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A Note on Brill–Noether
Existence for Graphs of Low Genus

Stanislav Atanasov & Dhruv Ranganathan

Abstract. In an influential 2008 paper, Baker proposed a number of
conjectures relating the Brill–Noether theory of algebraic curves with
a divisor theory on finite graphs. In this note, we examine Baker’s
Brill–Noether existence conjecture for special divisors. For g ≤ 5 and
ρ(g, r, d) nonnegative, every graph of genus g is shown to admit a
divisor of rank r and degree at most d. As further evidence, the con-
jecture is shown to hold in rank 1 for a number families of highly
connected combinatorial types of graphs. In the relevant genera, our
arguments give the first combinatorial proof of the Brill–Noether ex-
istence theorem for metric graphs, giving a partial answer to a related
question of Baker.

1. Introduction

1.1. Statement of Main Results

The last decade has seen a number of results exploring the interplay between the
divisor theory of algebraic curves and an analogous theory on graphs, developed
by Baker and Norine [4]. These theories are interlinked by Baker’s specializa-
tion lemma [2, Lemma 2], which states that the rank of a divisor on an algebraic
curve over a valued field can only increase upon specialization to a skeleton. This
has led to numerous applications in algebraic geometry and number theory; see
the survey [3]. For example, combinatorial Brill–Noether theory has been suc-
cessfully employed to produce tropical proofs of the Brill–Noether and Gieseker–
Petri theorems in algebraic geometry and has provided insights on the maximal
rank conjecture [10; 15; 16]. Divisors on graphs are also of purely combinatorial
interest, for instance, through connections as diverse as G-parking functions [22]
and cryptosystems [23].

In his paper on the specialization lemma [2], Baker conjectured a number of
combinatorial results concerning the divisor theory of graphs based on theorems
in algebraic geometry. Many of these conjectures have now been proved [10; 14]
and have been the basis for substantial additional progress. In this paper, we study
one of the remaining open questions, the combinatorial counterpart to the exis-
tence part of the Brill–Noether theorem.1
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1Experts have recorded a gap in the proof of this conjecture that appears in [7, Thm. 6.3]. We direct

the reader to the discussion in [3, Rem. 4.8 and Footnote 5].
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Recall that for nonnegative integers g, r , and d , the Brill–Noether number is
defined to be ρ(g, r, d) = g − (r + 1)(g − d + r).

Conjecture 1 (Brill–Noether existence conjecture for graphs). If ρ(g, r, d) is
nonnegative, then every graph of genus g admits a divisor D with rk(D) = r and
deg(D) ≤ d .

A number of researchers have demonstrated an intricate Brill–Noether theory en-
tirely within the realm of (finite or metric) graphs; see, for instance, [5; 8; 19; 20].
Conjecture 1 is a central question in this area. In this paper, we confirm Baker’s
conjecture in genera up to 5.

Main Theorem. The Brill–Noether existence conjecture holds for all finite
graphs of genus at most 5.

The specialization lemma immediately implies the Brill–Noether existence con-
jecture for all metric graphs, where chips may need to be placed in the interiors
of edges. Baker asks the following question.

Question 1. Can the Brill–Noether existence theorem for metric graphs be
proved using purely combinatorial methods?

The proof of the main theorem, with superficial changes, furnishes such a proof
for all metric graphs of genus at most 5.

In a complementary direction, we could ask for an algebro-geometric proof of
Brill–Noether existence for finite graphs. This question is closely related to the
existence of divisors on curves over discretely valued fields that are expressible
as sums of rational points and bounds on degrees of ramified base changes in
semistable reduction. We are not aware of any substantial progress in this direc-
tion.

As further evidence for the conjecture, we exhibit a highly connected homeo-
morphism classes of graphs in increasing genus, for which the existence conjec-
ture holds in rank 1 for all representatives of that class. These results are stated
precisely in Section 6.

1.2. Context from Algebraic Geometry

The fact that when ρ ≥ 0, every algebraic curve admits a divisor of rank r and
degree at most d was proved by Kempf, Kleiman, and Laksov [17; 18]. It is
considered to be the easier part of the Brill–Noether theorem. The harder di-
rection, showing the nonexistence of special divisors when ρ is negative, was
proved by Griffiths and Harris [13]. Kempf, Kleiman, and Laksov’s proof of the
existence of special divisors follows from Schubert calculus techniques and the
Thom–Porteous determinantal formula. However, such techniques are not avail-
able in the discrete setting. On the other hand, the harder direction, the existence
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of Brill–Noether general graphs in every genus was proved purely combinatori-
ally by Cools, Draisma, Payne, and Robeva [10] and implies the harder direction
of the Brill–Noether theorem.

1.3. Related Results

Baker [2] shows that any finite graph G can be uniformly rescaled to a graph G′
for which Conjecture 1 holds. More precisely, there exists an integer mG such
the inflated graph G′ obtained by putting mG − 1 bivalent vertices on each edge
of G satisfies Conjecture 1. Conjecture 1 then asserts that we can always pick
mG = 1 for every finite graph G. No effective bounds on the value of mG are
known. Conjecture 1 remains open for r = 1 and g ≥ 6, where it is equivalent to
the following:

Conjecture 2 (Gonality conjecture). The gonality of any graph of genus g is at
most �(g + 3)/2�.

