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A Geometric Reverse to the Plus Construction and
Some Examples of Pseudocollars on

High-Dimensional Manifolds

Jeffrey J. Rolland

Abstract. In this paper, we develop a geometric procedure for pro-
ducing a “reverse” to Quillen’s plus construction, a construction called
a 1-sided h-cobordism or semi-h-cobordism. We then use this reverse
to the plus construction to produce uncountably many distinct ends
of manifolds called pseudocollars, which are stackings of 1-sided h-
cobordisms. Each of our pseudocollars has the same boundary and
prohomology systems at infinity and similar group-theoretic prop-
erties for their profundamental group systems at infinity. In partic-
ular, the kernel group of each group extension for each 1-sided h-
cobordism in the pseudocollars is the same group. Nevertheless, the
profundamental group systems at infinity are all distinct. A good deal
of combinatorial group theory is needed to verify this fact, including
an application of Thompson’s group V .

The notion of pseudocollars originated in Hilbert cube manifold
theory, where it was part of a necessary and sufficient condition for
placing a Z-set as the boundary of an open Hilbert cube manifold.

1. Introduction and Main Results

In this paper, we develop a geometric procedure for producing a “reverse” to
Quillen’s plus construction, a construction called a 1-sided h-cobordism or semi-
h-cobordism. We then use this reverse to the plus construction to produce un-
countably many distinct ends of manifolds called pseudocollars, which are stack-
ings of 1-sided h-cobordisms. Each of our pseudocollars has the same boundary
and prohomology systems at infinity and similar group-theoretic properties for
their profundamental group systems at infinity. In particular, the kernel group of
each group extension for each 1-sided h-cobordism in the pseudocollars is the
same group. Nevertheless, the profundamental group systems at infinity are all
distinct. A good deal of combinatorial group theory is needed to verify this fact,
including an application of Thompson’s group V.

The notion of pseudocollars originated in Hilbert cube manifold theory, where
it was part of a necessary and sufficient condition for placing a Z-set as the bound-
ary of an open Hilbert cube manifold.

We work in the category of smooth manifolds, but all our results apply equally
well to the categories of PL and topological manifolds. The manifold version
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of Quillen’s plus construction provides a way of taking a closed smooth man-
ifold M of dimension n ≥ 5 whose fundamental group G = π1(M) contains
a perfect normal subgroup P that is the normal closure of a finite number of
elements and produces a compact cobordism (W,M,M+) to a manifold M+
whose fundamental group is isomorphic to Q = G/P and for which M+ ↪→ W

is a simple homotopy equivalence. By duality, the map f : M → M+ given
by including M into W and then retracting onto M+ induces an isomorphism
f∗ : H∗(M;ZQ) → H∗(M+;ZQ) of homology with twisted coefficients. By a
clever application of the s-cobordism theorem, such a cobordism is uniquely de-
termined by M and P (see [8, p. 197]).

In “Manifolds with Non-stable Fundamental Group at Infinity I” [10], Guil-
bault outlines a structure to put on the ends of an open smooth manifold N with
finitely many ends called a pseudocollar, which generalizes the notion of a collar
on the end of a manifold introduced in Siebenmann’s dissertation [25]. A pseu-
docollar is defined as follows. Recall that a manifold Un with compact boundary
is an open collar if Un ≈ ∂Un × [0,∞); it is a homotopy collar if the inclusion
∂Un ↪→ Un is a homotopy equivalence. If Un is a homotopy collar which con-
tains arbitrarily small homotopy collar neighborhoods of infinity, then we call Un

a pseudo-collar. We say that an open n-manifold Nn is collarable if it contains an
open collar neighborhood of infinity and that Nn is pseudocollarable if it contains
a pseudocollar neighborhood of infinity.

Each pseudocollar admits a natural decomposition as a sequence of compact
cobordisms (W,M,M−), where W is a 1-sided h-cobordism (see Definition 1
further). If a 1-sided h-cobordism is actually an s-cobordism (again, see Defini-
tion 1), then it follows that the cobordism (W,M−,M) is a a plus cobordism.
(This somewhat justifies the use of the symbol “M−” for the right-hand boundary
of a 1-sided h-cobordism, a play on the traditional use of M+ for the right-hand
boundary of a plus cobordism.)

The general problem of a reverse to Quillen’s plus construction in the high-
dimensional manifold category is as follows.

Problem 1 (Reverse Plus Problem). Suppose G and Q are finitely presented
groups and � : G � Q is an onto homomorphism with ker(�) perfect. Let Mn

(n ≥ 5) be a closed smooth manifold with π1(M) ∼= Q.
Does there exist a compact cobordism (Wn+1,M,M−) with

1 � ker(ι#) � π1(M−)
ι#� π1(W) � 1

equivalent to

1 � ker(�) � G
�� Q � 1

and M ↪→ W a (simple) homotopy equivalence?

Notes:

• The fact that G and Q are finitely presented forces ker(�) to be the normal
closure of a finite number of elements. (See, e.g., [10] or [25].)
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• Closed manifolds Mn (n ≥ 5) in the various categories with π1(M) isomorphic
to a given finitely presented group Q always exist. In the smooth category, we
take a finite presentation for Q, take a disk D

n+1, attach one trivially attached
1-handle for each generator of Q, attach one trivially attached 2-handle for
each relator of Q to form a manifold Nn+1, and then let M = ∂N . Similar
procedures exist in the other categories.

The following terminology was first introduced in [17].

Definition 1. Let Nn be a compact smooth manifold. A 1-sided h-cobordism
(W,N,M) is a cobordism if either N ↪→ W or M ↪→ W is a homotopy equiva-
lence (if it is a simple homotopy equivalence, then we call (W,N,M) a 1-sided
s-cobordism). [A 1-sided h-cobordism (W,N,M) is presumably so named be-
cause it is “one side of an h-cobordism”].

We want to know under what circumstances 1-sided h-cobordisms exist and, if
they do, how many are there. Also, we are interested in controlling the torsion
and when it can be eliminated.

There are some cases in which 1-sided h-cobordisms are known not to exist.
For instance, if P is finitely presented and perfect but not superperfect, Q = 〈e〉,
and M = S

n, then a solution to the reverse plus problem produces M− that is a
homology sphere. However, it is a standard fact that a manifold homology sphere
must have a superperfect fundamental group! (See, e.g., [18].) (The definition of
superperfect will be given in Definition 2.) The key point is that the solvability of
the reverse plus problem depends not just upon the group data, but also upon the
manifold M with which one begins.

Here is a statement of our main results.

Theorem 1.1 (Existence of 1-sided s-cobordisms). Given 1 → S → G → Q →
1 where S is a finitely presented superperfect group, G is a semidirect product of
Q by S, N is any n-manifold with n ≥ 6, and π1(M) ∼= Q, there exists a solution
(W,N,N−) to the reverse plus problem for which N ↪→ W is a simple homotopy
equivalence.

One of the primary motivations for Theorem 1.1 is that it provides a “machine”
for constructing interesting pseudocollars. As an application, we use it to prove
the following:

Theorem 1.2 (Uncountably many pseudocollars on closed manifolds with the
same boundary and similar Pro-π1). Let Mn be a closed smooth manifold (n ≥ 6)
with π1(M) ∼= Z, and let S be the finitely presented group V ∗V , which is the free
product of two copies of Thompson’s group V . Then there exists an uncountable
collection of pseudocollars {Nn+1

ω | ω ∈ �}, no two of which are homeomorphic at
infinity, and each of which begins with ∂Nn+1

ω = Mn and is obtained by creating a
group extension 1 → S → Gi+1 → Gi → 1 and then using Theorem 1.1 to create
a 1-sided h-cobordism (Wi,Mi,Mi+1) with π1(Mi) = Gi and π1(Mi+1) = Gi+1
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countably many times, using the same kernel group S each time. In particular,
each Ni has a fundamental group at infinity that may be represented by an inverse
sequence

Z ��α1
G1 ��α2

G2 ��α3
G3 ��α4 · · ·

with ker(αi) = S for all i.

An underlying goal of papers [10], [13], and [14] is to understand when
noncompact manifolds with compact (possibly empty) boundary admit Z-
compactifications. In [5], it is shown that a Hilbert cube manifold admits a Z-
compactification if and only if it is pseudocollarable and the Whitehead torsion of
the end can be controlled. In [11], Guilbault asks whether the universal cover of a
closed aspherical manifold (n ≥ 6) is always pseudocollarable. He further asks if
pseudocollarbility plus control of the Whitehead torsion of the end is enough for
finite-dimensional manifolds (n ≥ 6) to admit a Z-compactification. Still further,
he shows that any two Z-boundaries of an ANR must be shape equivalent. Finally,
he and Ancel show in [1] that if two closed contractible manifolds Mn and Nn

(n ≥ 6) admit homeomorphic boundaries, then M is homeomorphic to N . This is
most interesting when the contractible manifolds are universal covers of closed
aspherical manifolds. In that case, these questions may be viewed as an approach
to the famous Borel conjecture, which asks whether two aspherical manifolds
with isomorphic fundamental group are necessarily homeomorphic.

