / B$ over t, and let $\Phi_{t}, U_{t}, L\left(\Phi_{t}\right), M\left(\Phi_{t}\right), T_{t}, \alpha_{t}$, and θ_{t} be the geometric objects associated with $\left(X_{t}, f_{t}, s_{t}\right)$. Let $\phi_{t}: \Phi \stackrel{\sim}{\rightarrow} \Phi_{t}$ be the marking of $\left(X_{t}, f_{t}, s_{t}\right)$ induced by a path $\gamma:[0,1] \rightarrow B$ connecting o and t. The transportation along γ induces an isometry $H^{2}\left(X_{o}, \mathbb{Z}\right) \xrightarrow{\sim} H^{2}\left(X_{t}, \mathbb{Z}\right)$, and this isometry induces isometries of sublattices $U_{o} \xrightarrow{\sim} U_{t}, L\left(\Phi_{o}\right) \xrightarrow{\sim} L\left(\Phi_{t}\right), M\left(\Phi_{o}\right) \xrightarrow{\sim} M\left(\Phi_{t}\right)$, and $T_{o} \xrightarrow{\sim} T_{t}$. Hence the anti-isometries α_{o} and α_{t} are compatible with the isomorphisms $\left(D_{M_{o}}, q_{M_{o}}\right) \xrightarrow{\sim}\left(D_{M_{t}}, q_{M_{t}}\right)$ and $\left(D_{T_{o}}, q_{T_{o}}\right) \xrightarrow{\sim}\left(D_{T_{t}}, q_{T_{t}}\right)$ obtained by the transportation along γ. Since θ_{t} is defined by the Hodge structure of X_{t}, the analytic structure of $F: \mathcal{X} \rightarrow B$ implies that the isometry $T_{o} \xrightarrow{\sim} T_{t}$ along γ maps θ_{o} to θ_{t}. Hence we have $\zeta\left(X_{o}, f_{o}, s_{o}, \phi_{o}\right) \sim_{G} \zeta\left(X_{t}, f_{t}, s_{t}, \phi_{t}\right)$. In other words, the map ζ induces a map

$$
\bar{\zeta}: \mathfrak{C}(\Phi, A, G) \rightarrow \mathcal{Q}(\Phi, A) / \sim_{G}
$$

Theorem 3.5. The map $\bar{\zeta}$ is a bijection.

Proof. Let (M, T, α, θ) be an element of $\mathcal{Q}(\Phi, A)$. Let U denote the even unimodular hyperbolic \mathbb{Z}-lattice of rank 2 with a basis $v_{\text {fib }}, v_{\text {zero }}$ and the Gram matrix

$$
\left[\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right]
$$

We define H to be the even unimodular overlattice of $(U \oplus M) \oplus T$ defined by the anti-isometry

$$
\left(D_{U \oplus M},-q_{U \oplus M}\right)=\left(D_{M},-q_{M}\right) \underset{\alpha}{\sim}\left(D_{T}, q_{T}\right)
$$

of the discriminant forms given by α. Then H is a $K 3$-lattice. An H-marking of a $K 3$ surface X is an isometry $\mu: H \xrightarrow{\sim} H^{2}(X, \mathbb{Z})$.

Let $\mathbb{P}_{*}(T \otimes \mathbb{C})$ denote the projective space of one-dimensional subspaces of $T \otimes \mathbb{C}$. We put

$$
\Omega_{T}:=\left\{\mathbb{C} \omega \in \mathbb{P}_{*}(T \otimes \mathbb{C}) \mid\langle\omega, \omega\rangle=0,\langle\omega, \bar{\omega}\rangle>0\right\}
$$

A nonzero vector $\omega=u+\sqrt{-1} v \in T \otimes \mathbb{C}$ with $u, v \in V:=T \otimes \mathbb{R}$ satisfies $\mathbb{C} \omega \in \Omega_{T}$ if and only if (u, v) belongs to

$$
Z:=\{(x, y) \in V \times V \mid\langle x, x\rangle=\langle y, y\rangle>0,\langle x, y\rangle=0\}
$$

The image Z_{1} of the first projection pr: $Z \rightarrow V$ is connected, and $\pi_{1}\left(Z_{1}\right) \cong \mathbb{Z}$. Since $t_{+}=2$, the orthogonal complement of a vector $u \in Z_{1}$ in V has signature $\left(1, t_{-}\right)$, and hence $\operatorname{pr}^{-1}(u)=\{y \in V \mid\langle y, y\rangle=\langle u, u\rangle,\langle u, y\rangle=0\}$ has two connected components. We can easily see that $\pi_{1}\left(Z_{1}\right)$ acts on the set of these connected components trivially. Therefore Ω_{T} has exactly two connected components, and they are complex conjugate to each other. For $\mathbb{C} \omega \in \Omega_{T}$, the ordered pair of vectors $\operatorname{Re} \omega$ and $\operatorname{Im} \omega$ in $T \otimes \mathbb{R}$ defines an oriented positive definite twodimensional subspace of $T \otimes \mathbb{R}$. By this correspondence, the set of connected components of Ω_{T} can be identified with the set of positive sign structures of T. Let $\Omega_{(T, \theta)}$ be the connected component corresponding to θ.

By the theory of the refined period map of marked $K 3$ surfaces, which is stated in Barth, Hulek, Peters, and Van de Ven [3, Chapter VIII], we see that there exists a universal family

$$
\mathcal{F}_{(M, T, \alpha, \theta)}: \mathcal{X} \rightarrow \Omega_{(T, \theta)}^{0}
$$

of H-marked $K 3$ surfaces $\left(X_{t}, \mu_{t}\right)$ with parameter space $\Omega_{(T, \theta)}^{0}$ being an open dense subset of $\Omega_{(T, \theta)}$ such that, for each $t \in \Omega_{(T, \theta)}^{0}$, the H-marking $\mu_{t}: H \xrightarrow{\sim}$ $H^{2}\left(X_{t}, \mathbb{Z}\right)$ satisfies the following:

- $\mu_{t} \otimes \mathbb{C}$ maps $\mathbb{C} \omega_{t}$ to $H^{2,0}\left(X_{t}\right)$, where $\mathbb{C} \omega_{t}$ is the one-dimensional subspace of $T \otimes \mathbb{C} \subset H \otimes \mathbb{C}$ corresponding to the point t, and hence the Néron-Severi lattice $\operatorname{NS}\left(X_{t}\right)$ of X_{t} contains the primitive sublattice $\mu_{t}(U \oplus M)$ of $H^{2}\left(X_{t}, \mathbb{Z}\right)$, and
- μ_{t} maps the vectors $v_{\mathrm{fib}} \in U, v_{\text {zero }} \in U$, and each $r \in \Phi \subset H$ to the classes of certain irreducible curves F, Z, and C_{r} on X_{t}, respectively.
Then the complete linear system $|F|$ defines an elliptic fibration $f_{t}: X_{t} \rightarrow \mathbb{P}^{1}$ and Z provides us with a section s_{t} of f_{t}. Moreover, the set $\left\{C_{r} \mid r \in \Phi\right\}$ is the set of smooth rational curves on X_{t} contracted by f_{t} and disjoint from s_{t}, and hence $\Phi_{t}:=\Phi_{f_{t}}$ is equal to $\left\{\left[C_{r}\right] \mid r \in \Phi\right\}$. We have $M\left(\Phi_{t}\right) / L\left(\Phi_{t}\right) \cong M / L(\Phi) \cong A$. Therefore $\left(X_{t}, f_{t}, s_{t}\right)$ is of type (Φ, A), and the H-marking μ_{t} yields a marking $\phi_{t}: \Phi \xrightarrow{\sim} \Phi_{t}$.

Thus, each element (M, T, α, θ) of $\mathcal{Q}(\Phi, A)$ gives a connected family $\mathcal{F}_{(M, T, \alpha, \theta)}$ of marked elliptic $K 3$ surfaces of type (Φ, A). By the existence of H markings, the monodromy of the family $\left\{\Phi_{t} \mid t \in \Omega_{(T, \theta)}^{0}\right\}$ of $A D E$-configurations is trivial. Any marked elliptic $K 3$ surface (X, f, s, ϕ) of type (Φ, A) is isomorphic to a member of the family $\mathcal{F}_{\zeta(X, f, s, \phi)}$. Hence the surjectivity of $\bar{\zeta}$ follows. It follows from the universality of the family $\mathcal{F}_{\zeta(X, f, s, \phi)}$ that, if $(M, T, \alpha, \theta) \sim_{G}$ $\left(M^{\prime}, T^{\prime}, \alpha^{\prime}, \theta^{\prime}\right)$, then each member of $\mathcal{F}_{\zeta(X, f, s, \phi)}$ is G-isomorphic to a member of $\mathcal{F}_{\left(M^{\prime}, T^{\prime}, \alpha^{\prime}, \theta^{\prime}\right)}$. Hence $\bar{\zeta}$ is injective.

3.3. Computation of the $\operatorname{Set} \mathcal{Q}(\Phi, A) / \sim_{G}$

Thus our problem of computing the set $\mathfrak{C}(\Phi, A, G)$ is reduced to the calculation of the set $\mathcal{Q}(\Phi, A) / \sim_{G}$.

Recall that G acts on the set $\mathcal{E}(\Phi, A)$ from the right. We have a projection

$$
\mathrm{pr}_{1}: \mathcal{Q}(\Phi, A) / \sim_{G} \rightarrow \mathcal{E}(\Phi, A) / G
$$

given by $(M, T, \alpha, \theta) \mapsto M$. The set of even overlattices of $L(\Phi)$ and the action of G on it can be easily calculated by Proposition 2.7. From each G-orbit, we choose an even overlattice M, calculate $M / L(\Phi)$ and Roots (M), and determine whether $\mathcal{G}(M)$ is empty or not by the criterion of Theorem 2.12. In this way, we can compute the set $\mathcal{E}(\Phi, A) / G$.

Remark 3.6. For the calculation of $\operatorname{Roots}(M)$, the technique of the lattice reduction bases by Lenstra, Lenstra, and Lovász [12] is very useful. See [5, Chapter 2].

The notion of algebraic equivalence of connected components defined in Definitions 1.3 and 1.4 is now succinctly defined as follows.

Definition 3.7. We say that two connected components $\mathcal{C}_{1}, \mathcal{C}_{2} \in \mathfrak{C}(\Phi, A, G)$ are algebraically equivalent if $\operatorname{pr}_{1}\left(\bar{\zeta}\left(\mathcal{C}_{1}\right)\right)=\operatorname{pr}_{1}\left(\bar{\zeta}\left(\mathcal{C}_{2}\right)\right)$.

For a positive sign structure θ of T, let $-\theta$ denote the other positive sign structure. The mapping $(M, T, \alpha, \theta) \mapsto(M, T, \alpha,-\theta)$ defines an involution

$$
c: \mathcal{Q}(\Phi, A) / \sim_{G} \rightarrow \mathcal{Q}(\Phi, A) / \sim_{G} .
$$

It is obvious that, via the bijection $\bar{\zeta}$, this involution c corresponds to the action of $\operatorname{Gal}(\mathbb{C} / \mathbb{R})$ on $\mathfrak{C}(\Phi, A, G)$.

Definition 3.8. Let $\mathcal{C}_{1}, \mathcal{C}_{2} \in \mathfrak{C}(\Phi, A, G)$ be two connected components. We say that \mathcal{C}_{1} is complex conjugate to \mathcal{C}_{2} if $c\left(\bar{\zeta}\left(\mathcal{C}_{1}\right)\right)=\bar{\zeta}\left(\mathcal{C}_{2}\right)$. We say that \mathcal{C}_{1} is real if $c\left(\bar{\zeta}\left(\mathcal{C}_{1}\right)\right)=\bar{\zeta}\left(\mathcal{C}_{1}\right)$.

We fix an even overlattice $M \in \mathcal{E}(\Phi, A)$. Our next task is to calculate the fiber of pr_{1} over the G-orbit [M] containing M. Let $\operatorname{Stab}(M) \subset G$ denote the stabilizer subgroup of M for the action of G on $\mathcal{E}(\Phi, A)$. Then we have a natural homomorphism

$$
\operatorname{Stab}(M) \rightarrow \mathrm{O}(M)
$$

To ease the notation in the next section, we put

$$
\mathcal{G}:=\mathcal{G}(M), \quad\left(D_{\mathcal{G}}, q_{\mathcal{G}}\right):=\left(D_{M},-q_{M}\right)
$$

We further denote by

$$
\bar{G} \subset \mathrm{O}\left(D_{\mathcal{G}}, q_{\mathcal{G}}\right)
$$

the image of $\operatorname{Stab}(M)$ by the natural homomorphism $\mathrm{O}(M) \rightarrow \mathrm{O}\left(D_{\mathcal{G}}, q_{\mathcal{G}}\right)$.
Definition 3.9. Let $\mathcal{T}_{\mathcal{G}}$ be the set of triples (T, α, θ), where T is an even \mathbb{Z}-lattice belonging to \mathcal{G}, α is an isomorphism $\left(D_{\mathcal{G}}, q_{\mathcal{G}}\right) \xrightarrow{\sim}\left(D_{T}, q_{T}\right)$ of finite quadratic forms, and θ is a positive sign structure of T.

We define an equivalence relation $\sim_{\bar{G}}$ on $\mathcal{T}_{\mathcal{G}}$ as follows.

Definition 3.10. Let (T, α, θ) and $\left(T^{\prime}, \alpha^{\prime}, \theta^{\prime}\right)$ be triples belonging to $\mathcal{T}_{\mathcal{G}}$. We put $(T, \alpha, \theta) \sim_{\bar{G}}\left(T^{\prime}, \alpha^{\prime}, \theta^{\prime}\right)$ if there exist an element $g \in \bar{G}$ and an isometry $\phi: T \xrightarrow{\sim}$ T^{\prime} that satisfy the following:

- The diagram

$$
\begin{array}{ccc}
\left(D_{\mathcal{G}}, q_{\mathcal{G}}\right) & \xrightarrow{g} & \left(D_{\mathcal{G}}, q_{\mathcal{G}}\right) \\
\alpha \downarrow & & \downarrow \alpha^{\prime} \\
\left(D_{T}, q_{T}\right) & \underset{q_{\phi}}{\longrightarrow} & \left(D_{T^{\prime}}, q_{T^{\prime}}\right)
\end{array}
$$

commutes.

- The isometry ϕ maps θ to θ^{\prime}.

Then it is easy to see that the fiber of pr_{1} over $[M] \in \mathcal{E}(\Phi, A) / G$ is canonically identified with $\mathcal{T}_{\mathcal{G}} / \sim_{\bar{G}}$. In the next section, we present an algorithm to calculate the set $\mathcal{T}_{\mathcal{G}} / \sim_{\bar{G}}$.

4. Miranda-Morrison Theory

This section and the next section are devoted to purely lattice-theoretic investigations and are completely independent of the geometry of $K 3$ surfaces.

Let \mathcal{G} be a nonempty genus of even \mathbb{Z}-lattices determined by a signature $\left(t_{+}, t_{-}\right)$with $t_{+}=2$ and a nondegenerate finite quadratic form $\left(D_{\mathcal{G}}, q_{\mathcal{G}}\right)$. Let \bar{G} be a subgroup of $\mathrm{O}\left(D_{\mathcal{G}}, q_{\mathcal{G}}\right)$. We give an algorithm to calculate the set $\mathcal{T}_{\mathcal{G}} / \sim_{\bar{G}}$ defined in Definitions 3.9 and 3.10. We put

$$
\text { Sign }:=\{1,-1\} .
$$

For a vector v of an even lattice, we put

$$
Q(v):=\frac{\langle v, v\rangle}{2} .
$$

4.1. Spinor Norm

Let R be $\mathbb{Z}, \mathbb{Z}_{p}$, or \mathbb{R}, let k denote the quotient field of R, and let L be an even R lattice. Let v be a vector of $L \otimes k$ such that $Q(v) \neq 0$. Then we have the reflection $\tau(v) \in \mathrm{O}(L \otimes k)$ defined by

$$
\tau(v): x \mapsto x-\frac{\langle x, v\rangle}{Q(v)} v .
$$

The classical theorem of Cartan (see [4, Chapter 1]) says that $\mathrm{O}(L \otimes k)$ is generated by reflections. Suppose that an isometry $g \in \mathrm{O}(L)$ is decomposed into a product $\tau\left(v_{1}\right) \cdots \tau\left(v_{m}\right)$ of reflections in $\mathrm{O}(L \otimes k)$. We define the spinor norm $\operatorname{spin}(g)$ of g by

$$
\operatorname{spin}(g):=Q\left(v_{1}\right) \cdots Q\left(v_{m}\right) \bmod \left(k^{\times}\right)^{2}
$$

It is known that $\operatorname{spin}(g) \in k^{\times} /\left(k^{\times}\right)^{2}$ does not depend on the choice of the decomposition $g=\tau\left(v_{1}\right) \cdots \tau\left(v_{m}\right)$, and hence the map spin: $\mathrm{O}(L) \rightarrow k^{\times} /\left(k^{\times}\right)^{2}$ is a group homomorphism. See [4, Chapter 10].

Remark 4.1. We use the definition of $\operatorname{spin}(g)$ of $g=\tau\left(v_{1}\right) \cdots \tau\left(v_{m}\right)$ given in [14], which differs from that given in [4] by the multiplicative factor $2^{m} \in$ $k^{\times} /\left(k^{\times}\right)^{2}$.

The following is given in [13]. See also [15].
Proposition 4.2. Suppose that L is an \mathbb{R}-lattice, so that the spinor norm takes values in Sign. The action of an isometry $g \in \mathrm{O}(L)$ on the set of positive sign structures of L is trivial if and only if $\operatorname{det}(g) \cdot \operatorname{spin}(g)>0$.