Recall that the gonality of an algebraic curve is the smallest degree of a rank one
divisor. After the results of this paper, the next outstanding case of Conjecture 1
is g = 6, r = 1, d = 4.

For g ≥ 6, the strongest result concerning the gonality conjecture is a recent
result of Cools and Draisma [9]. They show that for any topologically trivalent
genus g graph G = (V ,E) there exists a nonempty open cone CG ⊆ R

|E|
>0 whose

image in Mtrop
g consists entirely of metric graphs with gonality exactly d := �(g+

3)/2�. Furthermore, any graph corresponding to a lattice point of CG satisfies the
existence conjecture. Their approach relies on studying harmonic morphisms to
trees and the techniques of [1]. We are not aware of any systematic results in
higher genus for which the cone CG is known to be the entire orthant.

1.4. Outline of the Paper

In Section 2, we briefly recall the Baker–Norine theory of divisors on finite
graphs, reduced divisors, and Dhar’s burning algorithm. In Section 3, we reduce
the existence conjecture to the rank 1 case. In Sections 4 and 5, we prove the Main
Theorem for graphs of genus 4 and 5, respectively. In both sections, we produce
divisors of prescribed degree and rank for topologically trivalent and then de-
generate the construction for general graphs. In Section 6, we exhibit families of
graphs of increasing genus for which the existence conjecture in rank 1 holds.

2. Divisor Theory on Finite Graphs

The main reference for this section is the original paper of Baker and Norine [4].
A graph G will mean a finite connected graph possibly with loops and multiple
edges. The vertex and edge sets of G will be denoted V (G) and E(G), respec-
tively. The genus of G, denoted g(G), is defined to be

g(G) := |E(G)| − |V (G)| + 1.
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Figure 1 The larger vertex fires once to move from the left configu-
ration to the right configuration

A divisor D on a graph G is a formal Z-linear combination on its vertices

D =
∑

v∈V (G)

D(v) · v.

The degree of a divisor, denoted deg(D), equals
∑

v∈V (G) D(v), and a divi-
sor is said to be effective if D(v) ≥ 0 for all v ∈ V (G). The set of all divi-
sors on a graph G is denoted by Div(G) and has a natural grading Div(G) =⊕

d∈Z Divd(G) induced by the degree. The same holds for Div+(G), the set of
all effective divisors.

It is often useful to think of the integers D(v) as the number of chips or an-
tichips placed on v ∈ V (G). Given D and a vertex v, we may obtain a new divisor
by means of a chip firing move as follows. The vertex v sends one chip to its neigh-
bors, along each of the outgoing edges connecting them. Thus, D(v) decreases by
the valence of v, and for each w a neighbor of v, D(w) increases by the number
of edges between v and w. Chip-firing generates an equivalence relation on the
set Div(G) of divisors on G known as linear equivalence. See Figure 1 for an
illustration. The class [D] is said to be effective if it contains an effective repre-
sentative. For an alternative definition of this equivalence in terms of piecewise
linear functions, see [7].

It is a well-known fact that every two same degree divisors on a tree are equiv-
alent. For that reason, when studying divisors on graphs, no information is lost by
contracting all grafted trees and assuming that all vertices have valency at least
two.

The central invariant in the divisor theory of graphs is the rank of a divisor. If
[D] is effective, then the rank of D is defined as

rk(D) := max{k ∈ Z≥0|[D − E] is effective ∀E ∈ Divk+(G)}.
If [D] is not effective, then we set rk(D) = −1. Motivated by the classical re-

sult in the theory of algebraic curves, Baker and Norine [4] exhibited a Riemann–
Roch theorem for graphs.

Theorem 2.1 (Riemann–Roch for graphs). Let D be a divisor on G. Then

rk(D) − rk(KG − D) = deg(D) − g + 1,

where KG = ∑
v∈V (G)(val(v) − 2)(v).
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2.1. Reduced Divisors and Dhar’s Burning Algorithm

Given a divisor D on G and a vertex v0, we say that D is v0-reduced if

(1) D(v) ≥ 0 for all v 
= v0, and
(2) every nonempty set A ⊆ V (G)\{v0} contains a vertex v such that

outdegA(v) > D(v).

Here outdegA(v) denotes the outdegree of v with respect to A, that is, the
number of edges connecting v to a vertex not in A. Every divisor is equivalent to
a unique v0-reduced divisor. Moreover, a divisor class is effective if and only its
reduced form is effective. As a result, reduced divisors are central to calculating
ranks of divisors. There is an efficient computational procedure to yield a reduced
divisor known as Dhar’s burning algorithm.

Suppose that D is such that D(v) ≥ 0 for all v 
= v0. At each vertex v 
= v0,
place D(v) “firefighters.” Each firefighter is capable of controlling precisely one
fire. Start a fire at v0. The fire spreads through the graph, so that an edge burns if
one of its endpoints burns. A vertex burns if the number of burning edges incident
to it exceeds the number of firefighters placed on it. If the entire graph burns, then
D is v0-reduced. If not, we chip fire all the unburnt vertices and repeat the pro-
cedure on the newly obtained divisor. The algorithm terminates at the v0-reduced
representative. For a detailed description, see [6, Section 5.1] and [11].

