
Michigan Math. J. 67 (2018), 133–158

Symmetric Automorphisms of Free Groups,
BNSR-Invariants, and Finiteness Properties

Matthew C. B. Zaremsky

Abstract. The BNSR-invariants of a group G are a sequence
�1(G) ⊇ �2(G) ⊇ · · · of geometric invariants that reveal impor-
tant information about finiteness properties of certain subgroups
of G. We consider the symmetric automorphism group �Autn and
pure symmetric automorphism group P�Autn of the free group Fn

and inspect their BNSR-invariants. We prove that for n ≥ 2, all
the “positive” and “negative” character classes of P�Autn lie in
�n−2(P�Autn) \ �n−1(P�Autn). We use this to prove that for
n ≥ 2, �n−2(�Autn) equals the full character sphere S0 of �Autn
but �n−1(�Autn) is empty, so in particular the commutator subgroup
�Aut′n is of type Fn−2 but not Fn−1. Our techniques involve applying
Morse theory to the complex of symmetric marked cactus graphs.

Introduction

The Bieri–Neumann–Strebel–Renz (BNSR) invariants �m(G) of a group G are
a sequence of geometric invariants �1(G) ⊇ �2(G) ⊇ · · · that encode a large
amount of information about the subgroups of G containing the commutator sub-
group G′. For example, if G is of type Fn and m ≤ n, then �m(G) reveals pre-
cisely which such subgroups are of type Fm. Recall that a group is of type Fn if it
admits a classifying space with compact n-skeleton; these finiteness properties are
an important class of quasi-isometry invariants of groups. The BNSR-invariants
are in general very difficult to compute; a complete description is known for the
class of right-angled Artin groups [MMV98; BG99], but not many other substan-
tial families of groups. A complete picture also exists for the generalized Thomp-
son groups Fn,∞ [BGK10; Koc12; Zar17], and the first invariant �1 is also known
for some additional classes of groups, for example, one-relator groups [Bro87],
pure braid groups [KMM15], and pure symmetric automorphism groups of right-
angled Artin groups [OK00; KP14], among others.

In this paper, we focus on the groups �Autn and P�Autn of symmetric and
pure symmetric automorphisms of the free group Fn. An automorphism of Fn is
symmetric if it takes each basis element to a conjugate of a basis element, and
pure symmetric if it takes each basis element to a conjugate of itself. These are
also known as the (pure) loop braid groups and are the groups of motions of n

unknotted unlinked oriented loops in 3-space; an element describes these loops
moving around and through each other, ending up back where they started, either
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individually in the pure case or just as a set in the nonpure case (but preserving
orientation in both cases). Other names for these and closely related groups in-
clude welded braid groups, permutation-conjugacy automorphism groups, braid-
permutation groups, and more. See [Dam16] for a discussion of the many guises
of these groups. Some topological properties known for P�Autn include that it
has cohomological dimension n − 1 [Col89], it is a duality group [BMMM01],
and its cohomology ring has been computed [JMM06]. Topological properties
of groups of (pure) symmetric automorphisms of more general free products of
groups have also been studied, for example, in [Gri13].

The first invariant �1(P�Autn) was fully computed by Orlandi-Korner
[OK00] (she denotes the group by P�n). Koban and Piggott subsequently com-
puted �1(G) for G the group of pure symmetric automorphisms of any right-
angled Artin group [KP14]. One reason that the question of BNSR-invariants is
interesting for P�Autn is that P�Autn is similar to a right-angled Artin group,
for instance, it admits a presentation in which the relations are all commutators
(see Section 2), but for n ≥ 3, it is not a right-angled Artin group [KP14], and it is
not known whether it is a CAT(0) group [BMMM01, Question 6.4]. The BNSR-
invariants are completely known for right-angled Artin groups, but the Morse
theoretic proof of this fact in [BG99] made essential use of the CAT(0) geometry
of the relevant complexes.

Our approach here is to use Morse theory applied to the complex of symmetric
marked cactus graphs �Kn to prove the following main results.

Theorem A. For n ≥ 2, if χ is a positive or negative1 character of P�Autn, then
[χ] ∈ �n−2(P�Autn) \ �n−1(P�Autn).

Theorem B. For n ≥ 2, we have �n−2(�Autn) = S(�Autn) = S0 and
�n−1(�Autn) = ∅. In particular, the commutator subgroup �Aut′n is of type
Fn−2 but not Fn−1.

For example, this shows that �Aut′n is finitely generated if and only if n ≥ 3,
and finitely presentable if and only if n ≥ 4. It appears that these are already new
results (except for the fact that �Aut′2 is not finitely generated, which is easy to see
since �Aut2 ∼= F2 � S2). Theorem B also provides what could be viewed as the
first examples for m ≥ 2 of “naturally occurring” groups G of type F∞ such that
�m−1(G) = S(G) but �m(G) = ∅ and of groups of type F∞ whose commutator
subgroups have arbitrary finiteness properties. (We can also construct more ad
hoc examples: we have noticed that taking a semidirect product of Fn

2 with the
Coxeter group of type Bn = Cn also produces a group with these properties.) As
a remark, contrasting the loop braid group �Autn with the classical braid group
Bn, it is easy to see that �m(Bn) = S(Bn) = S0 for all m and n, and B ′

n is of type
F∞ for all n.

For the case n = 3, we can actually get a full computation of �m(P�Aut3);
Orlandi-Korner already computed �1(P�Aut3) (it is dense in S(P�Aut3); see

1For the definitions of “positive” and “negative”, consult Definition 2.4.
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Citation 2.2), and we prove that �2(P�Aut3) = ∅ (see Theorem 4.23). We
tentatively conjecture that �n−2(P�Autn) is always dense in S(P�Autn) and
�n−1(P�Autn) is always empty, but for n ≥ 4, it seems that this cannot be proved
using our techniques, as discussed in Remark 4.24.

As a remark, there is a result of Pettet [Pet10] involving finiteness properties
of some other normal subgroups of P�Autn. Namely, she found that the kernel of
the natural projection P�Autn → P�Autn−1 is finitely generated but not finitely
presentable when n ≥ 3. This is in contrast to the pure braid situation, where the
kernel of the “forget a strand” map PBn → PBn−1 is of type F∞ (in fact, it is the
free group Fn−1).

This paper is organized as follows. In Section 1 we recall the background on
BNSR-invariants and Morse theory. In Section 2 we discuss the groups of interest,
and in Section 3 we discuss the complex �Kn. We prove Theorem A in Section 4,
and with Theorem A in hand we quickly prove Theorem B in Section 5.

1. BNSR-Invariants and Morse Theory

In this rather technical section we recall the definition of the BNSR-invariants and
set up the Morse theoretic approach that we will use. The results in Section 1.3
are general enough that we expect they should be useful in the future to compute
BNSR-invariants of other interesting groups.

1.1. BNSR-Invariants

A CW-complex Z is called a classifying space for G, or K(G,1), if π1(Z) ∼= G

and πk(Z) = 0 for all k �= 1. We say that G is of type Fn if it admits a K(G,1)

with compact n-skeleton. For example, G is of type F1 if and only if it is finitely
generated and of type F2 if and only if it is finitely presentable. If G is of type Fn

for all n, then we say it is of type F∞. If G acts properly and cocompactly on an
(n − 1)-connected CW-complex, then G is of type Fn.

Definition 1.1 (BNSR-invariants). Let G be a group acting properly and co-
compactly on an (n − 1)-connected CW-complex Y (so G is of type Fn). Let
χ : G → R be a character of G, that is, a homomorphism to R. There exists
a map hχ : Y → R, which we will call a character height function, such that
hχ(g.y) = χ(g) + hχ(y) for all g ∈ G and y ∈ Y . For t ∈ R, let Yχ≥t be the
full subcomplex of Y supported on those 0-cells y with hχ(y) ≥ t . Let [χ] be
the equivalence class of χ under scaling by positive real numbers. The charac-
ter sphere S(G) is the set of nontrivial character classes [χ]. For m ≤ n, the mth
BNSR-invariant �m(G) is defined to be

�m(G) := {[χ] ∈ S(G) | (Yχ≥t )t∈R is essentially (m − 1)-connected}.
Recall that (Yχ≥t )t∈R is said to be essentially (m − 1)-connected if for all t ∈ R,
there exists −∞ < s ≤ t such that the inclusion of Yχ≥t into Yχ≥s induces the
trivial map in πk for all k ≤ m − 1.
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It turns out �m(G) is well defined up to the choice of Y and hχ (see, for
example, [Bux04, Def. 8.1]). As a remark, the definition there used the filtration
by sets h−1

χ ([t,∞))t∈R, but thanks to cocompactness, this filtration is essentially
(m − 1)-connected if and only if our filtration (Yχ≥t )t∈R is.

One important application of BNSR-invariants is the following:

Citation 1.2 ([BR88, Thm. B and Rem. 6.5]). Let G be a group of type Fm. Let
G′ ≤ H ≤ G. Then H is of type Fm if and only if for every nontrivial character χ

of G such that χ(H) = 0, we have [χ] ∈ �m(G).