2. A Handlebody-Theoretic Reverse to the Plus Construction

In this section, we describe our partial solution to the reverse plus problem. Our
solution only applies to superperfect (defined in Definition 2), finitely presented
kernel groups where the total group G of the group extension 1 → K → G →
Q → 1 is a semidirect product (defined in Definition 3).

However, we believe that our special case is easy to use and easy to understand.
For example, when M and S are fixed, we are able to analyze various solutions to
the reverse plus problem by studying the algebraic problem of computing semidi-
rect products of Q by S.

Definition 2. A group G is said to be superperfect if its first two homology
groups are 0, that is, if H1(G) = H2(G) = 0. (Recall that a group is perfect if its
first homology group is 0.)

Example 1. A perfect group is superperfect if it admits a finite balanced presen-
tation, that is, a finite presentation with the same number of generators as relators.
(The converse is false.)

Lemma 2.1. Let S be a superperfect group. Let K be a cell complex that has a
fundamental group isomorphic to S. Then all elements of H2(K) can be killed by
attaching 3-cells.
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Proof. By Proposition 7.1.5 in [9] there is a K(S,1) that is formed from K by
attaching cells of dimension 3 and higher. Let L be such K(S,1). Then L3 is
formed from K2 by attaching only 3-cells, and H2(L

3) ∼= H2(L), as L is formed
from L3 by attaching cells of dimension 4 and higher, which cannot affect H2. But
H2(L) ∼= H2(S) by definition, and H2(S) ∼= 0 by hypothesis. Thus, all elements
of H2(K) can be killed by attaching 3-cells. �

Definition 3. A group extension

1 � K
ι � G

σ � Q � 1

is a semidirect product if there is a left-inverse τ (which is a homomorphism)
to σ .

Note that in this case,

• there are “slide relators” qk = φ(q)(k)q , where φ is the outer action of Q on
K , which “represent the price of sliding k across q”;

• every word k1q1k2q2 · . . . · knqn admits a normal form k′q ′ where all elements
from K come first on the left and all elements of Q come last on the right;

• there is a presentation for G in terms of the presentations for K and Q and the
slide relators; to wit:

Claim 1.

〈α1, . . . , αk1, β1, . . . , βk2 | r1, . . . , rl1 , s1, . . . , sl2,

β1α1(φ(β1)(α1)β1)
−1, . . . , βk2αk1(φ(βk2)(αk1)βk2)

−1〉 (1)

is a presentation for G. (The βjαi(φ(βj )(αi)βj )
−1 are “slide relators”.)

Proof. Clearly, there is a homomorphism from the group presented above to G.
From this it follows that G = KQ and that K ∩Q = {1}. From this it follows that
the kernel is trivial (in the finite case, just check orders). �

Lemma 2.2 (Equivariant Attaching of Handles). Let Mn be a smooth manifold,
n ≥ 5, with M one boundary component of W with π1(M) ∼= G. Let P � G and
Q = G/P . Let M be the cover of M with fundamental group P and give H∗(M;Z)

the structure of a ZQ-module. Let 2k + 1 ≤ n, and let S be a finite collection of
elements of Hk(M;Z) that all admit embedded spherical representatives having
trivial tubular neighborhoods. If k = 1, then assume that all elements of S repre-
sent elements of P .

Then we can equivariantly attach (k + 1)-handles across S, that is, if S =
{sj,q | q ∈ Q} is the collection of lifts of elements of S to M , then we can at-
tach (k + 1)-handles across tubular neighborhoods of the sj,q so that each lift
sj,q projects down via the covering map p to an element sj of S and so that
the covering map extends to send each (k + 1)-handle Hj,q attached across a
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tubular neighborhood of sj,q in M bijectively onto a handle attached across the
projection via the covering map of the tubular neighborhood of the element sj
in M .

Proof. Hk(M;Z) has the structure of a ZQ-module. The action of Q on S

permutes the elements of S. For each embedded sphere sj in S, lift it via
its inverse images under the covering map to a pairwise disjoint collection
of embedded spheres sj,q . (This is possible since a point of intersection or
self-intersection would have to project down to a point of intersection or self-
intersection, respectively, by the evenly covered neighborhood property of cover-
ing spaces.) The sj,q all have trivial tubular neighborhoods. Attach a (k + 1)-
handle across the tubular neighborhood of the elements sj of the S. For all
j ∈ {1, . . . , |S|} and q ∈ Q, attach a (k + 1)-handle across the spherical rep-
resentative sj,q ; extend the covering projection so it projects down in a bijec-
tive fashion from the handle attached along sj,q onto the handle we attached
along sj . �

Lemma 2.3. Let A, B , and C be R-modules with a free R-module B (on the basis
S), and let � : A⊕B → C be an R-module homomorphism. Suppose �|A is onto.
Then ker(�) ∼= ker(�|A) ⊕ B .

Proof. Define φ : ker(�|A) ⊕ B → ker(�) as follows. For each s ∈ S, where S is
a basis for B , choose α(s) ∈ A with �(α(s),0) = �(0, s), as �|A is onto. Extend
α to a homomorphism from B to A and note that α has the same property for all
b ∈ B . Then set φ(x, b) = (x − α(b), b).

(Well-defined) Let x ∈ ker(�|A) and b ∈ B . Then �(φ(x, b)) = �(x −
α(b), b) = �(x,0) + �(−α(b),0) + �(0, b) = 0 + −�(α(b),0) + �(0, b) =
0 + −�(0, b) + �(0, b) = 0. So, φ is well-defined.

Define ψ : ker(�) → ker(�|A) ⊕ B by ψ(z) = (π1(z) + α(π2(z)),π2(z)),
where π1 : A ⊕ B → A and π2 : A ⊕ B → B are the canonical projections.

(Well-defined) Let z ∈ ker(�). It is clear that π2(z) ∈ B , so it remains
to prove that π1(z) + α(π2(z)) ∈ ker(�|A). [Note that �(z) = �|A(π1(z)) +
�|B(π2(z)) ⇒ �|A(π1(z)) = −�|B(π2(z)). Note also that, by the definition
of α, �(α(π2(z))) = �(0,π2(z)).] We compute �|A(π1(z) + α(π2(z))) =
�|A(π1(z)) + �(α(π2(z)),0) = −�|B(π2(z)) + �(0,π2(z)) = −�(0,π2(z)) +
�(0,π2(z)) = 0. So, ψ is well-defined.

(Homomorphism) Clear.
(Inverses) Let (x, b) ∈ ker(�|A) ⊕ B . Then ψ(φ(x, b)) = ψ(x − α(b), b) =

(π1(x −α(b), b)+α(π2(x −α(b), b)),π2(x −α(b), b)) = (x −α(b)+α(b), b) =
(x, b).

Let z ∈ ker(�). Then φ(ψ(z)) = φ(π1(z) + α(π2(z)),π2(z)) = (π1(z) +
α(π2(z)) − α(π2(z)),π2(z)) = (π1(z),π2(z)) = z.

So, φ and ψ are inverses of each other, and the lemma is proven. �

Definition 4. A k-handle is said to be trivially attached if it is possible to attach
a canceling (k + 1)-handle.
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Here is our solution to the reverse plus problem in the high-dimensional manifold
category.

Theorem 1.1 (An Existence Theorem for Semi-s-Cobordisms). Given 1 → S →
G → Q → 1 where S is a finitely presented superperfect group, G is a semi-direct
product of Q by S, and any closed n-manifold N with n ≥ 6 and π1(N) ∼= Q,
there exists a solution (W,N,N−) to the reverse plus problem for which N ↪→ W

is a simple homotopy equivalence.

Proof. Start by taking N and crossing it with I. Let Q ∼= 〈α1, . . . , αk1 | r1, . . . , rl1〉
be a presentation for Q. Let S ∼= 〈β1, . . . , βk2 | s1, . . . , sl2〉 be a presentation for S.
Take a small n-disk D inside of N × {1}. Attach a trivial 1-handle h1

i for each βi

in this disk D. Note that because they are trivially attached, there are canceling 2-
handles k2

i , which may also be attached inside the disk together with the 1-handles
D ∪ {h1

i }. We identify these 2-handles now, but do not attach them yet. They will
be used later.