4.2. The Case of Positive Definite Genus

Suppose that $t_{-}=0$, so that \mathcal{G} is a genus of even positive definite \mathbb{Z}-lattices of rank 2. By an algorithm that goes back to Gauss (see, e.g., [6, Chapter 15]), we can make the complete set of isomorphism classes of even positive definite \mathbb{Z} lattices of rank 2 with discriminant $\left|D_{\mathcal{G}}\right|$. From this list, we sort out those lattices whose discriminant forms are isomorphic to $\left(D_{\mathcal{G}}, q_{\mathcal{G}}\right)$ and calculate a complete set

$$
\left\{T_{1}, \ldots, T_{k}\right\}
$$

of representatives of the genus \mathcal{G}. For each T in this list, we calculate the finite groups $\mathrm{O}(T)$ and $\mathrm{O}\left(D_{T}, q_{T}\right)$, an isomorphism $\alpha_{0}:\left(D_{\mathcal{G}}, q_{\mathcal{G}}\right) \xrightarrow{\sim}\left(D_{T}, q_{T}\right)$, and the natural homomorphism $\mathrm{O}(T) \rightarrow \mathrm{O}\left(D_{T}, q_{T}\right)$. Then the set of isomorphisms from $\left(D_{\mathcal{G}}, q_{\mathcal{G}}\right)$ to $\left(D_{T}, q_{T}\right)$ is equal to

$$
\left\{\alpha_{0} \cdot h \mid h \in \mathrm{O}\left(D_{T}, q_{T}\right)\right\}=\left\{h^{\prime} \cdot \alpha_{0} \mid h^{\prime} \in \mathrm{O}\left(D_{\mathcal{G}}, q_{\mathcal{G}}\right)\right\}
$$

Let $\alpha_{0 *}: \mathrm{O}\left(D_{\mathcal{G}}, q_{\mathcal{G}}\right) \xrightarrow{\sim} \mathrm{O}\left(D_{T}, q_{T}\right)$ be the isomorphism induced by α_{0}. Since T is positive definite, an isometry \tilde{h} of T preserves the positive sign structures of T if and only if $\operatorname{det}(\tilde{h})=1$. We make $\bar{G} \subset \mathrm{O}\left(D_{\mathcal{G}}, q_{\mathcal{G}}\right)$ act on $\mathrm{O}\left(D_{T}, q_{T}\right) \times \operatorname{Sign}$ from the left by

$$
(g,(\gamma, \theta)) \mapsto\left(\alpha_{0 *}(g) \cdot \gamma, \theta\right), \quad \text { where } g \in \bar{G} \text { and }(\gamma, \theta) \in \mathrm{O}\left(D_{T}, q_{T}\right) \times \text { Sign. }
$$

We also make $\mathrm{O}(T)$ act on $\mathrm{O}\left(D_{T}, q_{T}\right) \times$ Sign from the right by
$((\gamma, \theta), \tilde{h}) \mapsto(\gamma \cdot h, \operatorname{det}(\tilde{h}) \cdot \theta), \quad$ where $h \in \mathrm{O}\left(D_{T}, q_{T}\right)$ is induced by $\tilde{h} \in \mathrm{O}(T)$.
We consider the set of orbits

$$
\operatorname{Orb}(T):=\bar{G} \backslash\left(\mathrm{O}\left(D_{T}, q_{T}\right) \times \operatorname{Sign}\right) / \mathrm{O}(T)
$$

under these actions. Then the set of all $\left(T, \alpha_{0} \cdot \gamma, \theta\right) \in \mathcal{T}_{\mathcal{G}}$, where T runs through the set $\left\{T_{1}, \ldots, T_{k}\right\}$, and for each $T,(\gamma, \theta)$ runs through the set of representatives of $\operatorname{Orb}(T)$, is a complete set of representatives of $\mathcal{T}_{\mathcal{G}} / \sim_{\bar{G}}$. By this algorithm, we compute Table 2.

4.3. Miranda-Morrison Theory

From now on to the end of this section, we assume that $t_{-}>0$. Hence \mathcal{G} is a genus of even indefinite \mathbb{Z}-lattices of rank ≥ 3. We formulate a refinement of Miranda-Morrison theory [14] on the structure of a genus of this kind.

We first review the original version of Miranda-Morrison theory, which calculates the set $\mathcal{T}_{\mathcal{G}}^{\prime} / \sim$ defined as follows. Let $\mathcal{T}_{\mathcal{G}}^{\prime}$ be the set of pairs (T, α), where T is an even \mathbb{Z}-lattice belonging to \mathcal{G}, and α is an isomorphism $\left(D_{\mathcal{G}}, q_{\mathcal{G}}\right) \xrightarrow{\sim}\left(D_{T}, q_{T}\right)$. For elements (T, α) and $\left(T^{\prime}, \alpha^{\prime}\right)$ of $\mathcal{T}_{\mathcal{G}}^{\prime}$, we put $(T, \alpha) \sim\left(T^{\prime}, \alpha^{\prime}\right)$ if there exists an isometry $\phi: T \xrightarrow{\sim} T^{\prime}$ such that the diagram

$$
\begin{array}{ccc}
\left(D_{\mathcal{G}}, q_{\mathcal{G}}\right) & = & \left(D_{\mathcal{G}}, q_{\mathcal{G}}\right) \\
\alpha \downarrow & & \downarrow \alpha^{\prime} \\
\left(D_{T}, q_{T}\right) & \underset{q_{\phi}}{\longrightarrow} & \left(D_{T^{\prime}}, q_{T^{\prime}}\right)
\end{array}
$$

commutes.
We fix an element (L, λ) of $\mathcal{T}_{\mathcal{G}}^{\prime}$ and put

$$
\begin{aligned}
\mathrm{O}_{\mathbb{A}, 0}(L) & :=\prod_{p} \mathrm{O}\left(L \otimes \mathbb{Z}_{p}\right) \\
\mathrm{O}_{\mathbb{A}}(L) & :=\left\{\left(\sigma_{p}\right) \in \prod_{p} \mathrm{O}\left(L \otimes \mathbb{Q}_{p}\right) \mid \sigma_{p} \in \mathrm{O}\left(L \otimes \mathbb{Z}_{p}\right) \text { for almost all } p\right\} .
\end{aligned}
$$

Note that we have a natural homomorphism $\mathrm{O}(L \otimes \mathbb{Q}) \rightarrow \mathrm{O}_{\mathbb{A}}(L)$. Let $\sigma=\left(\sigma_{p}\right)$ be an element of $\mathrm{O}_{\mathbb{A}}(L)$. Then there exists a unique \mathbb{Z}-submodule L^{σ} of $L \otimes \mathbb{Q}$ such that $L^{\sigma} \otimes \mathbb{Z}_{p}=\left(L \otimes \mathbb{Z}_{p}\right)^{\sigma_{p}}$ in $L \otimes \mathbb{Q}_{p}$ for all p, where $\left(L \otimes \mathbb{Z}_{p}\right)^{\sigma_{p}}$ is the image of $L \otimes \mathbb{Z}_{p} \subset L \otimes \mathbb{Q}_{p}$ by $\sigma_{p} \in \mathrm{O}\left(L \otimes \mathbb{Q}_{p}\right)$. (See Theorem 4.1 in [14, Chapter VI].) We restrict the symmetric bilinear form of $L \otimes \mathbb{Q}$ to L^{σ}. Since the \mathbb{Z}_{p}-lattices $L^{\sigma} \otimes \mathbb{Z}_{p}$ and $L \otimes \mathbb{Z}_{p}$ are isomorphic for all p, we see that L^{σ} is an even \mathbb{Z} lattice belonging to \mathcal{G}. Note that we have $L^{\sigma}=L$ if and only if $\sigma \in \mathrm{O}_{\mathbb{A}, 0}(L)$. Let $\boldsymbol{\tau}=\left(\tau_{p}\right)$ be an element of $\mathrm{O}_{\mathbb{A}}(L)$. Then each component τ_{p} of $\boldsymbol{\tau}$ induces an isometry $L^{\sigma} \otimes \mathbb{Z}_{p} \xrightarrow{\sim} L^{\sigma \tau} \otimes \mathbb{Z}_{p}$ and hence induces an isomorphism

$$
q_{\tau_{p}}:\left(D_{L^{\sigma} \otimes \mathbb{Z}_{p}}, q_{L^{\sigma} \otimes \mathbb{Z}_{p}}\right) \xrightarrow{\sim}\left(D_{L^{\sigma \tau}} \otimes \mathbb{Z}_{p}, q_{L^{\sigma \tau} \otimes \mathbb{Z}_{p}}\right) .
$$

Their product over the primes p dividing $|\operatorname{disc}(L)|=\left|D_{\mathcal{G}}\right|$ gives rise to an isomorphism

$$
\left.q_{\tau}\right|_{L^{\sigma}}:\left(D_{L^{\sigma}}, q_{L^{\sigma}}\right) \xrightarrow{\sim}\left(D_{L^{\sigma \tau}}, q_{L^{\sigma \tau}}\right) .
$$

If $\boldsymbol{\tau} \in \mathrm{O}_{\mathbb{A}, 0}(L)$, then $\left.q_{\tau}\right|_{L} \in \mathrm{O}\left(D_{L}, q_{L}\right)$. As a corollary of Proposition 2.6, we obtain the following:

Proposition 4.3. The homomorphism $\mathrm{O}_{\mathbb{A}, 0}(L) \rightarrow \mathrm{O}\left(D_{L}, q_{L}\right)$ given by $\left.\boldsymbol{\tau} \mapsto q_{\tau}\right|_{L}$ is surjective.

For $\sigma \in \mathrm{O}_{\mathbb{A}}(L)$, we put

$$
\lambda^{\sigma}:=\left.\lambda \cdot q_{\sigma}\right|_{L}:\left(D_{\mathcal{G}}, q_{\mathcal{G}}\right) \xrightarrow{\sim}\left(D_{L^{\sigma}}, q_{L^{\sigma}}\right) .
$$

Thus we obtain a map $\mathrm{O}_{\mathbb{A}}(L) \rightarrow \mathcal{T}_{\mathcal{G}}^{\prime}$ given by $\sigma \mapsto\left(L^{\sigma}, \lambda^{\sigma}\right)$. We show that this map is surjective. Let (T, α) be an arbitrary element of $\mathcal{T}_{\mathcal{G}}^{\prime}$. By Proposition 2.14, we can assume that T is embedded into $L \otimes \mathbb{Q}$ isometrically, and hence we have $L \otimes \mathbb{Q}=T \otimes \mathbb{Q}$. Then the equality $L \otimes \mathbb{Z}_{p}=T \otimes \mathbb{Z}_{p}$ holds in $L \otimes \mathbb{Q}_{p}$ for almost all p. For each p, we have an isometry $\sigma_{p}: L \otimes \mathbb{Z}_{p} \xrightarrow{\sim} T \otimes \mathbb{Z}_{p}$, which we regard as an element of $\mathrm{O}\left(L \otimes \mathbb{Q}_{p}\right)$. We put $\sigma:=\left(\sigma_{p}\right)$. Since $L \otimes \mathbb{Z}_{p}=T \otimes \mathbb{Z}_{p}$ for almost all p, we see that σ belongs to $\mathrm{O}_{\mathbb{A}}(L)$, and we have $T=L^{\sigma}$. We also obtain an isomorphism $\left.q_{\sigma}\right|_{L}:\left(D_{L}, q_{L}\right) \xrightarrow{\sim}\left(D_{T}, q_{T}\right)$. Consider the diagram

$$
\stackrel{\alpha}{\swarrow}_{\left(D_{T}, q_{T}\right)}^{\stackrel{\left(D_{\mathcal{G}}, q_{\mathcal{G}}\right)}{q_{\sigma} \mid L}} \stackrel{\searrow^{\lambda}}{\left(D_{L}, q_{L}\right)}
$$

We see that $\lambda^{-1} \cdot \alpha \cdot\left(\left.q_{\sigma}\right|_{L}\right)^{-1}$ belongs to $\mathrm{O}\left(D_{L}, q_{L}\right)$. By Proposition 4.3, there exists an element $\rho \in \mathrm{O}_{\mathbb{A}, 0}(L)$ such that $\left.q_{\rho}\right|_{L}=\lambda^{-1} \cdot \alpha \cdot\left(\left.q_{\sigma}\right|_{L}\right)^{-1}$. Then we have $(T, \alpha)=\left(L^{\rho \sigma}, \lambda^{\rho \sigma}\right)$. Therefore the mapping $\sigma \mapsto\left(L^{\sigma}, \lambda^{\sigma}\right)$ is surjective, and we obtain

$$
\mathrm{O}_{\mathbb{A}}(L) \rightarrow \mathcal{T}_{\mathcal{G}}^{\prime} \rightarrow \mathcal{T}_{\mathcal{G}}^{\prime} / \sim
$$

Let U_{p} denote the image of the natural homomorphism $\mathbb{Z}_{p}^{\times} \hookrightarrow \mathbb{Q}_{p}^{\times} \rightarrow$ $\mathbb{Q}_{p}^{\times} /\left(\mathbb{Q}_{p}^{\times}\right)^{2}$. Recall that Det $=\{1,-1\}$. We put

$$
\Gamma_{p, 0}:=\operatorname{Det} \times U_{p} \subset \Gamma_{p}:=\operatorname{Det} \times \mathbb{Q}_{p}^{\times} /\left(\mathbb{Q}_{p}^{\times}\right)^{2}
$$

Note that Γ_{p} is an elementary 2-group of rank 4 if $p=2$ and of rank 3 if $p>2$ and that $\Gamma_{p, 0}$ is of index 2 in Γ_{p}. We consider the homomorphism

$$
\left(\text { det, spin) }: \mathrm{O}\left(L \otimes \mathbb{Z}_{p}\right) \rightarrow \Gamma_{p}\right.
$$

Definition 4.4. Let $\mathrm{O}^{\sharp}\left(L \otimes \mathbb{Z}_{p}\right)$ denote the kernel of the natural homomorphism $\mathrm{O}\left(L \otimes \mathbb{Z}_{p}\right) \rightarrow \mathrm{O}\left(D_{L \otimes \mathbb{Z}_{p}}, q_{L \otimes \mathbb{Z}_{p}}\right)$, and let $\Sigma^{\sharp}\left(L \otimes \mathbb{Z}_{p}\right)$ denote the image of $\mathrm{O}^{\sharp}\left(L \otimes \mathbb{Z}_{p}\right)$ by (det, spin).

The Abelian group $\Sigma^{\sharp}\left(L \otimes \mathbb{Z}_{p}\right)$ is completely calculated in [16] and [14, Chapter VII]. In particular, we have the following proposition. (See Theorems 12.112.4 and Corollary 12.11 in [14, Chapter VII].) Recall that we have assumed that L is of rank ≥ 3.

Proposition 4.5. (1) We have $\Sigma^{\sharp}\left(L \otimes \mathbb{Z}_{p}\right) \subset \Gamma_{p, 0}$.
(2) If $L \otimes \mathbb{Z}_{p}$ is unimodular, then $\Sigma^{\sharp}\left(L \otimes \mathbb{Z}_{p}\right)=\Gamma_{p, 0}$.

We put

$$
\Gamma_{\mathbb{A}, 0}:=\prod_{p} \Gamma_{p, 0} \subset \Gamma_{\mathbb{A}}:=\left\{\left(\gamma_{p}\right) \in \prod_{p} \Gamma_{p} \mid \gamma_{p} \in \Gamma_{p, 0} \text { for almost all } p\right\}
$$

If $L \otimes \mathbb{Z}_{p}$ is unimodular, we have $\mathrm{O}^{\sharp}\left(L \otimes \mathbb{Z}_{p}\right)=\mathrm{O}\left(L \otimes \mathbb{Z}_{p}\right)$, and hence Proposition 4.5 implies that the image of $\mathrm{O}\left(L \otimes \mathbb{Z}_{p}\right)$ by (det, spin) is $\Gamma_{p, 0}$. Since $L \otimes \mathbb{Z}_{p}$
is unimodular for almost all p, we obtain a homomorphism

$$
(\operatorname{det}, \operatorname{spin}): \mathrm{O}_{\mathbb{A}}(L) \rightarrow \Gamma_{\mathbb{A}} .
$$

We put

$$
\Sigma_{\mathbb{A}}^{\sharp}(L):=\prod_{p} \Sigma^{\sharp}\left(L \otimes \mathbb{Z}_{p}\right) \subset \Gamma_{\mathbb{A}, 0} .
$$

Finally, we put

$$
\Gamma_{\mathbb{Q}}:=\operatorname{Det} \times \mathbb{Q}^{\times} /\left(\mathbb{Q}^{\times}\right)^{2}
$$

and embed $\Gamma_{\mathbb{Q}}$ into $\Gamma_{\mathbb{A}}$ naturally. We have the following proposition. See Proposition 6.1 in [14, Chapter V].

Proposition 4.6. If V is an indefinite \mathbb{Q}-lattice of rank ≥ 3, then the homomorphism (det, spin): $\mathrm{O}(V) \rightarrow \Gamma_{\mathbb{Q}}$ is surjective.

One of the principal results of Miranda-Morrison theory is as follows (see Theorem 3.1 in [14, Chapter VIII]).

Theorem 4.7. Let $\boldsymbol{\sigma}$ and $\boldsymbol{\tau}$ be in $\mathrm{O}_{\mathbb{A}}(L)$. Then we have $\left(L^{\sigma}, \lambda^{\sigma}\right) \sim\left(L^{\tau}, \lambda^{\tau}\right)$ if and only if

$$
(\operatorname{det}(\boldsymbol{\sigma}), \operatorname{spin}(\boldsymbol{\sigma})) \equiv(\operatorname{det}(\boldsymbol{\tau}), \operatorname{spin}(\boldsymbol{\tau})) \bmod \Gamma_{\mathbb{Q}} \cdot \Sigma_{\mathbb{A}}^{\sharp}(L)
$$

in $\Gamma_{\mathbb{A}}$. In particular, we can endow the set $\mathcal{T}_{\mathcal{G}}^{\prime} / \sim$ with a structure of Abelian group.
The main ingredient of the proof of Theorem 4.7 is the following corollary (Theorem 2.2 in [14, Chapter VIII]) of the strong approximation theorem (Theorem 7.1 in [4, Chapter 10]) for the spin group

$$
\Theta_{\mathbb{A}}(L):=\operatorname{Ker}\left((\operatorname{det}, \text { spin }): \mathrm{O}_{\mathbb{A}}(L) \rightarrow \Gamma_{\mathbb{A}}\right)
$$

Recall that L is indefinite of rank ≥ 3.
Theorem 4.8. Let σ be an element of $\mathrm{O}_{\mathbb{A}}(L)$. For any element $\boldsymbol{\psi}^{\prime}$ of $\Theta_{\mathbb{A}}(L)$, there exists an isometry $\psi \in \mathrm{O}(L \otimes \mathbb{Q})$ such that $(\operatorname{det}(\psi), \operatorname{spin}(\psi))=(1,1)$, that $L^{\sigma \psi}=L^{\sigma \psi^{\prime}}$, and that $\left.q_{\psi}\right|_{L^{\sigma}}:\left(D_{L^{\sigma}}, q_{L^{\sigma}}\right) \xrightarrow{\sim}\left(D_{L^{\sigma} \psi}, q_{L^{\sigma} \psi}\right)$ is equal to $\left.q_{\psi^{\prime}}\right|_{L^{\sigma}}$.

Indeed, the set of all $\tau \in \Theta_{\mathbb{A}}(L)$ that satisfy $L^{\sigma \tau}=L^{\sigma} \psi^{\prime}$ and $\left.q_{\tau}\right|_{L^{\sigma}}=\left.q_{\psi^{\prime}}\right|_{L^{\sigma}}$ is a nonempty open subset of $\Theta_{\mathbb{A}}(L)$ whose p-component coincides with

$$
\Theta\left(L \otimes \mathbb{Z}_{p}\right):=\operatorname{Ker}\left((\operatorname{det}, \text { spin }): \mathrm{O}\left(L \otimes \mathbb{Z}_{p}\right) \rightarrow \Gamma_{p}\right)
$$

for almost all p.
Remark 4.9. Even though the definition of the spinor norm in [14] and in this paper differs from the one given in [4], the definition of the spin group is not affected, because, for any element $g=\tau\left(v_{1}\right) \cdots \tau\left(v_{m}\right)$ of a spin group, the condition $\operatorname{det}(g)=1$ implies $m \equiv 0 \bmod 2$. See Remark 4.1.

4.4. A Refinement of Miranda-Morrison Theory

We refine Theorem 4.7 to incorporate the positive sign structures and the action of \bar{G}.