3. Reduction to Rank 1

In this short section, we show that for genera up to 5 proving the Brill–Noether
conjecture reduces to establishing the validity of the gonality conjecture. We take
advantage of the relatively high rank of the canonical divisor for graphs of small
genus.

Let G be a genus g graph, and let D ∈ Div(G). Since rk(D) ≥ −1, the
Riemann–Roch theorem implies that rk(D) ≥ deg(D) − g. This inequality and
the following result are sufficient to prove Conjecture 1 for g ≤ 3.

Lemma 3.1 ([2, Lemma 2.7]). Let G be a graph, and let D ∈ Div(G). If rk(D) ≥
0, then rk(D − v) = rk(D) − 1 for some v ∈ V (G).

The same argument may be applied to reduce the Brill–Noether existence conjec-
ture to rank 1 in the genera of interest.

Proposition 3.1. Fix g ≥ 0 and suppose r ≥ �g/2�. If d ≥ 0 is such that
ρ(g, r, d) ≥ 0, then every graph G of genus g has a divisor D with deg(D) ≤ d

and rk(D) = r .

Corollary 3.1. Let G be a graph of genus 4 or 5. Then Brill–Noether existence
conjecture holds for G if and only if the gonality conjecture does, that is, if every
G of genus 4 (resp. 5) admits a degree 3 divisor (resp. 4) of rank at least 1.
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4. Brill–Noether Existence for Graphs of Genus 4

Notation. In the rest of this paper, we will use a large number of figures. To support
the exposition, divisors on graphs will be depicted by placing chips on vertices
that are larger in size.

4.1. Auxiliary Results

Let G be a connected graph. A vertex v ∈ V (G) is said to be topological if it has
valency at least three. A path between two topological vertices consisting solely
of bivalent edges will be considered as a topological edge. It may be visualized
as the edges of the finite graph obtained erasing all the bivalent edges. Graphs
G and G′ are homeomorphic if G′ is an inflation (resp. deflation) of G obtained
by placing (resp. removing) bivalent vertices on the edges of G. We reserve the
Greek letter ε to denote topological edges. The length of a topological edge ε is
equal to one more than the number of bivalent vertices on ε. It is equal to the
length of the path ε in a geometric realization of G where all edge lengths are 1.

We will need the following elementary lemma.

Lemma 4.1. Every genus g graph has at most 2g − 2 topological vertices.

An edge e is called a bridge if its removal increases the number of connected com-
ponents. A graph has a (g1, g2)-bridge decomposition if it has a bridge separating
two components of genera g1 and g2, respectively.

Lemma 4.2 (Bridge lemma). Let g1 and g2 be positive integers, at least one
among which is even. If the gonality conjecture holds for all graphs of genus g1
and g2, then it is also true for all graphs G with (g1, g2)-bridge decomposition.

Proof. Let g1 and g2 be as before and consider a genus g graph G with (g1, g2)-
bridge decomposition. Let e be a bridge connecting two connected subgraphs G1
and G2 of genera g1 and g2. Let u ∈ V (G1) and v ∈ V (G2) be its endpoints.
Since the gonality conjecture holds for G1 and G2, there exists Di ∈ Div(Gi) of
deg(Di) ≤ �(gi + 3)/2� and rk(Di) ≥ 1 for i = 1,2. By the definition of the rank
there exist effective D′

1 ∼ D1 −(u) and D′
2 ∼ D2 −(v). Therefore, D′

1 +(u) ∼ D1
and D′

2 + (v) ∼ D2. Set D := D′
1 + D′

2 + (u). By firing all vertices of G1 we see
that D ∼ D′

1 + D′
2 + (v). Pick w ∈ V (G) and without loss of generality assume

that w ∈ G1. Then D− (w) is equivalent to an effective divisor, because D1 − (w)

is, and we can fire G2 ∪{e} in place of u. Since w was arbitrary, rk(D) ≥ 1. Since
g1 and g2 are not simultaneously odd, this concludes the proof. �

As an immediate consequence, the Brill–Noether existence conjecture holds for
all graphs with (2,2)-bridge decomposition.

Lemma 4.3 (Loop lemma). The gonality conjecture holds for any genus g graph
with at least one topological loop if g = 5, or with at least two topological loops
if g = 4.
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Figure 2 Topological types of trivalent genus 4 graphs, possibly with loops

Proof. Let G be a graph genus 4 with at least two loops. Suppose that two of its
loops, denoted ε1 and ε2, are located at vertices v and w. If v = w, then the claim
follows by the Bridge lemma, so suppose v 
= w. Let G′ be the graph obtained
by contracting both loops. It is of genus 2. If G′ has only two vertices, then it
must necessarily be a banana graph with two loops attached, which has a divisor
of degree 3 and rank at least 1. Otherwise, G′ has another vertex u, and then the
divisor D := 2 · (v)+ 2 · (w)− (u) on G′ has rank at least 1 by Riemann–Roch. It
is not hard to see that rk(D) ≥ 1 when viewed as a divisor on G as well. A similar
argument works for the genus 5 statement. �

4.2. Topologically Trivalent Graphs

A graph G is said to be topologically trivalent if all of its vertices have valency 2
or 3. Starting from a trivalent graph G, we elongate the edges by inserting bivalent
vertices on its edges. In this manner, we produce graphs homeomorphic to G. The
set of topologically trivalent graphs is in natural bijection with the integral points
in the interiors of maximal dimensional cells in the moduli space Mtrop

g of tropical
curves of genus g.

