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The Chow Ring of the Stack of Smooth Plane Cubics

Damiano Fulghesu & Angelo Vistoli

Abstract. In this paper, we give an explicit presentation of the inte-
gral Chow ring of a stack of smooth plane cubics. We also determine
some relations in the general case of hypersurfaces of any dimension
and degree.

1. Introduction

Equivariant intersection theory was introduced by Edidin and Graham [Ed-Gr1];
it is of considerable interest, as it gives an intrinsic integer-valued intersection
theory on quotient stacks. In particular, if X is a quotient stack [U/G], where U

is a smooth scheme of finite type over a field k and G is an affine algebraic group
on k, then we obtain a Chow ring A∗

G(U) = A∗(X ), which only depends on X and
not on the presentation of X as a quotient stack. If X is Deligne–Mumford, or,
equivalently, the action of G on U has finite reduced stabilizers, then A∗(X ) ⊗Q

coincides with the rational Chow ring of X , which had been earlier studied by
several authors [Mum; Gil; Vis1].

The ring A∗(X ) is usually much harder to compute than A∗(X ) ⊗ Q; for
example, consider the moduli stack Mg of smooth curves of genus g ≥ 2; the
ring A∗(Mg) has been computed only for g = 2 [Vis2] (notice that, in this case,
A∗(M2) ⊗ Q = Q), whereas A∗(Mg) ⊗ Q is known for g ≤ 6 [Mum; Fab; Iza;
PV], and, more importantly, it is the subject of an extensive theory that has no
parallel for integral Chow rings.

On the positive side, the ring A∗(X ) has been computed when X is the stack
of smooth hyperelliptic curves of genus g when g is a positive even number, and
when X is the stack of rational nodal curves with at most one node.

In all these calculations the essential point is the determination of the Chow
ring of certain stacks of hypersurfaces. More precisely, let n and d be positive
integers. We define a stack Xn,d as follows: an object of Xn,d over a k-scheme S

consists of a vector bundle F of rank n, and a Cartier divisor X ⊆ P(F ) whose
restriction to every fiber is a smooth hypersurface of degree d (here, as every-
where else, we follow [Ful] and use the classic convention for the projectivization
of a vector bundle, so our P(F ) would be denoted by P(F∨) in Grothendieck’s
convention).
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An alternate description of Xn,d is as follows. Denote by Wn,d the vector space
of homogeneous polynomials of degree d in n variables with its natural action of
GLn. Set Pn,d = P(Wn,d); so Pn,d is the projective space of hypersurfaces of
degree d in Pn−1. If Z ⊆ Pn,d is the discriminant locus, then we have

Xn,d = [(Pn,d \ Z)/GLn].
By standard facts of equivariant intersection theory this gives a set of generators
for the ring A∗(Xn,d) = A∗

GLn
(Pn,d \ Z), which are the Chern classes c1, . . . , cn

of the tautological representation of GLn, and h = c1(OPn,d
(1)). The relations

among these generators c1, . . . , cn and h are obtained from the classes of the
image of the pushforward A

GLn∗ (Z) → A∗
GLn

(Pn,d).

A set of natural relations is obtained as follows. Let Z̃ ⊆ Pn,d × Pn−1 be the
reduced subscheme consisting of pairs (X,p), where X is a hypersurface of de-
gree d in Pn−1, and p is a singular point of X. Then Z is the image of Z̃ in
Pn,d , and hence every class in A∗

GLn
(Z̃) when pushed down to A∗

GLn
(Pn,d) gives

a relation in A∗
GLn

(Pn,d). The image of the pushforward A∗
GLn

(Z̃) → A∗
GLn

(Pn,d)

is easily determined (see Theorem 4.5); this gives certain relations α1, . . . , αn ∈
Z[c1, . . . , cn, h]. When d = 2 or n = 2, it is proved in [Pan; Ed-Fu1; Ed-Fu2] that
α1, . . . , αn generate the ideal of relations, so that (Theorem 4.7)

A∗(Xn,d) = Z[c1, . . . , cn, h]/(α1, . . . , αn).

With rational coefficients, it is easy to verify that the classes αi generate the ideal
of relations of the generators in A∗(Xn,d) ⊗Q (see Remark 4.6).

The main purpose of this paper is to investigate the first case that is not covered
by Theorem 4.7, namely A∗(X3,3). The stack X3,3 can alternatively be thought of
as the stack in which an object (C,L) over a k-scheme S is a family C → S of
smooth curves of genus 1 together with an invertible sheaf L on X whose degree
when restricted to every fiber is 3.

It turns out the αi ’s are not sufficient to generate the whole ideal of relations,
but we need to add a polynomial δ2 ∈ Z[c1, c2, c3, h] of degree 2 with the property
that 2δ2 ∈ (α1, α2, α3). The following is our main result.

Main Theorem. The ring A∗(X3,3) is the quotient

Z[c1, c2, c3, h]/(α1, α2, α3, δ2),

where
α1 = 12(h − c1),

α2 = 6h2 − 4hc1 − 6c2,

α3 = h3 − h2c1 + hc2 − 9c3,

δ2 = 21h2 − 42hc1 + 9c2 + 18c2
1.

We have δ2 /∈ (α1, α2, α3), whereas 2δ2 ∈ (α1, α2, α3).

The next natural case to be considered is A∗(X3,4), which is a current work in
progress. This is particularly interesting, since it would allow us to determine



The Chow Ring of the Stack of Smooth Plane Cubics 5

the integral Chow ring of M3 \H3, that is, the stack of smooth nonhyperelliptic
curves of genus 3.

Strategy of Proof and Description of Content

Section 2 introduces the basic notation and reviews some general results about
GLn-equivariant Chow groups, which constitute the fundamental tools used in the
proof of the Main Theorem. In particular, we give a reduction result to torus action
(Lemma 2.1), an explicit form of torus equivariant hyperplane classes (Lemma
2.8), and an explicit localization theorem for torus actions (Theorem 2.9).

The real action starts in Section 3; here, and in the following section, we give
some general results on A∗(Xn,d). We set up the notation and give a formula for
the class in A∗

GLn
(Pn,d) of hypersurfaces that split as sums of s hypersurfaces of

degrees d1, . . . , ds with d1 + · · · + ds = d (Theorem 3.4).
In the next section, we study the ideal IZ̃ ⊆ A∗(Pn,d), which is the image of

the pushforward A∗
GLn

(Z̃). We give explicit formulas for the generators α1, . . . , αn

(Theorem 4.5), show that

A∗
GLn

(Pn,d) ⊗Q = Q[c1, . . . , cn, h]/(α1, . . . , αn)

(Remark 4.6), and prove that the intrinsic relation satisfied by the hyperplane class
h is in IZ̃ (Proposition 4.8).

Next, we specialize to the case n = d = 3 in the last section, Section 5. We
write down the classes α1, α2, and α3 as they come out of Theorem 4.5.

We use Theorem 3.4 to show that δ2 represents the class of the locus Z2 ⊆ P3,3

of reducible cubics; then we need to show that the image of the pushforward
i∗ : AGLn∗ (Z) → A∗

GLn
(Pn,d) is in the ideal generated by (α1, α2, α3, δ2).