As in the previous section, we fix an element (L, λ, θ) of $\mathcal{T}_{\mathcal{G}}$. For each $\sigma \in$ $\mathrm{O}_{\mathbb{A}}(L)$, we have $L^{\sigma} \otimes \mathbb{R}=L \otimes \mathbb{R}$, and hence the fixed positive sign structure θ of L induces a positive sign structure on L^{σ}, which is denoted by the same symbol θ, and by $-\theta$ we denote the other positive sign structure of L^{σ}. Recall that Sign $=\{ \pm 1\}$. The surjectivity of the map $\mathrm{O}_{\mathbb{A}}(L) \rightarrow \mathcal{T}_{\mathcal{G}}^{\prime} / \sim$ defined in the previous section implies that the mapping

$$
(\sigma, \varepsilon) \mapsto\left(L^{\sigma}, \lambda^{\sigma}, \varepsilon \theta\right)
$$

induces a surjective map

$$
\mathrm{O}_{\mathbb{A}}(L) \times \operatorname{Sign} \rightarrow \mathcal{T}_{\mathcal{G}} / \sim_{\bar{G}} .
$$

Definition 4.10. We define the homomorphism

$$
\Psi_{p}: \mathrm{O}\left(D_{L \otimes \mathbb{Z}_{p}}, q_{L \otimes \mathbb{Z}_{p}}\right) \rightarrow \Gamma_{p} / \Sigma^{\sharp}\left(L \otimes \mathbb{Z}_{p}\right)
$$

by $g \mapsto(\operatorname{det}(\tilde{g}), \operatorname{spin}(\tilde{g})) \bmod \Sigma^{\sharp}\left(L \otimes \mathbb{Z}_{p}\right)$, where $\tilde{g} \in \mathrm{O}\left(L \otimes \mathbb{Z}_{p}\right)$ is an isometry that induces g on $\left(D_{L \otimes \mathbb{Z}_{p}}, q_{L \otimes \mathbb{Z}_{p}}\right)$. (Since the natural homomorphism $\mathrm{O}(L \otimes$ $\left.\mathbb{Z}_{p}\right) \rightarrow \mathrm{O}\left(D_{L \otimes \mathbb{Z}_{p}}, q_{L \otimes \mathbb{Z}_{p}}\right)$ is surjective (see Proposition 2.6), we can always find a lift \tilde{g} of g, and by the definition of $\Sigma^{\sharp}\left(L \otimes \mathbb{Z}_{p}\right)$, we see that $\Psi_{p}(g)$ does not depend on the choice of the lift \tilde{g}.)

Since $\mathrm{O}\left(D_{L}, q_{L}\right)$ is a product of $\mathrm{O}\left(D_{L \otimes \mathbb{Z}_{p}}, q_{L \otimes \mathbb{Z}_{p}}\right)$, all of which are trivial except for p dividing $|\operatorname{disc}(L)|=\left|D_{\mathcal{G}}\right|$, we obtain a homomorphism

$$
\Psi_{\mathbb{A}}: \mathrm{O}\left(D_{L}, q_{L}\right) \rightarrow \Gamma_{\mathbb{A}} / \Sigma_{\mathbb{A}}^{\sharp}(L)
$$

Definition 4.11. Let \bar{G}^{λ} denote the subgroup of $\mathrm{O}\left(D_{L}, q_{L}\right)$ corresponding to the given subgroup $\bar{G} \subset \mathrm{O}\left(D_{\mathcal{G}}, q_{\mathcal{G}}\right)$ by the fixed isomorphism $\lambda:\left(D_{\mathcal{G}}, q_{\mathcal{G}}\right) \xrightarrow{\sim}$ $\left(D_{L}, q_{L}\right)$:

$$
\bar{G}^{\lambda}:=\left\{\lambda^{-1} \cdot g \cdot \lambda \in \mathrm{O}\left(D_{L}, q_{L}\right) \mid g \in \bar{G}\right\} .
$$

We then define $\Sigma\left(L, \bar{G}^{\lambda}\right)$ to be the subgroup of $\Gamma_{\mathbb{A}}$ containing $\Sigma_{\mathbb{A}}^{\sharp}(L)$ such that

$$
\begin{equation*}
\Psi_{\mathbb{A}}\left(\bar{G}^{\lambda}\right)=\Sigma\left(L, \bar{G}^{\lambda}\right) / \Sigma_{\mathbb{A}}^{\sharp}(L), \tag{4.1}
\end{equation*}
$$

that is,
$\Sigma\left(L, \bar{G}^{\lambda}\right):=\left\{\begin{array}{l|l}\boldsymbol{\gamma} \in \Gamma_{\mathbb{A}} & \begin{array}{l}\text { there exists an element } \sigma \in \mathrm{O}_{\mathbb{A}, 0}(L) \text { such that } \\ \left.q_{\boldsymbol{\sigma}}\right|_{L} \in \bar{G}^{\lambda} \text { and that }(\operatorname{det}(\boldsymbol{\sigma}), \operatorname{spin}(\boldsymbol{\sigma}))=\boldsymbol{\gamma}\end{array}\end{array}\right\}$.
We have a natural homomorphism $\Gamma_{\mathbb{Q}} \rightarrow$ Sign that maps (d, s) to the sign of $d s$, where $d \in$ Det and $s \in \mathbb{Q}^{\times} /\left(\mathbb{Q}^{\times}\right)^{2}$. We then define an embedding

$$
\Gamma_{\mathbb{Q}} \hookrightarrow \Gamma_{\mathbb{A}} \times \mathrm{Sign}
$$

by the product of the natural embedding $\Gamma_{\mathbb{Q}} \hookrightarrow \Gamma_{\mathbb{A}}$ and the homomorphism $\Gamma_{\mathbb{Q}} \rightarrow$ Sign, and we denote by $\Gamma_{\mathbb{Q}}^{\sim}$ the image of $\Gamma_{\mathbb{Q}}$ in $\Gamma_{\mathbb{A}} \times$ Sign.

The main result of this subsection is as follows.
THEOREM 4.12. Let $(\boldsymbol{\sigma}, \varepsilon)$ and $(\boldsymbol{\tau}, \eta)$ be elements of $\mathrm{O}_{\mathbb{A}}(L) \times \operatorname{Sign}$. Then we have ($\left.L^{\sigma}, \lambda^{\sigma}, \varepsilon\right) \sim_{\bar{G}}\left(L^{\tau}, \lambda^{\tau}, \eta\right)$ if and only if

$$
\begin{equation*}
(\operatorname{det}(\boldsymbol{\sigma}), \operatorname{spin}(\boldsymbol{\sigma}), \varepsilon) \equiv(\operatorname{det}(\boldsymbol{\tau}), \operatorname{spin}(\boldsymbol{\tau}), \eta) \bmod \Gamma_{\mathbb{Q}}^{\sim} \cdot\left(\Sigma\left(L, \bar{G}^{\lambda}\right) \times\{1\}\right) \tag{4.2}
\end{equation*}
$$

in $\Gamma_{\mathbb{A}} \times$ Sign .
Proof. The proof is parallel to that of Theorem 4.7 in [14, Chapter VIII]. Suppose that $\left(L^{\sigma}, \lambda^{\sigma}, \varepsilon\right) \sim_{\bar{G}}\left(L^{\tau}, \lambda^{\tau}, \eta\right)$. Then there exist an element $g \in \bar{G}^{\lambda}$ and an isometry $\phi: L^{\sigma} \xrightarrow{\sim} L^{\tau}$ of even \mathbb{Z}-lattices such that the diagram

$$
\begin{array}{ccr}
\left(D_{L}, q_{L}\right) & \xrightarrow{g} & \left(D_{L}, q_{L}\right) \\
\left.q_{\sigma}\right|_{L} \downarrow & & \left.\downarrow q_{\tau}\right|_{L} \tag{4.3}\\
\left(D_{L^{\sigma}}, q_{L^{\sigma}}\right) & & \underset{q_{\phi}}{\longrightarrow}
\end{array}\left(D_{L^{\tau}}, q_{L^{\tau}}\right)
$$

commutes and that

$$
\begin{equation*}
\varepsilon \cdot \operatorname{det}(\phi \otimes \mathbb{R}) \cdot \operatorname{spin}(\phi \otimes \mathbb{R})=\eta \tag{4.4}
\end{equation*}
$$

by Proposition 4.2. (Note that we have $\operatorname{spin}(\phi \otimes \mathbb{R}) \in \mathbb{R}^{\times} /\left(\mathbb{R}^{\times}\right)^{2}=\{ \pm 1\}$.) We have an element $\tilde{\boldsymbol{g}} \in \mathrm{O}_{\mathbb{A}, 0}(L)$ that induces g on $\left(D_{L}, q_{L}\right)$ by the surjectivity of $\mathrm{O}_{\mathbb{A}, 0}(L) \rightarrow \mathrm{O}\left(D_{L}, q_{L}\right)$ (see Proposition 4.3). Then the product $\tilde{\boldsymbol{g}} \cdot \boldsymbol{\tau} \cdot \phi^{-1} \cdot \boldsymbol{\sigma}^{-1}$ belongs to $\mathrm{O}_{\mathbb{A}, 0}(L)$, and it induces an identity on $\left(D_{L}, q_{L}\right)$ by the commutativity of (4.3). Hence we have

$$
\left(\operatorname{det}\left(\sigma \cdot \phi \cdot \boldsymbol{\tau}^{-1}\right), \operatorname{spin}\left(\sigma \cdot \phi \cdot \boldsymbol{\tau}^{-1}\right)\right) \bmod \Sigma_{\mathbb{A}}^{\sharp}(L)=\Psi_{\mathbb{A}}(g)
$$

In particular, we have

$$
(\operatorname{det}(\boldsymbol{\sigma}), \operatorname{spin}(\boldsymbol{\sigma})) \cdot(\operatorname{det}(\boldsymbol{\tau}), \operatorname{spin}(\boldsymbol{\tau}))^{-1} \cdot(\operatorname{det}(\phi), \operatorname{spin}(\phi)) \in \Sigma\left(L, \bar{G}^{\lambda}\right)
$$

Note that $(\operatorname{det}(\phi), \operatorname{spin}(\phi)) \in \Gamma_{\mathbb{Q}}$, and that (4.4) implies that $(\operatorname{det}(\phi), \operatorname{spin}(\phi)$, $\varepsilon^{-1} \eta$) belongs to $\Gamma_{\mathbb{Q}}^{\sim}$. Hence (4.2) holds.

Conversely, suppose that (4.2) holds. By the definition of $\Sigma\left(L, \bar{G}^{\lambda}\right)$ and the surjectivity of $\mathrm{O}(L \otimes \mathbb{Q}) \rightarrow \Gamma_{\mathbb{Q}}$ (see Proposition 4.6), we obtain $\tilde{\boldsymbol{g}} \in \mathrm{O}_{\mathbb{A}, 0}(L)$ and $\xi \in \mathrm{O}(L \otimes \mathbb{Q})$ such that
(i) the automorphism g of $\left(D_{L}, q_{L}\right)$ induced by $\tilde{\boldsymbol{g}}$ belongs to \bar{G}^{λ},
(ii) we have
$(\operatorname{det}(\tilde{\boldsymbol{g}}), \operatorname{spin}(\tilde{\boldsymbol{g}})) \cdot(\operatorname{det}(\boldsymbol{\tau}), \operatorname{spin}(\boldsymbol{\tau}))=(\operatorname{det}(\boldsymbol{\sigma}), \operatorname{spin}(\boldsymbol{\sigma})) \cdot(\operatorname{det}(\xi), \operatorname{spin}(\xi))$
in $\Gamma_{\mathbb{A}}$, and
(iii) $\varepsilon \cdot \operatorname{det}(\xi \otimes \mathbb{R}) \cdot \operatorname{spin}(\xi \otimes \mathbb{R})=\eta$.

We put

$$
\boldsymbol{\psi}^{\prime}:=\xi^{-1} \cdot \boldsymbol{\sigma}^{-1} \cdot \tilde{\boldsymbol{g}} \cdot \boldsymbol{\tau} \in \mathrm{O}_{\mathbb{A}}(L)
$$

Note that we have $L^{\boldsymbol{\sigma} \xi \boldsymbol{\psi}^{\prime}}=L^{\boldsymbol{\tau}}$. Since $\left(\operatorname{det}\left(\boldsymbol{\psi}^{\prime}\right), \operatorname{spin}\left(\boldsymbol{\psi}^{\prime}\right)\right)=(1,1)$ by property (ii), Theorem 4.8 implies that there exists an element $\psi \in \mathrm{O}(L \otimes \mathbb{Q})$ such that $(\operatorname{det}(\psi), \operatorname{spin}(\psi))=(1,1)$, that $L^{\sigma \xi \psi}=L^{\tau}$, and that the isomorphism from ($D_{L^{\sigma \xi}}, q_{L^{\sigma \xi}}$) to ($D_{L^{\tau}}, q_{L^{\tau}}$) induced by ψ is equal to

$$
\left.q_{\psi^{\prime}}\right|_{L^{\sigma \xi}}=\left(\left.q_{\xi}\right|_{L^{\sigma}}\right)^{-1} \cdot\left(\left.q_{\sigma}\right|_{L}\right)^{-1} \cdot g \cdot\left(\left.q_{\tau}\right|_{L}\right)
$$

We put

$$
\phi:=\xi \cdot \psi,
$$

which belongs to $\mathrm{O}(L \otimes \mathbb{Q})$. Then diagram (4.3) commutes. Moreover, since $(\operatorname{det}(\psi), \operatorname{spin}(\psi))=(1,1)$, we have $\varepsilon \cdot \operatorname{det}(\phi \otimes \mathbb{R}) \cdot \operatorname{spin}(\phi \otimes \mathbb{R})=\eta$ by property (iii). Therefore we obtain $\left(L^{\sigma}, \lambda^{\sigma}, \varepsilon\right) \sim_{\bar{G}}\left(L^{\boldsymbol{\tau}}, \lambda^{\boldsymbol{\tau}}, \eta\right)$.

Therefore the set $\mathcal{T}_{\mathcal{G}} / \sim_{\bar{G}}$ can be equipped with a structure of Abelian group:

$$
\begin{equation*}
\mathcal{T}_{\mathcal{G}} / \sim_{\bar{G}}=\left(\Gamma_{\mathbb{A}} \times \text { Sign }\right) /\left(\Gamma_{\mathbb{Q}}^{\sim} \cdot\left(\Sigma\left(L, \bar{G}^{\lambda}\right) \times\{1\}\right)\right) . \tag{4.5}
\end{equation*}
$$

Let $P(d)=\left\{p_{1}, \ldots, p_{m}\right\}$ denote the set of primes that divide

$$
d:=\left|D_{\mathcal{G}}\right|=\left|D_{L}\right|=|\operatorname{disc}(L)| .
$$

We put

$$
\Gamma_{d}:=\prod_{p \in P(d)} \Gamma_{p}, \quad \Gamma_{\mathbb{A}, d}:=\left(\prod_{p \notin P(d)} \Gamma_{p, 0}\right) \times \Gamma_{d} .
$$

We show that the Abelian group $\mathcal{T}_{\mathcal{G}} / \sim_{\bar{G}}$ is isomorphic to a quotient of $\Gamma_{d} \times$ Sign and present a set of generators of the kernel K of the quotient homomorphism $\Gamma_{d} \times \operatorname{Sign} \rightarrow \mathcal{T}_{\mathcal{G}} / \sim_{\bar{G}}$. Note that the finite Abelian group $\Gamma_{d} \times \operatorname{Sign}$ is 2-elementary, and hence the computation further can be carried out by linear algebra over \mathbb{F}_{2}.

Lemma 4.13. We have $\Gamma_{\mathbb{A}} \times \operatorname{Sign}=\left(\Gamma_{\mathbb{A}, d} \times \operatorname{Sign}\right) \cdot \Gamma_{\mathbb{Q}}^{\sim}$.
Proof. This follows from $\Gamma_{\mathbb{A}, 0} \subset \Gamma_{\mathbb{A}, d}$ and $\Gamma_{\mathbb{A}}=\Gamma_{\mathbb{A}, 0} \cdot \Gamma_{\mathbb{Q}}$ (see Lemma 4.1 in [14, Chapter VIII]).

By this lemma, we have an exact sequence

$$
0 \rightarrow\left(\Gamma_{\mathbb{A}, d} \times \text { Sign }\right) \cap \Gamma_{\mathbb{Q}}^{\sim} \rightarrow \Gamma_{\mathbb{A}, d} \times \text { Sign } \rightarrow\left(\Gamma_{\mathbb{A}} \times \text { Sign }\right) / \Gamma_{\mathbb{Q}}^{\sim} \rightarrow 0
$$

By definition (4.1) of $\Sigma\left(L, \bar{G}^{\lambda}\right)$ and Proposition 4.5, we see that $\Sigma\left(L, \bar{G}^{\lambda}\right)$ is contained in $\Gamma_{\mathbb{A}, d}$. Hence the finite Abelian group $\mathcal{T}_{\mathcal{G}} / \sim_{\bar{G}}$ is isomorphic to the cokernel of

$$
\left(\Gamma_{\mathbb{A}, d} \times \text { Sign }\right) \cap \Gamma_{\mathbb{Q}}^{\sim} \hookrightarrow \Gamma_{\mathbb{A}, d} \times \text { Sign } \rightarrow\left(\Gamma_{\mathbb{A}, d} / \Sigma\left(L, \bar{G}^{\lambda}\right)\right) \times \text { Sign } .
$$

Recall that \bar{G}^{λ} is a subgroup of

$$
\begin{equation*}
\mathrm{O}\left(D_{L}, q_{L}\right)=\prod_{p \in P(d)} \mathrm{O}\left(D_{L \otimes \mathbb{Z}_{p}}, q_{L \otimes \mathbb{Z}_{p}}\right) \tag{4.6}
\end{equation*}
$$

Suppose that \bar{G}^{λ} is generated by g_{1}, \ldots, g_{k}. Let p be a prime in $P(d)$. We denote by $g_{i}[p]$ the p-component of $g_{i} \in \bar{G}^{\lambda}$ under the direct-sum decomposition (4.6). We then choose an isometry

$$
g_{i}[p]^{\sim} \in \mathrm{O}\left(L \otimes \mathbb{Z}_{p}\right)
$$

that induces $g_{i}[p]$ on $\left(D_{L \otimes \mathbb{Z}_{p}}, q_{L \otimes \mathbb{Z}_{p}}\right)$. Then $\Psi_{p}\left(g_{i}\right) \in \Gamma_{p} / \Sigma^{\sharp}\left(L \otimes \mathbb{Z}_{p}\right)$ is represented by $\left(\operatorname{det}\left(g_{i}[p]^{\sim}\right), \operatorname{spin}\left(g_{i}[p]^{\sim}\right)\right) \in \Gamma_{p}$. We put

$$
\gamma\left(g_{i}\right):=\left(\left(\operatorname{det}\left(g_{i}[p]^{\sim}\right), \operatorname{spin}\left(g_{i}[p]^{\sim}\right)\right) \mid p \in P(d)\right) \in \Gamma_{d} .
$$

Remark that $\gamma\left(g_{i}\right)$ does depend on the choice of the lifts $g_{i}[p]^{\sim}$ of $g_{i}[p]$, but $\gamma\left(g_{i}\right)$ modulo $\prod_{p \in P(d)} \Sigma^{\sharp}\left(L \otimes \mathbb{Z}_{p}\right)$ is uniquely determined by g_{i}. By Proposition 4.5, the projection $\Gamma_{\mathbb{A}, d} \rightarrow \Gamma_{d}$ induces an isomorphism from $\Gamma_{\mathbb{A}, d} / \Sigma\left(L, \bar{G}^{\lambda}\right)$ to the group

$$
\Gamma_{d} /\left\langle\Sigma^{\sharp}\left(L \otimes \mathbb{Z}_{p_{1}}\right), \ldots, \Sigma^{\sharp}\left(L \otimes \mathbb{Z}_{p_{m}}\right), \gamma\left(g_{1}\right), \ldots, \gamma\left(g_{k}\right)\right\rangle .
$$

On the other hand, the group $\left(\Gamma_{\mathbb{A}, d} \times \operatorname{Sign}\right) \cap \Gamma_{\mathbb{Q}}^{\sim}$ is generated by the following $2+|P(d)|$ elements of $\Gamma_{\mathbb{Q}}^{\sim} \subset \operatorname{Det} \times\left(\mathbb{Q}^{\times} /\left(\mathbb{Q}^{\times}\right)^{2}\right) \times$ Sign:

$$
(-1,1,-1), \quad(1,-1,-1), \quad \text { and } \quad\left(1, p_{j}, 1\right) \quad \text { for } p_{j} \in P(d)
$$

We put $S(d):=\left\{p_{1}^{\nu_{1}} \cdots p_{m}^{\nu_{m}} \mid v_{j}=0\right.$ or 1 for $\left.j=1, \ldots, m\right\}$. The image of $(\varepsilon, \eta s$, $\varepsilon \eta) \in\left(\Gamma_{\mathbb{A}, d} \times \operatorname{Sign}\right) \cap \Gamma_{\mathbb{Q}}^{\sim}$, where $\varepsilon \in \operatorname{Det}, \eta \in \operatorname{Sign}$, and $s \in S(d)$, by the projection $\Gamma_{\mathbb{A}, d} \times \operatorname{Sign} \rightarrow \Gamma_{d} \times$ Sign is

$$
\left.\beta(\varepsilon, \eta s, \varepsilon \eta):=\left(\left(\varepsilon, \eta s \bmod \left(\mathbb{Q}_{p_{j}}^{\times}\right)^{2}\right) \mid p_{j} \in P(d)\right), \varepsilon \eta\right) .
$$

Hence we obtain the following:
Proposition 4.14. The finite Abelian group $\mathcal{T}_{\mathcal{G}} / \sim_{\bar{G}}$ is isomorphic to the quotient $\left(\Gamma_{d} \times \operatorname{Sign}\right) / K$, where K is generated by the following subgroups and elements of $\Gamma_{d} \times$ Sign:
(i) $\Sigma^{\sharp}\left(L \otimes \mathbb{Z}_{p_{j}}\right) \times\{1\}$ for $p_{j} \in P(d)$,
(ii) $\left(\gamma\left(g_{i}\right), 1\right)$, where \bar{G}^{λ} is generated by g_{1}, \ldots, g_{k}, and
(iii) $\beta(-1,1,-1), \beta(1,-1,-1)$, and $\beta\left(1, p_{j}, 1\right)$ for $p_{j} \in P(d)$.