For example, if H = ker(χ) for χ a discrete character of G, that is, one with
image Z, then H is of type Fm if and only if [±χ] ∈ �m(G). Also note that G′
itself is of type Fm if and only if �m(G) = S(G).

Other important classical properties of the �m(G) are that they are all open
subsets of S(G) and that they are invariant under the natural action of Aut(G) on
S(G) [BNS87; BR88].

1.2. Morse Theory

Bestvina–Brady Morse theory can be a useful tool for computing BNSR-
invariants. In this section we give the relevant definitions and results from Morse
theory in the current level of generality needed.

Let Y be an affine cell complex (see [BB97, Def. 2.1]). The star stY v of a
0-cell v in Y is the subcomplex of Y consisting of cells that are faces of cells
containing v. The link lkY v of v is the simplicial complex stY v of directions out
of v into stY v. We will suppress the subscript Y from the notation when it is clear
from context. If v and w are distinct 0-cells sharing a 1-cell, then we will call v

and w adjacent and write v adjw.
Bestvina and Brady [BB97] defined a Morse function on an affine cell complex

Y to be a map Y → R that is affine on cells, takes discretely many values on
the 0-cells, and is nonconstant on 1-cells. When using Morse theory to compute
BNSR-invariants though, these last two conditions are often too restrictive. The
definition of a Morse function that will prove useful for our purposes is as follows.

Definition 1.3 (Morse function). Let Y be an affine cell complex, and let h : Y →
R and f : Y → R be functions that are affine on cells. We call (h,f ) : Y → R×R
a Morse function if the set {h(v) − h(w) | v,w ∈ Y (0), v adjw} does not have 0 as
a limit point (we will call it discrete near 0), the set {f (v) | v ∈ Y (0)} is finite,2

and if v,w ∈ Y (0) with v adjw and h(v) = h(w), then f (v) �= f (w).

For example, if h takes discrete values on 0-cells and distinct values on adjacent
0-cells, then (taking f to be constant and ignoring it) we recover Bestvina and
Brady’s notion of a “Morse function”.

Using the usual order on R and the lexicographic order on R × R, it makes
sense to compare (h,f ) values of 0-cells. On a given cell c, since h and f are

2In what follows it will be clear that “finite” could be replaced with “well ordered”, but for our present
purposes, we will just assume that it is finite.
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affine on c, it is clear that (h,f ) achieves its maximum and minimum values at
unique faces of c, and the last assumption in Definition 1.3 ensures that these will
be 0-cells.

Definition 1.4 (Ascending star/link). Given a Morse function (h,f ) on an affine
cell complex Y , define the ascending star st↑ v of a 0-cell v in Y to be the sub-
complex of stv consisting of all faces of those cells c for which the unique 0-face
of c where (h,f ) achieves its minimum is v. Define the ascending link lk↑ v to
be the subcomplex of lkv consisting of directions into st↑ v. Note that lk↑ v is a
full subcomplex of lkv, since h and f are affine on cells.

For Y an affine cell complex, (h,f ) a Morse function on Y , and t ∈R, denote by
Yh≥t the subcomplex of Y supported on those 0-cells v with h(v) ≥ t .

Lemma 1.5 (Morse Lemma). Let Y be an affine cell complex, and let (h,f ) : Y →
R × R be a Morse function. Let t ∈ R and s ∈ [−∞, t). If for all 0-cells v with
h(v) ∈ [s, t), the ascending link lk↑ v is (m − 1)-connected, then the inclusion
Yh≥t → Yh≥s induces an isomorphism in πk for k ≤ m − 1 and an epimorphism
in πm.

Proof. The essential parts of the proof are the same as in [BB97]. Choose ε > 0
such that for any v adjw, |h(v) − h(w)| /∈ (0, ε) (this is possible since the set of
values h(v) − h(w) for v adjw is discrete near 0). We can assume by induction
(and by the compactness of spheres if s = −∞) that t − s ≤ ε. In particular, if
adjacent 0-cells v and w both lie in Yh≥s \ Yh≥t , then h(v) = h(w) and f (v) �=
f (w). To build up from Yh≥t to Yh≥s , we need to glue in the 0-cells of Yh≥s \Yh≥t

along their relative links in some order such that upon gluing in v, all of lk↑ v

are already present, but nothing else in lkv, so the relative link is precisely the
ascending link. To do this, we put any order we like on each set Fi := {v ∈ Y

(0)
h≥s \

Y
(0)
h≥t | f (v) = i} for i ∈ f (Y (0)) and then extend these to an order on Y

(0)
h≥s \ Y

(0)
h≥t

by declaring that everything in Fi comes after everything in Fj whenever i < j .
Now when we glue in v, for w ∈ lkv, we have w ∈ lk↑ v if and only if either
h(w) > h(v), in which case h(w) ≥ t and w is already present, or h(w) = h(v)

and f (w) > f (v), in which case w ∈ Ff (w) is also already present. Since the
relevant ascending links are (m − 1)-connected by assumption, the result follows
from the Seifert–van Kampen, Mayer–Vietoris, and Hurewicz theorems. �

As a corollary to the proof, we have the following:

Corollary 1.6. With the same setup as the Morse lemma, if additionally for
all 0-cells v with s ≤ h(v) < t , we have H̃m+1(lk↑ v) = 0, then the inclusion
Yh≥t → Yh≥s induces an injection in H̃m+1.

Proof. In the proof of the Morse lemma, we saw that Yh≥s is obtained from Yh≥t

by coning off the ascending links of 0-cells v with s ≤ h(v) < t , so this is imme-
diate from the Mayer–Vietoris sequence. �
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For example, if Y is (m + 1)-dimensional, and so the links are at most m-
dimensional, then this additional condition will always be satisfied.

When dealing with BNSR-invariants, the following is particularly useful.

Corollary 1.7. Let Y be an (m−1)-connected affine cell complex with a Morse
function (h,f ). Suppose there exists q such that, for every 0-cell v of Y with
h(v) < q , lk↑ v is (m − 1)-connected. Then the filtration (Yh≥t )t∈R is essentially
(m − 1)-connected. Now assume additionally that H̃m+1(Y ) = 0 and for every
0-cell v of Y with h(v) < q , H̃m+1(lk↑ v) = 0, and that for all p, there exists a
0-cell v with h(v) < p such that H̃m(lk↑ v) �= 0. Then the filtration (Yh≥t )t∈R is
not essentially m-connected.

Proof. By the Morse lemma, for any r ≤ q , the inclusion Yh≥r → Y = Yh≥−∞
induces an isomorphism in πk for k ≤ m − 1. Since Y is (m − 1)-connected, so is
Yh≥r . Now for any t ∈ R, we just need to choose s = min{q, t}, and we get that
the inclusion Yh≥t → Yh≥s induces the trivial map in πk for k ≤ m − 1, simply
because Yh≥s is (m − 1)-connected.

For the second claim, suppose that (Yh≥t )t∈R is essentially m-connected. Say
t < q , and choose s ≤ t such that the inclusion Yh≥t → Yh≥s induces the trivial
map in πk for k ≤ m. Also, since t < q , this inclusion induces a surjection in these
πk by the Morse lemma, so in fact Yh≥s itself is m-connected, as are all Yh≥r for
r ≤ s (for the same reason). Now choose v such that h(v) < s and H̃m(lk↑ v) �= 0.
Since H̃m(Yh≥r ) = 0 for all r ≤ s, Mayer–Vietoris and Corollary 1.6 say that
H̃m+1(Yh≥q) �= 0 for any q ≤ h(v). But this includes q = −∞, which contradicts
our assumption that H̃m+1(Y ) = 0. �

1.3. BNSR-Invariants Via Morse Theory

We now return to the situation in Definition 1.1, so Y is an (n−1)-connected CW-
complex on which G acts properly and cocompactly (and, we assume, cellularly),
χ is a character of G, and hχ is a character height function on Y . The goal of this
subsection is to establish a Morse function on Y using hχ .

Let us make two additional assumptions. First, assume that Y is simplicial (this
is just to ensure that any function on Y (0) can be extended to a function on Y that is
affine on cells). Second, assume that no adjacent 0-simplicies in Y share a G-orbit
(if this is not the case, it can be achieved by subdividing). Let f : Y (0)/G → R be
any function that takes distinct values on adjacent 0-cells, where the cell structure
on Y/G is induced from Y . (Just to give some examples, we could construct f

by randomly assigning distinct values to the 0-cells in Y/G, or we could take the
barycentric subdivision and have f read the dimension.) Define f : Y (0) → R via
f (v) := f (G.v) and extend f to a map (also called f ) on all of Y by extending
affinely to each simplex.