Attach a 2-handle h2
j across each of the relators sj of the presentation for S in

the disk together with the 1-handles D ∪ {h1
i }, choosing the framing so that it is

trivially attached in the manifold that results from attaching h1
i and k2

i (although
we have not yet attached the handles k2

i ). Note that because they are trivially
attached, there are canceling 3-handles k3

j , which may also be attached in the

portion of the manifold consisting of the disk D together with the 1-handles {h1
i }

and the 2-handles {k2
i }. We identify these 3-handles now, but do not attach them

yet. They will be used later.
Attach a 2-handle f 2

i,j for each relator βjαiβ
−1
j [φ(βj )(αi)]−1, choosing the

framing so that it is trivially attached in the result of attaching the h1
i , k2

i , h
j

2,
and k3

j . This is possible since each of the relators becomes trivial when the k2
i s

and k3
i s are attached. Note that because the f 2

i,j are trivially attached, there are

canceling 3-handles g3
i,j . We identify these 3-handles now, but do not attach them

yet. They will be used later. Call the resulting cobordism with only h1
i s, h2

j s, and

f 2
i,j s attached (W ′,N,M ′) and call the right-hand boundary M ′.

Note that we now have π1(N) ∼= Q, π1(W
′) ∼= G, and ι# : π1(M

′) → π1(W)

an isomorphism because, by inverting the handlebody decomposition, we are
starting with M ′ and adding (n − 1)- and (n − 2)-handles, which do not affect
π1 as n ≥ 6.

Consider the cover W ′ of W ′ corresponding to S. Then the right-hand bound-
ary M ′ of this cover also has fundamental group isomorphic to S by covering
space theory. Also, the left-hand boundary Ñ of this cover has a trivial fundamen-
tal group.

Consider the handlebody chain complex C∗(W ′, Ñ;Z). This is naturally a ZQ-
module complex. It looks like
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0 � C3(W ′, Ñ;Z) � C2(W ′, Ñ;Z)
∂2� C1(W ′, Ñ;Z) � C0(W ′, Ñ;Z) � 0

0
�

� 0

=

�
�

l2⊕
i=1

ZQ ⊕
k1∗k2⊕
j=1

ZQ

∼=
�

∂2 �
k2⊕

i=1

ZQ

∼=
�

� 0

=

�
� 0

�

where C2(W ′, Ñ;Z) decomposes as A = ⊕l2
i=1 ZQ, which has a ZQ-basis ob-

tained by arbitrarily choosing one lift of the 2-handles for each of the h2
j , and

B = ⊕k1·k2
j=1 ZQ, which has a ZQ-basis obtained by arbitrarily choosing one lift

of the 2-handles for each of the f 2
i,j . Set C = C1(W ′, Ñ;Z) ∼= ⊕k2

i=1 ZQ (as ZQ-
modules). Choose a preferred basepoint ∗ and a preferred lift of the the disk D to
a disk D in M . Decompose ∂2 as ∂2,1 = ∂2|A and ∂2,2 = ∂2|B

Since S is perfect, we must have l2 ≥ k2.
We examine the contribution of ∂2,1 to H2(W ′, Ñ;Z). It will be useful to first

look downstairs at the Z-chain complex for (W ′,N). Let A′ be the submodule
of C2(W

′,N;Z) determined by the h2
j , and let C′ be C1(W

′,N;Z), which is

generated by the h1
i . Then A′ is a finitely generated free Abelian group, so the

kernel K ′ of ∂ ′
2,1 : A′ → C′ is a subgroup of a finitely generated free Abelian

group, and thus K ′ is a finitely generated free Abelian group, say on the basis
{κ1, . . . , κa}.
Claim 2. ker(∂2,1) is a free ZQ-module on a generating set of cardinality |a|.
Proof. The lifts of D to M are discrete. The group Q acts as deck transformations
on M , transitively permuting the lifts of D as the cover M is a regular cover. A
preferred basepoint ∗ and a preferred lift of the the disk D to a disk D in M

have already been chosen for the identification of C∗(W ′, Ñ;Z) with the ZQ-
module C∗(W ′,N;ZQ). Let the handles attached inside the preferred lift D be

our preferred lifts h1
i , and let the lifts of the h2

j that attach to D ∪ (
⋃

h
1
i ) be our

preferred 2-handles h
2
j .

Since the lifts of D are discrete, if q1 �= q2 ∈ Q,

∂2,1(q1c1 + q2c2) = 0 ∈ ZQ if and only if

∂2,1(c1) = ∂2,1(c2) = 0 ∈ Z. (‡)

With this in mind, let κi be a lift of the chain κi in a generating set for K ′ in
the disk D to D. Then ∂2,1(κi) = 0. Moreover, Q transitively permutes each κi

with the other lifts of κi to the other lifts of D. Now, suppose ∂2,1(c) = 0 with an
element c of C2(W

′,N;ZQ). Write c as
∑m

t=1 ntqtat . By (‡) we must have all the
qt s equal (for all nonzero at ); call this single element q . Consider q−1c. We have
that ∂2,1(q

−1c) = q−1∂2,1(c) = q−10 = 0, so q−1c is an element of ker(∂ ′
2,1), and

so q−1c is a linear combination of {κ1, . . . , κa}, as K ′ is a generating set for the
kernel of ∂ ′

2,1. This proves that κt generate ker(∂2,1). This proves the claim. �
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Now, we have ∂2 : A ⊕ B → C. Recall that S is a finitely presented superperfect
group and ∂2|A is onto. By Lemma 2.3, we have that ker(∂2) ∼= ker(∂2|A) ⊕ B .
By Claim 2, ker(∂2|A) is a free and finitely generated ZQ-module. Clearly, B is
a free and finitely generated ZQ-module. Thus, ker(∂2) ∼= H2(W ′, Ñ;Z) is a free
and finitely generated ZQ-module.

By Lemma 2.1, we may choose spherical representatives for all elements of
H2(W ′;Z). Since Ñ is simply connected, H1(Ñ;Z) = 0, and so by the long exact
sequence in homology, H2(W ′;Z) → H2(W ′, Ñ;Z) is onto, so any element of
H2(W̃ ′,N;Z) also admits a spherical representative.

So, we may choose spherical representatives for any element of H2(W
′,N;

ZQ). Let {sl} be a collection of embedded pairwise disjoint 2-spheres that form a
free finite ZQ-basis for H2(W

′,N;ZQ).
Note that the {sl} can be arranged to live in the right-hand boundary M ′ of W ′

by moving them off the cores of the 1- and 2-handles by transversality.
If we add the k2

i , h3
j , and g3

i,j to W ′, and similarly make sure that k2
i , k3

j , and

g3
i,j do not intersect the {sl}, and call the resulting cobordism W ′′, then we can

think of the {sl} as living in the right-hand boundary of (W ′′,N,M ′′). Note that
W ′′ is diffeomorphic to N × I.

We wish to attach 3-handles along the collection {sl} and, later, 4-handles com-
plimentary to those 3-handles. A priori, this may be impossible; for instance, there
is a framing issue. To make this possible, we borrow a trick from [15] to alter the
2-spheres to a usable collection without changing the elements of H2(W

′,N;ZQ)

they represent.

Claim 3. For each sl , we may choose a second embedded 2-sphere tl such that

• tl represents the same element of π2(M
′′) as sl (as elements of π2(W

′), they
will be different),

• each tl misses the attaching regions of all the {h1
i }, {k2

i }, {h2
j }, {k3

j }, {f 2
i,j }, and

{g3
i,j },

• in the collection {tk}, the elements are pairwise disjoint, and it is disjoint from
the entire collection {sl}.

Proof. Note that each canceling (2,3)-handle pairs h2
j and k3

j or f 2
i,j and g3

i,j

forms an (n + 1)-disk attached along an n-disk, which is a regular neighborhood
of a 2-disk filling the attaching sphere of the 2-handle. Also, each canceling (1,2)-
handle h1

i and k2
i forms an (n+1)-disk in N ×{1} attached along an n-disk, which

is a regular neighborhood of a 1-disk filling the attaching sphere of the 1-handle.
We may push a given sl off the (2,3)-handle pairs and then off the (1,2)-handle
pairs, making sure not to pass back into the (2,3)-handle pairs. Let tl be the end
result of the pushes. Make the collection {tl} pairwise disjoint and disjoint from
the {sl} by transversality, making sure not to pass back into the (1,2)- or (2,3)-
handle pairs. �

Replace each sl with sl#(−tl), an embedded connected sum of sl with a copy of
tl with its orientation reversed.
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Since the tls miss all the handles attached to the original collar N × [0,1],
they can be pushed into the right-hand copy of N . Thus, sl and sl#(−tl) represent
the same element of H2(W

′,N;ZQ). Hence, the collection {sl#(−tl)} is still a
free basis for H2(W

′,N;ZQ). Furthermore, each sl#(−tl) bounds an embedded
3-disk in the boundary of W ′′. This means that each sl#(−tl) has a product neigh-
borhood structure, and we may use it as the attaching region for a 3-handle h3

l .
Choose the framing of h3

l so that it is a trivially attached 3-handle with respect
to W ′′ and choose a canceling 4-handle k4

l . We identify these 4-handles now, but
do not attach them yet. They will be used later. Call the resulting cobordism with
the h1

i , h2
j , f 2

i,j , and h3
l attached (W ′′′,N,M). Let W(iv) be M × [0,1] with the

k2
i , k3

j , and k4
l attached. Then W ′′′ ∪M W(iv) has all canceling handles and so is

diffeomorphic to N × [0,1]. Clearly, W ′′′ ∪M W(iv) strong deformation retracts
onto the right-hand boundary N . We will see that (W(iv,N,M) (modulo torsion)
satisfies the conclusion of the theorem.