The groups $\Sigma^{\sharp}\left(L \otimes \mathbb{Z}_{p}\right)$ for $p \in P(d)$ have been calculated in terms of $\operatorname{rank}(L \otimes$ $\left.\mathbb{Z}_{p}\right), \operatorname{disc}\left(L \otimes \mathbb{Z}_{p}\right)$, and $\left(D_{L \otimes \mathbb{Z}_{p}}, q_{L \otimes \mathbb{Z}_{p}}\right)$ in [16] and [14, Chapter VII]. The computation of $\beta(\varepsilon, \eta s, \varepsilon \eta)$ can be carried out by an elementary number theory. Therefore, to make an algorithm to calculate $\mathcal{T}_{\mathcal{G}} / \sim_{\bar{G}}$, it suffices to write a subalgorithm to calculate $\gamma(g)$ for an arbitrary element $g \in \mathrm{O}\left(D_{L}, q_{L}\right)$. For $p \in P(d)$, the p-part $g[p] \in \mathrm{O}\left(D_{L \otimes \mathbb{Z}_{p}}, q_{L \otimes \mathbb{Z}_{p}}\right)$ of g is easily calculated, because $D_{L \otimes \mathbb{Z}_{p}}$ is the p-part of the finite Abelian group D_{L}. An algorithm to find a lift $g[p]^{\sim} \in \mathrm{O}\left(L \otimes \mathbb{Z}_{p}\right)$ and to calculate its value by (det, spin) is presented in the next section.

Remark 4.15. Let K^{\prime} denote the subgroup of $\Gamma_{d} \times$ Sign generated by the subgroups in (i) and the elements in (iii) of Proposition 4.14. If the dimension over \mathbb{F}_{2} of $\left(\Gamma_{d} \times \operatorname{Sign}\right) / K^{\prime}$ is 0 , then $\mathcal{T}_{\mathcal{G}} / \sim_{\bar{G}}$ is obviously trivial, and we do not have to calculate $\Psi_{p}(g[p])$. We have $\operatorname{dim}_{\mathbb{F}_{2}}\left(\Gamma_{d} \times \operatorname{Sign}\right) / K^{\prime}>0$ for 319 algebraic equivalence classes of connected components. See Section 6.2 for some cases where $K \neq K^{\prime}$.

Remark 4.16. The cokernel of the natural \mathbb{F}_{2}-linear homomorphism

$$
K \hookrightarrow \Gamma_{d} \times \operatorname{Sign} \xrightarrow{\mathrm{pr}_{1}} \Gamma_{d}
$$

calculates the set of connected components modulo complex conjugation. By this method, we can show that the two connected components of the moduli of each type (Φ, A) in Corollary 1.5 are complex conjugate to each other.

5. Computation of the Homomorphism Ψ_{p}

Throughout this section, we fix a prime p, a nondegenerate p-adic finite quadratic form (D, q), and an automorphism $g \in \mathrm{O}(D, q)$. We assume the following:

Assumption 5.1. The finite quadratic form (D, q) is isomorphic to the discriminant form of an even \mathbb{Z}_{p}-lattice L of rank r and discriminant d. (By Proposition 2.5, this even \mathbb{Z}_{p}-lattice L is unique up to isomorphism.)

Our goal is to construct an algorithm to calculate an element of Γ_{p} that represents $\Psi_{p}(g) \in \Gamma_{p} / \Sigma^{\sharp}(L)$, that is, an algorithm that finds an isometry $\tilde{g} \in \mathrm{O}(L)$ inducing g on (D, q) and then calculates $(\operatorname{det}(\tilde{g}), \operatorname{spin}(\tilde{g})) \in \Gamma_{p}$. Let $b: D \times D \rightarrow \mathbb{Q} / \mathbb{Z}$ denote the bilinear form associated with (D, q). We put

$$
\ell:=\operatorname{leng}(D)
$$

and suppose that

$$
D \cong \mathbb{Z} / p^{\nu_{1}} \mathbb{Z} \times \cdots \times \mathbb{Z} / p^{\nu_{\ell}} \mathbb{Z}
$$

We fix generators $\varepsilon_{1}, \ldots, \varepsilon_{\ell}$ of D such that ε_{j} generates the j th factor $\mathbb{Z} / p^{\nu_{j}} \mathbb{Z}$ of D. We denote by $\mathrm{M}_{\ell}(R)$ the R-module of $\ell \times \ell$ matrices with components in R, where R is $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}_{p}, \mathbb{Q}_{p}, \mathbb{F}_{p}$, or the localization $\mathbb{Z}_{(p)}$ of \mathbb{Z} at the prime ideal (p). A matrix in $\mathrm{M}_{\ell}(R)$ is said to be even symmetric if it is symmetric and its diagonal components are in $2 R$. We denote by $\Delta(R)$ the submodule of $\mathrm{M}_{\ell}(R)$ consisting of even symmetric matrices. Note that if $A \in \Delta(R)$ and $B \in \mathrm{M}_{\ell}(R)$, then we have $B \cdot A \cdot{ }^{t} B \in \Delta(R)$, where ${ }^{t} B$ is the transpose of B.

Then the quadratic form q on D is expressed by

$$
F_{q} \bmod \Delta(\mathbb{Z})
$$

where F_{q} is a symmetric matrix in $\mathrm{M}_{\ell}(\mathbb{Q})$ whose (i, j)-component represents

$$
q\left(\varepsilon_{i}\right) \in \mathbb{Q} / 2 \mathbb{Z} \quad \text { if } i=j, \quad b\left(\varepsilon_{i}, \varepsilon_{j}\right) \in \mathbb{Q} / \mathbb{Z} \quad \text { if } i \neq j
$$

Since q is nondegenerate, we have $\operatorname{det} F_{q} \neq 0$.
We denote by $N_{D}(R)$ the submodule of $\mathrm{M}_{\ell}(R)$ consisting of matrices whose components in the j th column are divisible by $p^{\nu_{j}}$. The given automorphism $v \mapsto v^{g}$ of the finite Abelian group D is expressed by

$$
T_{0} \bmod N_{D}(\mathbb{Z})
$$

where T_{0} is an element of $\mathrm{M}_{\ell}(\mathbb{Z})$ whose (i, j)-components $t_{i j}$ satisfy

$$
\varepsilon_{i}^{g}=\sum_{j=1}^{\ell} t_{i j} \varepsilon_{j}
$$

Since g preserves q, we have

$$
\begin{equation*}
T_{0} \cdot F_{q} \cdot{ }^{t} T_{0} \equiv F_{q} \bmod \Delta(\mathbb{Z}) \tag{5.1}
\end{equation*}
$$

Since $g^{-1} \in \mathrm{O}(D, q)$ exists, there exists a matrix $T_{0}^{(-1)} \in \mathrm{M}_{\ell}(\mathbb{Z})$ such that

$$
T_{0} \cdot T_{0}^{(-1)} \equiv I_{\ell} \bmod N_{D}(\mathbb{Z})
$$

In particular, the matrix $T_{0} \bmod p \in \mathrm{M}_{\ell}\left(\mathbb{F}_{p}\right)$ is invertible.
Therefore, the algorithm we are going to construct is specified as follows:
Input (1) A sequence $\left[p^{\nu_{1}}, \ldots, p^{\nu_{\ell}}\right]$ that describes the order of each element in a minimal set of generators $\varepsilon_{1}, \ldots, \varepsilon_{\ell}$ of D.
(2) A symmetric matrix $F_{q} \in \mathrm{M}_{\ell}(\mathbb{Q})$ that represents q with respect to $\varepsilon_{1}, \ldots, \varepsilon_{\ell}$.
(3) A matrix $T_{0} \in \mathrm{M}_{\ell}(\mathbb{Z})$ that represents the automorphism $g \in$ $\mathrm{O}(D, q)$ with respect to $\varepsilon_{1}, \ldots, \varepsilon_{\ell}$.

Output An element $(\operatorname{det}(\tilde{g}), \operatorname{spin}(\tilde{g}))$ of Γ_{p} that represents $\Psi_{p}(g)$.

5.1. Step 1

By the normal form theorem (Proposition 2.3) of nondegenerate p-adic finite quadratic forms, there exists an algorithm to calculate an automorphism $v \mapsto v^{h}$ of D represented by $H \bmod N_{D}(\mathbb{Z})$ such that $H \cdot F_{q} \cdot{ }^{t} H$ is equivalent modulo $\Delta(\mathbb{Z})$ to a matrix $F^{\prime} \in \mathrm{M}_{\ell}(\mathbb{Q})$ in normal form; that is, F^{\prime} is a block-diagonal matrix with diagonal components being matrices that appear in Table 1. We replace the basis $\varepsilon_{1}, \ldots, \varepsilon_{\ell}$ of D with the new basis and assume that F_{q} is in normal form. Accordingly, we replace the matrix T_{0} representing $g \in \mathrm{O}(D, q)$ by $H T_{0} H^{(-1)}$, where $H^{(-1)} \in \mathrm{M}_{\ell}(\mathbb{Z})$ is a matrix such that $H^{(-1)} \bmod N_{D}(\mathbb{Z})$ represents h^{-1}.

5.2. Step 2

We put

$$
M:=F_{q}^{-1} \in \mathrm{M}_{\ell}(\mathbb{Q})
$$

Looking at Table 1, we see that

$$
\begin{equation*}
M \in \Delta\left(\mathbb{Z}_{(p)}\right) \quad \text { and } \quad M \equiv O \bmod p \tag{5.2}
\end{equation*}
$$

where O is the zero matrix. Let Λ be an even \mathbb{Z}_{p}-lattice of rank ℓ with a fixed basis e_{1}, \ldots, e_{ℓ} whose Gram matrix is M. Then the discriminant form of Λ is isomorphic to (D, q). Recall from Assumption 5.1 that L is an even \mathbb{Z}_{p}-lattice of rank r, discriminant d, and with $\left(D_{L}, q_{L}\right) \cong(D, q)$. By the normal form theorem of even \mathbb{Z}_{p}-lattices (Proposition 2.4), we obtain the following.

- Suppose that $r>\ell$. Then there exists an even unimodular \mathbb{Z}_{p}-lattice Λ_{0} such that L is isomorphic to the orthogonal direct sum $\Lambda_{0} \oplus \Lambda$. (In particular, if $p=2$, then $r \equiv \ell \bmod 2$.)
- Suppose that $r=\ell$ and p is odd. Then L is isomorphic to Λ.
- Suppose that $r=\ell$ and $p=2$. Suppose that L is not isomorphic to Λ. Then at least one of the matrices on the diagonal of F_{q} is of the form [$\left.\varepsilon / 2\right]$, where $\varepsilon \in\{1,3\}$. We replace one of such components with $[5 \varepsilon / 2]$ and re-calculate $M:=F_{q}^{-1}$. (This change does not affect the class of F_{q} modulo $\Delta(\mathbb{Z})$ and preserves property (5.2).) Then L is isomorphic to Λ.
Thus we obtain an even \mathbb{Z}_{p}-lattice Λ of rank ℓ with the following properties.
(i) The \mathbb{Z}_{p}-lattice Λ is an orthogonal direct summand of L.
(ii) The Gram matrix M of Λ with respect to a basis e_{1}, \ldots, e_{ℓ} satisfies the property (5.2), and $M^{-1} \bmod \Delta(\mathbb{Z})$ expresses (D, q). More precisely, let $e_{1}^{\vee}, \ldots, e_{\ell}^{\vee}$ denote the basis of Λ^{\vee} dual to e_{1}, \ldots, e_{ℓ}. Then the homomorphism $\Lambda^{\vee} \rightarrow D$ given by $e_{i}^{\vee} \mapsto \varepsilon_{i}$ induces an isomorphism $\left(D_{\Lambda}, q_{\Lambda}\right) \xrightarrow{\sim}(D, q)$.
We have a surjective homomorphism $\mathrm{O}(\Lambda) \rightarrow \mathrm{O}(D, q)$ by Proposition 2.6. By property (i) of Λ, every isometry \tilde{h}_{Λ} of Λ can be extended to an isometry \tilde{h}_{L} of L by letting it act on the orthogonal complement $\Lambda^{\perp} \subset L$ trivially. Note that \tilde{h}_{Λ} and \tilde{h}_{L} induce the same automorphism on (D, q) and their (det, spin)-values are equal. Therefore it suffices to find an element $\tilde{g}_{\Lambda} \in \mathrm{O}(\Lambda)$ that induces the given automorphism g of (D, q) and then to calculate $\left(\operatorname{det}\left(\tilde{g}_{\Lambda}\right), \operatorname{spin}\left(\tilde{g}_{\Lambda}\right)\right)$.

5.3. Step 3

Our next task is to find a sequence $\tilde{T}_{v}(\nu=0,1, \ldots)$ of matrices in $\mathrm{M}_{\ell}\left(\mathbb{Z}_{(p)}\right)$ converging to a matrix $\tilde{T} \in \mathrm{M}_{\ell}\left(\mathbb{Z}_{p}\right)$ that represents with respect to the basis e_{1}, \ldots, e_{ℓ} of Λ an isometry $\tilde{g} \in \mathrm{O}(\Lambda)$ inducing $g \in \mathrm{O}(D, q)$.

Lemma 5.2. We have

$$
N_{D}\left(\mathbb{Z}_{p}\right)=\left\{Y M \mid Y \in \mathbf{M}_{\ell}\left(\mathbb{Z}_{p}\right)\right\}
$$

Proof. Let $v=\left(p^{\nu_{1}} a_{1}, \ldots, p^{\nu_{\ell}} a_{\ell}\right)$ be a row vector of a matrix belonging to $N_{D}\left(\mathbb{Z}_{p}\right)$. Since $p^{\nu_{i}} \varepsilon_{i}=0$ for $i=1, \ldots, \ell$, the mapping $x \mapsto v F_{q}{ }^{t} x$ expresses the homomorphism $D \rightarrow \mathbb{Q}_{p} / \mathbb{Z}_{p}$ given by $x \mapsto b(0, x)$. Therefore $v F_{q}=v M^{-1}$ has components in \mathbb{Z}_{p}. Conversely, note that the i th row vector ($m_{i 1}, \ldots, m_{i \ell}$) of M is a vector representation of $e_{i} \in \Lambda$ with respect to the dual basis $e_{1}^{\vee}, \ldots, e_{\ell}^{\vee}$ of Λ^{\vee}. Therefore $m_{i 1} \varepsilon_{1}+\cdots+m_{i \ell} \varepsilon_{\ell}=0$ in D, and hence $m_{i j} \varepsilon_{j}=0$ for $j=1, \ldots, \ell$. In particular, we have $M \in N_{D}\left(\mathbb{Z}_{p}\right)$.

The Gram matrix of Λ^{\vee} with respect to the basis $e_{1}^{\vee}, \ldots, e_{\ell}^{\vee}$ is $M^{-1}=F_{q}$. Recall that $T_{0} \in \mathrm{M}_{\ell}(\mathbb{Z})$ is a matrix such that $T_{0} \bmod N_{D}(\mathbb{Z})$ represents $g \in \mathrm{O}(D, q)$.

Lemma 5.3. For $\tilde{T} \in \mathrm{M}_{\ell}\left(\mathbb{Q}_{p}\right)$, the following conditions are equivalent:
(i) The matrix \tilde{T} represents with respect to the basis e_{1}, \ldots, e_{ℓ} of Λ an isometry $\tilde{g} \in \mathrm{O}(\Lambda)$ that induces $g \in \mathrm{O}(D, q)$.
(ii) Let

$$
T:=M^{-1} \tilde{T} M
$$

Then $\left(T-T_{0}\right) M^{-1} \in \mathrm{M}_{\ell}\left(\mathbb{Z}_{p}\right)$ and $T \cdot M^{-1} \cdot{ }^{t} T=M^{-1}$.

Proof. Suppose that \tilde{T} satisfies condition (i). The isometry \tilde{g} induces an isometry of Λ^{\vee}, and $T=M^{-1} \tilde{T} M$ is the matrix representation of this isometry with respect to $e_{1}^{\vee}, \ldots, e_{\ell}^{\vee}$. Hence we have $T \cdot M^{-1} \cdot{ }^{t} T=M^{-1}$. Since T induces g on D and the identification $D=\Lambda^{\vee} / \Lambda$ is given by $e_{i}^{\vee} \mapsto \varepsilon_{i}$, we have

$$
T \equiv T_{0} \bmod N_{D}\left(\mathbb{Z}_{p}\right)
$$

By Lemma 5.2, we have $\left(T-T_{0}\right) M^{-1} \in \mathrm{M}_{\ell}\left(\mathbb{Z}_{p}\right)$.
Conversely, suppose that \tilde{T} satisfies condition (ii). Then $\tilde{T}=M T M^{-1}$ satisfies $\tilde{T} \cdot M \cdot{ }^{t} \tilde{T}=M$. We show that \tilde{T} has components in \mathbb{Z}_{p}. As was seen before, $T_{0} \bmod p \in \mathrm{M}_{\ell}\left(\mathbb{F}_{p}\right)$ is invertible, and hence we have ${ }^{t} T_{0}^{-1} \in \mathrm{M}_{\ell}\left(\mathbb{Z}_{p}\right)$. Since g preserves q and M^{-1} is equal to F_{q}, we see from (5.1) that

$$
\begin{equation*}
E_{0}:=T_{0} \cdot M^{-1} \cdot{ }^{t} T_{0}-M^{-1} \in \Delta\left(\mathbb{Z}_{(p)}\right) \subset \Delta\left(\mathbb{Z}_{p}\right) \tag{5.3}
\end{equation*}
$$

In particular, we have

$$
M T_{0} M^{-1}=\left(I_{\ell}+M E_{0}\right)^{t} T_{0}^{-1} \in \mathrm{M}_{\ell}\left(\mathbb{Z}_{p}\right)
$$

By the assumption, we have $T=T_{0}+Y M$ for some $Y \in \mathrm{M}_{\ell}\left(\mathbb{Z}_{p}\right)$. Therefore $\tilde{T}=$ $M T_{0} M^{-1}+M Y$ has components in \mathbb{Z}_{p}. Hence \tilde{T} is a matrix representation of an isometry of Λ. Since $T=T_{0}+Y M$, this isometry induces g on $D=\Lambda^{\vee} / \Lambda$.