A topologically trivalent graph has genus 4 if and only if it has precisely six
topological vertices. Using this characterization, we generate all trivalent graphs
of genus 4, shown in Figure 2. These were verified with the help of the data-
base [21].

We can apply the bridge and loop lemmas to all graphs homeomorphic to the
ones on the first and third rows of Figure 2, obtaining the chip configurations in
Figure 3. Bridges and loops are denoted by dashed lines, and the vertices deco-
rated with nonzero integers are made large.

The next result reduces the search for divisors D with deg(D) = 3 and rk(D) ≥
1 to one of finding decompositions of graphs into appropriately chosen connected
subgraphs, determined by running Dhar’s burning algorithm once. Note that an
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Figure 3 Genus 4 graphs with bridges or more than one loop

Figure 4 Possible divisors Dv on Gv . Note that Gv consists of the
solid edges

effective divisor D on G is of rank at least 1 if, for any v ∈ V (G), the algorithm
applied to D − (v) terminates in an effective divisor.

Lemma 4.4. Let G be a graph of genus 4, and let D ∈ Div+(G) be of degree 3. For
any v ∈ V (G)\ supp(D), run Dhar’s burning algorithm for the divisor D − (v),
starting the fire at v. Let Gv be the closure of the connected graph consisting
of all burnt vertices and edges on the first run of the algorithm. Let Dv be the
restriction from D to Gv . If, for every v ∈ V (G)\ supp(D), the corresponding Gv

and Dv are among those in Figure 4, then rk(D) ≥ 1.

Proof. To show that rk(D) ≥ 1, choose a vertex v ∈ V (G)\ supp(D). By assump-
tion, Gv and Dv are among the above configurations. Note that rk(Dv) ≥ 1 on
Gv by running Dhar’s burning algorithm. This can be easily checked on all cases
with the possible exception of (�). For this particular case, we consider two cases:
either a ≥ b, or a < b. We can chip fire the configuration as shown further.

Note that at each run of the Dhar’s burning for the divisor D − (v), the set
of unburnt vertices is contained in Gv . Thus, to find an effective representative
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Figure 5 In the graphs, chips are placed on the large vertices. These
divisors have degree 3 and rank at least 1

of D − (v), we simply run Dhar’s burning algorithm, chip firing the unburned
vertices. Since Dv − (v) ∼ Ev for an effective Ev ∈ Div(Gv), it follows that
D − (v) ∼ E for an effective E ∈ Div(G). The choice of v was arbitrary, so
rk(D) ≥ 1. �

Remark 4.1. Note that in the third (resp. in the fourth) configuration on the top
row of Figure 4, we can chip fire away from the cycle (resp. the loop) until one of
the two chips lands on a topological vertex. Hereafter, we assume that whenever
D has a Dv among these two configurations, at least one of the two chips sits on a
topological vertex. For the configurations on the second row, we assume that the
chip at distance max(a, b) sits on a topological vertex.

For each of the remaining families of topologically trivalent graphs of genus 4, we
separately construct a divisor D with deg(D) = 3 and rk(D) ≥ 1. The families are
numbered in the order in which they appear in Figure 2. The first three are simple
graphs with loops, and the remaining five are multigraphs. Further, in all figures,
the letters a, b, c, d, x, y denote the length of the topological edge situated next
to them. Many of the shown divisors have rank at least 1 as a consequence of
Lemma 4.4. For the cases where Lemma 4.4 applies, we draw all edges partici-
pating in the same configuration Gv with corresponding Dv as having the same
edge pattern (dotted, dashed, etc.). For each divisor, the vertices with chips are
made larger.

4.2.1. Straightforward Cases. Some homeomorphic families of graphs admit a
degree 3 divisor of rank at least 1, for any choice of edge length. For these fami-
lies, such divisors are shown in Figure 5. They have rank at least 1 by Lemma 4.4.

4.2.2. First Family. Let b be the length of the top right topological edge, and
let c be that of the bottom right topological edge. For this family, we consider
three separate cases, depicted in Figure 6. The leftmost depicts the rank 1 divisor
when b ≥ c. The rank calculation follows immediately from Lemma 4.4. The next
two cases depict the situation where b < c. Set y = c − b. The second one occurs
when y ≥ min(x, d), and the third occurs otherwise. That these divisors have rank
1 follows by running Dhar’s algorithm.

4.2.3. Second Family. Place the first two chips as depicted in Figure 7. The third
chip is placed at a distance min(x, c + b) from the grey vertex along the dashed
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Figure 6 Degree 3 and rank at least 1 divisors on graphs of this com-
binatorial type, depending on the edge lengths as indicated. Lengths of
edges are denoted by small letters adjacent to the edge

Figure 7 Degree 3 and rank at least 1 configurations on the second
family. The leftmost and rightmost graphs depict the special divisor
depending on which among x and b + c is larger

Figure 8 Cases from left to right are as follows: (1) b ≥ c. (2) c ≥ b

and y ≥ x. (3) c ≥ b, y < x, and d ≥ y. (4) c ≥ b, y < x, and d < y.

path. As in the previous case, we see that all divisors are of rank at least 1. The
left and right divisors are the v-reduced representatives in the class of the special
divisor, where v is the dashed vertex.