To prove that (W(iv),M,N) satisfies the desired properties, we must study
W ′′′ more carefully. Since π1(›W ′′′, Ñ) ∼= S by construction and S is perfect,
H1(W

′′′,N;ZQ) = 0. Note that since ker(∂2) is a free finitely generated ZQ-
module and {h3

l } is a set whose attaching spheres are a free ZQ-basis for ker(∂2),
∂3 : C3(W

′′′,N;ZQ) → C2(W
′′′,N;ZQ) is onto and has no kernel. This means

that Hm(W ′′′,N;ZQ) ∼= 0 for m = 2,3. Clearly, H∗(W ′′′,N;ZQ) ∼= 0 for ∗ ≥ 4
as C∗(W ′′′,N;ZQ) ∼= 0 for ∗ ≥ 4.

Thus, H∗(W ′′′, Ñ;Z) ∼= 0, that is, H∗(W ′′′,N;ZQ) ∼= 0. (∗)

However, this is not the only homology complex we wish to prove acyclic; we
also wish to show that H∗(W ′′′,M;ZQ) ∼= 0. Using noncompact Poincaré duality,
we can do this by showing that the relative cohomology with compact supports is
0, that is, H ∗

c (W ′′′, Ñ;Z) ∼= 0.
By the cohomology with compact supports, we mean to take the chain com-

plex that has linear functions f : Ci(W ′′′, Ñ;Z) → Z to Z relative to Ñ that are
nonzero on only finitely many of the relative handles. Duality is well known in
the setting where C∗(W ′′′, Ñ;Z) is locally finite, which in turn depends on the
fact that W ′′′ is a covering space of a compact manifold with finitely many han-
dles attached.The coboundary map δ∗ sends a cochain f in Ci

c(W
′′′, Ñ;Z) to the

cochain g in Ci+1
c (W ′′′, Ñ;Z), where g(∂(nj qihj )) is δ(f )(nj qihj ).

Clearly, δ1 : C0
c (W ′′′, Ñ;Z) → C1

c (W ′′′, Ñ;Z) and δ4 : C3
c (W ′′′, Ñ;Z) →

C4
c (W ′′′, Ñ;Z) are the zero maps. This means we must show that ker(δ2) = 0,

that is, δ2 is 1–1, and im(δ3) = C3, that is, δ3 is onto. Finally, we must show
exactness at C2

c , that is, we must show that im(δ2) = ker(δ3).
Consider the acyclic complex

0 � C3(W ′′′, Ñ;Z)
∂3� C2(W ′′′, Ñ;Z)

∂2� C1(W ′′′, Ñ;Z) � 0.

(ker(δ2) = 0) Let f ∈ C1
c (W ′′′, Ñ;Z) be nonzero, that is, let f : C1(W ′′′, Ñ;Z) →

0 have compact support and there be c1 ∈ C1(W ′′′, Ñ;Z) such that c1 �= 0 and
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f (c1) �= 0. As ∂2 is onto, choose c2 ∈ C2(W ′′′, Ñ;Z) with c2 �= 0 and ∂2(c2) = c1.
Then δ2(f )(c2) = f (∂2(c2)) = f (c1) �= 0, and δ2(f ) is not the zero cochain.

(im(δ3) = C3) Let g ∈ C3
c (W ′′′, Ñ;Z) be a basis element with g(qh3

i ) = 1 and
the remaining g(q ′h3

i′) = 0. We must show that there is f ∈ C2
C(W ′′′, Ñ;Z) with

δ3(f ) = g. Consider ∂3(qh3
i ). This is a basis element for C2(W ′′′, Ñ;Z).

Choose f ∈ C2
c (W ′′′, Ñ;Z) to have f (∂3(qh3

i )) = 1 and 0 otherwise. Then
δ3(f )(qih

3
j ) = f (∂3(qih

3
j )) = 1 = g(qh3

i ).
This proves that δ3(f ) = g and δ3 is onto.
(im(δ2) = ker(δ3)) Clearly, if f ∈ im(δ2), then δ3(f ) = 0 as δ is a chain map.
Suppose that δ3(f ) = 0 but f �= 0. Let qh1

i be a basis element for C2(W ′′′, Ñ;
Z). Choose c2,i ∈ C2(W ′′′, Ñ;Z) with ∂2(qh1

i ) = c2,i as ∂2 is onto.
Set g(qh1

i ) = f (c2,i ).
Then δ2(g)(c2,i ) = g(∂2(c2,i )) = g(qh1

i ) = f (c2,i ), and thus f is in the image
of δ2.

So, H ∗
C(W ′′′, Ñ;Z) ∼= 0, and thus H∗(W ′′′,M;Z) ∼= 0 by Theorem 3.35 in [16]

and H∗(W ′′′,M;Z) ∼= 0.
Note that we again have π1(N) ∼= Q, π1(W

′′′) ∼= G, and ι# : π1(M) ∼= π1(W
′′′)

an isomorphism, as attaching 3-handles does not affect π1, and, dually, attaching
(n − 3)-handles does not affect π1 for n ≥ 6.

We read W(iv) as (W(iv),N,M). This is (almost) the cobordism we desire.
(We will further need to deal with torsion issues.) Moreover, in this form, W(iv) is
N × [0,1] with [(n + 1) − 4]-, [(n + 1) − 3]-, and [(n + 1) − 2]-handles attached
to the right-hand boundary. Since n ≥ 6, adding these handles does not affect
π1(W

(iv)). Thus, ι# : π1(N) → π1(W
(iv)) is an isomorphism; as was previously

noted, π1(M) ∼= G.
Let H : W ′′′ ∪M W(iv) → W ′′′ ∪M W(iv) be a strong deformation retraction

onto the right-hand boundary N . We will produce a retraction r : W ′′′ ∪M W(iv) →
W(iv). Then r ◦H will restrict to a strong deformation retraction of W(iv) onto its
right-hand boundary N . This, in turn, will yield a strong deformation retraction
of W(iv) read right to left onto its left-hand boundary N .

Note that H ∗
C(W ′′′, Ñ;Z) ∼= 0 by (∗). By Theorem 3.35 in [16], we have that

H∗(W ′′′,M;Z) ∼= 0, and H∗(W ′′′,M;ZQ) ∼= 0, respectively, by the natural ZQ

structure on C∗(W ′′′;Z).
To get the retraction r , we will use the following proposition from [12].

Proposition 2.4. Let (X,A) be a CW pair for which A ↪→ X induces a π1

isomorphism. Suppose also that L � π1(A) and A ↪→ X induces Z[π1(A)/L]-
homology isomorphisms in all dimensions. Next, suppose α1, . . . , αk is a collec-
tion of loops in A that normally generates L. Let X′ be the complex obtained by
attaching a 2-cell along each αl , and let A′ be the resulting subcomplex. Then
A′ ↪→ X′ is a homotopy equivalence. (Note: In this situation, we call A ↪→ X a
modL homotopy equivalence.)
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Since H∗(W ′′′,M;ZQ) = 0, we have that by Proposition 2.4, W ′′′ union the 2-
handles f 2

j strong deformation retracts onto M union the 2-handles f 2
j . We may

now extend via the identity to get a strong deformation retraction

r : W ′′′ ∪M∪2-handles W(iv) → W(iv).

Now r ◦ H is the desired strong deformation retraction of both W(iv) onto its
right-hand boundary N and W(iv) read dually onto its left-hand boundary N .