For this purpose, we define a stratification of the discriminant locus Z (Def-
inition 5.1). If T is one of the strata, denote by T its closure in P3,3. For each
T , we need to show that every class in A∗

GL3
(P3,3) supported in T is the sum of

a class in (α1, α2, α3, δ2) and a class supported in T \ T ; then the result follows
by descending induction on the codimension of the strata (see Section 5.2 for a
fuller explanation). In some cases the elements of T have a distinguished singular
point (for example, this happens for the stratum Z(3,1) consisting of unions of a
smooth conic and a line that is tangent to a point); this gives a lifting of the em-
bedding T ⊆ P3,3 to a morphism T → Z̃, which makes what we need to prove
obvious. In other cases, we produce a finite GL3-equivariant morphism T 1 → T .
We have to use ad hoc arguments, together with Theorem 3.4, to show that the
image of the pushforward A

GL3∗ (T ) → A∗
GL3

(P3,3) coincides with the image of

A∗
GL3

(T 1) → A∗
GL3

(P3,3) up to classes supported in T \ T . Finally, we show that

the image of A∗
GL3

(T 1) → A∗
GL3

(P3,3) is contained in (α1, α2, α3, δ2).
More precisely, Section 5.3 is dedicated to the proof of the fact that classes in

A∗
GL3

(P3,3) supported in the closure of the locus of conics together with a tangent
line are in IZ̃ . Section 5.4 contains the hardest step of the proof, the fact that
classes supported in the locus consisting of sums of three lines are in IZ̃ ; this is
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technically rather involved. In Section 5.5, we compute the class δ2 of the locus
of reducible curves, and we show that the classes supported in this locus are in
(α1, α2, α3, δ2).

The proof of the Main Theorem is finally concluded in Section 5.6.
Some of the calculations have been carried out by using Maple 16.

2. Preliminaries on GLn-Equivariant Chow Groups

2.1. Intersection Ring of BGLn

We work on a base field k of characteristic 0 or greater than a fixed integer d ≥ 2.
Let n ≥ 2 be another integer, and let E be the standard representation of GLn. The
stack [E∨/GLn] is a vector bundle over BGLn whose Chern roots are l1, . . . , ln.
On the other hand, let c1, . . . , cn be the Chern classes of [E/GLn], so we have

c1 = −(l1 + · · · + ln),

. . .

ci = (−1)isi(l1, . . . , ln),

. . .

cn = (−1)nl1 · · · ln,
where si(x1, . . . , xn) is the ith symmetric polynomial in n variables. Let T be the
maximal torus for GLn represented by diagonal matrices. The total character of
the T -module E can be expressed as a sum of linearly independent characters
λ1, . . . , λn, and therefore we have A∗

T = Z[c1(λ1), . . . , c1(λn)]. According to our
notation, we have li = −c1(λi), and we will identify A∗

T with Z[l1, . . . , ln]. Sim-
ilarly, we can see the Weyl group Sn as acting on A∗

T by permuting the classes li .
and we have A∗

GLn
= (A∗

T )Sn .

2.2. Reduction to the Torus Action

Let X be a smooth G-space, that is, X is a smooth algebraic space with an action
of G,

α : G × X → X,

where α is also a morphism of algebraic spaces.
Throughout this paper, we consider equivariant intersection Chow rings of the

form A∗
G(X) where G will be the group T or GLn. In the cases we are interested,

the ring A∗
G(X) will have the structure of a finitely generated A∗

G-algebra. In
particular, there is an isomorphism

A∗
G(X) ∼= A∗

G[x1, x2, . . . , xr ]
I

for a suitable set of variables x1, . . . , xr and a suitable ideal I called ideal of
relations. For this reason, we will usually write a class in A∗

G(X) as a polynomial
in several variables with coefficients in A∗

G leaving the ideal of relations implicit.
We will use the following algebraic lemma.
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Lemma 2.1. Let G be a special algebraic group, and let T ⊂ G be a maximal
torus.

I) Let X be a smooth G-space. Let I ⊂ A∗
G(X) be an ideal. Then

IA∗
T (X) ∩ A∗

G(X) = I.

II) Let {x1, . . . , xr} be a set of variables, and let I ⊂ A∗
G[x1, . . . , xr ] be an ideal.

Then
IA∗

T [x1, . . . , xr ] ∩ A∗
G[x1, . . . , xr ] = I.

Proof. From [Ed-Fu2, Proposition 2.2] we have that A∗
G(X) is a (noncanonical)

summand of the A∗
G(X)-module A∗

T (X). Now, in general, if R ⊂ S is a ring ex-
tension, R is a summand of S, and I ⊂ R is an ideal, then IS ∩ R = I (see, for
example, [Ho-Ea, Propositions 9 and 10]). This concludes part I).

For part II), we first apply part I) by considering X = Spec(k). Consequently
A∗

G is a summand of A∗
T . Now let us write A∗

T
∼= A∗

G ⊕M for some submodule M .
Then we have (to prove this, use induction on r in [At-Ma, Chapter 2, Example 6])

A∗
T [x1, . . . , xr ] ∼= A∗

G[x1, . . . , xr ] ⊗A∗
G

A∗
T

∼= A∗
G[x1, . . . , xr ] ⊕ M[x1, . . . , xr ].

�

Remark 2.2. We will apply the above Lemma 2.1 in the following way. Let
γ ∈ A∗

GLn
(X) (resp. γ ∈ A∗

GLn
[x1, . . . , xr ]), and let I ⊂ A∗

GLn
(X) (resp. I ⊂

A∗
GLn

[x1, . . . , xr ]) be an ideal. If γ ∈ IA∗
T (X), then γ ∈ I .

2.3. Equivariant Intersection Theory on Projective Spaces

Let W be a GLn-representation of dimension q . The vector space W is equipped
with an induced T -action. We have also a canonical action of GLn (resp. T ) on
P(W). Let G be either GLn or T . Let h = cG

1 (OP(W)(1)), and let r1, . . . , rk be
the Chern roots of W . We have an exact sequence of A∗

G-modules (see [Ed-Fu2,
Lemma 2.3])

0 J A∗
G[x] evh

A∗
G(P(W)) 0, (1)

where evh is the evaluation morphism at h, and the ideal of relations J is the
principal ideal generated by the polynomial P(x) := ∏q

i=1(x + ri). Notice that
the exact sequence (1) induces the isomorphism

A∗
G(P(W)) ∼= A∗

G[x]
J

.

Remark 2.3. The Chern roots ri are linear combinations of l1, . . . , ln with integral
coefficients. However, P(x) can be written as a polynomial with coefficients in
A∗

GLn
.

Since P(x) is a monic polynomial of degree q , A∗
G(P(W)) is an A∗

G-module
freely generated by the set {hi |0 ≤ i < q}. So we can define a splitting morphism
ψ : A∗

G(P(W)) → A∗
G[x] of A∗

G-modules as follows.
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Definition 2.4. Let γ ∈ A∗
G(P(W)). We define ψ(γ ) := Q(x), where Q(x) is

the unique polynomial in A∗
G[x] whose degree in x is less than q and Q(h) = γ .

The polynomial P(x) depends on the Chern roots ri of the representation W .
However, as mentioned in Remark 2.3, the Chern roots ri are linear combina-
tions of the classes l1, . . . , ln with integral coefficients. The polynomial P(x)

is uniquely determined by such integral coefficients, and it has a combinatorial
flavor. The following notation is introduced to write the polynomial P(x) in an
explicit form, which is computationally useful.