4.2.4. Third Family. For this family, we consider four cases. Let y = c−b, where
b and c are the lengths of the top and bottom topological edges, respectively. Each
divisor has rank at least 1, which follows by Dhar’s burning algorithm. It suffices
to run the algorithm for one vertex on each topological edge. See Figure 8.

4.2.5. Fourth Family. Let a, b, c be the lengths of the simple edges. Assume that
a ≤ c ≤ b and place the chips as shown in Figure 9. The third chips is placed at
length min(x, c + d) from the gray vertex along the dotted path. To show that the
divisor has rank at least 1, we run Dhar’s burning algorithm for one vertex on each
topological edge.

4.3. General Graphs of Genus 4 Via Edge Contractions

Let G be a genus 4 graph, and let ε be any of its topological edges, which is not
a loop. Denote by Gε the graph obtained by contracting along ε (see Figure 10),
and let ϕε : V (G) → V (Gε) be the contraction map fixing all vertices outside ε
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Figure 9 Degree 3 and rank at least 1 configurations on the fourth
family. The leftmost and rightmost graphs depict the special divisor
depending on which among x and c + d is larger

Figure 10 Edge contraction along the topological edge ε

and collapsing all vertices of ε to one. Then the pushforward ϕε∗ : Z[V (G)] →
Z[V (Gε)] is the map obtained by linearly extending ϕε . For a divisor D of G,
viewed as an element of Z[V (G)], we set Dε = ϕε∗(D).

Every genus 4 graph can be obtained by (a series of) edge contractions from a
suitably chosen topologically trivalent one. Furthermore, we can assume that each
of these contractions is performed along a topological edge of shortest length.

We record the following useful observation.

Lemma 4.5. If G is a graph with a (g1, g2)-bridge decomposition and ε is a
topological edge, then the graph Gε also has (g1, g2)-bridge decomposition.

This result shows that if we start with a trivalent genus 4 graph G with (2,2)-
bridge decomposition, then any genus 4 graph G′ obtained from G by repeated
edge contractions satisfies the gonality conjecture. Note that edge contractions do
not affect the total number of loops; hence, Lemma 4.3 applies as well.

Proposition 4.1. Let G be a genus 4 graph and let D ∈ Div+(G) be of degree
3. Suppose all Gv and Dv , v ∈ V (G), as defined in Lemma 4.4, are among the
configurations in Figure 4. Then, for any set of topological edges ε1, . . . , εk of G,
the graph Gε1,...,εk admits a degree 3 divisor of rank at least 1.

Proof. Consider an edge contraction along a topological edge ε. Given v0 ∈
(V (G) ∩ ε)\ supp(D), record Dv0 . If Dv0 is any of the configurations on the first
row of Figure 4, Dε , the pushforward from D to Gε , has rk(Dε) ≥ 1. Indeed, if
ε is fully contained in Gv0 , then contraction along ε leaves the closure of G\Gv0

unchanged, and Dv0 remains of rank at least 1 under contraction along any edge.
Recall the assumptions on D from the remark after Lemma 4.4.

Otherwise, suppose that v0 is such that Dv0 is any of the configurations on
the second row and that ε is the topological edge of length a. Consider D′

v0
, the

divisor on Gε
v obtained by substituting a = 0 for all edges of length a from the
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Figure 11 Edge contractions of Gv0 . Note that Gv0 consists only of
the solid edges

Figure 12 Edge contraction of the first family

second row of Figure 4 as shown in Figure 11. Note that rk(D′
v0

) ≥ 1 when viewed
as a divisor on Gε , since it satisfies Lemma 4.4.

We can analogously deal with all subsequent edge contractions. Indeed, by
inspection we verify that each Dv from Figure 4 remains of rank at least 1 under
any number of edge contractions. Suppose G admits an effective degree 3 divisor
D such that all Dv are from the first row of Figure 4. Arguing as before, we
see that so does the graph Gε . Proceeding by induction, the same holds after
arbitrarily many contractions. If G does not admit such divisor, then by degree
consideration it admits a degree 3 divisor of rank at least 1 with precisely one
Dv among the configurations on the second row of the same figure. Let ε be the
topological edge of shortest length within this particular Dv . If ε is part of the
cycle (resp. is a side of the triangle), then the closure G\Gv0 is unaffected after
contracting along ε, thus remaining of rank at least 1. Otherwise, we consider
D′

v obtained by setting a = 0 as before. Note that Gε now admits D with all Dv

among the first row. �

All degenerations of graphs in Section 4.2.1 admit a degree 3 divisor of rank
at least 1 according to Proposition 4.1. If G belongs to any of the homeomor-
phic families from Sections 4.2.1, then Gε satisfies the conditions of Lemma 4.1.
Degenerations of the remaining homeomorphic families are considered indepen-
dently. We note that the divisors presented further all satisfy the conditions of
Proposition 4.1.