Now, suppose that, for the cobordism (W(iv),N,M), we have τ(W(iv),N) =
A �= 0. As the epimorphism η : G → Q admits a left inverse ζ : Q → G, by
the functoriality of Whitehead torsion, we have that Wh(η) : Wh(G) → Wh(Q)

is onto and admits a left inverse Wh(ζ ) : Wh(Q) → Wh(G). Choose B so
that A + B = 0 in Wh(Q) and set B ′ = Wh(ζ )(B). The realization theo-
rem from [24] provides us a cobordism (R,M,N−) with τ(R,M) = B ′. If
W = (W(iv) ∪M R), the by Theorem 20.2 in [6], τ(W,N) = τ(W(iv),N) +
τ(W,W(iv)). By Theorem 20.3 in [6], τ(W,W(iv)) = Wh(η)(τ (R,M)). So,
τ(W(iv),N)+Wh(η)(τ (R,M) = A+Wh(η)(B ′) = A+B = 0, and (W,N,N−)

is a 1-sided s-cobordism. �

3. Some Preliminaries to Creating Pseudocollarable
High-Dimensional Manifolds

Our goal in this section is to display the usefulness of 1-sided s-cobordisms by
using them to create large numbers of topologically distinct pseudocollars (to be
defined further), all with similar group-theoretic properties.

We start with some basic definitions and facts concerning pseudocollars.

Definition 5. Let Wn+1 be a 1-ended manifold with compact boundary Mn. We
say that W is inward tame if W admits a cofinal sequence of “clean” neighbor-
hoods of infinity (Ni) such that each Ni is finitely dominated. [A neighborhood
of infinity is a subspace of the closure whose complement is compact. A neigh-
borhood of infinity N is clean if (1) N is a closed subset of W , (2) N ∩ ∂W = ∅,
and (3) N is a codimension-0 submanifold with bicollared boundary.]

Definition 6. A manifold Nn with compact boundary is a homotopy collar if
∂Nn ↪→ Nn is a homotopy equivalence.

Definition 7. A manifold is a pseudocollar if it is a homotopy collar that con-
tains arbitrarily small homotopy collar neighborhoods of infinity. A manifold is
pseudocollarable if it contains a pseudocollar neighborhood of infinity.

Pseudocollars naturally break up as 1-sided h-cobordisms, that is, if N1 ⊆ int(N2)

are homotopy collar neighborhoods of infinity of an end of a pseudocollarable
manifold, then the cl(N2\N1) is a cobordism (W,M,M−), where M ↪→ W is a
homotopy equivalence. Taking an decreasing chain of homotopy collar neighbor-
hoods of infinity yields a decomposition of a pseudocollar as a “stack” of 1-sided
h-cobordisms.
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Conversely, if we start with a closed manifold M and use the techniques
of Section 2 to produce a 1-sided h-cobordism (W1,M,M−), then take M−
and again use the techniques of Section 2 to produce a 1-sided h-cobordisms
(W2,M−,M−−), and so on ad infinitum, and then we glue W1 ∪W2 ∪· · · together
to produce an (n + 1)-dimensional manifold Nn+1, then N is a pseudocollar.

So, 1-sided h-cobordisms are an appropriate tool to use when constructing
pseudo-collars.

Definition 8. The fundamental group system at ∞, π1(ε(X), r), of an end ε(X)

of a noncompact topological space X, is defined by taking a cofinal sequence
of neighborhoods of ∞ of the end of X, N1 ⊇ N2 ⊇ N3 ⊇ . . . , a proper ray
r : [0,∞) → X, and looking at its related inverse sequence of fundamental groups
π1(N1,p1) ← π1(N2,p2) ← π1(N3,p3) ← . . . (where the bonding maps are in-
duced by inclusion and the basepoint change isomorphism, induced by the ray
r).

Such a fundamental group system at infinity has a well-defined associated pro-
fundamental group system at infinity, given by its equivalence class inside the
category of inverse sequences of groups under the following equivalence relation.

Definition 9. Two inverse sequences of groups (Gi,αi) and (Hi,βi) are said
to be proisomorphic if there exist subsequences of each that may be fit into a
commuting ladder diagram as follows:

Gi1
� αi1

Gi2
� αi2

Gi3
� αi3

Gi4
�αj4 · · ·

Hj1
�βj1

�
g i 2

�f
j1

Hj2
�βj2

�
g i 3

�f
j2

Hj3
�βj3

�
g i 4

�f
j3

Hj4
�βj4 · · ·

�f
j4

A more detailed introduction to fundamental group systems at infinity can be
found in [9] or [11].

Definition 10. An inverse sequence of groups is stable if it is proisomorphic to
a constant sequence G ← G ← G ← G. . . with the identity for bonding maps.

The following is a theorem of Brown from [4].

Theorem 3.1. The boundary of a manifold M is collared, that is, there is a neigh-
borhood N of ∂M in M such that N ≈ ∂M × I.

The following is from Siebenmann’s thesis [25].

Theorem 3.2. An open manifold Wn+1 (n ≥ 5) admits a compactification as an
n + 1-dimensional manifold with an n-dimensional boundary manifold Mn if

(1) W is inward tame,
(2) π1(ε(W)) is stable for each end ε(W) of W , and
(3) σ∞(ε(W)) ∈ K̃0[Zπ1(ε(W))] vanishes for each end ε(W) of W .
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Definition 11. An inverse sequence of groups is semistable or Mittag-Leffler if
is it proisomorphic to a sequence G1 � G2 � G3 � G4 . . . with epic bonding
maps.

Definition 12. An inverse sequence of finitely presented groups is perfectly
semistable if and only if it is proisomorphic to a sequence G1 � G2 � G3 �
G4 . . . with epic bonding maps and perfect kernels.

The following two lemmas are well known and show that optimally chosen per-
fectly semistable inverse sequences behave well under passage to subsequences.

Lemma 3.1. Let

1 � K
ι � G

σ � Q � 1

be a short exact sequence of groups with perfect K and Q. Then G is perfect.

Lemma 3.2. If α : A → B and β : B → C are both onto and have perfect kernels,
then (β ◦ α) : A → C is onto and has a perfect kernel.

The following is a result from [14].

Theorem 3.3 (Guilbault–Tinsley). A noncompact manifold Wn+1 with compact
(possibly empty) boundary ∂W = M is pseudocollarable if and only if

(1) W is inward tame,
(2) π1(ε(W)) is perfectly semistable for each end ε(W) of W , and
(3) σ∞(ε(W)) ∈ K̃0[Zπ1(ε(W))] vanishes for each end ε(W) of W .

So, the profundamental group system at infinity of a pseudocollar is perfectly
semistable. As is outlined in Chapter 4 of [11], the profundamental group system
at infinity is independent of base ray for ends with semistable profundamental
group at infinity, and hence for 1-ended pseudocollars.

Theorem 1.2 (Uncountably many pseudocollars on closed manifolds with the
same boundary and similar Pro-π1). Let Mn be a closed smooth manifold (n ≥ 6)
with π1(M) ∼= Z, and let S be the finitely presented group V ∗ V that is the free
product of two copies of Thompson’s group V . Then there exists an uncountable
collection of pseudocollars {Nn+1

ω | ω ∈ �}, no two of which are homeomorphic at
infinity, and each of which begins with ∂Nn+1

ω = Mn and is obtained by creating a
group extension 1 → S → Gi+1 → Gi → 1 and then using Theorem 1.1 to create
a 1-sided h-cobordism (Wi,Mi,Mi+1) with π1(Mi) = Gi and π1(Mi+1) = Gi+1

countably many times, using the same kernel group S each time. In particular,
each Ni has a fundamental group at infinity that may be represented by an inverse
sequence

Z ��α1
G1 ��α2

G2 ��α3
G3 ��α4 · · ·

with ker(αi) = S for all i.
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We give a brief overview of our strategy. For convenience, we will start with
the manifold S

1 × S
n−1, which has a fundamental group Z. We let S be the

free product of two copies of Thompson’s group V , which is a finitely pre-
sented superperfect group for which Out(S) has torsion elements of all or-
ders (see [21]). Then we will create a collection of group extensions, each
with kernel group S, starting with Z, then continuing to semidirect products
Gp1,Gp2 ,Gp3 , . . . in infinitely many different ways using different automor-
phisms, each with order a prime number pi strictly greater than the prime order
pi−1 used in the last step, from the infinite group Out(S) as the outer actions. We
will then use the theorem of the last chapter to create a collection of 1-sided s-
cobordisms (Wp1 ,S

1 ×S
n−1,Mp1), (Wp2 ,Mp1 ,Mp2), (Wp3 ,Mp2,Mp3), . . . with

π1(S
1 × S

n−1) = Z,π1(Mp1) = Gp1 ,π1(Mp2) = Gp2,π1(Mp3) = Gp3 , . . . .
Continuing inductively, we will obtain increasing sequences ω of prime num-

bers describing each sequence of 1-sided s-cobordisms. We will then glue to-
gether all the semi-s-cobordisms at each stage for each unique increasing se-
quence of prime numbers ω, creating for each an (n + 1)-manifold Nn+1

ω , and
show that there are uncountably many such pseudocollared (n+1)-manifolds Nω,
one for each increasing sequence of prime numbers ω, all with the same boundary
S

1 × S
n−1 and all being the result of creating a semidirect product group exten-

sion 1 → S → G → Z → 1 with Z as the quotient group and with two copies of
the same superperfect group P , S = P ∗P , as the kernel group at each stage. The
fact that no two of these pseudocollars are homeomorphic at infinity will follow
from the fact that no two of the inverse sequences of groups are proisomorphic.
Much of the algebra in this chapter is aimed at proving that delicate result.