Lemma 1.8. With Y , hχ , and f as before, (hχ ,f ) : Y →R×R is a Morse func-
tion.
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Proof. The functions hχ and f are affine on cells by construction. The set {f (v) |
v ∈ Y (0)} equals the set {f (G.v) | G.v ∈ Y (0)/G}, which is finite since Y/G is
compact. For any g ∈ G, we have hχ(g.v) − hχ(g.w) = χ(g) + hχ(v) − χ(g) −
hχ(w) = hχ(v)−hχ(w), so by the compactness of Y/G the set {hχ(v)−hχ(w) |
v,w ∈ Y (0), v adjw} is finite (and hence discrete near 0). Finally, since f takes
distinct values on adjacent 0-cells in Y/G, and no adjacent 0-cells in Y share an
orbit, we see that f takes distinct values on adjacent 0-cells in Y . �

In particular, Corollary 1.7 can now potentially be used to prove that (Yχ≥t )t∈R is
or is not essentially (m − 1)-connected and hence that [χ] is or is not in �m(G).

Although any f constructed as before will make (hχ ,f ) a Morse function,
this does not mean that every f may be useful, for instance, if the ascending
links are not as highly connected as we would hope. In fact, it seems likely that
situations exist where every choice of f yields a “useless” Morse function. Hence,
in practice we hope to have a concrete space Y with a natural choice of f that
produces nice ascending links.

2. (Pure) Symmetric Automorphism Groups

We now turn to our groups of interest.
Let Fn be the free group with basis S := {x1, . . . , xn}. An automorphism α ∈

Aut(Fn) is called symmetric if for each i ∈ [n] := {1, . . . , n}, (xi)α is conjugate
to xj for some j ; if each (xi)α is conjugate to xi , then we call α pure symmetric.3

Note that in some texts, “symmetric” allows for (xi)α to be conjugate to some
x−1
j , but we do not allow that here. Denote by �Autn the group of all symmet-

ric automorphisms of Fn and by P�Autn the group of pure symmetric automor-
phisms. The abelianization Fn → Zn induces a surjection Aut(Fn) → GLn(Z),
and the restriction of this map to �Autn yields a splitting

�Autn ∼= P�Autn �Sn.

An equivalent description of �Autn (and P�Autn) is as the (pure) loop braid
group, that is, the group of (pure) motions of n unknotted, unlinked oriented cir-
cles in 3-space. The subgroup of �Autn consisting of those automorphisms taking
x1 · · ·xn to itself is isomorphic to the classical braid group Bn, and the intersection
of this with P�Autn is the classical pure braid group PBn [Sav96]. Other names
for �Autn and closely related groups include welded braid groups, permutation-
conjugacy automorphism groups, braid-permutation groups, and more. Details on
the various viewpoints for these groups can be found, for example, in [Dam16].

McCool [McC86] found a (finite) presentation for P�Autn. The generators are
the automorphisms αi,j (i �= j ) given by (xi)αi,j = x−1

j xixj and (xk)αi,j = xk

for k �= i, and the defining relations are [αi,j , αk,�] = 1, [αi,j , αk,j ] = 1, and
[αi,jαk,j , αi,k] = 1 for distinct i, j , k, �. (In particular, note that this implies

3Automorphisms will be acting on the right here, so we will reflect this in the notation.
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P�Aut2 ∼= F2.) It will also be convenient later to consider automorphisms αI,j

defined as

αI,j :=
∏
i∈I

αi,j

for I ⊆ [n]\{j}, where the product can be taken in any order thanks to the relation
[αi,j , αk,j ] = 1. Following Collins [Col89], we call these symmetric Whitehead
automorphisms.

Since the defining relations in McCool’s presentation are commutators, we im-
mediately see that P�Autn has abelianization Zn(n−1) with basis {αi,j | i �= j}.
Since Sn acts transitively on the αi,j , we also quickly compute that �Autn
abelianizes to Z × (Z/2Z) for all n ≥ 2. A natural basis for the vector space
Hom(P�Autn,R) ∼= Rn(n−1) is the dual of {αi,j | i �= j}. This dual basis has a
nice description that we will now work up to. For α ∈ P�Autn, let wi,α ∈ Fn be
the elements such that (xi)α = x

wi,α

i . For each i �= j , define χi,j : P�Autn → Z
by sending α to ϕj (wi,α), where ϕj : Fn → Z are the projections sending xj to 1
and the other generators to 0.

Lemma 2.1. Each χi,j is a homomorphism.

Proof. Let α,β ∈ P�Autn and i ∈ [n]. Write wi,α = x
ε1
k1

· · ·xεr

kr
for k1, . . . , kr ∈

[n] and ε1, . . . , εr ∈ {±1}, so we have

(xi)α ◦ β = (x
−εr

kr
)β · · · (x−ε1

k1
)βw−1

i,β xiwi,β(x
ε1
k1

)β · · · (xεr

kr
)β.

In particular,

wi,α◦β = wi,β(x
ε1
k1

)β · · · (xεr

kr
)β.

Note that ϕj ((x
ε1
k1

)β · · · (xεr

kr
)β) = ϕj (x

ε1
k1

· · ·xεr

kr
), so ϕj (wi,α◦β) = ϕj (wi,α) +

ϕj (wi,β), as desired. �

Clearly, χi,j (αk,�) = δ(i,j),(k,�) (the Kronecker delta), so {χi,j | i �= j} is the basis
of Hom(P�Autn,R) dual to {αi,j | i �= j}. Since Hom(P�Autn,R) ∼= Rn(n−1),
we know that the character sphere S(P�Autn) is S(P�Autn) = Sn(n−1)−1.

For the group �Autn, Hom(�Autn,R) ∼= R for all n, so to find a basis, we
just need a nontrivial character. We know that �Autn = P�Autn �Sn, so the most
natural candidate is the character reading 1 on each αi,j and 0 on Sn. Note that
S(�Autn) = S0 for all n ≥ 2.

Writing an arbitrary character of P�Autn as χ = ∑
i �=j ai,jχi,j , we recall

Orlandi-Korner’s computation of �1(P�Autn):

Citation 2.2 ([OK00]). We have [χ] ∈ �1(P�Autn) unless either

(i) there exist distinct i and j such that ap,q = 0 whenever {p,q}� {i, j}, or
(ii) there exist distinct i, j , and k such that ap,q = 0 whenever {p,q} � {i, j, k}

and moreover ap,q = −ap′,q whenever {p,p′, q} = {i, j, k}.
In these cases [χ] /∈ �1(P�Autn).



Symmetric Automorphisms, BNSR-Invariants, and Finiteness Properties 141

For example, �1(P�Aut2) is empty (which we know anyway since P�Aut2 ∼=
F2), and �1(P�Aut3) is a 5-sphere with three 1-spheres and one 2-sphere re-
moved, so in particular �1(P�Aut3) is dense in S(P�Aut3).

The groups �Autn and P�Autn are of type F∞ (this can be seen, for ex-
ample, after work of Collins [Col89]),4 so we can ask what �m(�Autn) and
�m(P�Autn) are for any m and n. One thing we know, which we will use later,
is that the invariants are all closed under taking antipodes:

Observation 2.3. If [χ] ∈ �m(G) for G = �Autn or P�Autn, then [−χ] ∈
�m(G).

Proof. The automorphism of Fn taking each xi to x−1
i induces an automorphism

of �Autn and P�Autn under which each character χ maps to −χ . The result now
follows since �m(G) is invariant under Aut(G). �
We can now state our main results.

Definition 2.4 (Positive/negative character). Call χ = ∑
i �=j ai,jχi,j positive if

ai,j > 0 for all i, j , and negative if ai,j < 0 for all i, j .

Theorem A. For n ≥ 2, if χ is a positive or negative character of P�Autn, then
[χ] ∈ �n−2(P�Autn) \ �n−1(P�Autn).

As a remark, thanks to Observation 2.3, the negative character classes lie in a
given �m(P�Autn) if and only if the positive ones do, so we only need to prove
Theorem A for positive characters.

Theorem B. For n ≥ 2, we have �n−2(�Autn) = S(�Autn) = S0 and
�n−1(�Autn) = ∅. In particular, the commutator subgroup �Aut′n is of type
Fn−2 but not Fn−1.

The commutator subgroups �Aut′n and P�Aut′n are easy to describe; see, for
example, Lemmas 4 and 5 of [Sav96]. The commutator subgroup P�Aut′n con-
sists of the automorphisms taking each xi to w−1

i xiwi for some wi ∈ F ′
n. In other

words, P�Aut′n is just the intersection of all the ker(χi,j ). Note that, for n ≥ 2,
the commutator subgroup P�Aut′n is not finitely generated, since it surjects onto
P�Aut′2 ∼= F ′

2. The commutator subgroup �Aut′n consists of the automorphisms
taking xi to w−1

i xπ(i)wi for some even permutation π ∈ Sn (i.e., π ∈ An) and
satisfying ϕ(w1 · · ·wn) = 0 where ϕ : Fn → Z is the map taking each basis ele-
ment to 1. As a remark, the abelianization map �Autn → Z splits, for instance,
by sending Z to 〈α1,2〉, so we have �Autn = �Aut′n �Z.