Let G belong to the first family. If ε is the middle (vertical) topological edge,
then Gε has (2,2)-bridge decomposition. Otherwise, Gε is as shown further. For
each case, we present a degree 3 divisor of rank at least 1. See Figure 12

Let G belong to the second family. If ε participates in a cycle, then Gε has at
least two loops, and Lemma 4.3 applies. If ε is part of the fourth configuration
in Figure 4, then the arguments from Section 4.2.3 are still valid. There is one
remaining choice for ε, and Gε is shown in Figure 13. The divisor presented is of
rank at least 1.
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Figure 13 Edge contraction of the second family

Figure 14 Edge contraction of the third family

Figure 15 Possible Gε for loop of loops in genus 4

Let G belong to the third family. Arguing as in the previous case, there is a
single possibility for ε that needs to be examined. The contracted graph Gε is
shown in Figure 14. For each case, the divisor presented is of rank at least 1.

Finally, let G be a loop of loops, that is, the fourth family. There are two pos-
sibilities for ε: either it participates in a loop, or it connects two loops. Both cases
are considered in Figure 15. The last chip is placed at the distance min(x, b + c)

from the gray vertex in the first case and at the distance min(a, b + c) in the
second. Both divisors depicted have rank at least 1, which can be verified using
Dhar’s burning algorithm.

The graph on the left in Figure 15 can also be obtained as a degeneration from
the second family, and the one on the right as a degeneration from the last family
in Section 4.2.1. Therefore, the gonality conjecture holds for all of degenerations
of the loop of loops. We have exhausted all graphs of genus 4 and thus confirmed
the gonality conjecture in genus 4. Combined with Proposition 3.1, we deduce the
following:

Theorem 4.6. The Brill–Noether existence conjecture holds for all graphs of
genus 4.

5. Graphs of Genus 5

In this section, we prove the Brill–Noether existence for graphs of genus 5. In light
of Corollary 3.1, it suffices to construct a divisor D of degree 4 and rk(D) ≥ 1 for
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Figure 16 The topological types of trivalent genus 5 graphs with no
bridges or loops

Figure 17 Possible divisors Dv on graphs Gv . Topological edges are
allowed to have arbitrary length, unless otherwise indicated

every genus 5 graph G. As in genus 4, we begin with topologically trivalent graphs
and extend the constructions to general graphs of genus 5 via edge contractions.

5.1. Topologically Trivalent Graphs

By applying Lemmas 4.2 and 4.3 we study only topologically trivalent graphs of
genus 5 that have no bridges or loops. The graphs are depicted in Figure 16.

The following result, in the spirit of Lemma 4.4 and Proposition 4.1, not only
produces degree 4 divisors of rank at least 1 but also deals with multiple edge
contractions.

Proposition 5.1. Let G be a graph of genus 5, and let D ∈ Div+(G) be of degree
4. For any v ∈ V (G)\ supp(D), let Gv and Dv be defined as in Lemma 4. If all
Gv and Dv are among the following, then

(1) rk(D) ≥ 1, and
(2) for any set of topological edges ε1, . . . , εk of G, the graph Gε1,...,εk admits a

degree 4 divisor of rank at least 1.
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Figure 18 Topological types of genus 5 graphs with a divisor of de-
gree 4 and rank at least 1, independent of edge lengths. The edges
highlighted in gray belong to more than one of the subgraphs Gv

Figure 19 Degree 4 divisors on the first genus 5 family broken up
into the cases (1) b < c and (2) b ≥ c

Proof. The proof of part (1) is similar to that of Lemma 4.4, and the proof of part
(2) is similar to that of Proposition 4.1. �
We apply Proposition 5.1 to produce degree 4 divisors of rank at least 1 for the
remaining families. For each graph G, the subgraphs Gv and their corresponding
divisors Dv as defined before will be drawn in different edge patterns (dotted,
dashed, etc.). Only two families do not fall into the scope of Proposition 5.1, and
for them, we explicitly produce divisors of desired degree and rank. In Section 4.3,
we deal with edge contractions performed on graphs from these two families.

5.1.1. Straightforward Cases. Many of the topological types of genus 5 graphs
from Figure 16 admit, for all edge lengths, a degree 4 divisor D satisfying Propo-
sition 5.1. These graphs and their divisors are depicted in Figure 18.

5.1.2. First Family. For this family, we consider two cases. In both cases, the
depicted divisor has rank at least 1 according to Proposition 5.1, and depicted in
Figure 19.

5.1.3. Second Family. Place the first three chips as shown below and the fourth
at the distance min(a, c + d) from the grey vertex along the dashed arrow. See
Figure 20.

5.1.4. Fourth Family. There are two possible constructions for D ∈ Div(G) de-
pending on the relative position of the two longest topological edges. In the first
case, the longest two topological edges are adjacent, and we may assume that
b ≥ a ≥ max(c, d). The last chip is placed at the distance min(d + e, x) from the
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Figure 20 The degree 4 divisor is obtained by placing a fourth chip
at the distance min(a, c + d) from the grey vertex along the dashed
edge

Figure 21 A configuration of 4 chips having rank at least 1 on the
loops of loops

Figure 22 Degree 4 configurations on the sixth family having rank
at least 1, depending on the edge lengths as above

gray vertex, as indicated by the dashed line. In the second case, the longest two
topological edges are not adjacent, and suppose b ≥ c ≥ a ≥ d . Note that in this
case |y − z| ≤ a + x = b. Verifying that this divisor has rank at least 1 is done as
in Section 4.2.5. See Figure 21

5.1.5. Sixth Family. For this family, we consider three cases. For each case, the
depicted divisor further has rank at least 1 according to Proposition 5.1. See Fig-
ure 22.