We define the set Pd of (unordered) partitions of d . For example,

P4 := {{4}, {3,1}, {2,2}, {2,1,1}, {1,1,1,1}}.
Definition 2.5. Let μ ∈ Pd . We define the set

Nn(μ) := {v ∈Nn | μ = {vi �= 0}};
in other words, we say that a vector v ∈Nn is in Nn(μ) if the set of nonzero entries
of v is μ.

For example, let μ := {3,1} ∈ P4. Then, by definition, we have

N3(μ) = {(0,1,3), (0,3,1), (1,0,3), (3,0,1), (1,3,0), (3,1,0)}.
Definition 2.6. For every natural number q ∈N, we define the set

Nn(q) := {v ∈Nn||v| = q}.
For example, by definition, we have

N3(2) := {(2,0,0), (0,2,0), (0,0,2), (1,1,0), (1,0,1), (0,1,1)}.
Definition 2.7. Let μ ∈ Pd . We define the following polynomial in A∗

T [x]:
Pμ(x) :=

∏
v∈Nn(μ)

(x + v · l),

where l is the vector 〈l1, . . . , ln〉 in the free Z-module (A1
T )n.

For example, for n = 3,

P{2,1,1}(x) = (x + 2l1 + l2 + l3)(x + l1 + 2l2 + l3)(x + l1 + l2 + 2l3);
P{3,1}(x) = (x + 3l1 + l2)(x + 3l1 + l3)(x + 3l2 + l1)

× (x + 3l2 + l3)(x + 3l3 + l1)(x + 3l3 + l2).

Notice that, for every μ, the polynomial Pμ(x) is symmetric with respect to the
classes li , and therefore it can be written as an element of Z[c1, . . . , cn][x] =
A∗

GLn
[x]. We will effectively use the polynomials Pμ(x) in Proposition 4.8.

We now recall two results that will be used extensively later in order to perform
computations.

The following lemma will allow us to write explicitly the equivariant class of
a T -invariant hypersurface.
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Lemma 2.8 ([Ed-Fu2, Lemma 2.4]). Let H ⊂ P(W) be a T -invariant hypersur-
face defined by a homogeneous equation F = 0 of degree d such that z · F =
χ−1(z)F for some character χ : T →Gm. Then we have the following identity in
A∗

T (P(W)):

[H ]T = cT
1 (OP(W)(d)) + c1(χ).

The following theorem is also known as an explicit localization formula.

Theorem 2.9 ([Ed-Gr2, Theorem 2]). Define the A∗
T -module

Q := ((A∗
T )+)−1A∗

T ,

where ((A∗
T )+)−1 is the multiplicative system of the reciprocals of homogeneous

elements of A∗
T of positive degree.

Let X be a smooth T -variety and consider the locus F ⊂ X of fixed points
for the action of T . Let

⋃
j∈I Fj = F be the decomposition of F into irreducible

components. For every γ ∈ AT∗ (X) ⊗Q, we have the identity

γ =
∑
j∈I

ij∗
i∗j (γ )

cT
top(NFj

X)
,

where, for all j ∈ I , the map ij is the inclusion Fj → X, and NFj
X is the normal

bundle of Fj in X.

In other words, Theorem 2.9 gives an explicit formula for decomposing every
class γ in AT∗ (X) in terms of the pushforwards of the restrictions of γ to the
subvarieties Fj up to dividing by invertible elements in Q⊗ A∗

T (Fj ).

3. The Space of Hypersurfaces

3.1. Resolution of the Degeneracy Locus

Let Wd := Symd(E∨), and let �d be the degeneracy locus of singular d-forms.
Let N := dimk Wd = (

n+d−1
d

)
. We point out that, to simplify the notation, we

denote by Wd the space Wn,d (see the Introduction) with the implicit assumption
that E is the standard representation of GLn. We fix a set of coordinates

{av}v∈Nn s.t. |v|=d ,

where av represents the coefficient of the monomial Xv , and X = [X0, . . . ,Xn−1]
is a coordinate system for P(E).

Define Z := P(�d) ⊂ P(Wd) and consider the universal hypersurface U ⊂
P(Wd) × P(E). We have the following equivariant projections:

U ⊂ P(Wd) × P(E)

π1

pr
P(E)

P(Wd)
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The hypersurface U is given by the bihomogeneous equation of bidegree (1, d)

F (X) :=
∑

v∈Nn(d)

avX
v,

where X = [X0, . . . ,Xn−1] is a coordinate system for P(E).
In P(Wd) × P(E), we also define the subvariety Z̃ given by equations

{FXi
(X)}i=0,...,n−1 where FXi

(X) is the partial derivative of the polynomial F(X)

with respect to the variable Xi . Notice that the restriction morphism Z̃
π1−→ Z is

generically 1 : 1, since the generic singular hypersurface has exactly one nodal
point. An easy dimensional argument shows that Z̃ is a complete intersection
subvariety.

Now, with abuse of notation, we call i both inclusion maps Z̃ → P(Wd)×P(E)

and Z → P(Wd). Moreover, we define hd := π∗
1 (hd) and t := pr∗(t), where t is

the hyperplane class of OP(E)(1).
We would like to write explicit generators for the ideal IZ := i∗(A∗

GLn
(Z)) in

terms of c1, . . . , cn, and hd . As a preliminary step, we determine generators for the
ideal IZ̃ := π1∗i∗(A∗

GLn
(Z̃)) (Section 4). More precisely, we have the inclusion

IZ̃ ⊆ IZ . In the case of quadrics (d = 2) or effective divisors of the projective line
(n = 2), the equality IZ̃ = IZ holds (see Theorem 4.7). However, this is not true
in general, as we show by determining IZ in the case of plane cubics (Section 5).

3.2. Equivariant Classes of the Loci of Reducible Hypersurfaces

On P(Wd), we have the natural action of GLn

(A · [f ])(X) = [f ](A−1X).

Let hd be the hyperplane class associated with OP(Wd)(1). We have the splitting
exact sequence

0 (P[d](x)) A∗
GLn

[x] evhd

A∗
GLn

(P(Wd))

ψ

0, (2)

where ψ is as in Definition 2.4, and P[d](x) is the polynomial

P[d](x) :=
∏

μ∈Pd

Pμ(x) =
∏

v∈Nn(d)

(x + v · l).

Our next goal is to determine an explicit formula (see Theorem 3.4) for the
equivariant classes of the loci of different types of reducible hypersurfaces. To
this end, we need to introduce some notation.

Let μ ∈ Pd be an (unordered) partition of d . We will think of μ either as a
multiset or as an s-tuple (k1, . . . , ks), where

• s is the number of elements of the multiset μ,
• k1 ≤ k2 ≤ · · · ≤ ks , and
• k1 + · · · + ks = d .

For every natural number q , we define μ(q) to be the frequency of q in μ.
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Definition 3.1. For every μ ∈ Pd , we denote by δμ the equivariant class of the
locus of reducible hypersurfaces of degree d that are unions over the integers
q = 1, . . . , d of μ(q) hypersurfaces of degree q .

We also define the variety

Wμ :=
s∏

j=1

P(Wkj
) =

d∏
q=1

P(Wq)μ(q)

and the product map

πμ : Wμ → P(Wd),

(f1, . . . , fs) �→ f1f2 . . . fs .