In Section 5 we will be able to deduce Theorem B from Theorem A quickly by
using the next lemma. If we write BBn for the kernel of the character

∑
i �=j χi,j

of P�Autn taking each αi,j to 1, and so BBn is the “Bestvina–Brady-esque”
subgroup of P�Autn, then we have the following:

4In fact, P�Autn is even of “type F”, meaning that it has a compact classifying space, but we will not
need this fact.
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Lemma 2.5. �Aut′n = BBn �An.

Proof. When we restrict the map �Autn → Sn to �Aut′n, by the previous de-
scription we know that the image is An. This map splits, and the kernel of this
restricted map is the kernel of the original map, which is P�Autn intersected with
�Aut′n. The description tells us that this consists of all pure symmetric automor-
phisms α such that ϕ(w1,α · · ·wn,α) = 0, and from the definition of the χi,j it is
clear that ϕ(w1,α · · ·wn,α) = ∑

i �=j χi,j (α), so we are done. �

In particular, BBn have finite indexes in �Aut′n, so they have the same finiteness
properties.

To prove Theorems A and B, we need a complex on which the groups act
nicely, and to understand ascending links. We discuss the complex in Section 3
and the ascending links in Section 4.

3. The Complex of Symmetric Marked Cactus Graphs

Collins [Col89] found a contractible simplicial complex �Kn on which the
“Outer” versions of �Autn and P�Autn act properly and cocompactly, described
by symmetric marked cactus graphs. We will use the obvious analog of this com-
plex for our groups. Thanks to the action being proper and cocompact and the
complex being contractible, it can be used to “reveal” the BNSR-invariants of the
groups, as per Definition 1.1. In this section we recall the construction of �Kn

and set up the character height functions that will then be used in the following
sections to prove our main results.

Terminology. By a graph we will always mean a connected finite directed
graph with one vertex specified as the basepoint such that the basepoint has degree
at least two and all other vertices have degree at least three. We will use the usual
terminology of initial and terminal endpoints of an edge, paths, cycles, reduced
paths, simple cycles, subtrees, subforests, and spanning trees.

Our graphs will always be understood to have rank n, unless otherwise speci-
fied.

Let Rn be the n-petaled rose, that is, the graph with one vertex ∗ (which is nec-
essarily the basepoint) and n edges. Then π1(Rn) ∼= Fn, and we identify Aut(Fn)

with the group of basepoint-preserving self-homotopy equivalences of Rn modulo
homotopy.

Definition 3.1 (Cactus graph, cladode, base, above, projection, before/after, be-
tween). A graph � is called a cactus graph if every edge is contained in precisely
one simple cycle. We will refer to the simple cycles, viewed as subgraphs, as
cladodes. For example, the petals of the rose Rn are precisely its cladodes. We
will assume that the orientations of the edges are such that each cladode is a di-
rected cycle, that is, no distinct edges of a cladode share an origin (or terminus).
If C is a cladode of a cactus graph � with basepoint p, then there is a unique
vertex bC of C closest to p, which we call the base of C. Note that every vertex
is the base of at least one cladode. We say that a cladode C is above a cladode
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Figure 1 A cactus graph with its cladodes numbered for reference.
To illustrate the definitions in Definition 3.1 with some examples, we
note: cladodes 3 and 4 have the same base; cladode 7 is above cladodes
2 and 1 but no others; the projection of cladode 8 onto cladode 1 is the
vertex that is the base of cladode 3; and the base of cladode 3 is after
the base of cladode 2 and before the base of cladode 12 and hence is
between them

D if every path from bC to p must pass through an edge of D. If C is above D,
then there is a unique vertex projD(C) of D closest to bC , which we will call the
projection of C onto D. Given two distinct points x and y in a common cladode
C with x, y �= bC , there is a unique reduced path from x to y in C \ {bC}; if this
path follows the orientation of C, then we say that x is before y, and otherwise we
say that x is after y. Within C, it also makes sense to say that an edge is before
or after another edge, or that an edge is before or after a point not in the interior
of that edge. We say a point or edge is between two points or edges if it is before
one and after the other.

See Figure 1 for an example illustrating the many definitions in Definition 3.1.
Given a graph � and a subforest F , we will write �/F for the graph obtained

by quotienting each connected component of F to a point. The quotient map
d : � → �/F is called a forest collapse or forest blow-down. It is a homotopy
equivalence, and a homotopy inverse of a forest blow-down is called a forest blow-
up, denoted u : �/F → �.

Definition 3.2 (Marking). A marking of a basepointed graph � is a homotopy
equivalence ρ : Rn → � from the n-petaled rose to �, taking basepoint to base-
point.

A marking of the rose itself represents an automorphism of Fn, thanks to our
identification of Aut(Fn) with the group of basepoint-preserving self-homotopy
equivalences of Rn modulo homotopy. If a marking α : Rn → Rn even represents
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a (pure) symmetric automorphism, then it makes sense to call the marking itself
(pure) symmetric. More generally, we have the following:

Definition 3.3 ((Pure) symmetric marking). A marking ρ : Rn → � is called
(pure) symmetric if there exists a forest collapse d : � → Rn such that d ◦
ρ : Rn → Rn is (pure) symmetric.

Definition 3.4 (Symmetric marked cactus graph). A symmetric marked cactus
graph is a triple (�,p,ρ), where � is a cactus graph with basepoint p, and ρ is
a symmetric marking. Two such triples (�,p,ρ) and (�′,p′, ρ′) are considered
equivalent if there is a homeomorphism φ : � → �′ taking p to p′ such that φ ◦
ρ � ρ′. We will denote equivalence classes by [�,p,ρ] and will usually just refer
to [�,p,ρ] as a symmetric marked cactus graph.

We note that under this equivalence relation, every symmetric marked cactus
graph is equivalent to one where the marking is even pure symmetric. This is
just because the markings of the rose that permute the petals are all equivalent to
the trivial marking. Moreover, these are the only markings equivalent to the trivial
marking, so the map α �→ [Rn,∗, α] is in fact a bijection between P�Autn and
the set of symmetric marked roses.

Definition 3.5 (Partial order). We define a partial order ≤ on the set of symmetric
marked cactus graphs as follows. Let [�,p,ρ] be a symmetric marked cactus
graph let, and F be a subforest of � with d : � → �/F the forest collapse. Let
pF := d(p), and let ρF := d ◦ ρ. We declare that [�,p,ρ] ≤ [�/F,pF ,ρF ]. It is
easy to check that the relation ≤ is well defined up to equivalence of triples and
that it is a partial order.

Definition 3.6 (Complex of symmetric marked cactus graphs). The complex of
symmetric marked cactus graphs �Kn is the geometric realization of the partially
ordered set of symmetric marked cactus graphs.

Note that �Autn and P�Autn act (on the right) on �K
(0)
n via [�,p,ρ].α :=

[�,p,ρ ◦ α], and this extends to an action on �Kn since for any forest collapse
d : � → �/F , we have (d ◦ ρ) ◦ α = d ◦ (ρ ◦ α), i.e., ρF ◦ α = (ρ ◦ α)F .

Citation 3.7 ([Col89, Prop. 3.5, Thm. 4.7]). The complex �Kn is contractible
and (n − 1)-dimensional, and the actions of �Autn and P�Autn on �Kn are
proper and cocompact.

Technically, Collins considers the “Outer” version where we do not keep track of
basepoints, but it is straightforward to get these results also in our basepointed
“Auter” version.

In particular, we have the requisite setup of Definition 1.1.

Remark 3.8. We can similarly consider the complex of all marked basepointed
graphs and get the well-studied spine of Auter space, which is contractible and on
which Aut(Fn) acts properly and cocompactly (see [CV86; HV98]). This is not
relevant for our present purposes though, since the abelianization of Aut(Fn) is
finite, and hence its character sphere is empty.
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The next step is to take a character χ of P�Autn and induce a character height
function hχ on �Kn. First, recall that we equivocate between symmetric mark-
ings of roses and elements of P�Autn. Hence for 0-simplices in �Kn of the
form [Rn,∗, α], we can just define hχ([Rn,∗, α]) := χ(α). In general, we define
hχ([�,p,ρ]) as follows.

Definition 3.9 (The character height function hχ ). Let [�,p,ρ] be a symmetric
marked cactus graph. Define hχ([�,p,ρ]) to be

hχ([�,p,ρ]) := max{χ(α) | [�,p,ρ] ∈ st([Rn,∗, α])}.
Extend this affinely to the simplices of �Kn to get hχ : �Kn → R.

Observation 3.10. The function hχ is a character height function.