Remark 1. There is an alternate strategy of creating an inverse sequence of group
extensions 1 → Gi−1 → Gi → Si → 1 the fundamental group Gi at each stage
by the free product Gi ∗Si ; using a countable collection of freely indecomposable
kernel groups {Si} would then allow us to create an uncountable collection of
pseudocollars. An algebraic argument like that found in [26] or [7] would then
complete the proof. However, they would not have the nice kernel properties that
our construction has.

It seems likely that groups other than Thompson’s group V would work for creat-
ing uncountably many pseudocollars, all with similar group-theoretic properties,
from sequences of 1-sided s-cobordisms. However, for our purposes, V possesses
the ideal set of properties.

4. Some Algebraic Lemmas, Part 1

In this section, we go over the main algebraic lemmas necessary to do our strategy
of creating a semidirect product group extension 1 → S → G → Z → 1 with Z

as the quotient group and with two copies of the same superperfect group P ,
S = P ∗ P , as the kernel group at each stage.
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Thompson’s group V is finitely presented, superperfect, simple, and contains
torsion elements of all orders. Note that simple implies that V is centerless, Hop-
fian, and freely indecomposable.

An introduction to some basic properties of Thompson’s group V can be found
in [21], There, it is shown that V is finitely presented and simple. It is also noted
in [21] that V contains torsion elements of all orders, as V contains a copy of
every symmetric group on n letters, and hence of every finite group. In [3], it is
noted that V is superperfect.

Lemma 4.1. Every non-Abelian simple group is perfect.

Definition 13. A group G is Hopfian if every onto map from G to itself is an
isomorphism. Equivalently, a group is Hopfian if it is not isomorphic to any of its
proper quotients.

Lemma 4.2. Every simple group is Hopfian.

Let S = P1 ∗ P2 be the free product of two copies of V with itself. This is
clearly finitely presented, perfect (by Meyer–Vietoris), and superperfect (again,
by Meyer–Vietoris). Note that S is a free product of nontrivial groups, so S is
centerless. In [20], it is noted that free products of Hofpian, finitely presented,
and freely indecomposable groups are Hopfian, so S = V ∗ V is Hopfian; S (and
not V itself) will be the superperfect group we use in our constructions.

We need a few lemmas.

Lemma 4.3. Let A, B , C, and D be nontrivial groups. Let φ : A × B → C ∗ D

be a surjective homomorphism. Then one of φ(A×{1}) and φ({1}×B) is trivial,
and the other is all of C ∗ D.

Proof. Let x ∈ φ(A × {1}) ∩ φ({1} × B). Then x ∈ φ(A × {1}), so x commutes
with everything in φ({1} × B). But x ∈ φ({1} × B), so x commutes with ev-
erything in φ(A × {1}). As φ is onto, this implies φ(A × {1}) ∩ φ({1} × B) ≤
Z(C ∗ D).

However, by a standard normal forms argument, the center of a free product is
trivial! So, φ(A × {1}) ∩ φ({1} × B) ≤ Z(C ∗ D) = 1. This implies that φ(A ×
{1}) × φ({1} × B) = C ∗ D. By a result in [2], a nontrivial direct product cannot
be a nontrivial free product. (A proof using the Kurosh subgroup theorem can be
found in many group theory texts, such as Theorem 6.3.10 of [23]. An alternate,
much simpler proof due to P.M. Neumann can be found in [19] in the observation
after Lemma IV.1.7.) Thus, φ(A × {1}) = C ∗ D or φ({1} × B) = C ∗ D, and the
other is the trivial group. The result follows. �

Corollary 4.4. Let A1, . . . ,An be nontrivial groups, and let C ∗ D be a free
product of nontrivial groups. Let φ : A1 × · · · × An → C ∗ D be a surjective
homomorphism.

Then one of the φ({1} × · · · × Ai × · · · × {1}) is all of C ∗ D, and the rest are
all trivial.
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Proof. Proof is by induction.
(n = 2) This is Lemma 4.3.
(Inductive step) Suppose the result is true for n − 1. Set B = A1 × · · · × An−1.

By Lemma 4.3, either φ(B × {1}) is all of C ∗ D and φ({1} × An) is trivial, or
φ(B × {1}) is trivial and φ({1} × An) is all of C ∗ D.

If φ(B × {1}) is trivial and φ({1} × An) is all of C ∗ D, we are done.
If φ(B × {1}) is all of C ∗ D and φ({1} × An) is trivial, then, by the inductive

hypothesis, we are also done. �

Corollary 4.5. Let S1, S2, . . . , Sn all be copies of the same nontrivial free prod-
uct, and let ψ : S1 ×S2 ×· · ·×Sn → S1 ×S2 ×· · ·×Sn be an isomorphism. Then
ψ decomposes as a “matrix of maps” ψi,j , where each ψi,j = πSj

◦ ψ |Si
(where

πSj
is the projection onto Sj ), and there is a permutation σ on n indices such that

each ψσ(j),j : Sσ(j) → Sj is an isomorphism, and all other ψi,j are the zero map.

Proof. By Corollary 4.4 applied to πSj
◦ ψ , we clearly have a situation where

each πSj
◦ ψ |Si

is either trivial or onto. If we use a schematic diagram with an
arrow from Si to Sj to indicate nontriviality of a map ψi,j , we obtain a diagram
like the following:

S1 × S2 × S3 × S4 × S5 × S6 × S7 × · · · Sn

· · ·
S1

�
× S2

�

× S3

�
× S4

�
× S5

�
× S6

�

× S7

�

× �· · · �
Sn

�

where a priori some of Si in the domain may map onto multiple Sj in the target,
and there are no arrows emanating from some of the Si in the domain.

By the injectivity of ψ , there must be at least one arrow emanating from each
Si , whereas by surjectivity of ψ , there must be at least one arrow ending at each
Sj . Corollary 4.4 prevents more than one arrow from ending in a given Sj . By
the pigeonhole principle, the arrows determine a one-to-one correspondence be-
tween the factors in the domain and those in the range. A second application of
injectivity now shows that each arrow represents an isomorphism. �

Note that the ψi,j form a matrix where each row and each column contain exactly
one isomorphism, and the rest of the maps are trivial maps—what would be a
permutation matrix (see, e.g., p. 100 in [22]) if the isomorphisms were replaced
by 1s and the trivial maps were replaced by 0s.

Corollary 4.6. Let S1, S2, . . . , Sn all be copies of the same nontrivial Hopfian
free product, and let ψ : S1 × S2 × · · · × Sn → S1 × S2 × · · · × Sm be an epimor-
phism with m < n. Then ψ decomposes as a “matrix of maps” ψi,j = πSj

◦ ψ |Si
,

and there is a 1–1 function σ from the set {1, . . . ,m} to the set {1, . . . , n} such
that ψσ(j),j : Sσ(j) → Sj is an isomorphism, and all other ψi,j are the zero map.

Proof. Begin with a schematic arrow diagram as we had in the previous lemma.
By surjectivity and Lemma 4.4, each of the m factors in the range is at the end
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of exactly one arrow. From there, we may conclude that each arrow represents an
epimorphism, and, hence, by Hopfian, an isomorphism.

To complete the proof, we must argue that at most one arrow can emanate
from an Si factor. Suppose to the contrary that two arrows emanate from a given
Si factor. Then we have an epimorphism of Si onto a nontrivial direct product in
which each coordinate function is a bijection. This is clearly impossible. �

5. Some Algebraic Lemmas, Part 2

Let pi denote the ith prime number. Let � be the uncountable set consisting of all
increasing sequences of prime numbers (pi1,pi2,pi3, . . .). For ω ∈ � and n ∈ N,
define (ω,n) to be the finite sequence consisting of the first n entries of ω.

For the group S = P1 ∗ P2, where each Pi is Thompson’s group V , choose
ui ∈ P1 to have order(ui) = pi .

Recall that if K is a group, then Aut(K) is the automorphism group of K .
Define μ : K → Aut(K) to be μ(k)(k′) = kk′k−1. Then the image of μ in
Aut(K) is called the inner automorphism group of K, Inn(K). The inner auto-
morphism group of a group K is always normal in Aut(K). The quotient group
Aut(K)/ Inn(K) is called the outer automorphism group Out(K). The kernel of
μ is called the center of K, Z(K); it is the set of all k ∈ K such that kk′k−1 = k′
for all k′ ∈ K . We have the exact sequence

1 � Z(K) � K
μ� Aut(K)

α� Out(K) � 1

Define the map � : P1 → Out(P1 ∗ P2) by �(u) = φu, where φu ∈ Out(P1 ∗
P2) is the outer automorphism defined by the automorphism

φu(p) =
{

p if p ∈ P1,

upu−1 if p ∈ P2.