It is worth noticing that the degree deg(πμ) of the product map πμ is
∏d

q=1 μ(q)!.
Remark 3.2. For every positive integer d , the irreducible components of the fixed
locus for the action of T on P(Wd) are the points {Qv}v∈Nn(d), where, for every
v ∈ Nn(d), the only coordinate of Qv different from 0 is av . Each point Qv is
the complete intersection of the coordinate hyperplanes aw = 0 with w �= v. By
Lemma 2.8 we obtain

[Qv] = P[d](x)

x + v · l
∣∣∣∣
x=hd

=
∏

w∈Nn(d) s.t. w �=v

(hd + v · l).

Lemma 3.3. Let v0 ∈Nn(d). We have the following identity:

cT
top(TQv0

P(Wd)) =
∏

v∈Nn(d) s.t. v �=v0

(v − v0) · l.

Proof. Since the coordinate av0 of Qv0 is different from zero, we can reduce our
computations to local coordinates{

av := av

av0

}
v∈Nn(d) s.t. v �=v0

.

Such coordinates are the same as the coordinates of the tangent space at Qv0 .
Therefore, the action of T on TQv0

P(Wd) is

t · (av)v∈Nn(d) s.t. v �=v0 = (λv0−v(t)av)v∈Nn(d) s.t. v �=v0,

where λ = (λ1, . . . , λn) is the vector of standard characters for the action of T

on E. Consequently, according to our notation, we get

cT
top(TQv0

P(Wd)) =
∏

v∈Nn(d) s.t. v �=v0

(v − v0) · l.
�

We are now ready to prove an explicit formula for the classes δμ. We would like
to point out that the following result holds in general for hypersurfaces of any
dimension and degree.
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Theorem 3.4. We have the following identity:

δμ = 1

deg(πμ)

∑
(v1,...,vs )∈Nn(k1)×···×Nn(ks )

∏
v∈Nn(d) s.t. v �=v1+···+vs

(hd + v · l)∏s
j=1(

∏
v∈Nn(kj ) s.t. v �=vj

(v − vj ) · l) .
(3)

Proof. Consider the map πμ. Since πμ∗(1) = deg(πμ)δμ and the ring
A∗

GLn
(P(Wd)) is torsion free, we have

δμ = 1

deg(πμ)
πμ∗(1). (4)

Now, to determine πμ∗(1), we apply Theorem 2.9. First of all, notice that the
locus of fixed points of Wμ is the disjoint union of the points

{(Qv1 , . . . ,Qvs )}(v1,...,vs )∈Nn(k1)×···×Nn(ks ).

Consequently, by applying Theorem 2.9 we get

1 =
∑

(v1,...,vs )∈Nn(k1)×···×Nn(ks )

[(Qv1 , . . . ,Qvs )]∏s
j=1 cT

top(TQvj
P(Wkj

))
.

Now, by applying Lemma 3.3 we have

1 =
∑

(v1,...,vs )∈Nn(k1)×···×Nn(ks)

[(Qv1 , . . . ,Qvs )]∏s
j=1(

∏
v∈Nn(kj ) s.t. v �=vj

(v − vj ) · l) .

Next, we evaluate πμ∗ on both sides, and observing that πμ(Qv1 , . . . ,Qvs ) =
Qv1+···+vs , we get

πμ∗(1) =
∑

(v1,...,vs )∈Nn(k1)×···×Nn(ks )

[Qv1+···+vs ]∏s
j=1(

∏
v∈Nn(kj ) s.t. v �=vj

(v − vj ) · l) .

Finally, applying Remark 3.2 combined with equation (4), we get formula (3).
�

4. The Ideal IZ̃

The main goal of this section is to determine a set of generators for the ideal IZ̃

(see Section 3 for basic definitions).

Proposition 4.1. We have an exact sequence of A∗
GLn

-modules

0 (P[d](x),P{1}(−y))

A∗
GLn

[x, y] ev(hd ,t)
A∗

GLn
(P(Wd) × P(E))

ψ

0,

where ev(hd ,t) is the evaluation of x (resp. y) in hd (resp. t), and ψ is a splitting
morphism.
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Proof. From [Ful, Example 8.3.7] and [Ed-Gr1, Section 2.5], we have an exterior
product ring homomorphism

A∗
GLn

(X) ⊗ A∗
GLn

(Y ) → A∗
GLn

(X × Y)

whenever X and Y are nonsingular varieties, and this homomorphism is an iso-
morphism if one of the two nonsingular varieties is a projective space. Con-
sequently, A∗

GLn
(P(Wd) × P(E)) is an A∗

GLn
-module freely generated by the

set {hi
d tj | 0 ≤ i < N,0 ≤ j < n}. To define the splitting morphism ψ , let

γ ∈ A∗
GLn

(P(Wd) × P(E)). There is a unique polynomial Q(x,y) ∈ A∗
GLn

[x, y]
whose degree in x (resp. y) is less than N (resp. n) and Q(hd, t) = γ . We de-
fine ψ(γ ) := Q(x,y). It is again straightforward to prove that ψ is a splitting
morphism. �

Proposition 4.2. The ideal i∗(A∗
GLn

(Z̃)) is generated by the class [Z̃]GLn .

Proof. Consider the following commutative diagram:

Z̃
i

P(Wd) × P(E)

pr

P(E)

First of all, notice that the subscheme Z̃ is equivariant for the action of GLn.
Moreover, Z̃ is a complete intersection of n equations, which are linear in the Wd

coordinates, and such equations remain linearly independent on each fiber of pr.
Therefore, we have that Z̃ is the projectivization of an equivariant subbundle of
Wd × P(E) over P(E). Consequently, A∗

GLn
(Z̃) is generated by the set {i∗(hj ) |

0 ≤ j < N} as A∗
GLn

(P(E))-module. This means that i∗(A∗
GLn

(Z̃)) is generated

by the set {hj [Z̃]GLn | 0 ≤ j < N} as a module and by [Z̃]GLn as an ideal. �

Proposition 4.3. We have

[Z̃]GLn = P{1}(h + (d − 1)t).

Proof. Since GLn is special, by using Lemma 2.1, part I), we may perform our
computations by restricting ourselves to A∗

T .
Recall that Z̃ is the complete intersection of hyperplanes given by polynomials

FXi
(X) =

∑
v∈Nn(d)

viavX
v−̂i

for i = 0, . . . , n − 1, where î is the vector having 1 as the ith entry and 0 every-
where else. We will call these hyperplanes Fi . From Lemma 2.8 we have

[Fi]T = h + (d − 1)t + li

since λ−1
i Fi = (λ1, . . . , λn)·Fi . We conclude by noticing that [Z̃]T = ∏n−1

i=0 [Fi]T .
�
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Lemma 4.4. Let γ be a class in A∗
GLn

(P(Wd) × P(E)), and let Q(x,y) =∑n−1
i=0 gi(x)yi be ψ(γ ) as defined in Theorem 4.1. Then we have the identity

π1∗(γ ) = gn−1(hd).

Proof. Since π1∗ : A∗
GLn

(P(Wd) × P(E)) → A∗
GLn

(P(Wd)) is a homomorphism

of A∗
GLn

-modules, it suffices to determine π1∗(hi
d tj ) with i = 0, . . . , n − 1 and

j = 0, . . . , n− 1. So we are reduced to the nonequivariant case. If j < n− 1, then
we would have a positive dimensional fiber, and thus π1∗(hi

d tj ) = 0. On the other
hand, π1∗(hi

d tn−1) = hi
d . �

Theorem 4.5. Let Q[d](x, y) = ∑n
i=1 αi(x)yn−i be the polynomial ψ([Z̃]). We

have

IZ̃ = (α1(hd), . . . , αn(hd)).