Proof. We need to show that hχ([�,p,ρ].α) = hχ([�,p,ρ]) + χ(α) for all

[�,p,ρ] ∈ �K
(0)
n and α ∈ P�Autn. We know that [�,p,ρ].α = [�,p,ρ ◦ α],

and clearly [�,p,ρ] ∈ st[Rn,∗, β] if and only if [�,p,ρ ◦α] ∈ st[Rn,∗, β ◦α], so
this follows simply because χ(β ◦ α) = χ(β) + χ(α) for all α,β ∈ P�Autn. �

Now we need a “tiebreaker” function f as in Lemma 1.8. As discussed before and
after that lemma, any randomly chosen injective f : �K

(0)
n /G → R could serve

to induce a tiebreaker f : �Kn → R, but we want to be more clever than this.
In particular, our tiebreaker will yield tractable ascending links that will actually
reveal parts of the BNSR-invariants.

The 0-cells in the orbit space �Kn/P�Autn are homeomorphism classes of
cactus graphs, so “number of vertices” is a well-defined measurement on these
0-cells. Let f : �K

(0)
n /G → R be the function taking a graph to the negative of

its number of vertices. In particular, since we are using the negative, the rose has
the largest f value of all cactus graphs. Let f : �Kn → R be the extension of
f described before Lemma 1.8, so f ([�,p,ρ]) equals the negative number of
vertices of �, and consider the function (hχ ,f ) : �Kn → R × R. Since �Kn is
simplicial and adjacent 0-simplices in �Kn cannot share a P�Autn-orbit (for in-
stance, since they necessarily have different f values), the following is immediate
from Lemma 1.8.

Corollary 3.11. For any χ , (hχ ,f ) is a Morse function on �Kn.

It is clear from the definition of hχ that �K
hχ≥t
n is the union of the stars of those

[Rn,∗, α] with χ(α) ≥ t . It is a common phenomenon when working in Auter
space and its relatives to encounter important subcomplexes that are unions of
stars of marked roses. Another example arises in [BBM07], where Bestvina, Bux,
and Margalit use “homology markings” of roses to prove that, for n ≥ 3, the kernel
of Out(Fn) → GLn(Z) has cohomological dimension 2n − 4 and is not of type
F2n−4 (when n ≥ 4, it remains open whether or not this kernel is of type F2n−5).

We record here a useful technical lemma that gives information on how hχ can
differ between “nearby” symmetric marked roses. Let [�,p,ρ] be a symmetric
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marked cactus graph, and let T be a spanning tree in �. Since T is spanning,
collapsing T yields a symmetric marked rose. The marking ρ provides the clado-
des of � with a numbering from 1 to n; let Ci,ρ be the ith cladode. Since T is
a spanning tree, it meets Ci,ρ at all but one edge; write Ei,T for the single-edge
subforest of Ci,ρ that is not in T . In particular, intuitively, upon collapsing T ,
Ei,T becomes the ith petal of Rn. Note that T is completely determined by the set
{E1,T , . . . ,En,T }, namely it consists of all the edges of � not in any Ei,T .

Lemma 3.12 (Change of spanning tree). Let [�,p,ρ] be a symmetric marked
cactus graph, and let T be a spanning tree in �. Suppose U is another span-
ning tree such that Ej,T �= Ej,U but Ei,T = Ei,U for all i �= j (so U differs from
T only in the j th cladode). Suppose that Ej,T is before Ej,U (in the language
of Definition 3.1). Let ∅ �= I � [n] be the set of indices i such that the projec-
tion projCj,ρ

(Ci,ρ) lies between Ej,T and Ej,U (so in particular j /∈ I ). Then
for any χ = ∑

i �=j ai,jχi,j , we have hχ([�/T ,pT ,ρT ]) − hχ([�/U,pU ,ρU ]) =∑
i∈I ai,j .

Proof. By collapsing the subforest T ∩U we can assume without loss of general-
ity that T = Ej,T and U = Ej,U are each a single edge, so � has two vertices, the
basepoint p and another vertex q . The set I indexes those cladodes whose base is
q , so [n] \ I indexes those cladodes whose base is p. Up to the action of P�Autn,
we can assume that �/U is the trivially marked rose, so we need to show that
hχ([�/T ,pT ,ρT ]) = ∑

i∈I ai,j . In fact, the procedure of blowing up the trivial
rose to get � and then blowing down T is a Whitehead move (see [CV86, Sec-
tion 3.1]) that corresponds to the symmetric Whitehead automorphism αI,j . In
other words, viewed as an element of P�Autn, we have ρT = αI,j . This means
that hχ([�/T ,pT ,ρT ]) = χ(αI,j ) = ∑

i∈I ai,j , as desired. �

Ascending links: In the next section we will need to understand ascending links
lk↑ v with respect to (hχ ,f ) for v = [�,p,ρ] a 0-simplex in �Kn, so we discuss
this a bit here. Since lk↑ v is a full subcomplex of lkv, we just need to understand
which 0-simplices of lkv lie in lk↑ v. First, note that lkv is a join, of the down-link
lkd v, spanned by those 0-simplices of lkv obtained from forest blow-downs of �,
and its up-link lku v, spanned by those 0-simplices of lkv corresponding to forest
blow-ups of �. The ascending link lk↑ v similarly decomposes as the join of the
ascending down-link lk↑

d v and ascending up-link lk↑
u v, which are just defined to

be lk↑
d v := lkd v ∩ lk↑ v and lk↑

u v := lku v ∩ lk↑ v.
Since 0-simplices in lkd v have larger f value than v (i.e., the graphs have

fewer vertices than �) and cannot have strictly larger hχ value, given a subforest

F ⊆ �, we see that [�/F,pF ,ρF ] ∈ lk↑
d v if and only if hχ([�/F,pF ,ρF ]) ≥

hχ([�,p,ρ]) if and only if hχ([�/F,pF ,ρF ]) = hχ([�,p,ρ]). Similarly, if

[�̃, p̃, ρ̃] ∈ lku v, then it lies in lk↑
u v if and only if it has strictly larger hχ value

than v (since it has smaller f value).
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4. Topology of Ascending Links

Throughout this section, χ is a nontrivial character of P�Autn with character
height function hχ on �Kn, and lk↑[�,p,ρ] means the ascending link of the
0-simplex [�,p,ρ] with respect to χ .

We will analyze the topology of lk↑[�,p,ρ] = lk↑
d [�,p,ρ] ∗ lk↑

u[�,p,ρ]
by inspecting lk↑

d [�,p,ρ] and lk↑
u[�,p,ρ] individually. First, we focus on

lk↑
d [�,p,ρ].

4.1. Ascending down-Link

The first goal is to realize lk↑
d [�,p,ρ] as a nice combinatorial object, the complex

of ascending forests.

Definition 4.1 (Complex of forests). The complex of forests F(�) for a graph �

is the geometric realization of the partially ordered set of nonempty subforests of
�, with partial order given by inclusion.

We will not really need to know the homotopy type of F(�) in what follows, but
it is easy to compute, so we record it here for good measure.

Observation 4.2. For � a cactus graph with V vertices, F(�) � SV −2.

Proof. For each cladode C, let FC(�) be the complex of subforests of � con-
tained in C. Clearly, FC(�) � SVC−2, where VC is the number of vertices
of C. Since F(�) is the join of all the FC(�), we get FC(�) � Sd−1 for
d = ∑

C(VC −1). Now, VC −1 is the number of nonbase vertices of C, and every
vertex of � except for the basepoint is a nonbase vertex of a unique cladode, so∑

C(VC − 1) = V − 1. �
Definition 4.3 (Complex of ascending forests). The complex of ascending forests
F↑(�,p,ρ) for a symmetric marked cactus graph [�,p,ρ] is the full subcomplex
of F(�) supported on the 0-simplices F such that [�/F,pF ,ρF ] ∈ lk↑[�,p,ρ].
Observation 4.4. F↑(�,p,ρ) ∼= lk↑

d [�,p,ρ].
Proof. The isomorphism is given by F �→ [�/F,pF ,ρF ]. �
For certain characters, F↑(�,p,ρ) is guaranteed to be contractible. We call these
characters decisive:

Definition 4.5 (Decisive). We call a character χ of P�Autn decisive if every
[�,p,ρ] lies in a unique star of a symmetric marked rose with maximal χ value.

Observation 4.6. Let χ be decisive. Then for any � �= Rn, F↑(�,p,ρ) is con-
tractible.

Proof. Every ascending forest is contained in an ascending spanning tree, and we
are assuming that there is a unique ascending spanning tree, so F↑(�,p,ρ) is just
the star in F↑(�,p,ρ) of this unique ascending spanning tree. �
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Figure 2 A cactus graph with the tree T from the proof of Proposi-
tion 4.7 marked in bold

Proposition 4.7 (Positive implies decisive). Positive characters of P�Autn are
decisive.