(φu is called a partial conjugation.)

Claim 4. � : P1 → Out(P1 ∗ P2) is an embedding.

Proof. Suppose �(u) is an inner automorphism for some u not e in P1. Since
�(u) acts on P2 by conjugation by u, to be an inner automorphism, �(u) must
also act on P1 by conjugation by u. Now, �(u) acts on P1 trivially for all p ∈ P1,
which implies that u is in the center of P1. However, P1 is centerless! Thus, no
�(u) is an inner automorphism for any u ∈ P1. �

So, for each ui with prime order pi (the ith prime), φui
has prime order pi , as

does every conjugate of φui
in Out(P1 ∗ P2), as � is an embedding.

Lemma 5.1. For any finite collection of groups A1,A2, . . . ,An,
∏n

i=1 Out(Ai)

embeds in Out(
∏n

i=1 Ai).

Proof. The natural map from
∏n

i=1 Aut(Ai) to Aut(
∏n

i=1 Ai), which sends a
Cartesian product of automorphisms individually in each factor to that product



A Geometric Reverse to the Plus Construction 503

considered as an automorphism of the Cartesian product, is clearly an embed-
ding. Now, Inn(A1 × · · · × An) is the image under this natural map of Inn(A1) ×
· · · × Inn(An), because if bi ∈ Ai , then (b1, . . . , bn)

−1(a1, . . . , an)(b1, . . . , bn) =
(b−1

1 a1b1, . . . , b
−1
n anbn). So, the induced map on quotient groups, from∏n

i=1 Out(Ai) to Out(
∏n

i=1 Ai), is also a monomorphism. �

Now, because the quotient map � : ∏n
i=1 Out(Ai) → Out(

∏n
i=1 Ai) is an embed-

ding, order(φ1, . . . , φn) in Out(
∏n

i=1 Ai) is just lcm(order(φ1), . . . ,order(φn)),
which is just its order in

∏n
i=1 Out(Ai). Moreover, each conjugate of (φ1, . . . , φn)

in Out(
∏n

i=1 Ai) has the same order lcm(φ1, . . . , φn). Finally, note that if each
φi has prime order and each prime occurs only once, then order(φ1, . . . , φn) =
order(φ1) × · · · × order(φn).

Lemma 5.2. Let K be a group and suppose � : K �φ Z → K �ψ Z is an isomor-
phism that restricts to an isomorphism � : K → K . Then φ and ψ are conjugate
as elements of Out(K)

Proof. We use the presentations 〈gen(K), a | rel(K), aka−1 = φ(k)〉 and
〈gen(K), b | rel(K), bkb−1 = ψ(k)〉 of the domain and range, respectively, Since
� induces an isomorphism on the infinite cyclic quotients by K , there exists
c ∈ K with �(a) = cb±1. We assume that �(a) = cb, with the case �(a) = cb−1

being similar.
For each k ∈ K , we have

�(φ(k)) = �(aka−1)

= �(a)�(k)�(a)−1

= cb�(k)b−1c−1

= cψ(�(k))c−1.

Denoting by ιc : K → K the conjugation by c, we have �φ = ιcψ� in
Aut(K). Quotienting out by Inn(K) and abusing notation slightly, we have

�φ = ψ� or �φ�
−1 = ψ in Out(K). �

Once again, let Si denote the free product of two copies of Thompson’s group V .

Lemma 5.3. For any finite strictly increasing sequence of primes (s1, s2, . . . , sn),
define φ(s1,...,sn) : S1 × · · · × Sn → S1 × · · · × Sn by φ(s1,...sn)(x1, . . . , xn) =
(φu1(x1), . . . , φun(xn)), where φui

is the partial conjugation outer automorphism
associated above to the element ui with prime order si . Let (s1, . . . , sn) and
(ti , . . . , tn) be increasing sequences of prime numbers of length n. Let G(s1,...,sn) =
(S1 × · · · × Sn) �φ(s1,...,sn)

Z and G(ti ,...,tn) = (S1 × · · · × Sn) �φ(t1,...,tn)
Z be two

semidirect products with such outer actions. Then G(s1,...,sn) is isomorphic to
G(ti ,...,tn) if and only if {s1, . . . , sn} = {t1, . . . , tn} for the underlying sets.

Proof. (⇒) Let θ : G(s1,...,sn) → G(ti ,...,tn) be an isomorphism. There are n factors
of S in the kernel group of each of G(ω,n) and G(η,n). Then θ must preserve the
commutator subgroup, as the commutator subgroup is a characteristic subgroup
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and so induces an isomorphism of the perfect kernel group K = S1 ×S2 ×· · ·×Sn,
say θ . By Corollary 4.5, it must permute the factors of K , say via σ .

Now, the isomorphism θ must take the (infinite cyclic) abelianization
G(s1,...,sn)/K(s1,...,sn) of the one to the (infinite cyclic) abelianization G(ti ,...,tn)/

K(ti ,...,tn) of the other and hence takes a generator of G(s1,...,sn)/K(s1,...,sn)

(say aK(s1,...,sn)) to a generator of G(ti ,...,tn)/K(ti ,...,tn) (say beK(ti ,...,tn), where
bK(ti ,...,tn) is a given generator of G(ti ,...,tn)/K(ti ,...,tn) and e = ±1). Then since θ

takes K(s1,...,sn) = [G(s1,...,sn),G(s1,...,sn)] to [G(ti ,...,tn),G(ti ,...,tn)] = K(ti ,...,tn), it
follows that θ takes a to a multiple of be , say c−1be, where c lies in K(ti ,...,tn),
and e = ±1.

Now, by Lemma 5.2, φ(s1,...,sn) is conjugate in Out(K) to φ(t1,...,tn),

θ(φ(s1,...,sn))θ
−1 = φ(t1,...,tn). However, � is an embedding by Lemma 4! This

shows that order(φ(s1,...,sn)) = ∏n
i=1 si and order(φ(t1,...,tn)) = ∏n

i=1 ti are equal,
so, as both si and ti are prime and occur only once in each increasing sequence,
{s1, . . . , sn} = {t1, . . . , tn} by the fundamental theorem of arithmetic.

(⇐) Clear. �

Lemma 5.4. Let (ω,n) = (s1, . . . , sn) and (η,m) = (t1, . . . , tm) be increasing se-
quences of prime numbers with n > m.

Let G(ω,n) = (S1 × · · · × Sn)�φ(ω,n)
Z and G(η,m) = (S1 × · · · × Sm)�φ(η,m)

Z

be two semidirect products. Then there is an epimorphism g : G(ω,n) → G(η,m) if
and only if {t1, . . . , tm} ⊆ {s1, . . . , sn}.
Proof. The proof in this case is similar to the case n = m, except that the epimor-
phism g must crush out n − m factors of K(ω,n) = S1 × · · · × Sn by Corollary 4.6
and the pigeonhole principle and thus is an isomorphism on the remaining factors.

(⇒) Suppose there is an epimorphism g : G(ω,n) → G(η,m). Then g must send
the commutator subgroup of G(ω,n) onto the commutator subgroup of G(η,m). By
Corollary 4.6, g must send m factors of K(ω,n) = S1 × · · · × Sn in the domain
isomorphically onto the m factors of K(η,m) = S1 × · · · × Sm in the range and
send the remaining n − m factors of K(ω,n) to the identity. Let {i1, . . . , im} be the
indices in {1, . . . , n} of factors in K(ω,n), which are sent onto a factor in K(η,m),
and let {j1, . . . , jn−m} be the indices in {1, . . . , n} of factors in K(ω,n), which are
sent to the identity in K(η,m). Then g induces an isomorphism between Si1 ×· · ·×
Sim and K(η,m). Set Lm = Si1 × · · · × Sim .

Also, by an argument similar to Lemmas 5.2 and 5.3, g sends the infi-
nite cyclic group G(ω,n)/K(ω,n) isomorphically onto the infinite cyclic quotient
G(η,m)/K(η,m).