5.1.6. Seventh Family. For this family, we consider three cases. For each case,
the depicted divisor further has rank at least 1 according to Proposition 5.1. Note
that the last divisor has two chips placed on the same vertex. See Figure 23.
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Figure 23 Degree 4 divisors on the seventh genus 5 family broken
up into cases (1) a ≤ b, d ≤ c, (2) b ≤ a, c ≤ d , and (3) b ≤ a, d ≤ c

Figure 24 Degree 4 divisors on the ninth genus 5 family broken up
into the cases (1) a := min(a, b, c) and (2) b := min(a, b, c)

Figure 25 Edge contraction of second family and a degree 4 divisor
of rank at least 1

5.1.7. Ninth Family. For this family, we consider two cases. In both cases, the
divisor shown further has rank at least 1 according to Proposition 5.1. See Fig-
ure 24.

5.2. General Graphs of Genus 5 Via Edge Contractions

Since Proposition 5.1 allows for multiple contractions, we only need examine the
families for which it does not apply. These are the second and the fourth.

5.2.1. Edge Contractions to the Second Family. Examining both cases in Sec-
tion 5.1.3, we need to consider only contractions of the uppermost edge con-
necting the two loops. We perform the contraction and place the chips as shown
further. The new divisor satisfies Proposition 5.1 and thus remains of rank at least
1 under repeated edge contractions. See Figure 25.
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Figure 26 Contraction of a topological edge in loops of loops

5.2.2. Edge Contractions of the Fourth Family. Note that edge contraction of any
topological edge participating in a cycle produces a loop, and then the existence
of the desired divisor follows from the bridge lemma. Therefore, we can contract
only a topological edge connecting two loops, as illustrated further. We place the
chip as shown further, and the remaining three chips can be placed according to
the construction of Section 4.2.5 as if the cycle of two loops were one loop. See
Figure 26.

6. Graphs of High Genus

In this final section, we record some infinite families of graphs of increasing genus
for which the existence conjecture holds in rank 1. The main results of this section
are Theorem 6.2 and Proposition 6.2.

6.1. Complete and Complete k-Partite Graphs

Suppose G is a graph homeomorphic to Kn, the complete graph on n vertices. We
can place one chip on all but one of its topological vertices and obtain a divisor
D of rank at least one. Note further that deg(D) ≤ � g(Kn)+3

2 �, where g(Kn) =
(n−1)(n−2)

2 is the genus of Kn.

Proposition 6.1. Let n1 ≤ · · · ≤ ns be integers. Suppose G is a graph homeo-
morphic to the complete s-partite graph Kn1,...,ns . Then G admits a divisor D of
degree

∑s−1
i=1 ni and rank at least one. Furthermore, the gonality of G is precisely∑s−1

i=1 ni .

Proof. Let {Vl}sl=1 with |Vl | = nl partition the set of topological vertices so that
two vertices in Vi and Vj are connected along a topological edge if and only if
i 
= j . Then, consider the divisor

D =
∑

v∈V1∪···∪Vs−1

(v).

It has deg(D) = ∑s−1
i=1 ni and rank at least one by running Dhar’s burning algo-

rithm. That this is the gonality follows from [12, Thm. 2]. �
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Figure 27 Ladder graph of genus g

Figure 28 Divisors with desired properties for all edge lengths

Figure 29 Decomposition of a genus 6 ladder graph. The dashed
edges are identified

6.2. Ladder Graph

Let G be homeomorphic to the genus g ladder graph from Figure 27. In this
section, we show that G supports a divisor of degree �(g + 3)/2� and rank at least
1. Note that the genus g ladder graph has g − 3 vertical edges, 2 cycles, and g − 2
cells, where we do not count the two end cycles as cells.

Lemma 6.1. Let G be the graph shown further with edge lengths a, b, c, d ∈ N.
Denote by v1, v2 and w1,w2 the leftmost and rightmost pairs of vertices, respec-
tively. Then there exists D ∈ Div(G) of deg(D) = 3 and rk(D) ≥ 1 such that
[D − v1 − v2] and [D − w1 − w2] are effective.

Proof. There are four cases to be examined. The order in which they appear in
Figure 28 from left to right is: (1) a > b; (2) a ≤ b < a + min(c, d); (3) a +
min(c, d) < b and c ≤ d ; and (4) a +min(c, d) < b and d < c. Verifying that each
divisor has the desired properties follows by running Dhar’s burning algorithm.

�

The motivation behind this result comes from the decomposition of graphs home-
omorphic to the genus 6 ladder graph shown in Figure 29 and Figure 30.
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Figure 30 Ladder graph of genus 6

Figure 31 A chip configuration on a cluster of the ladder

Figure 32 Remaining cells for ladder graph of genus g = 4k + t, t ∈ {0,1,2,3}

In light of Lemma 6.1, the two middle components allow us to perform chip
firing moves and advance chips from left to right. More precisely, the lemma
asserts that we can place two additional chips on the divisor depicted further and
obtain a divisor of rank at least 1.