Proof. Let T be the spanning tree in � such that, using the notation from
Lemma 3.12, for each cladode Cj,ρ , the origin of the edge in Ej,T is the base
of Cj,ρ ; see Figure 2 for an example. Note that the edge of Ej,T is before
all the other edges of Cj,ρ . We claim that ρT has larger χ value than ρU

for any other spanning tree U . First, we prove this in the case where U dif-
fers from T only in one cladode, say Cj,ρ . Let Ij be the set of i such that
the projection projCj,ρ

(Ci,ρ) lies between Ej,U and Ej,T . Since Ej,T is be-
fore Ej,U , by Lemma 3.12 we get hχ([�/T ,pT ,ρT ]) − hχ([�/U,pU ,ρU ]) =∑

i∈Ij
ai,j > 0. Now suppose U differs from T in more than one cladode,

say Cj1,ρ, . . . ,Cjr ,ρ . By changing Ejk,T to Ejk,U one k at a time, we get
hχ([�/T ,pT ,ρT ]) − hχ([�/U,pU ,ρU ]) = ∑r

k=1
∑

i∈Ijk
ai,jk

> 0. We con-
clude that hχ([�/T ,pT ,ρT ]) > hχ([�/U,pU ,ρU ]), as desired. �

By a parallel argument, negative characters are also decisive.
It turns out “most” characters are decisive in the following sense.

Definition 4.8 (Generic). Call a character χ = ∑
i �=j ai,jχi,j of P�Autn generic

if for every choice of εi,j ∈ {−1,0,1}, we have
∑

i �=j εi,j ai,j = 0 only if εi,j = 0
for all i, j (said another way, the ai,j have no nontrivial linear dependencies using
coefficients from {−1,0,1}).
Observation 4.9. The set {[χ] ∈ S(P�Autn) | χ is generic} is dense in
S(P�Autn).



Symmetric Automorphisms, BNSR-Invariants, and Finiteness Properties 149

Proof. Given a linear dependence
∑

i �=j εi,j ai,j = 0 with εi,j ∈ {−1,0,1}, the
complement of the set of character classes satisfying this dependence is open and
dense in S(P�Autn). Since there are only finitely many choices for the εi,j , the
set of generic character classes is also (open and) dense in S(P�Autn). �

Proposition 4.10 (Generic implies decisive). Generic characters of P�Autn are
decisive.

Proof. Let T and U be two different spanning trees in �, so [�,p,ρ] lies in
the stars of the symmetric marked roses [�/T ,pT ,ρT ] and [�/U,pU ,ρU ]. We
claim that for χ generic, these symmetric marked roses have different hχ values,
from which the result will follow. Using the notation from Lemma 3.12, suppose
the cladodes in which T and U differ are Cj1,ρ, . . . ,Cjr ,ρ , so Ejk,T �= Ejk,U for
1 ≤ k ≤ r , but Ej,T = Ej,U for all j /∈ {j1, . . . , jr}. Let U = T0, T1, . . . , Tr = T

be spanning trees such that we obtain Tk from Tk−1 by replacing Ejk,U with Ejk,T .
For each 1 ≤ k ≤ r , let Ik be the set of i such that the projection projCjk,ρ

(Ci,ρ)

lies between Ejk,T and Ejk,U . By Lemma 3.12 we know that

hχ([�/Tk,pTk
, ρTk

]) − hχ([�/Tk−1,pTk−1
, ρTk−1

]) = ±
∑
i∈Ik

ai,jk

for each 1 ≤ k ≤ r (with the plus or minus depending on whether Ejk,T is before
or after Ejk,U ). This implies that hχ([�/T ,pT ,ρT ]) − hχ([�/U,pU ,ρU ]) =
(±∑

i∈I1
ai,j1) + (±∑

i∈I2
ai,j2) + · · · + (±∑

i∈Ir
ai,jr ). Since χ is generic, this

cannot be zero. �

Remark 4.11. If χ is not decisive, then F↑(�,p,ρ) is still somewhat under-
standable, it just might not be contractible. A forest is ascending if and only if it
lies in an ascending spanning tree, so F↑(�,p,ρ) is the union of the stars of the
ascending spanning trees. Also, a nonempty intersection of some of these stars
is again a (contractible) star, namely the star of the forest that is the intersection
of the relevant spanning trees. Hence F↑(�,p,ρ) is homotopy equivalent to the
nerve of its covering by stars of ascending spanning trees. This is isomorphic to
the simplicial complex whose 0-simplices are the ascending spanning trees, and
where k of them span a (k − 1)-simplex whenever the trees have a nonempty in-
tersection. In theory it should be possible to compute the homotopy type of this
complex, but we are not currently interested in the nondecisive characters (since
they will be totally intractable when we study the ascending up-link in the next
subsection), so we leave further analysis of this for the future.

Since lk↑ v = lk↑
d v ∗ lk↑

u v and lk↑
d [�,p,ρ] ∼= F↑(�,p,ρ), we get the following:

Corollary 4.12. If χ is a decisive character of P�Autn and v = [�,p,ρ] for �

not a rose, then lk↑ v is contractible.
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4.2. Ascending up-Link

Thanks to Corollary 4.12, for decisive characters of P�Autn, the only 0-simplices
of �Kn that can have noncontractible ascending links are those of the form
[Rn,∗, α]. These have empty down-link, so the ascending link equals the as-
cending up-link. It turns out that the ascending up-link lk↑

u[Rn,∗, α] is homotopy
equivalent to a particularly nice complex I↑

n (χ), the complex of ascending ideal
edges, which we now describe.

Let E(∗) be the set of half-edges of Rn incident to ∗. Since we identify π1(Rn)

with Fn, the petals of Rn are naturally identified with the basis S = {x1, . . . , xn}
of Fn. We will write i for the half-edge in the petal xi with ∗ as its origin, and i

for the half-edge in xi with ∗ as its terminus, so E(∗) = {1,1,2,2, . . . , n, n}.
Definition 4.13 ((Symmetric) ideal edges). A subset A of E(∗) such that |A| ≥ 2
and |E(∗)\A| ≥ 1 is called an ideal edge. We say that an ideal edge A splits {i, i}
if {i, i} ∩ A and {i, i} \ A are both nonempty. We call A symmetric if there exists
precisely one i ∈ [n] such that A splits {i, i}. In this case we call {i, i} the split
pair of A.

Intuitively, an ideal edge A describes a way of blowing up a new edge at ∗ with
the half-edges in E(∗) \ A becoming incident to the new basepoint and the half-
edges in A becoming incident to the new nonbasepoint vertex; a more rigorous
discussion can be found, for example, in [Jen02]. The conditions in the defini-
tion ensure that blowing up a symmetric ideal edge results in a cactus graph. See
Figure 3 for an example. The asymmetry between the conditions |A| ≥ 2 and
|E(∗) \ A| ≥ 1 arises because the basepoint of a cactus graph must have degree at
least 2, whereas other vertices must have degree at least 3. In fact, every vertex of
a cactus graph has even degree, so in practice |A| ≥ 2 is equivalent to |A| ≥ 3 for
symmetric ideal edges.

Definition 4.14 (Ascending symmetric ideal edge). Let χ = ∑
i �=j ai,jχi,j be a

character of P�Autn, and let A be a symmetric ideal edge. Suppose {j, j } is the
split pair of A and let I = (A∩[n])\ {j}. We call A ascending (with respect to χ )
if either

(i) j ∈ A and
∑

i∈I ai,j > 0 or
(ii) j ∈ A and

∑
i∈I ai,j < 0.

For example, the symmetric ideal edge in Figure 3 is ascending if and only if
a2,1 < 0. If χ is positive (respectively negative), then A is ascending if and only
if j ∈ A (respectively j ∈ A) for {j, j } the split pair of A. If χ is generic, then for
any set I of pairs {i, i} and any j ∈ [n] \ I ,

∑
i∈I ai,j �= 0, so one of A = {j} ∪ I

or A = {j} ∪ I is an ascending ideal edge.

Definition 4.15 (Compatible). Two ideal edges A and A′ are called compatible if
any of A ⊆ A′, A′ ⊆ A, or A ∩ A′ = ∅ occur.

Definition 4.16 (Complex of (ascending) symmetric ideal edges). Let In be the
simplicial complex whose 0-simplices are the symmetric ideal edges, and where
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1 1 2 2

AE(∗) \ A

−→

1 1 2 2

AE(∗) \ A

−→

1

1

2 2

1

1

2

2

Figure 3 The symmetric ideal edge {1,2,2} and the nonsymmetric
ideal edge {1,2} together with the blow-ups they produce. The former
yields a cactus graph, and the latter does not

a collection of symmetric ideal edges span a simplex if and only if they are pair-
wise compatible. Let I↑

n (χ) be the subcomplex of In spanned by the ascending
symmetric ideal edges.

It is a classical fact that In is homotopy equivalent to lku[Rn,∗, α] (for any α).
More precisely, the barycentric subdivision I ′

n is isomorphic to lku[Rn,∗, α]. It
turns out that a similar thing happens when restricting to ascending ideal edges:

Lemma 4.17. For any character χ of P�Autn and any 0-simplex of the form
[Rn,∗, α], lk↑

u[Rn,∗, α] is homotopy equivalent to I↑
n (χ).