Proof. As a preliminary remark, notice that we have the identity

Q[d](x, y) := P{1}(x + (d − 1)y) − (−(d − 1))nP{1}(−y).

Let J be the ideal in A∗
GLn

(P(Wd)) generated by the classes αi(hd). First, we
prove the inclusion J ⊆ IZ̃ . It suffices to show that, for all i = 1, . . . , n, we have
αi(hd) ∈ IZ̃ . We apply induction on i. From Lemma 4.4 we have that α1(hd) =
π1∗([Z̃]), and therefore α1(hd) ∈ IZ̃ . Now, for every i such that 1 < i ≤ n, define
the class Bi := [Z̃] · t i−1, which clearly belongs to the ideal generated by [Z̃], and
consequently π1∗(Bi) ∈ IZ̃ . We already know that

Bi = Q[d](hd, t) · t i−1 =
n∑

j=1

αj (hd)tn+i−1−j .

We now split Bi into the sum of three classes:

Bi =
i−1∑
j=1

αj (hd)tn+i−1−j + αi(hd)tn−1 +
n∑

j=i+1

αj (hd)tn+i−1−j

=: βi + αi(hd)tn−1 + ρi.

Since π1∗ is a homomorphism of A∗
GLn

(P(Wd))-modules, we have that the class
π1∗(βi) is in the ideal generated by the classes {αj (hd)}j=1,...,i−1, which, by in-
ductive hypothesis, is contained in IZ̃ . Moreover, by following the same argument
of Lemma 4.4 we have π1∗(αi(hd)tn−1) = αi(hd) and π1∗(ρi) = 0. In conclusion,
we have

αi(hd) = π1∗(Bi) − π1∗(βi) ∈ IZ̃.

Therefore, the classes αi(hd) ∈ IZ̃ for all i = 1, . . . , n. Consequently, we have
J ⊆ IZ̃ .

On the other hand, let γ be a class in IZ̃ . From Proposition 4.2 we have

γ = π1∗(B(hd, t) · Q[d](hd, t))
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for some polynomial B(x, y) ∈ A∗
GLn

[x, y]. Now, it is straightforward to check
that every t-coefficient of ψ(B(hd, t) · Q[d](hd, t)) is in the ideal generated by
the set {α1(hd), . . . , αn(hd)}. Therefore we have that γ is in J and IZ̃ ⊆ J . �

Remark 4.6. Throughout this paper, we are interested in integral coefficients.
However, it is worth noticing that, since the map Z̃ → Z is birational, the push-
forward morphism

π1∗ : A∗
GLn

(Z̃) ⊗Q → A∗
GLn

(Z) ⊗Q

is surjective. Consequently, we have

i∗(A∗
GLn

(Z)) ⊗Q = (α1(hd), . . . , αn(hd)).

As we already mentioned, the ideal IZ̃ is not, in general, the whole ideal IZ .
However, the ideal IZ has been already determined for quadrics (see [Ed-Fu1] and
[Pan]) and effective divisors of the projective line (see [Ed-Fu2]). More precisely,
we have the following result.

Theorem 4.7. If d = 2 or n = 2, then IZ̃ = IZ .

Proof. If d = 2, then the classes αi(h2) of IZ̃ are exactly the classes of degree i

of Q[d](h2,1), and they are equal to the classes αi of [Ed-Fu1, Proposition 13].
If n = 2, then α1(hd) = 2(d − 1)hd − d(d − 1)c1 and α2(hd) = h2

d − c1hd −
d(d − 2)c2, and these correspond to the classes α1,0 and α1,1 of [Ed-Fu2,
Lemma 13], which by [Ed-Fu2, Theorem 19] generate the ideal IZ . �

We conclude this section by showing that the polynomial P[d](x) is in the ideal
(α1(x), . . . , αn(x)).

Proposition 4.8. We have P[d](x) ∈ (α1(x), . . . , αn(x)).

Proof. If d = 2, then we have the statement implicitly from [Ed-Fu1, Proposi-
tion 13].

If d > 2, then we consider the following identity:

P{d}(x) · P{d−1,1}(x) =
n∏

i=1

Q[d](x, li),

where the polynomial Q[d](x, y) is defined as in Theorem 4.5. Since the poly-
nomial P[d](x) is a multiple of P{d}(x) · P{d−1,1}(x), we have that P[d](x) is a
multiple of

∏n
i=1 Q[d](x, li). Thus, it suffices to show that, in A∗

GLn
[x], we have

n∏
i=1

Q[d](x, li) ∈ (α1(x), . . . , αn(x)).

This is clearly true in A∗
T [x], and we conclude by using Lemma 2.1, part II). �
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5. The Case of Plane Cubics

We consider now the particular case of plane cubics, namely the case n = 3 and
d = 3. In particular, we will give the following minimal set of generators for the
ideal IZ :

IZ = (α1, α2, α3, δ2), (5)

where, for simplicity, αi := αi(h3), and δ2 is the class of the locus of cubics that
are the unions of a line and a conic. This is also the first case where IZ̃ �= IZ .

First of all, we write explicitly the classes αi by using Theorem 4.5:

α1 = 12(h3 − c1),

α2 = 6h2
3 − 4h3c1 − 6c2,

α3 = h3
3 − h2

3c1 + h3c2 − 9c3.

(6)

5.1. Stratification

Definition 5.1. We consider the following loci in Z:

• Z1 is the locus of reduced and irreducible singular cubics (with exactly one
singular point);

• Z2 is the locus of cubics that are unions of a smooth conic and a line with two
distinct intersection points;

• Z3 is the union of two components:
Z(3,1) is the locus of cubics that are unions of a smooth conic and a line
tangent to the conic;
Z(3,2) is the locus of cubics that are unions of three distinct lines with three
distinct intersection points;

• Z4 is the locus of cubics that are unions of three distinct lines passing through
the same point;

• Z5 is the locus of cubics that are unions of a double line and a single distinct
line;

• Z7 is the locus of triple lines.

Remark 5.2. All Zi are smooth and locally closed in P(W3). Furthermore, we
have that Z is the closure of Z1 in P(W3). We also observe that Z(3,1) ∩ Z(3,2) =
Z4. Moreover, we have chosen the indexes in such a way that Zi has codimension
i in P(W3). Notice that there is a gap in codimension 6. Finally, we observe that
all these loci are invariant for the action of GL3.

Such a stratification of the singular locus Z is equipped with a natural partial
ordering given by

Zi ≤ Zj ←→ Zi ⊆ Zj .
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So we can represent such a stratification with a digraph. On the left column,
we write the codimension of the corresponding strata in P(W3).

Codimension Locus

1 Z1

2 Z2

3 Z(3,1) Z(3,2)

4 Z4

5 Z5

6

7 Z7

Definition 5.3. We define the topological classes corresponding to the above
loci: δi := [Zi].
Remark 5.4. We have [Z] = δ1 = α1.

Definition 5.5. We define the following maps (see Section 3):

• π2 := π{1,2} : P(W1) × P(W2) → P(W3), where (f, g) �→ f · g;
• π3 := π{1,1,1} : P(W1)

×3 → P(W3), where (f, g,h) �→ f · g · h.