We denote by $\mathbf{M}_{\ell, p}$ the set of square matrices of size ℓ whose components are in $\{0, \ldots, p-1\} \subset \mathbb{Z}$. By the surjectivity of $\mathrm{O}(\Lambda) \rightarrow \mathrm{O}(D, q)$ and Lemma 5.3, there exists a sequence $Z_{0}, Z_{1}, Z_{2}, \ldots$ of elements of $\mathrm{M}_{\ell, p}$ such that the matrix

$$
T:=T_{0}+Y M, \quad \text { where } Y:=Z_{0}+p Z_{1}+p^{2} Z_{2}+\cdots \in \mathbf{M}_{\ell}\left(\mathbb{Z}_{p}\right)
$$

satisfies

$$
T \cdot M^{-1} \cdot{ }^{t} T=M^{-1}
$$

Let $Z_{0}, Z_{1}, Z_{2}, \ldots$ be such a sequence. For $v>0$, we put

$$
\begin{aligned}
Y_{\nu-1} & :=Z_{0}+p Z_{1}+\cdots+p^{\nu-1} Z_{\nu-1} \\
T_{\nu} & :=T_{0}+Y_{\nu-1} M
\end{aligned}
$$

Since $M \equiv O \bmod p$, we have $T \equiv T_{\nu} \equiv T_{0} \bmod p$. Then, for $v \geq 0$, we have

$$
\begin{equation*}
T_{v} \cdot M^{-1} \cdot{ }^{t} T_{\nu}=M^{-1}+p^{\nu} E_{v} \quad \text { for some } E_{v} \in \Delta\left(\mathbb{Z}_{(p)}\right) \tag{5.4}
\end{equation*}
$$

Indeed, since $T_{\nu}=T+p^{\nu} W M$ for some $W \in \mathrm{M}_{\ell}\left(\mathbb{Z}_{p}\right)$, we have

$$
T_{\nu} \cdot M^{-1} \cdot{ }^{t} T_{\nu}-M^{-1}=p^{\nu}\left(W^{t} T_{\nu}+T_{\nu}{ }^{t} W+p^{\nu} W \cdot M \cdot{ }^{t} W\right)
$$

By (5.2), we see that

$$
E_{v}:=W^{t} T_{v}+T_{\nu}{ }^{t} W+p^{\nu} W \cdot M \cdot{ }^{t} W \in \Delta\left(\mathbb{Z}_{p}\right)
$$

Since $E_{v}=p^{-v}\left(T_{\nu} \cdot M^{-1} \cdot{ }^{t} T_{v}-M^{-1}\right)$ has components in \mathbb{Q}, we have $E_{v} \in$ $\Delta\left(\mathbb{Z}_{(p)}\right)$.

We calculate such a sequence $Z_{v}(\nu=0,1, \ldots)$ inductively on v. Suppose that we have obtained $T_{\nu} \in \mathrm{M}_{\ell}\left(\mathbb{Z}_{(p)}\right)$ satisfying (5.4) and

$$
\begin{equation*}
T_{\nu} \equiv T_{0} \bmod p \tag{5.5}
\end{equation*}
$$

(By (5.3), we can use the input data T_{0} for $v=0$.) Our task is to search for $Z_{v} \in$ $\mathrm{M}_{\ell, p}$ such that $T_{\nu+1}:=T_{\nu}+p^{\nu} Z_{\nu} M$ satisfies (5.4) with ν replaced by $v+1$. Since

$$
T_{\nu+1} \cdot M^{-1} \cdot{ }^{t} T_{v+1}-M^{-1}=p^{\nu}\left(E_{v}+Z_{v}{ }^{t} T_{v}+T_{v}{ }^{t} Z_{v}+p^{v} Z_{v} \cdot M \cdot{ }^{t} Z_{v}\right)
$$

it suffices to find a matrix $X \in \mathrm{M}_{\ell, p}$ that satisfies

$$
\begin{equation*}
\frac{1}{p}\left(E_{\nu}+X^{t} T_{\nu}+T_{\nu}^{t} X\right)+p^{\nu-1} X \cdot M \cdot{ }^{t} X \in \Delta\left(\mathbb{Z}_{(p)}\right) \tag{5.6}
\end{equation*}
$$

5.3.1. Suppose that $p>2$. Then every symmetric matrix in $\mathrm{M}_{\ell}\left(\mathbb{Z}_{(p)}\right)$ is even symmetric. Since $M \equiv O \bmod p$, we see that $p^{\nu-1} X \cdot M \cdot{ }^{t} X$ is a symmetric matrix in $\mathbf{M}_{\ell}\left(\mathbb{Z}_{(p)}\right)$ for any $X \in \mathbf{M}_{\ell, p}$ even when $v=0$. It is obvious that $E_{v}+$ $X^{t} T_{\nu}+T_{\nu}{ }^{t} X$ is symmetric for any $X \in \mathrm{M}_{\ell, p}$. Therefore, combining this with (5.5), we see that condition (5.6) is equivalent to the affine linear equation

$$
\begin{equation*}
E_{\nu}+X^{t} T_{0}+T_{0}{ }^{t} X \equiv O \bmod p \tag{5.7}
\end{equation*}
$$

over \mathbb{F}_{p}. We solve (5.7) and lift a solution in $\mathrm{M}_{\ell}\left(\mathbb{F}_{p}\right)$ to $Z_{\nu} \in \mathrm{M}_{\ell, p}$.
5.3.2. Suppose that $p=2$. We put

$$
\begin{aligned}
h_{i i} & :=\frac{1}{2}\left(\text { the }(i, i) \text {-component of } E_{v}\right) \bmod 2, \\
f_{i i}(X) & :=\text { the }(i, i) \text {-component of } X^{t} T_{0} \bmod 2
\end{aligned}
$$

for $i=1, \ldots, \ell$. Note that, since $E_{v} \in \Delta\left(\mathbb{Z}_{(2)}\right)$, the definition of $h_{i i} \in \mathbb{F}_{2}$ makes sense.

Suppose that $v>0$. Then we have $2^{\nu-1} \cdot X \cdot M \cdot{ }^{t} X \in \Delta\left(\mathbb{Z}_{(2)}\right)$ for any $X \in$ $\mathbf{M}_{\ell, 2}$. Therefore, by (5.5), we see that condition (5.6) is equivalent to the affine linear equation

$$
\left\{\begin{array}{l}
E_{\nu}+X^{t} T_{0}+T_{0}^{t} X \equiv O \bmod 2 \tag{5.8}\\
h_{i i}+f_{i i}(X) \equiv 0 \bmod 2 \quad(i=1, \ldots, \ell)
\end{array}\right.
$$

over \mathbb{F}_{2}. We solve (5.8) and lift a solution in $\mathrm{M}_{\ell}\left(\mathbb{F}_{2}\right)$ to $Z_{\nu} \in \mathrm{M}_{\ell, 2}$.
Suppose that $v=0$. Then $2^{-1} X \cdot M \cdot{ }^{t} X$ is symmetric with components in $\mathbb{Z}_{(2)}$, but some of its diagonal components may fail to be even. Hence we put

$$
g_{i i}(X):=\frac{1}{2}\left(\text { the }(i, i) \text {-component of } X \cdot M \cdot{ }^{t} X\right) \bmod 2,
$$

which is a homogeneous quadratic polynomial over \mathbb{F}_{2} of the components of $X=$ $\left(x_{i j}\right)$. Note that since $M \equiv O \bmod 2$, the definition of $g_{i i}(X)$ makes sense. Recall that $M=F_{q}^{-1}$ is block-diagonal with diagonal components

$$
\begin{aligned}
W_{\mu, \varepsilon} & :=\left[\frac{2^{\mu}}{\varepsilon}\right] \quad(\varepsilon \in\{1,3,5,7\}), \quad U_{\mu}:=2^{\mu}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \text { or } \\
V_{\mu} & :=\frac{2^{\mu}}{3}\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]
\end{aligned}
$$

where $\mu>0$. Note that the quadratic forms

$$
[x, y] U_{\mu}\left[\begin{array}{l}
x \\
y
\end{array}\right]=2^{\mu+1} x y, \quad[x, y] V_{\mu}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{2^{\mu+1}}{3}\left(x^{2}-x y+y^{2}\right)
$$

are always divisible by 4 in $\mathbb{Z}_{(2)}$. We put

$$
J:=\left\{j \mid \text { the }(j, j) \text {-component of } M \text { is } 2 / \varepsilon_{j}\right\}
$$

Since $\varepsilon_{j} \equiv 1 \bmod 2$, the quadratic polynomial $g_{i i}(X)$ is of the form

$$
\sum_{j \in J} x_{i j}^{2} / \varepsilon_{j}=\sum_{j \in J} x_{i j}^{2}
$$

Since $x^{2}=x$ in \mathbb{F}_{2}, the equation $g_{i i}(X)=b$ over \mathbb{F}_{2} with $b \in \mathbb{F}_{2}$ is equivalent to the affine linear equation $\bar{g}_{i i}(X)=b$, where

$$
\bar{g}_{i i}(X):=\sum_{j \in J} x_{i j}
$$

Therefore, by (5.5), we see that condition (5.6) is equivalent to the affine linear equation

$$
\left\{\begin{array}{l}
E_{v}+X^{t} T_{v}+T_{v}{ }^{t} X \equiv O \bmod 2 \tag{5.9}\\
h_{i i}+f_{i i}(X)+\bar{g}_{i i}(X) \equiv 0 \bmod 2 \quad(i=1, \ldots, \ell)
\end{array}\right.
$$

over \mathbb{F}_{2}. We solve (5.9) and lift a solution in $\mathrm{M}_{\ell}\left(\mathbb{F}_{2}\right)$ to $Z_{v} \in \mathrm{M}_{\ell, 2}$.
Remark 5.4. The fact that equations (5.7) and (5.8) always have solutions in $\mathrm{M}_{\ell}\left(\mathbb{F}_{p}\right)$ is easily proved from $\operatorname{det} T_{0} \not \equiv 0 \bmod p$. For example, when $p>2$, the image of the linear map $\mathrm{M}_{\ell}\left(\mathbb{F}_{p}\right) \rightarrow \mathrm{M}_{\ell}\left(\mathbb{F}_{p}\right)$ given by $X \mapsto X^{t} T_{0}+T_{0}{ }^{t} X$ is equal to $\Delta\left(\mathbb{F}_{p}\right)$. The fact that equation (5.9) is always soluble in $\mathrm{M}_{\ell}\left(\mathbb{F}_{2}\right)$ is nontrivial; it is a consequence of the surjectivity of $\mathrm{O}(\Lambda) \rightarrow \mathrm{O}\left(D_{\Lambda}, q_{\Lambda}\right)$.

For an element $a \in \mathbb{Q}_{p}^{\times}$, let $\operatorname{ord}_{p}(a)$ denote the maximal integer n such that $p^{-n} a \in \mathbb{Z}_{p}$. We put $\operatorname{ord}_{p}(0):=\infty$. For a matrix $M=\left(m_{i j}\right)$ with components in \mathbb{Z}_{p}, we put

$$
\operatorname{minord}_{p}(M):=\text { the minimum of } \operatorname{ord}_{p}\left(m_{i j}\right)
$$

We define $\operatorname{minord}_{p}(v)$ for a vector v with components in \mathbb{Z}_{p} in the same way. By the preceding argument, we have proved the following:

Proposition 5.5. For an arbitrarily large integer v, we can calculate a matrix $T_{\nu} \in \mathrm{M}_{\ell}\left(\mathbb{Z}_{(p)}\right)$ such that there exists a matrix $T \in \mathrm{M}_{\ell}\left(\mathbb{Z}_{p}\right)$ with the following properties:
(i) $\operatorname{minord}_{p}\left(T-T_{v}\right) \geq v$,
(ii) $M T M^{-1}$ represents an isometry \tilde{g} of Λ with respect to e_{1}, \ldots, e_{ℓ}, and
(iii) \tilde{g} induces the given automorphism g on (D, q).

5.4. Step 4

Let Λ and $\tilde{g} \in \mathrm{O}(\Lambda)$ be as in Step 3. Let v be a sufficiently large integer. We put

$$
V:=\Lambda \otimes \mathbb{Q}_{p}=\Lambda^{\vee} \otimes \mathbb{Q}_{p}
$$

In Step 3, we have calculated a matrix

$$
{ }^{\mathrm{a}} T:=T_{\nu} \in \mathrm{M}_{\ell}\left(\mathbb{Z}_{(p)}\right)
$$

that is approximate to the matrix $T \in \mathrm{M}_{\ell}\left(\mathbb{Z}_{p}\right)$ representing $\tilde{g} \in \mathrm{O}(V)$ with respect to the basis $e_{1}^{\vee}, \ldots, e_{\ell}^{\vee}$ of V. The approximate accuracy $\operatorname{minord}_{p}\left(T-{ }^{\mathrm{a}} T\right)$ of ${ }^{\mathrm{a}} T$ satisfies

$$
\operatorname{minord}_{p}\left(T-{ }^{\mathrm{a}} T\right) \geq v
$$

To calculate $(\operatorname{det}(\tilde{g}), \operatorname{spin}(\tilde{g}))$, we present an algorithm to decompose \tilde{g} into a product of reflections in $\mathrm{O}(V)$ using only the computed matrix ${ }^{\text {a }} T$. This algorithm works when v is sufficiently large.

Remark 5.6. It is possible to state explicitly how large v should be for the algorithm to work. However, the result would be complicated, and, for most practical applications, the theoretical bound seems to be unnecessarily large. Therefore we present an algorithm of the style that if it fails to continue at some point because v is not large enough, then it quits, goes back to Step 3, recalculates an approximate matrix ${ }^{\text {a }} T$ with higher accuracy ν, and restarts from the beginning. If this algorithm reaches the end, then the result $(\operatorname{det}(\tilde{g}), \operatorname{spin}(\tilde{g}))$ is correct.

Note that the Gram matrix M^{-1} of V with respect to $e_{1}^{\vee}, \ldots, e_{\ell}^{\vee}$ has components in \mathbb{Q}. Hence we can find an orthogonal basis f_{1}, \ldots, f_{ℓ} of V by the GramSchmidt orthogonalization in \mathbb{Q}; that is, we can calculate an invertible matrix $S \in \mathrm{M}_{\ell}(\mathbb{Q})$ of basis transformation such that the new Gram matrix

$$
M_{V}:=S \cdot M^{-1} \cdot{ }^{t} S
$$

with respect to the new basis f_{1}, \ldots, f_{ℓ} is diagonal. We replace T and ${ }^{\text {a }} T$ by $S T S^{-1}$ and $S^{\mathrm{a}} T S^{-1}$, respectively, so that T represents \tilde{g} with respect to f_{1}, \ldots, f_{ℓ}. The lower bound v of the approximate accuracy $\operatorname{minord}_{p}\left(T-{ }^{\mathrm{a}} T\right)$ is replaced by

$$
v+\min \left(0, \operatorname{minord}_{p}(S)\right)+\min \left(0, \operatorname{minord}_{p}\left(S^{-1}\right)\right)
$$

(See Lemma 5.7.)
To simplify the notation, we fix this orthogonal basis f_{1}, \ldots, f_{ℓ} of V in the rest of this section. We identify vectors in V with row vectors in \mathbb{Q}_{p}^{ℓ}, and linear transformations of V with matrices in $\mathrm{M}_{\ell}\left(\mathbb{Q}_{p}\right)$. In particular, if $A \in \mathrm{M}_{\ell}\left(\mathbb{Q}_{p}\right)$ represents $a \in \mathrm{O}(V)$, then we write $v A$ instead of v^{a} for $v \in V$. For $v \in \mathbb{Q}_{p}^{\ell}$ and $A \in \mathrm{M}_{\ell}\left(\mathbb{Q}_{p}\right)$, we use the notation ${ }^{\mathrm{a}} v \in \mathbb{Q}^{\ell}$ and ${ }^{\mathrm{a}} A \in \mathrm{M}_{\ell}(\mathbb{Q})$ to denote computed objects that we intend to be approximate values of v and A, respectively.

For k with $0 \leq k \leq \ell$, let $\left\langle f_{1}, \ldots, f_{k}\right\rangle$ denote the subspace of V generated by f_{1}, \ldots, f_{k}. Then the orthogonal complement of $\left\langle f_{1}, \ldots, f_{k}\right\rangle$ in V is
$\left\langle f_{k+1}, \ldots, f_{\ell}\right\rangle$. We put

$$
\gamma_{i}:=\operatorname{ord}_{p}\left(\left\langle f_{i}, f_{i}\right\rangle\right), \quad \gamma:=\operatorname{minord}_{p}\left(M_{V}\right)=\min \left(\gamma_{1}, \ldots, \gamma_{\ell}\right) .
$$

The following lemma is easy to prove and will be used frequently.
Lemma 5.7. (1) Let A, B be matrices in $\mathrm{M}_{\ell}\left(\mathbb{Q}_{p}\right)$, and suppose that ${ }^{\mathrm{a}} A,{ }^{\mathrm{a}} B \in$ $\mathrm{M}_{\ell}(\mathbb{Q})$ satisfy

$$
\operatorname{minord}_{p}\left(A-{ }^{\mathrm{a}} A\right) \geq \alpha, \quad \operatorname{minord}_{p}\left(B-{ }^{\mathrm{a}} B\right) \geq \beta
$$

Then we have
$\operatorname{minord}_{p}\left(A B-{ }^{\mathrm{a}} A{ }^{\mathrm{a}} B\right) \geq \min \left(\operatorname{minord}_{p}\left({ }^{\mathrm{a}} A\right)+\beta, \alpha+\operatorname{minord}_{p}\left({ }^{\mathrm{a}} B\right), \alpha+\beta\right)$.
(2) For any $u, v \in \mathbb{Q}_{p}^{\ell}$, we have

$$
\operatorname{ord}_{p}(\langle u, v\rangle) \geq \gamma+\operatorname{minord}_{p}(u)+\operatorname{minord}_{p}(v) .
$$

We also put

$$
\delta:= \begin{cases}1 & \text { if } p=2 \\ 0 & \text { if } p>2\end{cases}
$$

The following lemma is also easy to prove.
Lemma 5.8. Let a and b be elements of the multiplicative group \mathbb{Q}_{p}^{\times}.
(1) If $\operatorname{ord}_{p}(a)+\delta<\operatorname{ord}_{p}(b-a)$, then we have $\operatorname{ord}_{p}(a+b)=\operatorname{ord}_{p}(a)+\delta$.
(2) We have $a \equiv b \bmod \left(\mathbb{Q}_{p}^{\times}\right)^{2}$ if $\operatorname{ord}_{p}(1-a / b) \geq 1+2 \delta$.