Proof. Since the barycentric subdivision I ′
n of In is isomorphic to lku[Rn,∗, α],

we have that lk↑
u[Rn,∗, α] is isomorphic to a subcomplex I ′

n(asc) of I ′
n. This is

the subcomplex spanned by those 0-simplices in I ′
n, that is, those collections of

pairwise compatible symmetric ideal edges, whose corresponding tree blow-up
makes hχ go up. Note that I↑

n (χ)′ is a subcomplex of I ′
n(asc), since as soon

as one ideal edge in a collection corresponds to an ascending edge blow-up, the
whole collection corresponds to an ascending tree blow-up.

Given a 0-simplex σ = {A1, . . . ,Ak} of I ′
n(asc), let φ(σ) := {Ai | Ai ∈

I↑
n (χ)}. We claim that φ(σ) is nonempty and hence φ : I ′

n(asc) → I ′
n(asc) is

a well-defined map whose image is I↑
n (χ). Let [�,p,ρ] be the result of blow-

ing up the ideal tree given by σ . Let U be the spanning tree in � such that
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[�/U,pU ,ρU ] = [Rn,∗, α]. Since the blow-up is ascending, the blow-down re-
versing it cannot be ascending, so U is not an ascending spanning tree in �.
Choose an ascending spanning tree T in �, so U �= T . Similarly to the proof of
Proposition 4.10, we can turn U into T by changing one edge at a time, and from
Lemma 3.12 we get

hχ([�/T ,pT ,ρT ]) − hχ([�/U,pU ,ρU ])
=

(
±

∑
i∈I1

ai,j1

)
+

(
±

∑
i∈I2

ai,j2

)
+ · · · +

(
±

∑
i∈Ir

ai,jr

)
,

where the Ik and jk are as in the proof of Proposition 4.10. Since T is as-
cending but U is not, this quantity is positive. Hence there exists k such that
±∑

i∈Ik
ai,jk

> 0 (with the “±” determined by whether Ejk,T is before or after
Ejk,U ). Write j = jk for brevity.

Now let T ′ be the spanning tree (T \Ej,U )∪Ej,T (keep in mind that Ej,U lies
in T and not U and that Ej,T lies in U and not T ), so, roughly, T ′ is the result of
changing only the part of T in Cj,ρ to look like U . Let F := T \Cj,ρ and consider
[�/F,pF ,ρF ]. Let Ej,U and Ej,T be the images of Ej,U and Ej,T in �/F . The
difference between the hχ values obtained by blowing down Ej,U versus Ej,T is
the positive value ±∑

i∈Ik
ai,jk

from before; hence Ej,U is ascending in �/F , and

Ej,T is not ascending. Now, the blow-up of [Rn,∗, α] resulting in [�/F,pF ,ρF ]
corresponds to one of the Ai , and Ej,T is the new edge blown up. This is an
ascending blow-up, since the reverse is a nonascending blow-down. This shows
that at least one of the Ai is indeed ascending, so φ(σ) �= ∅.

Having shown that φ : I ′
n(asc) → I ′

n(asc) is well defined, it is easily seen to

be a poset retraction (à la [Qui78, Section 1.3]) onto its image I↑
n (χ)′, so we

conclude that lk↑
u[Rn,∗, α] ∼= I ′

n(asc) � I↑
n (χ)′ ∼= I↑

n (χ). �

It is clear from Definition 4.14 that for χ positive, the complex I↑
n (χ) is indepen-

dent of χ . We will write I↑
n (pos) for I↑

n (χ) in this case. In Proposition 4.19 we
will determine the connectivity properties of I↑

n (pos). First, we need the follow-
ing useful lemma, which was proved in [WZ16].

Lemma 4.18 (Strong nerve lemma). Let Y be a simplicial complex covered by
subcomplexes Y1, . . . , Yn. Suppose that whenever an intersection

⋂k
i=1 Yji

of k

of them (1 ≤ k ≤ n) is nonempty, it is (n − k − 2)-connected. If the nerve N of
the covering is (n − 3)-connected, then so is Y . If the nerve of the covering is
(n − 3)-connected but not (n − 2)-acyclic, then so is Y .

Proof. That Y is (n − 3)-connected follows from the usual nerve lemma (see,
e.g., [BLVŽ94, Lemma 1.2], but this usual nerve lemma is not enough to show
Y is not (n − 2)-acyclic if the nerve is not. In [WZ16, Prop. 1.21] it was shown
using spectral sequences that indeed these hypotheses ensure that Y is not (n−2)-
acyclic. �
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Proposition 4.19. The complex I↑
n (pos) is (n − 3)-connected but not (n − 2)-

acyclic (and hence so are lk↑
u[Rn,∗, α] and lk↑[Rn,∗, α] for any positive charac-

ter of P�Autn).

Proof. We will prove that I↑
n (pos) is (n − 3)-connected by using induction to

prove a more general statement, and then afterwards we will prove that I↑
n (pos)

is not (n − 2)-acyclic by applying Lemma 4.18. Call a subset P ⊆ E(∗) positive
if for each 1 ≤ i ≤ n, we have that i ∈ P implies i ∈ P . Define the defect d(P ) to
be the number of i ∈ P with i /∈ P . Define the weight w(P ) of P to be the number
of pairs {j, j} contained in P , plus one if the defect is nonzero. For example, the
sets {1,1,2,2}, {1,2,2}, and {1,2,3,4,5,5} all have weight two (and defect zero,
one, and four, respectively). Also note that P = E(∗) itself is positive and has
defect zero and weight n. Let I↑(P ;pos) be the subcomplex of I↑

n (pos) supported
on the 0-simplices A such that A ⊆ P . We now claim that I↑(P ;pos) is (w(P )−
3)-connected, so I↑

n (pos) being (n − 3)-connected is a special case of this.
We induct on w(P ). For the base case, we can use w(P ) = 1, and the result

holds vacuously since every set is (−2)-connected. Now let w(P ) ≥ 2. Let D be
the set of all i ∈ P with i /∈ P , so d(P ) = |D|. Within this induction on w(P ),
we now additionally begin an induction on d(P ). For the base case, we assume
that D = ∅, that is, d(P ) = 0. Consider the 0-simplices of I↑(P ;pos) of the form
P \ {i} for each i ∈ P ∩[n]. Call these hubs, and denote P \ {i} by �i . Note that a
symmetric ideal edge in I↑(P ;pos) is compatible with a given hub if and only if
it is contained in it (i.e., it cannot properly contain it nor be disjoint from it). Any
collection of pairwise compatible symmetric ideal edges in I↑(P ;pos) lies in the
star of some hub, so I↑(P ;pos) is covered by the contractible stars of the �i .
The intersection of the stars of any k hubs, say �i1, . . . ,�ik , is isomorphic to the
complex I↑(P \ {i1, . . . , ik};pos). For k = 1, this is contractible, being a star, and
for k > 1, we have w(P \ {i1, . . . , ik}) = w(P ) − k + 1 < w(P ), so by induction
on w(P ) we know this is (w(P ) − k − 2)-connected. Finally, the nerve of the
covering of I↑(P ;pos) by these stars is the boundary of a (w(P ) − 1)-simplex,
that is, a (w(P )−2)-sphere, so by the first statement in Lemma 4.18 we conclude
that I↑(P ;pos) is (w(P ) − 3)-connected.

Now suppose D �= ∅, so d(P ) > 0. Without loss of generality we can write
D = {1, . . . , d}. We will build up to I↑(P ;pos) from a subcomplex with a known
homotopy type, namely the contractible star of the 0-simplex {1}∪(P \D). The 0-
simplices of I↑(P ;pos) missing from this star are those A containing an element
of {2, . . . , d} (if d = 1, then there is nothing to do, so assume that d ≥ 2), so
to obtain I↑(P ;pos) from this star, we will attach these missing 0-simplices, in
some order, along their relative links lkrel A. If we can do this in an order such
that the relative links are always (w(P ) − 4)-connected, then we can conclude
that I↑(P ;pos) is (w(P ) − 3)-connected. The order is as follows: first, glue in
the A containing 2 in order of decreasing size, then the A containing 3 in order
of decreasing size, and so forth. The relative link lkrel A of A decomposes into
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the join of its relative in-link lkin
rel A and relative out-link lkout

rel A. The relative in-
link of A is defined to be the subcomplex supported on those B in lkrel A such that
B ⊆ A. The relative out-link is defined to be the subcomplex supported on those B

in lkrel A that satisfy either A ⊆ B or A∩B = ∅. These options encompass all the
ways a symmetric ideal edge can be compatible with A, and clearly everything
in lkin

rel A is compatible with everything in lkout
rel A, so indeed lkrel A = lkin

rel A ∗
lkout

rel A. To show that lkrel A is (w(P ) − 4)-connected for every A containing an
element of {2, . . . , d}, we will consider lkin

rel A and lkout
rel A separately. Let {iA} :=

A∩D, so iA ∈ {2, . . . , d}, and let A� := A\{iA}. The 0-simplices B in lkin
rel A must

lie in I↑(A�;pos), since for B to come before A in our order while having smaller
cardinality than A, it must not contain iA (so such B are actually already in the
star of {1} ∪ (P \ D)). Hence lkin

rel A is isomorphic to I↑(A�;pos), and w(A�) =
w(A)− 1 < w(P ), so by induction on w(P ) we know that lkin

rel A is (w(A�)− 3)-
connected. Next, the 0-simplices B in lkout

rel A must be disjoint from {iA+1, . . . , d}
and either properly contain A or be disjoint from A. The map B �→ B \A� induces
an isomorphism from lkout

rel A to I↑(P \ (A� ∪ {iA + 1, . . . , d});pos); the inverse
map sends C to itself if iA /∈ C and to C ∪ A� if iA ∈ C. Since w(P \ (A� ∪ {iA +
1, . . . , d})) = w(P )−w(A�) < w(P ), by induction on w(P ) we know that lkout

rel A

is (w(P ) − w(A�) − 3)-connected. We conclude that lkrel A = lkin
rel A ∗ lkout

rel A is
(((w(A�)−3)+(w(P )−w(A�)−3))+2)-connected, which is to say (w(P )−4)-
connected, as desired.