Recall that we have already defined the map π1 : Z̃ → Z (see Section 3). We
notice that, for i = 1,2, we have Im(πi) = Zi and Im(π3) = Z(3,2). Also, all
these maps are invariant for the action of GL3. Moreover, π1 and π2 are birational
to their images.

5.2. Basic Principle of Proof

The proof of identity (5) is split into several steps. We rely on the following basic
principle. Let

Yn ⊂ Yn−1 ⊂ · · · ⊂ Y1 ⊂ X
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be a sequence of closed G-subspaces of a smooth G-space X ordered by in-
clusion, and let I be an ideal in A∗

G(X). We call i all the closed inclusions
Yk → X and Yk \ Yk+1 → X \ Yk+1, whereas we denote by j the open inclusions
X \ Yk → X.

Then, to show the inclusion i∗(AG∗ (Y1)) ⊂ I , it suffices to show that
i∗(AG∗ (Yn)) ⊂ I and that, for all k = 1, . . . , n − 1, we have i∗(AG∗ (Yk \ Yk+1)) ⊂
j∗(I ) ⊂ A∗

G(X \ Yk+1).

In our case, we first show the inclusion i∗(AGL3∗ (Z(3,1))) ⊆ IZ̃ . This

also implies that i∗(AGL3∗ (Z4)) ⊆ IZ̃ . Then we can prove the inclusion

i∗(AGL3∗ (Z(3,2))) ⊆ IZ̃ by restricting ourselves to the open set P(W3) \ Z4.

At this point, we have that i∗(AGL3∗ (Z3)) ⊆ IZ̃ , and we can show the inclu-

sion i∗(AGL3∗ (Z2)) ⊆ (α1, α2, α3, δ2) by restricting ourselves to the open set
P(W3) \ Z3, which will conclude the proof of identity (5).

5.3. The Ideal i∗(AGL3∗ (Z(3,1))) Is Contained in IZ̃

Proposition 5.6. Let us define ∂Z4 := Z4 \ Z4. We have the inclusion

i∗(AGL3∗ (∂Z4)) ⊆ IZ̃.

Proof. The algebraic set ∂Z4 can be stratified as Z5 � Z7.
Notice that ∂Z4 = Z5. We also define Z̃5 = π−1

1 (Z5) and Z̃7 = π−1
1 (Z7).

We refer to the following commutative diagram of GL3-equivariant maps:

Z̃7
i

π1

Z̃5
i

π1

Z̃

π1

Z7
i

Z5
i

P(W3)

Because of commutativity of this diagram and the basic principle explained
in Section 5.2, it suffices to prove that the homomorphisms π1∗ : A∗

GL3(Z̃7) →
A∗

GL3(Z7) and π1∗ : A∗
GL3(Z̃5) → A∗

GL3(Z5) are surjective. Consider the follow-
ing commutative diagram:

Ṽ
ψ̃

π1

Z̃7

π1

P(W1)
ψ

Z7

where Ṽ is the incidence variety if P(W1) × P(E), and the map ψ (resp. ψ̃ )
sends [l] (resp. ([l],P )) to [l3] (resp. ([l3],P )). In particular, π1 : Ṽ → P(W1) is
a projective bundle, and therefore π1∗ : A∗

GL3
(Ṽ ) → A∗

GL3
(P(W1)) is surjective.

Moreover, the maps ψ and ψ̃ are geometrically bijective, and a straightforward
computation shows that their induced Jacobian maps are injective (here we use
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the fact that char(k) > 3). Therefore, the maps ψ and ψ̃ are isomorphisms, and
consequently π1∗ : A∗

GL3(Z̃7) → A∗
GL3(Z7) is surjective.

To show that π1∗ : A∗
GL3(Z̃5) → A∗

GL3(Z5) is surjective, we apply a similar
argument to the diagram

Ṽ
ψ̃

π1

Z̃5

π1

(P(W1) × P(W1) \ D)
ψ

Z5

where D is the diagonal, Ṽ is the incidence variety (with respect to the first com-
ponent) in (P(W1) ×P(W1) \ D) ×P(E), and the map ψ (resp. ψ̃ ) sends [l], [w]
(resp. ([l], [w],P )) to [l2w] (resp. ([l2w],P )). �

Proposition 5.7. The restriction map

Ṽ := Z̃|Z(3,1)∪Z4

π1−→ Z(3,1) ∪ Z4

is an equivariant Chow envelope.

Proof. Recall that an equivariant Chow envelope of a G-scheme X is a proper
G-equivariant morphism f : X̃ → X such that, for every G-invariant subvariety
W ⊂ X, there is a G-invariant subvariety W̃ ⊂ f −1(W) whose restriction mor-
phism f : W̃ → W is birational.

We already know that the map

Ṽ := Z̃|Z(3,1)∪Z4

π1−→ Z(3,1) ∪ Z4

is proper and GL3-equivariant.
It suffices to show the statement for each of the two components Z(3,1) and Z4.

Since the proofs are very similar, we only show the case of Z(3,1).
Let W be a GL3-invariant subvariety in Z(3,1). Let ω be the generic point

of W . The point ω is represented by a cubic form f in K[X0,X1,X2] for some
extension k ⊂ K . By definition f is the product of a linear and a quadratic form
with only one singular point. Therefore there is a unique K-valued point ω̃ in
Z̃(3,1) mapping to ω. To conclude, define W̃ := ω̃; because of the uniqueness of
the rational point, W̃ is in fact GL3-invariant. �

Corollary 5.8. We have the inclusion

i∗(AGL3∗ (Z(3,1))) ⊆ IZ̃.

Proof. Consider the following commutative diagram of proper maps:

Z̃|Z(3,1)

i

π1

Z̃

π1

Z(3,1)
i

P(W3)
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Since by Proposition 5.7 the map π1 : Ṽ → Z(3,1) ∪ Z4 is an equivariant Chow
envelope, we have from [Ed-Gr1, Lemma 3] and [Ful, Lemma 18.3(6)] that the
pushforward π1∗ : AGL3∗ (Ṽ ) → A

GL3∗ (Z(3,1) ∪ Z4) is surjective. By the commuta-
tivity of the diagram we have

i∗(AGL3∗ (Z(3,1) ∪ Z4)) ⊆ IZ̃|Z(3,1)∪Z4 .

We conclude by recalling that i∗(AGL3∗ (∂Z4)) ⊆ IZ̃ by Proposition 5.6 and by
using the basic principle of Section 5.2. �

5.4. The Ideal i∗(AGL3∗ (Z(3,2))) Is Contained in IZ̃

Let us consider the product map

P(W1)
×3 π3−→ Z(3,2).

We call ξ1, ξ2, and ξ3 the three hyperplane classes corresponding to the pullback
of hyperplane classes through the three different projections from P(W1)

×3 to
P(W1). Arguing as in Proposition 4.1, we have a splitting exact sequence of A∗

GL3
-

modules

0 (P{1}(y1),P{1}(y2),P{1}(y3))

A∗
GL3

[y1, y2, y3] ev(ξ1,ξ2,ξ3)
A∗

GL3
(P(W1)

×3)

ψ

0.