Our algorithm proceeds as follows. We start from

$$
T^{(0)}:=T, \quad{ }^{\mathrm{a}} T^{(0)}:={ }^{\mathrm{a}} T, \quad v_{0}:=v, \quad i(0):=0
$$

By the induction on k up to $k=\ell$, we compute a matrix ${ }^{\text {a }} T^{(k)} \in \mathrm{M}_{\ell}(\mathbb{Q})$, an integer v_{k}, and a sequence ${ }^{\mathrm{a}} r_{j}$ of vectors in \mathbb{Q}^{ℓ} for $j=i(k-1)+1, \ldots, i(k)$ with the following properties:
(P1) For j with $i(k-1)<j \leq i(k)$, we have $\left\langle{ }^{\mathrm{a}} r_{j},{ }^{\mathrm{a}} r_{j}\right\rangle \neq 0$. In particular, we have the reflection $\tau\left(\mathrm{a} r_{j}\right) \in \mathrm{O}(V)$.
(P2) The vector ${ }^{\text {a }} r_{j}$ is approximate to a vector $r_{j} \in\left\langle f_{1}, \ldots, f_{k}\right\rangle \subset \mathbb{Q}_{p}^{\ell}$ with accuracy high enough to ensure that $\left\langle r_{j}, r_{j}\right\rangle \neq 0$ and $\left\langle r_{j}, r_{j}\right\rangle \equiv\left\langle\mathrm{a} r_{j}, \mathrm{a} r_{j}\right\rangle \bmod$ $\left(\mathbb{Q}_{p}^{\times}\right)^{2}$ in the multiplicative group \mathbb{Q}_{p}^{\times}. In particular, we have the reflection $\tau\left(r_{j}\right) \in$ $\mathrm{O}(V)$.
(P3) The isometry

$$
T^{(k)}:=T^{(0)} \tau\left(r_{1}\right) \cdots \tau\left(r_{i(k)}\right)=T^{(k-1)} \tau\left(r_{i(k-1)+1}\right) \cdots \tau\left(r_{i(k)}\right)
$$

preserves the subspace $\left\langle f_{1}, \ldots, f_{k}\right\rangle$ of V and acts trivially on $\left\langle f_{1}, \ldots, f_{k}\right\rangle$.
(P4) The matrix

$$
{ }^{\mathrm{a}} T^{(k)}:={ }^{\mathrm{a}} T^{(0)} \tau\left({ }^{\mathrm{a}} r_{1}\right) \cdots \tau\left({ }^{\mathrm{a}} r_{i(k)}\right)={ }^{\mathrm{a}} T^{(k-1)} \tau\left({ }^{\mathrm{a}} r_{i(k-1)+1}\right) \cdots \tau\left({ }^{\mathrm{a}} r_{i(k)}\right)
$$

is approximate to $T^{(k)}$, and we have $\operatorname{minord}_{p}\left(T^{(k)}-{ }^{\mathrm{a}} T^{(k)}\right) \geq v_{k}$.

Suppose that we reach $k=\ell$. Then $T^{(\ell)}$ is the identity matrix by property (3), and hence we have

$$
T=\tau\left(r_{i(\ell)}\right) \cdots \tau\left(r_{1}\right)
$$

Therefore we have $\operatorname{det}(T)=(-1)^{i(\ell)}$ and

$$
\operatorname{spin}(T)=Q\left(r_{i(\ell)}\right) \cdots Q\left(r_{1}\right) \bmod \left(\mathbb{Q}_{p}^{\times}\right)^{2}=Q\left({ }^{\mathrm{a}} r_{i(\ell)}\right) \cdots Q\left({ }^{\mathrm{a}} r_{1}\right) \bmod \left(\mathbb{Q}_{p}^{\times}\right)^{2}
$$

where the second equality follows from property (2). Since ${ }^{\mathrm{a}} r_{1}, \ldots, \mathrm{a} r_{i(\ell)}$ are computed, $(\operatorname{det}(\tilde{g}), \operatorname{spin}(\tilde{g}))$ is also computed.

Suppose that we have calculated ${ }^{\mathrm{a}} T^{(k-1)}, v_{k-1}$, and $\mathrm{a} r_{1}, \ldots, \mathrm{a} r_{i(k-1)}$. Recall that f_{k} is the vector $(0, \ldots, 1, \ldots, 0) \in \mathbb{Q}^{\ell}$, where 1 is at the k th position. We put

$$
g_{k}:=f_{k} T^{(k-1)}, \quad \text { a } g_{k}:=f_{k}^{\mathrm{a}} T^{(k-1)}
$$

By the induction hypothesis, the isometry $T^{(k-1)}$ of V preserves the subspace $\left\langle f_{1}, \ldots, f_{k-1}\right\rangle$ and hence preserves $\left\langle f_{1}, \ldots, f_{k-1}\right\rangle^{\perp}=\left\langle f_{k}, \ldots, f_{\ell}\right\rangle$. Therefore we have $g_{k} \in\left\langle f_{k}, \ldots, f_{\ell}\right\rangle$. Since $T^{(k-1)}$ is an isometry, we have

$$
\begin{equation*}
\left\langle g_{k}, g_{k}\right\rangle=\left\langle f_{k}, f_{k}\right\rangle, \tag{5.10}
\end{equation*}
$$

and hence we have $\operatorname{ord}_{p}\left(\left\langle g_{k}, g_{k}\right\rangle\right)=\operatorname{ord}_{p}\left(\left\langle f_{k}, f_{k}\right\rangle\right)=\gamma_{k}$. We estimate the approximation error $\left\langle g_{k}, g_{k}\right\rangle-\left\langle\mathrm{a} g_{k}, \mathrm{a} g_{k}\right\rangle$. For this purpose, we put

$$
\lambda_{k}:=\operatorname{minord}_{p}\left(\mathrm{a}_{k}\right), \quad \rho:=\min \left(\delta+v_{k-1}+\gamma+\lambda_{k}, 2 v_{k-1}+\gamma\right)
$$

By property (4) for ν_{k-1}, we have a matrix $A \in \mathrm{M}_{\ell}\left(\mathbb{Z}_{p}\right)$ such that $T^{(k-1)}=$ ${ }^{\mathrm{a}} T^{(k-1)}+p^{v_{k-1}} A$. Hence we have a vector $v \in \mathbb{Z}_{p}^{\ell}$ such that

$$
g_{k}=\mathrm{a} g_{k}+p^{v_{k-1}} v
$$

Therefore we have

$$
\left\langle g_{k}, g_{k}\right\rangle-\left\langle\mathrm{a} g_{k}, \mathrm{a} g_{k}\right\rangle=2\left\langle\mathrm{a} g_{k}, p^{\nu_{k-1}} v\right\rangle+\left\langle p^{\nu_{k-1}} v, p^{\nu_{k-1}} v\right\rangle
$$

From $\operatorname{ord}_{p}\left(\left\langle\mathrm{a} g_{k}, p^{\nu_{k-1}} v\right\rangle\right) \geq \lambda_{k}+\gamma+\nu_{k-1}$ and $\operatorname{ord}_{p}\left(\left\langle p^{\nu_{k-1}} v, p^{\nu_{k-1}} v\right\rangle\right) \geq$ $2 v_{k-1}+\gamma$, we obtain

$$
\operatorname{ord}_{p}\left(\left\langle g_{k}, g_{k}\right\rangle-\left\langle\mathrm{a} g_{k}, \mathrm{a} g_{k}\right\rangle\right) \geq \rho .
$$

If $\rho \leq \gamma_{k}+\delta$, then we quit and go to the recalculation process (Remark 5.6). Suppose that $\rho>\gamma_{k}+\delta$. Then, by Lemma 5.8, we have

$$
\begin{equation*}
\operatorname{ord}_{p}\left(\left\langle g_{k}, g_{k}\right\rangle+\left\langle\mathrm{a} g_{k}, \mathrm{a} g_{k}\right\rangle\right)=\gamma_{k}+\delta . \tag{5.11}
\end{equation*}
$$

We put

$$
b^{+}:=f_{k}+g_{k}, \quad{ }^{\mathrm{a}} b^{+}:=f_{k}+{ }^{\mathrm{a}} g_{k}, \quad b^{-}:=f_{k}-g_{k}, \quad{ }^{\mathrm{a}} b^{-}:=f_{k}-\mathrm{a} g_{k}
$$

We have

$$
\left\langle{ }^{\mathrm{a}} b^{+},{ }^{\mathrm{a}} b^{+}\right\rangle+\left\langle{ }^{\mathrm{a}} b^{-},{ }^{\mathrm{a}} b^{-}\right\rangle=2\left(\left\langle f_{k}, f_{k}\right\rangle+\left\langle\mathrm{a} g_{k}, \mathrm{a} g_{k}\right\rangle\right)
$$

By (5.10) and (5.11), we see that the ord_{p} of at least one of $\left\langle{ }^{\mathrm{a}} b^{+},{ }^{\mathrm{a}} b^{+}\right\rangle$or $\left\langle{ }^{\mathrm{a}} b^{-},{ }^{\mathrm{a}} b^{-}\right\rangle$is $\leq \gamma_{k}+2 \delta$. If $\operatorname{ord}_{p}\left(\left\langle^{\mathrm{a}} b^{-},{ }^{\mathrm{a}} b^{-}\right\rangle\right) \leq \gamma_{k}+2 \delta$, we put $b:=b^{-}$and ${ }^{\mathrm{a}} b:=$ ${ }^{\mathrm{a}} b^{-}$; otherwise, we put $b:=b^{+}$and ${ }^{\mathrm{a}} b:={ }^{\mathrm{a}} b^{+}$. Note that we have $b \in\left\langle f_{k}, \ldots, f_{\ell}\right\rangle$. Then we have

$$
b={ }^{\mathrm{a}} b+p^{v_{k-1}} w
$$

where $w= \pm v \in \mathbb{Z}_{p}^{\ell}$. To estimate $\langle b, b\rangle-\left\langle{ }^{\mathrm{a}} b,{ }^{\mathrm{a}} b\right\rangle$, we put

$$
\sigma:=\min \left(\delta+v_{k-1}+\gamma, \delta+v_{k-1}+\gamma+\lambda_{k}, 2 v_{k-1}+\gamma\right)
$$

Since

$$
\langle b, b\rangle-\left\langle{ }^{\mathrm{a}} b,{ }^{\mathrm{a}} b\right\rangle=2\left\langle f_{k}, p^{\nu_{k-1}} w\right\rangle \pm 2\left\langle\mathrm{a} g_{k}, p^{\nu_{k-1}} w\right\rangle+\left\langle p^{\nu_{k-1}} w, p^{\nu_{k-1}} w\right\rangle
$$

we have

$$
\operatorname{ord}_{p}\left(\langle b, b\rangle-\left\langle{ }^{\mathrm{a}} b,{ }^{\mathrm{a}} b\right\rangle\right) \geq \sigma
$$

We then put

$$
\kappa:=\sigma-\left(\gamma_{k}+2 \delta\right)
$$

Since $\operatorname{ord}_{p}\left(\left\langle^{\mathrm{a}} b,{ }^{\mathrm{a}} b\right\rangle\right) \leq \gamma_{k}+2 \delta$, we see that

$$
\langle b, b\rangle=\left\langle{ }^{\mathrm{a}} b,{ }^{\mathrm{a}} b\right\rangle\left(1+p^{\kappa} c\right) \quad \text { for some } c \in \mathbb{Z}_{p}
$$

If $\kappa<1+2 \delta$, then we quit and go to the recalculation process (Remark 5.6). Suppose that $\kappa \geq 1+2 \delta$. Then, by Lemma 5.8, we have

$$
\langle b, b\rangle \equiv\left\langle{ }^{\mathrm{a}} b,{ }^{\mathrm{a}} b\right\rangle \bmod \left(\mathbb{Q}_{p}^{\times}\right)^{2} .
$$

When $b=b^{-}$, we put

$$
i(k):=i(k-1)+1, \quad r_{i(k-1)+1}:=b, \quad{ }^{\mathrm{a}} r_{i(k-1)+1}:={ }^{\mathrm{a}} b,
$$

so that

$$
T^{(k)}=T^{(k-1)} \tau(b), \quad{ }^{\mathrm{a}} T^{(k)}={ }^{\mathrm{a}} T^{(k-1)} \tau\left({ }^{\mathrm{a}} b\right)
$$

When $b=b^{+}$, we put

$$
\begin{aligned}
i(k) & :=i(k-1)+2, \quad r_{i(k-1)+1}:=b, \\
{ }^{\mathrm{a}} r_{i(k-1)+1} & :={ }^{\mathrm{a}} b, \quad r_{i(k-1)+2}:={ }^{\mathrm{a}} r_{i(k-1)+2}:=f_{k},
\end{aligned}
$$

so that

$$
T^{(k)}=T^{(k-1)} \tau(b) \tau\left(f_{k}\right), \quad{ }^{\mathrm{a}} T^{(k)}={ }^{\mathrm{a}} T^{(k-1)} \tau\left({ }^{\mathrm{a}} b\right) \tau\left(f_{k}\right)
$$

By construction, we have $f_{k} T^{(k)}=f_{k}$. Using the induction hypothesis on $T^{(k-1)}$, we can easily verify that $T^{(k)}$ preserves $\left\langle f_{1}, \ldots, f_{k}\right\rangle$ and acts on $\left\langle f_{1}, \ldots, f_{k}\right\rangle$ trivially. Thus the constructed data satisfies properties (P1), (P2), and (P3).

It remains to give a lower bound v_{k} of $\operatorname{minord}_{p}\left(T^{(k)}-{ }^{\mathrm{a}} T^{(k)}\right)$. First, we calculate $\operatorname{minord}_{p}\left(\tau(b)-\tau\left({ }^{\mathrm{a}} b\right)\right)$. For $x \in \mathbb{Q}_{p}^{\ell}$, we have

$$
x \cdot\left(\tau(b)-\tau\left({ }^{\mathrm{a}} b\right)\right)=\frac{2}{\langle b, b\rangle} \phi(x),
$$

where

$$
\begin{aligned}
\phi(x) & =\left(1+p^{\kappa} c\right)\left\langle^{\mathrm{a}} b, x\right\rangle^{\mathrm{a}} b-\left\langle^{\mathrm{a}} b+p^{v_{k-1}} w, x\right\rangle\left(^{\mathrm{a}} b+p^{v_{k-1}} w\right) \\
& \left.=p^{\kappa} c\left\langle^{\mathrm{a}} b, x\right\rangle^{\mathrm{a}} b-\left\langle p^{v_{k-1}} w, x\right\rangle^{\mathrm{a}} b-{ }^{\mathrm{a}} b, x\right\rangle p^{\nu_{k-1}} w-\left\langle p^{v_{k-1}} w, x\right\rangle p^{v_{k-1}} w .
\end{aligned}
$$

Since $\operatorname{minord}_{p}\left(f_{k}\right)=0$, we have $\operatorname{minord}_{p}\left({ }^{\mathrm{a}} b\right) \geq \bar{\lambda}_{k}:=\min \left(0, \lambda_{k}\right)$. Hence, whenever $\operatorname{minord}_{p}(x) \geq 0$, we have

$$
\operatorname{minord}_{p}(\phi(x)) \geq \theta:=\min \left(\kappa+2 \bar{\lambda}_{k}+\gamma, v_{k-1}+\gamma+\bar{\lambda}_{k}, 2 v_{k-1}+\gamma\right) .
$$

Combining this with $\operatorname{ord}_{p}(\langle b, b\rangle) \leq \gamma_{k}+2 \delta$, we see that

$$
\begin{equation*}
\operatorname{minord}_{p}\left(\tau(b)-\tau\left({ }^{\mathrm{a}} b\right)\right) \geq \delta+\theta-\left(\gamma_{k}+2 \delta\right)=\theta-\gamma_{k}-\delta . \tag{5.12}
\end{equation*}
$$

We put

$$
\begin{aligned}
\lambda & :=\operatorname{minord}_{p}\left({ }^{\mathrm{a}} T^{(k-1)}\right), \\
\alpha & :=\operatorname{minord}_{p}\left(\tau\left({ }^{\mathrm{a}} b\right)\right), \\
\beta & :=\operatorname{minord}_{p}\left(\tau\left(f_{k}\right)\right),
\end{aligned}
$$

and

$$
v^{\prime}:=\min \left(v_{k-1}+\alpha, \lambda+\theta-\gamma_{k}-\delta, v_{k-1}+\theta-\gamma_{k}-\delta\right) .
$$

By Lemma 5.7 and (5.12), we see that

$$
\operatorname{minord}_{p}\left(T^{(k-1)} \tau(b)-{ }^{\mathrm{a}} T^{(k-1)} \tau\left({ }^{\mathrm{a}} b\right)\right) \geq v^{\prime}
$$

Therefore, in the case where $b=b^{-}$, we put $v_{k}:=v^{\prime}$. In the case where $b=b^{+}$, we have

$$
\operatorname{minord}_{p}\left(T^{(k-1)} \tau(b) \tau\left(f_{k}\right)-{ }^{\mathrm{a}} T^{(k-1)} \tau\left({ }^{\mathrm{a}} b\right) \tau\left(f_{k}\right)\right) \geq v^{\prime}+\beta
$$

and hence we put $\nu_{k}:=v^{\prime}+\beta$.
The values of γ_{k}, γ, and β do not depend on the initial approximate accuracy $\nu_{0}=\nu$. The values of λ_{k}, λ, and α stabilize to constants as ν goes to infinity. Suppose that v_{k-1} / v converges to 1 as v goes to infinity. By the definitions, we see that $\sigma / \nu_{k-1}, \kappa / \nu_{k-1}$ and θ / ν_{k-1} also converge to 1 , and hence v_{k} / v converges to 1 . Therefore, if v is large enough, then this algorithm reaches $k=\ell$.

6. Examples

6.1. Algebraically Distinguished Connected Components

Let (X, f, s) be an elliptic $K 3$ surface. We use the notation $A_{f}, U_{f}, L\left(\Phi_{f}\right)$, and $M\left(\Phi_{f}\right)$ defined in Introduction. Since we can perturb (X, f, s) to an elliptic $K 3$ surface ($X^{\prime}, f^{\prime}, s^{\prime}$) in such a way that $A_{f^{\prime}} \cong A_{f}$ and $S_{X^{\prime}} \cong U_{f} \oplus M\left(\Phi_{f}\right)$, we see that, for each torsion section $\tau \in A_{f}$, the class $[\tau] \in H^{2}(X, \mathbb{Z})$ of the curve $\tau\left(\mathbb{P}^{1}\right)$ is contained in $U_{f} \oplus M\left(\Phi_{f}\right)$. In this subsection, we present a method to calculate these classes [τ].

We denote by $v_{f} \in U_{f}$ the class of a fiber of f. Let $P \in \mathbb{P}^{1}$ be a point such that $f^{-1}(P)$ is reducible. Suppose that the reduced part of $f^{-1}(P)$ consists of $\rho+1$ smooth rational curves. A smooth rational curve Θ in $f^{-1}(P)$ is said to be a simple component of $f^{-1}(P)$ if the divisor $f^{-1}(P)$ of X is reduced at a general point of Θ. If a section of f intersects $f^{-1}(P)$ at a point of Θ, then Θ is a simple component. Let Θ_{0} be a simple component of $f^{-1}(P)$, and let $\Theta_{1}, \ldots, \Theta_{\rho}$ be the other smooth rational curves in $f^{-1}(P)$. Let θ_{v} be the class of Θ_{v} for $v=0, \ldots, \rho$. Then $\theta_{1}, \ldots, \theta_{\rho}$ span a root sublattice $L(P)$ in $U_{f} \oplus L\left(\Phi_{f}\right)$, and
$\theta_{1}, \ldots, \theta_{\rho}$ form a fundamental root system of $L(P)$. Moreover, v_{f} is orthogonal to $L(P)$, and $\theta_{0} \in \mathbb{Z} v_{f} \oplus L(P)$.