This finishes the inductive proof, which in particular shows that I↑
n (pos) is

(n− 3)-connected. Now to see that it is not (n− 2)-acyclic, consider the covering
of I↑

n (pos) by the stars of �1, . . . ,�n as before. The intersection of any k of these
stars is (n− k − 2)-connected, as was deduced during the inductive proof, and the
nerve of the covering is an (n − 2)-sphere, so Lemma 4.18 says that I↑(P ;pos)
is not (n − 2)-acyclic. �

A parallel argument shows that I↑
n (χ) is also (n − 3)-connected but not (n − 2)-

acyclic for χ a negative character of P�Autn.

Remark 4.20. If χ is neither positive nor negative, then I↑
n (χ) is much more

complicated, for example, as further discussed in Remark 4.24, we can find ex-
amples of generic χ for which I↑

4 (χ) has nontrivial π1 and H2. Hence, we have
focused only on positive and negative characters of P�Autn in Theorem A, but in
Section 4.3 we will show that generic characters are also tractable at least when
n = 3.

We can now prove Theorem A.

Proof of Theorem A. By Corollary 4.12 and Proposition 4.19 all the ascend-
ing links of 0-simplices in �Kn are (n − 3)-connected, so Corollary 1.7 says
that the filtration (�K

χ≥t
n )t∈R is essentially (n − 3)-connected, and so [χ] ∈

�n−2(P�Autn).
To prove the negative statement, note that Proposition 4.19 says that there ex-

ist ascending links of 0-simplices that are not (n − 2)-acyclic, with arbitrary hχ



Symmetric Automorphisms, BNSR-Invariants, and Finiteness Properties 155

value. Also, every ascending link has trivial (n−1)st homology since it is (n−2)-
dimensional. Then by Corollary 1.7 the filtration (�K

χ≥t
n )t∈R is not essentially

(n − 2)-connected, and so [χ] /∈ �n−1(P�Autn). �
Remark 4.21. Using the natural split epimorphisms P�Autn → P�Autm for
m < n, we also now can see that if χ = ∑

i �=j ai,jχi,j is a character of P�Autn
induced from this epimorphism by a positive or negative character of P�Autm
(so ai,j is positive for 1 ≤ i, j ≤ m or negative for all 1 ≤ i, j ≤ m, and is zero if
either i or j is greater than m), then [χ] ∈ �m−2(P�Autn). However, we cannot
immediately tell whether [χ] /∈ �m−1(P�Autn) (which we suspect is the case),
since Pettet showed that the kernels of P�Autn → P�Autm have bad finiteness
properties [Pet10].

As an immediate consequence of Theorem A, Citation 1.2, and Observation 2.3,
we have the following result, which will provide the crucial step in proving The-
orem B in Section 5.

Corollary 4.22. For n ≥ 2, if χ is a discrete positive character of P�Autn,
then the kernel ker(χ) is of type Fn−2 but not Fn−1. In particular, the “Bestvina–
Brady-esque” subgroup BBn, that is, the kernel of the character sending each
standard generator αi,j to 1 ∈ Z, is of type Fn−2 but not Fn−1.

4.3. The n = 3 Case

When n = 3, the 0-simplex links in �K3 are graphs, and using some graph the-
oretic considerations, we can actually prove the analog of Proposition 4.19 for
generic characters, which leads to the following:

Theorem 4.23. �2(P�Aut3) = ∅.

Proof. Since �2(P�Aut3) is open and the generic character classes are dense in
the character sphere (Observation 4.9), it suffices to prove the analog of Proposi-
tion 4.19 for all generic χ . Since I↑

3 (χ) is one-dimensional, that is, a graph, we
need to prove that it is connected but not a tree.

First, we collect some facts about I3. It is a graph with eighteen vertices,
namely there are twelve vertices corresponding to the symmetric ideal edges
A ⊆ E(∗) = {1,1,2,2,3,3} with |A| = 3 (three choices of which {i, i} to split,
times two choices of which of i or i to include in A, times two choices of which
{j, j} (j �= i) to include in A) and six vertices for the symmetric ideal edges with
|A| = 5 (six choices of which element of E(∗) to leave out of A). Call the former
vertices depots and the latter hubs. There is an edge connecting a depot to a hub
whenever the depot is contained in the hub, and there is an edge connecting two
depots whenever they are disjoint. Each depot has degree four, and each hub has
degree six.

Now, since χ is generic, for each pair of depots of the form {i, j, j } and
{i, j, j }, precisely one of them is ascending, with a similar statement for hubs.
Hence I↑

3 (χ) is a full subgraph of I3 spanned by six depots and three hubs. We
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claim that each ascending hub has degree at least three in I↑
3 (χ). Consider the hub

{i′, j, j , k, k}, where i′ ∈ {i, i} and i, j , k are distinct. If this is ascending, then at
least one of the depots {i′, j, j } or {i′, k, k} must be as well, since if aj,i + ak,i is
positive (respectively negative), then at least one of aj,i or ak,i must be as well.
The other two edges incident to our hub come from the fact that one of the depots
{j, k, k} or {j, k, k} is ascending, as is one of {j, j, k} or {j, j, k}.

Having shown that each hub in I↑
3 (χ) has degree at least three in I↑

3 (χ), this
tells us I↑

3 (χ) has at least nine edges, since hubs cannot be adjacent. Then since
I↑

3 (χ) also has nine vertices, we conclude that it contains a nontrivial cycle. It
remains to prove that it is connected. Say the three hubs in I↑

3 (χ) are u, v, and
w, and suppose that u has no adjacent depots in I↑

3 (χ) in common with either v

or w (since otherwise we are done). Since there are only six depots, this implies
that v and w have the same set of adjacent depots in I↑

3 (χ). But this is impossible
since the intersection of the stars of two different ascending hubs can contain at
most two ascending depots. �

Combining this with Orlandi-Korner’s computation of �1(P�Aut3), we get in
particular that �1(P�Aut3) is dense in S(P�Aut3) = S5 but �2(P�Aut3) is al-
ready empty. (Note that since P�Aut2 ∼= F2, we also know that �1(P�Aut2) =
∅.)

Remark 4.24. Unfortunately, the analogous result for arbitrary n, that is, that
�n−2(P�Autn) is dense in S(P�Autn) but �n−1(P�Autn) is empty, cannot be
deduced using our methods when n > 3 (though we do suspect it is true). We
would hope that the analog of Proposition 4.19 always holds for all generic χ ,
but it does not. For example, when n = 4, one can find a generic character χ

such that I↑
4 (χ) is not simply connected. One example we found is to take χ

with a1,2 = a2,1 = a3,4 = a4,3 = 3 and all other ai,j = −1 (adjusted slightly by
some tiny ε > 0 to be generic). This nonsimply connected ascending link also
has nontrivial second homology, so this does not necessarily mean that [χ] is
not in �2(P�Aut4) (and we believe that it actually is); it is just inconclusive. In
general, we tentatively conjecture that �n−2(P�Autn) is dense in S(P�Autn) and
�n−1(P�Autn) is empty, but for now our Morse theoretic approach here seems
to only be able to handle the positive and negative characters for arbitrary n, and
also the generic characters for n = 3.

5. Proof of Theorem B

We can now use our results about P�Autn to quickly prove Theorem B about
�Autn.

Proof of Theorem B. Since BBn is of type Fn−2 but not Fn−1 by Corollary 4.22
and has finite index in �Aut′n by Lemma 2.5, we know that �Aut′n is of type Fn−2
but not Fn−1. Also, Observation 2.3 says that for any m, either �m(�Autn) is all
of S0 or else is empty. The result now follows from Citation 1.2. �
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