To prove the inclusion i∗(AGL3∗ (Z(3,2))) ⊆ IZ̃ , using the explicit localization
theorem (Theorem 2.9), we first show that i∗(δ(3,2)) ∈ IZ̃ (where we recall that
δ(3,2) := [Z(3,2)]).
Proposition 5.9. We have the identity

δ(3,2) = ((h3 − c1)
2 + c2)α1 − c1α2 + 3α3. (7)

Proof. We refer to Section 3. Since δ(3,2) = δ{1,1,1}, we evaluate formula (3) for
μ = {1,1,1} and d = 3.

As preliminary computations, we get

cT
top(TQ(1,0,0)

P(W1)) = (l2 − l1)(l3 − l1),

cT
top(TQ(0,1,0)

P(W1)) = (l1 − l2)(l3 − l2),

cT
top(TQ(0,0,1)

P(W1)) = (l1 − l3)(l2 − l3).

Now, straightforward computations show the relation

δ(3,2) = 15h3
3 − 45c1h

2
3 + (40c2

1 + 15c2)h3 − 12c3
1 − 6c1c2 − 27c3

and, consequently, identity (7). �

Definition 5.10. Let X be a G-space, and let � be a finite group acting (prop-
erly) on X such that the action of � commutes with the action of G. We say
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that two classes γ1, γ2 ∈ A∗
G(X) are �-equivalent if, for some f ∈ �, we have

f∗(γ1) = γ2.

Proposition 5.11. We have the inclusion

π3∗(AGL3∗ (P(W1)
×3)) ⊂ IZ̃.

Proof. The free A∗
GL3

-module ψ(A∗
GL3

(P(W1)
×3)) is generated by monomials

y
v1
1 y

v2
2 y

v3
3 such that every nonnegative integer vi is less than 3. Therefore, it suf-

fices to consider the pushforward of the classes ξ
v1
1 ξ

v2
2 ξ

v3
3 where each vi is either

0, 1, or 2. Moreover, π∗
3 (h3) = ξ1 + ξ2 + ξ3, and applying the push–pull formula,

we have that π3∗(AGL3∗ (P(W1)
×3)) is generated by the classes π3∗(ξv2

1 ξ
v2
2 ). Now,

we notice that the morphism π3 is S3-equivariant, where the action on P(W1)
×3

is permuting the three components, and the action on Z(3,2) is trivial. Therefore,
for every f ∈ S3, we have the commutative diagram

P(W1)
×3 f

π3

P(W1)
×3

π3

Z(3,2)

This means, in particular, that if γ := ξ
v1
1 ξ

v2
2 and γ ′ := ξ

v′
1

1 ξ
v′

2
2 are S3-equivalent,

then π3(γ ) = π3(γ
′). Consequently, we can see that π3∗(AGL3∗ (P(W1)

×3)) is gen-
erated by the classes π3∗(ξv2

1 ξ
v2
2 ) with 2 ≥ v1 ≥ v2 ≥ 0. We consider each of the

six cases separately.

• π3∗(1) ∈ IZ̃ .
Since π3∗(1) = 6δ(3,2), this case is covered in Proposition 5.9.

• π3∗(ξ1) ∈ IZ̃ .
Consider the identities π∗

3 (h3) = ξ1 + ξ2 + ξ3 and π3∗(ξ1) = π3∗(ξ2) =
π3∗(ξ3). By applying the push–pull formula we get π3∗(ξ1) = 2h3δ(3,2).

• π3∗(ξ1ξ2) ∈ IZ̃ .
By Lemma 2.1 we can restrict our computations to A∗

T . Let us define S1 ⊂
P(W1)

×3 as the locus where the first two lines pass through [1,0,0]. We apply
Lemma 2.8 to get

[S1] = (ξ1 + l1)(ξ2 + l1) = ξ1ξ2 + l1(ξ1 + ξ2) + l2
1 ∈ A∗

T (P(W1)
×3).

We have the following commutative diagram:

P(W3) × P(E)

π1

P(W1)
×3 π3

π̃3

P(W3)

(8)

where π̃3 maps (f, g,h) to (fgh, [1,0,0]). By definition we have that
π̃3(S1) ⊂ Z̃; therefore, since the diagram is commutative, we have π3∗([S1]) ∈
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IZ̃A∗
T (P(W3)). More explicitly, we have

π3∗(ξ1ξ2) + 2l1π3∗(ξ1) + l2
1δ(3,2) ∈ IZ̃A∗

T (P(W3)).

Therefore π3∗(ξ1ξ2) ∈ IZ̃A∗
T (P(W3)). From the argument of Remark 2.2 we

have π3∗(ξ1ξ2) ∈ IZ̃ .
• π3∗(ξ2

1 ) ∈ IZ̃ .
Consider the identities

π∗
3 (h2

3) = ξ2
1 + ξ2

2 + ξ2
3 + 2(ξ1ξ2 + ξ1ξ3 + ξ2ξ3),

π3∗(ξ2
1 ) = π3∗(ξ2

2 ) = π3∗(ξ2
3 ),

π3∗(ξ1ξ2) = π3∗(ξ1ξ3) = π3∗(ξ2ξ3).

By applying the push–pull formula we get π3∗(ξ2
1 ) = 2h2

3δ(3,2) − 2π3∗(ξ1ξ2).
• π3∗(ξ2

1 ξ2) ∈ IZ̃ .
We argue exactly as in the proof of π3∗(ξ1ξ2) ∈ IZ̃ . In this case, we choose

S1 to be the locus where the first line passes through [1,0,0] and [0,1,0],
whereas the second line passes through [1,0,0]. We get

[S1] = (ξ1 + l1)(ξ1 + l2)(ξ2 + l1).

Again, the map π3 factors through π̃3, and a simple computation shows that
π3∗(ξ2

1 ξ2) ∈ IZ̃ .
• π3∗(ξ2

1 ξ2
2 ) ∈ IZ̃ .

We argue again as in the proof of π3∗(ξ1ξ2) ∈ IZ̃ . In this case, we choose S1
to be the locus where the first line passes through [1,0,0] and [0,1,0], whereas
the second line passes through [1,0,0] and [0,0,1]. We get

[S1] = (ξ1 + l1)(ξ1 + l2)(ξ2 + l1)(ξ2 + l3).

As before, the map π3 factors through π̃3, and a simple computation shows that
π3∗(ξ2

1 ξ2
2 ) ∈ IZ̃ . �

Our next goal is to prove Corollary 5.15. Since we already know that
i∗(AGL3∗ (Z4)) ⊂ A∗

GL3
(P(W3)) is contained in IZ̃ , we can restrict ourselves to

classes in A
GL3∗ (Z(3,2)) up to classes in i∗(AGL3∗ (Z4)) ⊂ A∗

GL3
(Z(3,2)).

We will need the following fact: for any class γ ∈ A
GL3∗ (Z(3,2)), there ex-

ist two classes γ ′ ∈ i∗AGL3∗ (Z4) ⊂ A
GL3∗ (Z(3,2)) and γ ∈ A∗

GL3
(P(W1)

×3)S3 such
that 6(γ − γ ′) = π3∗γ . This is a particular case of the following lemma.

Lemma 5.12. Let G be an affine algebraic group, and let � be a finite group.
Suppose that the following conditions are satisfied:

(1) G and � act on an algebraic variety X, and the two actions commute.
(2) G also acts on an algebraic variety Y , and f : X → Y is a proper G-

equivariant and �-invariant morphism.
(3) V ⊆ Y is an open G-invariant subscheme such that if U = f −1(V ), and the

restriction f |U : U → V is finite and flat with constant degree d .
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Set Z = Y \ V and call i : Z → Y the embedding.
Then, for any class γ ∈ AG∗ (Y ), we can find γ ′ ∈ i∗(AG∗ (Z)) and γ ∈ AG∗ (X)�

such that
d(γ − γ ′) = f∗γ .