Proposition 6.1. Let $\left\{P_{1}, \ldots, P_{N}\right\}$ be the set of points $P_{i} \in \mathbb{P}^{1}$ such that $f^{-1}\left(P_{i}\right)$ is reducible. A vector $u \in U_{f} \oplus M\left(\Phi_{f}\right)$ is the class $[\tau]$ of a torsion section $\tau \in A_{f}$ if and only if u satisfies the following:
(i) $\langle u, u\rangle=-2$ and $\left\langle u, v_{f}\right\rangle=1$.
(ii) For each $i=1, \ldots, N$, there exists a simple component $\Theta_{0}^{(i)}$ of $f^{-1}\left(P_{i}\right)$ such that $\left\langle u, \Theta_{0}^{(i)}\right\rangle=1$ and $\left\langle u, \Theta_{v}^{(i)}\right\rangle=0$ for all smooth rational curves $\Theta_{v}^{(i)}$ in $f^{-1}\left(P_{i}\right)$ other than $\Theta_{0}^{(i)}$.

For the proof, we need a preparation. Let $P \in \mathbb{P}^{1}, L(P), \Theta_{0}, \ldots, \Theta_{\rho}$, and $\theta_{0}, \ldots, \theta_{\rho}$ be as before. We have

$$
\theta_{0}=v_{f}-\sum_{i=1}^{\rho} m_{\nu} \theta_{\nu}
$$

where $m_{v} \in \mathbb{Z}_{>0}$ is the multiplicity of Θ_{v} in the divisor $f^{-1}(P)$. The values of m_{v} are classically known for all types of singular fibers of elliptic surfaces. (See [11]; see also [8, Figure 1.8].) The following lemma can be confirmed by explicit computation.

Lemma 6.2. Let $\theta_{1}^{\vee}, \ldots, \theta_{\rho}^{\vee}$ be the basis of $L(P)^{\vee}$ dual to the fundamental root system $\theta_{1}, \ldots, \theta_{\rho}$ of $L(P)$. Then there exists no index $\mu>0$ such that $m_{\mu}=1$ and $\theta_{\mu}^{\vee} \in L(P)$.

Proof of Proposition 6.1. The necessity of conditions (i) and (ii) is obvious. Suppose that u satisfies (i) and (ii). By condition (i), we see that u is the class of an effective divisor

$$
H+\sum_{i=0}^{N} \Gamma_{i}
$$

on X, where H is a reduced curve mapped isomorphically to \mathbb{P}^{1} by f, and Γ_{i} is an effective divisor whose support is contained in the support of $f^{-1}\left(P_{i}\right)$. It suffices to show that $\Gamma_{i}=0$ for each i. Indeed, if u is the class of a section H, then H must be a torsion section because $u \in U_{f} \oplus M\left(\Phi_{f}\right)$.

Let $\Theta_{1}^{(i)}, \ldots, \Theta_{\rho(i)}^{(i)}$ be smooth rational curves in $f^{-1}\left(P_{i}\right)$ other than the simple component $\Theta_{0}^{(i)}$ given in condition (ii). Since H is a section, there exists an index $\mu(i)$ with $0 \leq \mu(i) \leq \rho(i)$ such that

$$
\left\langle H, \Theta_{v}^{(i)}\right\rangle= \begin{cases}1 & \text { if } v=\mu(i) \\ 0 & \text { otherwise }\end{cases}
$$

It suffices to show that $\mu(i)=0$. Indeed, suppose that $\mu(i)=0$. Then we have $\left\langle u, \Theta_{v}^{(i)}\right\rangle=\left\langle H, \Theta_{v}^{(i)}\right\rangle=0$ for all $v>0$, and hence $\left\langle\Gamma_{i}, \Theta_{v}^{(i)}\right\rangle=0$ for all $v>0$.

Since the root lattice $L\left(P_{i}\right)$ spanned by the classes of $\Theta_{1}^{(i)}, \ldots, \Theta_{\rho(i)}^{(i)}$ is nondegenerate, and $\left[\Gamma_{i}\right] \in \mathbb{Z} v_{f} \oplus L\left(P_{i}\right)$, we see that Γ_{i} is a multiple of the divisor $f^{-1}\left(P_{i}\right)$. We put $\Gamma_{i}=k_{i} f^{-1}\left(P_{i}\right)$ with $k_{i} \in \mathbb{Z}_{\geq 0}$. Then we have $u=[H]+k v_{f}$, where $k=\sum_{i=1}^{N} k_{i}$. From $\langle u, u\rangle=\langle H, H\rangle=-2$ and $\left\langle H, v_{f}\right\rangle=1$, we obtain $k=0$.

Now we prove $\mu(i)=0$. Let $\theta_{1}^{\vee}, \ldots, \theta_{\rho(i)}^{\vee}$ be the basis of $L\left(P_{i}\right)^{\vee}$ dual to the basis $\left[\Theta_{1}^{(i)}\right], \ldots,\left[\Theta_{\rho(i)}^{(i)}\right]$ of $L\left(P_{i}\right)$. Suppose that $\mu(i)>0$. Since $\left\langle u, \Theta_{0}^{(i)}\right\rangle=1$ and $\left\langle H, \Theta_{0}^{(i)}\right\rangle=0$, we have

$$
\begin{equation*}
\left\langle\Gamma_{i}, \Theta_{0}^{(i)}\right\rangle=1 \tag{6.1}
\end{equation*}
$$

Since $\left\langle u, \Theta_{\mu(i)}^{(i)}\right\rangle=0$ and $\left\langle H, \Theta_{\mu(i)}^{(i)}\right\rangle=1$, we have

$$
\begin{equation*}
\left\langle\Gamma_{i}, \Theta_{\mu(i)}^{(i)}\right\rangle=-1 \tag{6.2}
\end{equation*}
$$

If $v \neq 0$ and $v \neq \mu(i)$, then we have $\left\langle u, \Theta_{v}^{(i)}\right\rangle=\left\langle H, \Theta_{v}^{(i)}\right\rangle=0$, and hence we have

$$
\begin{equation*}
\left\langle\Gamma_{i}, \Theta_{v}^{(i)}\right\rangle=0 \tag{6.3}
\end{equation*}
$$

Let $z \in L\left(P_{i}\right)$ be the image of $\left[\Gamma_{i}\right] \in \mathbb{Z} v_{f} \oplus L\left(P_{i}\right)$ by the projection $\mathbb{Z} v_{f} \oplus$ $L\left(P_{i}\right) \rightarrow L\left(P_{i}\right)$. Then (6.2) and (6.3) imply that z is equal to $-\theta_{\mu(i)}^{\vee}$. In particular, $\theta_{\mu(i)}^{\vee}$ is in $L\left(P_{i}\right)$. On the other hand, (6.1) implies that the coefficient $m_{\mu(i)}$ of $\left[\Theta_{0}^{(i)}\right]=v_{f}-\sum_{\nu} m_{\nu}\left[\Theta_{\nu}^{(i)}\right]$ is 1 , which contradicts Lemma 6.2.

Let $v_{s} \in U_{f}$ denote the class of the zero section s. It is easy to make the complete list of vectors u_{L} of $U_{f} \oplus L\left(\Phi_{f}\right)^{\vee}$ that satisfies condition (ii) in Proposition 6.1. If $u_{L} \in L\left(\Phi_{f}\right)^{\vee}$ satisfies condition (ii) in Proposition 6.1 and belongs to $U_{f} \oplus$ $M\left(\Phi_{f}\right)$, then

$$
-\frac{\left\langle u_{L}, u_{L}\right\rangle}{2} v_{f}+v_{s}+u_{L}
$$

is the class of a torsion section. The classes of all torsion sections are obtained in this way. Thus we can calculate the set $\left\{[\tau] \mid \tau \in A_{f}\right\}$, and we see how the torsion sections intersect irreducible components of reducible fibers.

We say that a torsion section $\tau \in A_{f}$ is narrow at $P \in \mathbb{P}^{1}$ if τ and s intersect the same irreducible component of $f^{-1}(P)$.

Example 6.3. We consider the extremal elliptic $K 3$ surfaces (X, f, s) of type

$$
\left(A_{9}+A_{5}+A_{3}+A_{1}, \mathbb{Z} / 2 \mathbb{Z}\right)
$$

which have two algebraically distinguished connected components that cannot be distinguished by the transcendental lattices. (See no. 64 of Table 2.) Let $P\left(A_{l}\right) \in \mathbb{P}^{1}$ denote the point such that $f^{-1}\left(P_{i}\right)$ is of type A_{l}. The nontrivial torsion section of an elliptic $K 3$ surface in one connected component is not narrow at $P\left(A_{9}\right), P\left(A_{3}\right)$, and $P\left(A_{1}\right)$ and narrow at $P\left(A_{5}\right)$, whereas the nontrivial torsion section of an elliptic $K 3$ surface in the other connected components is not narrow at $P\left(A_{9}\right)$ and $P\left(A_{5}\right)$ and narrow at $P\left(A_{3}\right)$ and $P\left(A_{1}\right)$.

Example 6.4. We consider the nonextremal elliptic $K 3$ surfaces of type

$$
\left(A_{5}+A_{3}+6 A_{1}, \mathbb{Z} / 2 \mathbb{Z}\right)
$$

which have three algebraically distinguished connected components. (See no. 91 of Table 3.) These connected components can be distinguished by the narrowness of the nontrivial torsion section as follows:

A_{5}	A_{3}	$A_{1}, A_{1}, A_{1}, A_{1}, A_{1}, A_{1}$
narrow	not narrow	not narrow at all 6 points
not narrow	narrow	narrow at only one point
not narrow	not narrow	narrow at exactly 3 points.

6.2. Connected Components when G is Trivial

Example 6.5. Consider the combinatorial type

$$
(\Phi, A)=\left(7 A_{2}, \mathbb{Z} / 3 \mathbb{Z}\right)
$$

We have $|\mathfrak{C}(\Phi, A, \operatorname{Aut}(\Phi))|=1$. The discriminant form of $L(\Phi)$ is isomorphic to $\left(\mathbb{F}_{3},[4 / 3]\right)^{7}$, and we have

$$
\operatorname{Aut}(\Phi)=(\mathbb{Z} / 2 \mathbb{Z})^{7} \rtimes \mathfrak{S}_{7}
$$

The set $\mathcal{E}(\Phi, A) / \operatorname{Aut}(\Phi)$ consists of only one element [M], where M corresponds to the totally isotropic subspace of dimension 1 over \mathbb{F}_{3} generated by ($0,1,1,1,1,1,1$). Hence we have

$$
\operatorname{Stab}(M)=(\mathbb{Z} / 2 \mathbb{Z}) \times\left((\mathbb{Z} / 2 \mathbb{Z})^{6} \rtimes \mathfrak{S}_{6}\right)
$$

The genus \mathcal{G} determined by the signature $(2,4)$, and the discriminant form $\left(D_{M},-q_{M}\right)$ consists of only one isomorphism class. We have $|\mathfrak{C}(\Phi, A,\{\mathrm{id}\})|=2$, and the two connected components in $\mathfrak{C}(\Phi, A,\{i d\})$ are complex conjugate to each other.

Example 6.6. For the combinatorial type

$$
(\Phi, A)=\left(4 A_{4},\{0\}\right)
$$

we have $|\mathfrak{C}(\Phi, A, \operatorname{Aut}(\Phi))|=1$, whereas $|\mathfrak{C}(\Phi, A,\{i d\})|=2$, and the two connected components in $\mathfrak{C}(\Phi, A,\{i d\})$ are real.

Example 6.7. For the combinatorial type $(\Phi, A)=\left(2 D_{4}+4 A_{2},\{0\}\right)$, we have $|\mathfrak{C}(\Phi, A, \operatorname{Aut}(\Phi))|=1$, whereas $|\mathfrak{C}(\Phi, A,\{i d\})|=4$, and the four connected components in $\mathfrak{C}(\Phi, A,\{i d\})$ are divided into two complex conjugate pairs.

7. Tables

See Introduction for the explanation of the entries of the tables below.

Table 2 Nonconnected moduli of extremal elliptic $K 3$ surfaces

No.	Φ	A	T	[r, c]
1	$E_{8}+A_{9}+A_{1}$	[1]	[2, 0, 10]	[2, 0]
2	$E_{8}+A_{6}+A_{3}+A_{1}$	[1]	[6, 2, 10]	[0, 2]
3	$E_{8}+2 A_{5}$	[1]	[6, 0, 6]	[0, 2]
4	$E_{7}+E_{6}+A_{5}$	[1]	[6, 0, 6]	[0, 2]
5	$E_{7}+D_{5}+A_{6}$	[1]	[6, 2, 10]	[0, 2]
6	$E_{7}+A_{11}$	[1]	[4, 0, 6]	[0, 2]
7	$E_{7}+A_{10}+A_{1}$	[1]	[2, 0, 22]	[1, 0]
			[6, 2, 8]	[0, 2]
8	$E_{7}+A_{8}+A_{2}+A_{1}$	[1]	$[6,0,18]$	[1, 2]
9	$E_{7}+A_{7}+A_{4}$	[1]	[6, 2, 14]	[0, 2]
10	$E_{7}+A_{7}+A_{3}+A_{1}$	[2]	[4, 0, 8]	[0, 2]
11	$E_{7}+A_{6}+A_{5}$	[1]	[4, 2, 22]	[0, 2]
12	$E_{7}+A_{6}+A_{4}+A_{1}$	[1]	[2, 0, 70]	[1, 0]
			[8, 2, 18]	[0, 2]
13	$E_{7}+A_{5}+A_{4}+A_{2}$	[1]	[6, 0, 30]	[2, 0]
14	$E_{6}+D_{5}+A_{7}$	[1]	[8, 0, 12]	[0, 2]
15	$E_{6}+A_{12}$	[1]	[4, 1, 10]	[0, 2]
16	$E_{6}+A_{11}+A_{1}$	[1]	[6, 0, 12]	[0, 2]
17	$E_{6}+A_{9}+A_{2}+A_{1}$	[1]	[12, 6, 18]	[0, 2]
18	$E_{6}+A_{8}+A_{4}$	[1]	[12, 3, 12]	[1, 2]
19	$E_{6}+A_{8}+A_{3}+A_{1}$	[1]	[12, 0, 18]	[1,2]
20	$E_{6}+A_{7}+A_{5}$	[1]	[6, 0, 24]	[0, 2]
21	$E_{6}+A_{6}+A_{5}+A_{1}$	[1]	[6, 0, 42]	[0, 2]
22	$E_{6}+A_{6}+A_{3}+A_{2}+A_{1}$	[1]	[6, 0, 84]	[1, 0]
			[12, 0, 42]	[1, 0]
23	$E_{6}+A_{5}+A_{4}+A_{3}$	[1]	[12, 0, 30]	[2, 0]
24	$D_{11}+A_{6}+A_{1}$	[1]	[6, 2, 10]	[0, 2]
25	$D_{9}+D_{5}+A_{4}$	[1]	[4, 0, 20]	[2, 0]
26	$D_{7}+A_{6}+A_{3}+A_{2}$	[1]	[8, 4, 44]	[0, 2]
27	$D_{6}+A_{9}+A_{2}+A_{1}$	[2]	[4, 2, 16]	[1, 0]
			[6, 0, 10]	$[1,0]$
28	$D_{6}+A_{7}+A_{4}+A_{1}$	[2]	[6, 2, 14]	[0, 2]
29	$D_{6}+2 A_{6}$	[1]	[14, 0, 14]	[0, 2]
30	$D_{5}+A_{13}$	[1]	[6, 2, 10]	[0, 2]
31	$D_{5}+A_{12}+A_{1}$	[1]	[2, 0, 52]	[1, 0]
			$[6,2,18]$	[0, 2]
32	$D_{5}+A_{10}+A_{2}+A_{1}$	[1]	[14, 4, 20]	[0, 2]
33	$D_{5}+A_{9}+A_{4}$	[1]	[10, 0, 20]	[1, 2]

Table 2 Continued

No.	Φ	A	T	[r, c]
34	$D_{5}+A_{9}+A_{3}+A_{1}$	[2]	[8, 4, 12]	[0, 2]
35	$D_{5}+A_{8}+A_{5}$	[1]	[12, 0, 18]	[1,2]
36	$D_{5}+A_{8}+A_{4}+A_{1}$	[1]	[2, 0, 180]	$[1,0]$
			[18, 0, 20]	$[1,0]$
37	$D_{5}+2 A_{6}+A_{1}$	[1]	[14, 0, 28]	[0, 2]
38	$D_{5}+A_{6}+A_{5}+A_{2}$	[1]	[6, 0, 84]	[1, 0]
			[12, 0, 42]	[1, 0]
39	$A_{17}+A_{1}$	[1]	[4, 2, 10]	[0, 2]
40	$A_{16}+2 A_{1}$	[1]	[2, 0, 34]	[1, 0]
			[4, 2, 18]	[1, 0]
41	$A_{15}+A_{2}+A_{1}$	[1]	[10, 2, 10]	[0, 2]
42	$A_{14}+A_{4}$	[1]	[10, 5, 10]	[0, 2]
43	$A_{14}+A_{3}+A_{1}$	[1]	[10, 0, 12]	[0, 2]
44	$A_{14}+A_{2}+2 A_{1}$	[1]	[12, 6, 18]	[0, 2]
45	$A_{13}+A_{5}$	[1]	[4, 2, 22]	[0, 2]
46	$A_{13}+A_{4}+A_{1}$	[1]	[2, 0, 70]	[1, 0]
			[8, 2, 18]	[0, 2]
47	$A_{13}+A_{3}+2 A_{1}$	[2]	$[6,2,10]$	[0, 2]
48	$A_{12}+A_{5}+A_{1}$	[1]	[10, 2, 16]	[0, 2]
49	$A_{12}+A_{4}+2 A_{1}$	[1]	[2, 0, 130]	[1, 0]
			[18, 8, 18]	[1, 0]
50	$A_{11}+A_{6}+A_{1}$	[1]	[4, 0, 42]	[0, 2]
51	$A_{11}+A_{4}+A_{2}+A_{1}$	[1]	[12, 0, 30]	[0, 4]
52	$A_{11}+A_{3}+A_{2}+2 A_{1}$	[2]	[12, 0, 12]	[0, 2]
53	$A_{10}+A_{7}+A_{1}$	[1]	[2, 0, 88]	[1, 0]
			[10, 2, 18]	[0, 2]
54	$A_{10}+A_{6}+A_{2}$	[1]	[4, 1, 58]	[0, 2]
			[16, 5, 16]	[1, 0]
55	$A_{10}+A_{6}+2 A_{1}$	[1]	[12, 2, 26]	[0, 2]
56	$A_{10}+A_{5}+A_{3}$	[1]	[4, 0, 66]	[1, 0]
			[12, 0, 22]	$[1,0]$
57	$A_{10}+A_{5}+A_{2}+A_{1}$	[1]	[6, 0, 66]	[1, 0]
			[18, 6, 24]	[0, 2]
58	$A_{10}+A_{4}+A_{3}+A_{1}$	[1]	[12, 4, 38]	[0, 2]
			[20, 0, 22]	[1, 0]
59	$A_{10}+A_{4}+2 A_{2}$	[1]	[6, 3, 84]	[1, 0]
			[24, 9, 24]	[1, 0]
60	$2 A_{9}$	[1]	[10, 0, 10]	[2, 0]