Note that Lm �φ(si1
,...,sim

)
Z is a quotient group of G(ω,n) by a quotient map

that sends Sj1 × · · · × Sjn−m to the identity. Consider the induced map g′ :
Lm �φ(si1

,...,sim
)
Z → G(η,m). Since g′ maps Lm isomorphically onto K(η,m) and

preserves the infinite cyclic quotients, we have that the kernel of g must equal ex-
actly Sj1 × · · · × Sjn−m ; thus, by the fundamental isomorphism theorem, we have
that g′ is an isomorphism.
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Finally, g′ is an isomorphism of Lm �φ(si1
,...,sim

)
Z with G(ω,n), which restricts

to an isomorphism of Lm with St1 × · · · × Stm , so, by Lemma 5.2, we have that
φ(si1 ,...,sim ) is conjugate to φ(t1,...,tm), so, in Out(

∏n
i=1 A1), order(φ(si1 ,...,sim )) =

order(φ(t1,...,tm)), and thus, as both si and ti are prime and appear at most once, by
an argument similar to Lemma 5.3, {t1, . . . , tm} ⊆ {s1, . . . , sn} by the fundamental
theorem of arithmetic.

(⇐) Suppose {t1, . . . , tm} ⊆ {s1, . . . , sn}. Choose a ∈ G(ω,n) with aK(ω,n) gen-
erating the infinite cyclic quotient G(ω,n)/K(ω,n) and choose b ∈ G(η,m) with
bK(η,m) generating the infinite cyclic quotient G(η,m)/K(η,m). Set g(a) = b.

Now send sij to tj (where Sij uses an element of order ij in its semidirect
product definition in the domain) under g. Send the elements of all other Si to the
identity.

We show that g : G(ω,n) → G(η,m) is an epimorphism. Clearly, g is onto since
g(sij ) = tj . It remains to show that g respects the multiplication in each group.

Clearly, g respects the multiplication in each Si and in Z.
The proof reduces to showing that if αij ∈ Sij and a ∈ Z, then

g(aαij ) = g(a)g(αij ),

g(φsij
(αi)a) = φtj (g(αij ))g(a),

using the slide relators for each group and the fact that sij = tj , which implies
φsij

= φtj . So, g respects the multiplication in each group. This completes the
proof. �

6. Some Algebraic Lemmas, Part 3

Recall that � is an uncountable set consisting of increasing sequences of prime
numbers (pi1,pi2,pj3, . . .). For ω ∈ � and n ∈ N, recall that we have defined
(ω,n) to be the finite sequence consisting of the first n entries of ω.

Recall also that pi denotes the ith prime number, and for the group S =
P1 ∗ P2, where each Pi is Thompson’s group V , we have chosen ui ∈ P1 to have
order(ui) = pi .

Finally, recall that we have defined a map � : P1 → Out(P1 ∗ P2) (where each
Pj is a copy of Thompson’s group V ) by �(u) = φu, where φu ∈ Out(P1 ∗ P2) is
the outer automorphism defined by the automorphism, called a partial conjuga-
tion,

φu(p) =
{

p if p ∈ P1,

upu−1 if p ∈ P2.

Set G(ω,n) = (S × S × · · · × S)�φ(ω,n)
Z.

Lemma 6.1. G(ω,n)
∼= S �φwsn

G(ω,n−1), where φwsn
is a partial conjugation by

usn .

Proof. Note that there is a presentation for (S×S×· · ·×S)�φ(ω,n)
Z that contains

a presentation for S �φwsn
G(ω,n−1).
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Generators: z, the generator of Z, together with the generators of the first copy
of S, the generators of the second copy of S, . . . , and the generators of the nth
copy of S.

Relators defining Pi : the relators for the copy of P1 in the first copy of S, the
relators for the copy of P2 in the first copy of S, the relators for the copy of P1 in
the second copy of S, the relators for the copy of P2 in the second copy of S, . . . ,
and the relators for the copy of P1 in the nth copy of S, the relators for the copy
of P2 in the nth copy of S.

Slide relators: The slide relators between z and the generators of P2 in the
first copy of S due to the semidirect product, the slide relators between z and the
generators of P2 in the second copy of S due to the semidirect product, . . . , the
slide relators between z and the generators of P1 in the nth copy of S due to the
semidirect product, and the slide relators between z and the generators of P2 in
the nth copy of S due to the semidirect product. �

Now, looking at G(ω,n) as a semidirect product of S with G(ω,n−1) yields an
inverse sequence (G(ω,n), αn), which looks like

G(ω,0)
�α0

G(ω,1)
�α1

G(ω,2)
�α2 · · ·

with bonding maps αi : G(ω,i+1) → G(ω,i) that each crush out the most recently
added copy of S.

A subsequence will look like

G(ω,n0)
�αn0

G(ω,n1)
�αn1

G(ω,n2)
�αn2 · · ·

with bonding maps αni
: Gω,nj ) → Gω,ni) that each crush out the most recently

added nj − ni copies of S.

Lemma 6.2. If, for inverse sequences (G(ω,n), αn), where αn : G(ω,n) → G(ω,n−1)

is the bonding map crushing out the most recently added copy of S, ω does not
equal η, then the two inverse sequences are not proisomorphic.

Proof. Let (G(ω,n), αn) and (G(η,m), βm) be two inverse sequences of group ex-
tensions. Assume that there exists a commuting ladder diagram between subse-
quences of the two, as shown below. By discarding some terms if necessary, ar-
range that ω and η do not agree beyond the term n0.

G(ω,n0)
� α

G(ω,n2)
� α

G(ω,n4)
�α · · ·

· · ·

G(η,m1)
�β�

g n 2

�
f
m

1

G(η,m3)
�β�

g n 4

�
f
m

3

· · ·
By the commutativity of the diagram, all f s and gs must be epimorphisms, as

all the αs and βs are.
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Now, it is possible that gn2 is an epimorphism; by Lemma 5.4, (η,m1) might
be a subset of (ω,n2) when considered as sets. However, fm3 cannot also be an
epimorphism, since (ω,n2) cannot be a subset of (η,m3) when considered as sets.
Since the two sequences can only agree up to n0, if (η,m1) is a subset of (ω,n2)

when considered as sets, then there must be a prime pi in (ω,n2) in between some
of the primes of (η,m1). This prime pi cannot be in (η,m3) and is in (ω,n2), so
(ω,n2) cannot be a subset of (η,m3) when considered as sets, so fm3 cannot be
an epimorphism. �

7. Manifold Topology

We now begin an exposition of our example.

Theorem 1.2 (Uncountably many pseudocollars on closed manifolds with the
same boundary and similar Pro-π1). Let Mn be a closed smooth manifold (n ≥ 6)
with π1(M) ∼= Z, and let S be the finitely presented group V ∗V , which is the free
product of two copies of Thompson’s group V . Then there exists an uncountable
collection of pseudocollars {Nn+1

ω | ω ∈ �}, no two of which are homeomorphic at
infinity, and each of which begins with ∂Nn+1

ω = Mn and is obtained by creating a
group extension 1 → S → Gi+1 → Gi → 1 and then using Theorem 1.1 to create
a 1-sided h-cobordism (Wi,Mi,Mi+1) with π1(Mi) = Gi and π1(Mi+1) = Gi+1

countably many times, using the same kernel group S each time. In particular,
each Ni has a fundamental group at infinity that may be represented by an inverse
sequence

Z ��α1
G1 ��α2

G2 ��α3
G3 ��α4 · · ·

with ker(αi) = S for all i.

Proof. For each element ω ∈ �, the set of all increasing sequences of prime num-
bers, we will construct a pseudocollar Nn+1

ω whose fundamental group at infinity
is represented by the inverse sequence (G(ω,n), α(ω,n)). By Lemma 6.2, no two of
these pseudocollars can be homeomorphic at infinity, and the theorem will follow.

To form one of the pseudocollars, start with M = S
1 × S

n−1 with fundamental
group Z and then create a 1-sided s-cobordism (W(s1),M,M(s1)) corresponding
to the group G(s1) (s1 a prime), using Theorem 1.1.

We then create another 1-sided s-cobordism (W(s1,s2),M(s1),M(s1,s2)) corre-
sponding to the group G(s1,s2), again using Theorem 1.1 and Lemma 6.1.

We continue in the fashion ad infinitum.
The structure of the collection of all pseudocollars will be the set � described

before.
We have shown that the profundamental group systems at infinity of each pseu-

docollar are non-pro-isomorphic in Lemma 6.2, so that all the ends are nondiffeo-
morphic (indeed, nonhomeomorphic).

This proves that we have uncountably many pseudocollars, each with boundary
M , which have distinct ends. �
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Remark 2. The above argument should generalize to any manifold Mn with
n ≥ 6, where π1(M) is a finitely generated Abelian group of rank at least 1
and any finitely presented superperfect centerless freely indecomposable Hopfian
group P with an infinite list of elements of different orders (the orders all being
prime numbers was a convenient but inessential hypothesis). The quotient needs
to be Abelian, so that the commutator subgroup will be the kernel group, which
is necessarily superperfect; the quotient group must have rank at least 1, so that
there is an element to send into the kernel group to act via the partial conjugation.
The rest of the conditions should be self-explanatory.
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