Therefore, we can place two more chips somewhere on the first four cells so
that the two divisors further are equivalent.

Let us call a cluster each configuration of four consecutive cells. Let us
also index the cells from left to right, so that the leftmost is numbered 1, the
one on its right is numbered 2, and so on. The observation before Figure 31
shows that we can place two chips in each cluster spanning cells numbered
from 4m + 1 to 4m + 4, where 0 ≤ m ≤ � g−2

4 �, and can chip fire to a con-

figuration with two chips in the cell numbered with 4� g−2
4 � + 1. To finish the

argument, we only need to examine four cases depending on the residue g mod-
ulo 4.

Suppose g = 4k. Then �(g + 3)/2� = 2k + 1, and G has 4k − 2 cells. We place
two chips in each of the �(4k − 2)/4� = k − 1 clusters. We place the remaining
2k + 1 − 2(k − 1) = 3 chips as depicted in the leftmost graph in Figure 32, which
portrays only the remaining cells that are not part of any cluster. We analogously
deal with the cases g = 4k + t for t ∈ {1,2,3}. The placement of the last chips for
these cases are shown in Figure 32. The dashed line indicates the rightmost edge
of the last cluster.

To summarize, we have obtained the following:

Theorem 6.2. Given a graph G, which is homeomorphic to the genus g ladder
graph, there exists a divisor D on G of degree �(g + 3)/2� and rank at least 1.
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Figure 33 Kite insertion at v0

Figure 34 Placing the additional chip on the kite

6.3. Inserting Kites to Graphs

In this section, we use our knowledge of graphs and their divisors for genera up
to 5 to produce graphs of arbitrary high genus for which the gonality conjecture
holds. We do so by inserting a kite graph on appropriately chosen vertices as
depicted in Figure 33.

Proposition 6.2. Let G be a genus g graph, and let D ∈ Div+(G) be of degree at
most �(g + 3)/2�. Suppose Dv and Gv , defined as in Proposition 4.1, are among
the ones in Figure 17, such that no two configurations from the second row share
a common vertex. Then, for any bivalent v0 ∈ V (G) with Dv0 belonging to the
first row of the same figure, we can insert a kite at v0, and the newly obtained
genus (g + 2) graph (as well as any of its contractions) admits a divisor of degree
at most �(g + 5)/2� and rank at least 1.

Proof. Inserting a kite at a vertex v0 increases the genus by 2, so it is enough to
place one additional chip on a vertex in the kite and show that the newly obtained
divisor is of rank at least 1. We place the last chip as shown in Figure 34, assuming
that a ≥ b.

The most delicate part is calculating the lengths a and b since there might
be some trivalent vertices through which the chips pass before reaching the kite
endpoints at v or w. Since these distances should be independent of the size of
the kite inserted, we compute them as follows. Starting with G and D as before,
we insert a kite at v0 ∈ V (G)\ supp(D) with all edge lengths longer than the sum
of the lengths of the elongated edges of G. We then place two chips, one at each
vertex v and w, and run Dhar’s burning algorithm for the divisor D − (u). Here
D is viewed as a divisor on the new graph, and u is any of the trivalent vertices
of the kite, different from v and w (see Figure 35). Record at which run of the
algorithm a second chip reaches v and w, respectively. These numbers are a and
b. Both numbers are well-defined by our choice of edge lengths of the kite.
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Figure 35 Chip configurations for the insertion of a kite

Figure 36 The bipartite K3,3 with two kites inserted

The newly obtained divisor has rank at least 1. Indeed, G\Gv0 remains unaf-
fected by the kite insertion and the new divisor on G′, the graph obtained from
Gv0 by inserting kite at v0, is also of rank at least 1 as can be seen by running
Dhar’s burning algorithm. The edge contractions are dealt with as in the proof of
Proposition 5.1. �

Remark 6.1. The same holds for any v0 with Dv0 belonging to the second row
as long as v0 lies on one of the topological edges within the triangle. In this case,
however, we are not always guaranteed the existence of divisors with prescribed
rank and degree for its contractions. The ideas in the proof of this proposition can
be modified to allow kite insertions in other families of graphs. The authors did
not pursue these ideas.

For instance, as a consequence of Proposition 6.2, we can insert two kites to the
bipartite graph K3,3 and obtain a graph of genus 8 that, for any edge lengths,
admits a degree 5 divisor of rank at least 1. See Figure 36.

Kite graphs are not the only ones we can insert. With similar arguments, we
obtain the following:

Proposition 6.3. Let g be an even integer. Let G be a genus g graph, and let
D ∈ Div+(G) be of degree at most �(g+3)/2�. Suppose Dv and Gv , defined as in
Proposition 4.1, are among the ones in Figure 17, such that no two configurations
from the second row share a common vertex. Then, for any bivalent v0 ∈ V (G)

with Dv0 belonging to the first row of the same figure, we can insert a cycle at v0,
and the newly obtained genus (g + 1) graph (as well as any of its contractions)
admits a divisor of degree at most �(g + 4)/2� and rank at least 1.

Proof. Note that �(g + 4)/2� = �(g + 3)/2� + 1 for even g. Thus we have one
additional chip to place. We place it on one of the endpoints of the inserted cycle
and obtain a divisor with prescribed degree and rank. The details are omitted. �
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