Table 2 Continued

No.	Φ	A	T	[r, c]
61	$A_{9}+A_{8}+A_{1}$	[1]	[10, 0, 18]	[2, 0]
62	$A_{9}+A_{6}+A_{2}+A_{1}$	[1]	[10, 0, 42]	[2, 0]
63	$A_{9}+A_{5}+A_{4}$	[1]	[10, 0, 30]	[1,2]
64	$A_{9}+A_{5}+A_{3}+A_{1}$	[2]	[10, 0, 12]	[1, 0]
			[10, 0, 12]	[1, 0]
65	$A_{9}+2 A_{4}+A_{1}$	[5]	[2, 0, 10]	[2, 0]
66	$A_{9}+A_{4}+A_{3}+2 A_{1}$	[2]	[10, 0, 20]	[1,2]
67	$2 A_{8}+2 A_{1}$	[1]	[18, 0, 18]	[1,2]
68	$A_{8}+A_{7}+A_{2}+A_{1}$	[1]	[18, 0, 24]	[1,2]
69	$A_{8}+A_{6}+A_{3}+A_{1}$	[1]	[10, 4, 52]	[0,2]
70	$A_{8}+A_{6}+A_{2}+2 A_{1}$	[1]	[18, 0, 42]	[1,2]
71	$A_{8}+A_{5}+A_{4}+A_{1}$	[1]	[18, 0, 30]	[1,2]
72	$A_{8}+A_{5}+2 A_{2}+A_{1}$	[3]	[6, 0, 18]	[1,2]
73	$A_{8}+A_{4}+A_{3}+A_{2}+A_{1}$	[1]	[6, 0, 180]	[1,2]
74	$2 A_{7}+2 A_{2}$	[1]	[24, 0, 24]	[0,2]
75	$A_{7}+A_{6}+A_{5}$	[1]	[16, 4, 22]	[0,2]
76	$A_{7}+A_{6}+A_{4}+A_{1}$	[1]	[2, 0, 280]	[1, 0]
			[18, 4, 32]	[0,2]
77	$A_{7}+A_{6}+A_{3}+A_{2}$	[1]	[4, 0, 168]	[0,2]
78	$A_{7}+A_{6}+A_{3}+2 A_{1}$	[2]	[12, 4, 20]	[0,2]
79	$A_{7}+2 A_{5}+A_{1}$	[2]	[6, 0, 24]	[0,2]
80	$A_{7}+A_{5}+A_{4}+A_{2}$	[1]	[6, 0, 120]	[1, 0]
			[24, 0, 30]	[1, 0]
81	$A_{7}+A_{5}+A_{3}+A_{2}+A_{1}$	[2]	[12, 0, 24]	[2, 0]
82	$A_{7}+A_{4}+A_{3}+2 A_{2}$	[1]	[12, 0, 120]	[2, 0]
83	$2 A_{6}+A_{4}+A_{2}$	[1]	[28, 7, 28]	[2, 0]
84	$2 A_{6}+2 A_{3}$	[1]	[28, 0, 28]	[0,2]
85	$2 A_{6}+2 A_{2}+2 A_{1}$	[1]	[42, 0, 42]	[2, 0]
86	$A_{6}+A_{5}+A_{4}+A_{2}+A_{1}$	[1]	[18, 6, 72]	[0,2]
			[30, 0, 42]	[1, 0]
87	$A_{6}+2 A_{4}+A_{3}+A_{1}$	[1]	[10, 0, 140]	[1, 0]
			[20, 0, 70]	$[1,0]$
88	$2 A_{5}+2 A_{4}$	[1]	[30, 0, 30]	[2, 0]
89	$2 A_{5}+4 A_{2}$	$[3,3]$	[6, 0, 6]	[0, 2]

Table 3 Nonconnected moduli of nonextremal elliptic $K 3$ surfaces

No.	r	Φ	A	$\left[c_{1}, \ldots, c_{k}\right]$
1	17	$E_{7}+D_{6}+A_{3}+A_{1}$	[2]	[1, 1]
2	17	$E_{7}+2 A_{5}$	[1]	[2]
3	17	$E_{7}+A_{5}+A_{3}+2 A_{1}$	[2]	[1, 1]
4	17	$E_{6}+A_{11}$	[1]	[2]
5	17	$E_{6}+A_{6}+A_{5}$	[1]	[2]
6	17	$E_{6}+2 A_{5}+A_{1}$	[1]	[2]
7	17	$D_{12}+A_{3}+2 A_{1}$	[2]	$[1,1]$
8	17	$D_{10}+D_{6}+A_{1}$	[2]	[1, 1]
9	17	$D_{8}+A_{7}+2 A_{1}$	[2]	[1, 1]
10	17	$D_{8}+A_{5}+A_{3}+A_{1}$	[2]	[1, 1]
11	17	$2 D_{6}+A_{3}+2 A_{1}$	[2, 2]	[1, 1]
12	17	$D_{6}+D_{5}+A_{5}+A_{1}$	[2]	[1, 1]
13	17	$D_{6}+A_{9}+2 A_{1}$	[2]	[1, 1]
14	17	$D_{6}+A_{7}+A_{3}+A_{1}$	[2]	[1, 1]
15	17	$D_{6}+A_{7}+A_{2}+2 A_{1}$	[2]	[1, 1]
16	17	$D_{6}+A_{5}+A_{3}+A_{2}+A_{1}$	[2]	[1, 1]
17	17	$D_{6}+A_{5}+A_{3}+3 A_{1}$	[2, 2]	[1, 1]
18	17	$D_{5}+2 A_{6}$	[1]	[2]
19	17	$D_{4}+2 A_{6}+A_{1}$	[1]	[2]
20	17	$A_{11}+A_{5}+A_{1}$	[1]	[2]
21	17	$A_{9}+A_{5}+3 A_{1}$	[2]	[1, 1]
22	17	$A_{9}+A_{3}+A_{2}+3 A_{1}$	[2]	[1, 1]
23	17	$A_{7}+2 A_{5}$	[1]	[2]
24	17	$A_{7}+A_{5}+A_{3}+2 A_{1}$	[2]	[1, 1]
25	17	$2 A_{6}+A_{3}+2 A_{1}$	[1]	[2]
26	17	$A_{6}+2 A_{5}+A_{1}$	[1]	[2]
27	17	$2 A_{5}+2 A_{3}+A_{1}$	[2]	$[1,1]$
28	17	$2 A_{5}+A_{3}+A_{2}+2 A_{1}$	[2]	[1, 1]
29	16	$E_{7}+D_{6}+3 A_{1}$	[2]	[1, 1]
30	16	$E_{7}+2 A_{3}+3 A_{1}$	[2]	[1, 1]
31	16	$E_{6}+2 A_{5}$	[1]	[2]
32	16	$D_{10}+A_{3}+3 A_{1}$	[2]	[1, 1]
33	16	$D_{8}+D_{6}+2 A_{1}$	[2]	$[1,1]$
34	16	$D_{8}+A_{5}+3 A_{1}$	[2]	$[1,1]$
35	16	$D_{8}+2 A_{3}+2 A_{1}$	[2]	[1, 1, 1]
36	16	$2 D_{6}+A_{3}+A_{1}$	[2]	[1, 1]
37	16	$2 D_{6}+4 A_{1}$	[2, 2]	[1, 1]
38	16	$D_{6}+D_{5}+A_{3}+2 A_{1}$	[2]	[1, 1]
39	16	$D_{6}+D_{4}+A_{5}+A_{1}$	[2]	$[1,1]$
40	16	$D_{6}+A_{9}+A_{1}$	[2]	[1, 1]

Table 3 Continued

No.	r	Φ	A	$\left[c_{1}, \ldots, c_{k}\right]$
41	16	$D_{6}+A_{7}+3 A_{1}$	[2]	[1, 1]
42	16	$D_{6}+A_{5}+A_{3}+2 A_{1}$	[2]	[1, 1, 1]
43	16	$D_{6}+A_{5}+A_{2}+3 A_{1}$	[2]	[1, 1]
44	16	$D_{6}+3 A_{3}+A_{1}$	[2]	[1, 1]
45	16	$D_{6}+2 A_{3}+A_{2}+2 A_{1}$	[2]	[1, 1]
46	16	$D_{6}+2 A_{3}+4 A_{1}$	[2, 2]	[1, 1]
47	16	$D_{5}+A_{5}+A_{3}+3 A_{1}$	[2]	[1, 1]
48	16	$D_{4}+A_{7}+A_{3}+2 A_{1}$	[2]	[1, 1]
49	16	$A_{11}+A_{3}+2 A_{1}$	[2]	[1, 1]
50	16	$A_{9}+A_{3}+4 A_{1}$	[2]	[1, 1]
51	16	$A_{7}+A_{5}+4 A_{1}$	[2]	[1, 1]
52	16	$A_{7}+A_{3}+A_{2}+4 A_{1}$	[2]	[1, 1]
53	16	$3 A_{5}+A_{1}$	[1]	[2]
54	16	$2 A_{5}+A_{3}+3 A_{1}$	[2]	[1, 1, 1]
55	16	$A_{5}+3 A_{3}+2 A_{1}$	[2]	[1, 1]
56	16	$A_{5}+2 A_{3}+A_{2}+3 A_{1}$	[2]	[1, 1]
57	16	$A_{5}+2 A_{3}+5 A_{1}$	[2, 2]	[1, 1]
58	15	$E_{7}+A_{3}+5 A_{1}$	[2]	[1, 1]
59	15	$D_{8}+A_{3}+4 A_{1}$	[2]	[1, 1, 1]
60	15	$2 D_{6}+3 A_{1}$	[2]	[1, 1]
61	15	$D_{6}+D_{5}+4 A_{1}$	[2]	[1, 1]
62	15	$D_{6}+D_{4}+A_{3}+2 A_{1}$	[2]	[1, 1]
63	15	$D_{6}+A_{7}+2 A_{1}$	[2]	[1, 1]
64	15	$D_{6}+A_{5}+A_{3}+A_{1}$	[2]	[1, 1]
65	15	$D_{6}+A_{5}+4 A_{1}$	[2]	[1, 1]
66	15	$D_{6}+2 A_{3}+3 A_{1}$	[2]	[1, 1, 1]
67	15	$D_{6}+A_{3}+A_{2}+4 A_{1}$	[2]	[1, 1]
68	15	$D_{6}+A_{3}+6 A_{1}$	[2, 2]	[1, 1]
69	15	$D_{5}+2 A_{3}+4 A_{1}$	[2]	[1, 1]
70	15	$D_{4}+A_{5}+A_{3}+3 A_{1}$	[2]	[1, 1]
71	15	$D_{4}+3 A_{3}+2 A_{1}$	[2]	[1, 1]
72	15	$A_{9}+A_{3}+3 A_{1}$	[2]	[1, 1]
73	15	$A_{7}+2 A_{3}+2 A_{1}$	[2]	[1, 1]
74	15	$A_{7}+A_{3}+5 A_{1}$	[2]	[1, 1]
75	15	$2 A_{5}+A_{3}+2 A_{1}$	[2]	[1, 1]
76	15	$2 A_{5}+5 A_{1}$	[2]	[1, 1]
77	15	$A_{5}+2 A_{3}+4 A_{1}$	[2]	[1, 1, 1]
78	15	$A_{5}+A_{3}+A_{2}+5 A_{1}$	[2]	[1, 1]
79	15	$3 A_{3}+A_{2}+4 A_{1}$	[2]	[1, 1]
80	15	$3 A_{3}+6 A_{1}$	[2, 2]	[1, 1]

Table 3 Continued

No.	r	Φ	A	$\left[c_{1}, \ldots, c_{k}\right]$
81	14	$D_{8}+6 A_{1}$	$[2]$	$[1,1]$
82	14	$D_{6}+D_{4}+4 A_{1}$	$[2]$	$[1,1]$
83	14	$D_{6}+A_{5}+3 A_{1}$	$[2]$	$[1,1]$
84	14	$D_{6}+2 A_{3}+2 A_{1}$	$[2]$	$[1,1]$
85	14	$D_{6}+A_{3}+5 A_{1}$	$[2]$	$[1,1,1]$
86	14	$D_{6}+A_{2}+6 A_{1}$	$[2]$	$[1,1]$
87	14	$D_{5}+A_{3}+6 A_{1}$	$[2]$	$[1,1]$
88	14	$D_{4}+2 A_{3}+4 A_{1}$	$[2]$	$[1,1]$
89	14	$A_{7}+A_{3}+4 A_{1}$	$[2]$	$[1,1]$
90	14	$A_{5}+2 A_{3}+3 A_{1}$	$[2]$	$[1,1]$
91	14	$A_{5}+A_{3}+6 A_{1}$	$[2]$	$[1,1,1]$
92	14	$4 A_{3}+2 A_{1}$	$[2]$	$[1,1]$
93	14	$3 A_{3}+5 A_{1}$	$[2]$	$[1,1]$
94	14	$2 A_{3}+A_{2}+6 A_{1}$	$[2]$	$[1,1]$
95	14	$2 A_{3}+8 A_{1}$	$[2,2]$	$[1,1]$
96	13	$D_{6}+A_{3}+4 A_{1}$	$[2]$	$[1,1]$
97	13	$D_{6}+7 A_{1}$	$[2]$	$[1,1]$
98	13	$D_{4}+A_{3}+6 A_{1}$	$[2]$	$[1,1]$
99	13	$A_{5}+A_{3}+5 A_{1}$	$[2]$	$[1,1]$
100	13	$A_{5}+8 A_{1}$	$[2]$	$[1,1]$
101	13	$3 A_{3}+4 A_{1}$	$[2]$	$[1,1]$
102	13	$2 A_{3}+7 A_{1}$	$[2]$	$[1,1]$
103	13	$A_{3}+A_{2}+8 A_{1}$	$[2]$	$[1,1]$
104	12	$D_{6}+6 A_{1}$	$[2]$	$[1,1]$
105	12	$2 A_{3}+6 A_{1}$	$[2]$	$[1,1]$
106	12	$A_{3}+9 A_{1}$	$[2]$	$[1,1]$
107	11	$A_{3}+8 A_{1}$	$[2]$	$[1,1]$

References

[1] A. Akyol and A. Degtyarev, Geography of irreducible plane sextics, Proc. Lond. Math. Soc. (3) 111 (2015), no. 6, 1307-1337.
[2] K. Arima and I. Shimada, Zariski-van Kampen method and transcendental lattices of certain singular K3 surfaces, Tokyo J. Math. 32 (2009), no. 1, 201-227.
[3] W. P. Barth, K. Hulek, C. A. M. Peters, and A. Van de Ven, Compact complex surfaces, second edition, Ergeb. Math. Grenzgeb. (3), 4, Springer-Verlag, Berlin, 2004.
[4] J. W. S. Cassels, Rational quadratic forms, London Math. Soc. Monogr. Ser., 13, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1978.
[5] H. Cohen, A course in computational algebraic number theory, Grad. Texts in Math., 138, Springer-Verlag, Berlin, 1993.
[6] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, third edition, Grundlehren Math. Wiss., 290, Springer-Verlag, New York, 1999.
［7］A．Degtyarev，Transcendental lattice of an extremal elliptic surface，J．Algebraic Geom． 21 （2012），no．3，413－444．
［8］W．Ebeling，Lattices and codes，third edition，Adv．Lectures Math．，Springer Spek－ trum，Wiesbaden， 2013.
［9］The GAP Group，GAP－Groups，Algorithms，and Programming．Version 4．7．9，2015，〈http：／／www．gap－system．org〉．
［10］Ç．G．Aktaş，Classification of simple quartics up to equisingular deformation， $\mathrm{Hi}-$ roshima Math．J． 46 （2017），no．1，87－112．
［11］K．Kodaira，On compact analytic surfaces．II，III，Ann．of Math．（2） 77 （1963），563－ 626．ibid．，78：1－40，1963．Reprinted in Kunihiko Kodaira：Collected works．Vol．III， Iwanami Shoten，Publishers，Tokyo；Princeton University Press，Princeton，NJ，1975， pp．1269－1372．
［12］A．K．Lenstra，H．W．Jr．Lenstra，and L．Lovász，Factoring polynomials with rational coefficients，Math．Ann． 261 （1982），no．4，515－534．
［13］E．Looijenga and J．Wahl，Quadratic functions and smoothing surface singularities， Topology 25 （1986），no．3，261－291．
［14］R．Miranda and D．R．Morrison，Embeddings of integral quadratic forms（electronic）， 2009，〈http：／／www．math．ucsb．edu／drm／manuscripts／eiqf．pdf〉．
［15］，The number of embeddings of integral quadratic forms．I，Proc．Japan Acad． Ser．A Math．Sci． 61 （1985），no．10，317－320．
［16］，The number of embeddings of integral quadratic forms．II，Proc．Japan Acad． Ser．A Math．Sci． 62 （1986），no．1，29－32．
［17］V．V．Nikulin，Integer symmetric bilinear forms and some of their geometric appli－ cations，Izv．Akad．Nauk SSSR Ser．Mat． 43 （1979），no．1，111－177，238，English translation：Math USSR－Izv． 14 （1979），no．1，103－167（1980）．
［18］I．I．Piatetski－Shapiro and I．R．Shafarevich，Torelli＇s theorem for algebraic surfaces of type K3，Collected mathematical papers，Izv．Akad．Nauk SSSR Ser．Mat．，35，pp． 530－572，Springer－Verlag，Berlin，1971，Reprinted in I．R．Shafarevich，Collected Mathematical Papers，Springer－Verlag，Berlin，1989，516－557．
［19］M．Schütt，Fields of definition of singular K3 surfaces，Commun．Number Theory Phys． 1 （2007），no．2，307－321．
［20］I．Shimada，On elliptic K3 surfaces，Michigan Math．J． 47 （2000），no．3，423－446．
［21］，On normal K3 surfaces，Michigan Math．J． 55 （2007），no．2，395－416．
［22］＿，Non－homeomorphic conjugate complex varieties，Singularities－Niigata－ Toyama 2007，Adv．Stud．Pure Math．，56，pp．285－301，Math．Soc．Japan，Tokyo， 2009.
［23］，Transcendental lattices and supersingular reduction lattices of a singular K3 surface，Trans．Amer．Math．Soc． 361 （2009），no．2，909－949．
［24］，Connected components of the moduli of elliptic K3 surfaces：computational data，2016，〈http：／／www．math．sci．hiroshima－u．ac．jp／～shimada／K3．html〉．
［25］I．Shimada and D．－Q．Zhang，Classification of extremal elliptic K3 surfaces and fun－ damental groups of open K3 surfaces，Nagoya Math．J． 161 （2001），23－54．
［26］T．Shioda and H．Inose，On singular K3 surfaces，Complex analysis and algebraic geometry，pp．119－136，Iwanami Shoten，Tokyo， 1977.
［27］T．Shioda，On the Mordell－Weil lattices，Comment．Math．Univ．St．Pauli 39 （1990）， no．2，211－240．
［28］J．－G．Yang，Sextic curves with simple singularities，Tohoku Math．J．（2） 48 （1996）， no．2，203－227．
\qquad , Enumeration of combinations of rational double points on quartic surfaces, Singularities and complex geometry, Beijing, 1994, AMS/IP Stud. Adv. Math., 5, pp. 275-312, Amer. Math. Soc., Providence, RI, 1997.

Department of Mathematics
Graduate School of Science Hiroshima University
1-3-1 Kagamiyama
Higashi-Hiroshima, 739-8526
Japan
ichiro-shimada@hiroshima-u.ac.jp

[^0]: Received October 17, 2016. Revision received August 19, 2017.
 This work was supported by JSPS KAKENHI Grants 16H03926 and 16K1374.