Proof. Let E be a representation of G, and let D ⊂ E be an equivariant open
subset of E such that G acts freely on D. Replacing X with X×D

G
, and the same

for Y and V , and assuming that the codimension of E \ D in E is sufficiently
large, we are reduced to the nonequivariant case: in other words, we can assume
that G is trivial.

Let γ be a class in Ak(Y ). Write

γ =
∑

i

ai[Ai] +
∑
j

bj [Bj ],

where ai and bj are integers, Ai are subvarieties of Y not contained in Z, whereas
Bj are subvarieties of Z. We set γ ′ = ∑

j bj [Bj ], so that γ − γ ′ = ∑
i ai[Ai].

For each i, denote by A′
i the scheme-theoretic inverse image of Ai ∩ V in

U and by Ai the scheme-theoretic closure of A′
i in X. Each Ai is a purely k-

dimensional �-invariant subvariety of X. Set γ = ∑
i ai[Ai]. These γ ′ and γ

satisfy the conditions of the statement. �
In the proof of Proposition 5.14, we will also use the following lemma.

Lemma 5.13. Consider the following diagram:

P(W1)
×3

π3

Z(3,2)
i

P(W3)

Let γ be a class in A
GL3∗ (Z(3,2)), and let γ be a class in A∗

GL3
(P(W1)

×3)S3 such
that 6i∗(γ ) = π3∗(γ ). Then π3∗(γ ) ∈ 3IZ̃ .

Proof. First of all, we show that if the degree of γ ∈ A∗
GL3

(P(W1)
×3)S3 is less

than 5 in ξ1, ξ2, ξ3, then π3∗(γ ) ∈ 3IZ̃ . Notice that (A∗
GL3

(P(W1)
×3))S3 is gener-

ated by the symmetrization of the classes ξv := ξ
v1
1 ξ

v2
2 ξ

v3
3 for some integral vector

v = (v1, v2, v3) such that 2 ≥ v1 ≥ v2 ≥ v3 ≥ 0. Let ξ̂ v be the symmetrization of
ξv . Arguing as in the proof of Proposition 5.11, we get

π3∗(ξ̂ v) = #orb(ξv)π3∗(ξv) ∈ #orb(ξv)IZ̃,

where #orb(ξv) is the cardinality of the S3-orbit of ξv . If the entries of v are all
different (namely the case v = (2,1,0)), then #orb(ξv) = 6. On the other hand, if
two entries of v are equal and one different from the other two, then #orb(ξv) = 3.
Therefore we are reduced to check the two cases π3∗(1) and π3∗(ξ1ξ2ξ3).

• π3∗(1) ∈ 3IZ̃ .
Again, since π3∗(1) = 6δ(3,2), this case is covered in Proposition 5.9.
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• π3∗(ξ1ξ2ξ3) ∈ 3IZ̃ .
Using Lemma 2.1, we can restrict our computations to A∗

T . Let us define
S1 ⊂ P(W1)

×3 as the locus where all three lines pass through [1,0,0]. We
apply Lemma 2.8 to get

[S1] = (ξ1 + l1)(ξ2 + l1)(ξ3 + l1)

= ξ1ξ2ξ3 + l1(ξ1ξ2 + ξ1ξ3 + ξ2ξ3) + l2
1(ξ1 + ξ2 + ξ3) + l3

1 .

Now, with reference to diagram (8), we have that the map π̃3 : S1 → Z̃ is
generically 6 : 1 on its image, and therefore π3∗[S1] = 6β where β is a class in
IZ̃ . Therefore we have

π3∗(ξ1ξ2ξ3) = 6β − l1π3∗(ξ1ξ2 + ξ1ξ3 + ξ2ξ3) − l2
1π3∗(ξ1 + ξ2 + ξ3) − l3

1δ(3,2),

and we know that the right-hand side is in 3IZ̃ .

Let us go back to prove Lemma 5.13. Since γ is a class in A∗
GL3

(P(W1)
×3)S3 ,

we can write
γ = aξ2

1 ξ2
2 ξ2

3 + μ,

where μ has degree at most 5 in ξ1, ξ2, ξ3, and a ∈ A∗
GL3

. Applying π3∗ to both
sides, we get

π3∗(γ ) = aπ3∗ξ2
1 ξ2

2 ξ2
3 + π3∗μ.

We already know that π3∗μ ∈ 3IZ̃ . On the other hand, by hypothesis we have
6i∗(γ ) = π3∗(γ ). Consequently, we must have that aπ3∗ξ2

1 ξ2
2 ξ2

3 ∈ (3). Now, since
the class π3∗ξ2

1 ξ2
2 ξ2

3 is the pushforward of a dimension 0 class, it must be a ho-
mogeneous class of degree 9 in A∗

GL3
(P(W4)). Moreover, in the nonequivariant

case, we have π3∗ξ2
1 ξ2

2 ξ2
3 = h9

3, and therefore, in the equivariant case, π3∗ξ2
1 ξ2

2 ξ2
3

can be written as a monic polynomial in h3 with coefficients in A∗
GL3

. Since

A∗
GL3

(P(W3)) is a free A∗
GL3

-module with basis 1, h3, . . . , h
9
3, we must have

a ∈ (3). On the other hand, we know already that π3∗ξ2
1 ξ2

2 ξ2
3 ∈ IZ̃ , and conse-

quently aπ3∗ξ2
1 ξ2

2 ξ2
3 ∈ 3IZ̃ and π3∗(γ ) ∈ 3IZ̃ . �

Proposition 5.14. Let γ be a class in A
GL3∗ (Z(3,2)). Then 2i∗(γ ) ∈ IZ̃ .

Proof. Let γ be a class in A
GL3∗ (Z(3,2)). As a consequence of Lemma 5.12, there

exist two classes γ ′ ∈ i∗AGL3∗ (Z4) ⊂ A
GL3∗ (Z(3,2)) and γ ∈ A∗

GL3
(P(W1)

×3)S3

such that
6i∗(γ ) = π3∗γ + 6i∗(γ ′) ∈ A∗

GL3
(P(W3)). (9)

Now, from Lemma 5.13 we have that π3∗γ is three times a class β in IZ̃ . On the
other hand, we already know that i∗(γ ′) ∈ IZ̃ . Since the ring A∗

GL3
(P(W3)) is an

integral domain, simplifying equation (9), we get

2i∗(γ ) = β + 2i∗(γ ′) ∈ IZ̃. �

Corollary 5.15. Let γ be a class in A
GL3∗ (Z(3,2)). Then i∗(γ ) ∈ IZ̃ .
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Proof. Let γ be a class in A
GL3∗ (Z(3,2)). Since the restriction map

Z̃|Z(3,2)

π1−→ Z(3,2)

is a finite covering of order 3, applying Lemma 5.12 (setting � to be the triv-
ial group), we get that 3i∗(γ ) is in the ideal of the alpha classes. Moreover, by
Proposition 5.14, 2i∗(γ ) ∈ IZ̃ . Therefore γ = 3i∗(γ ) − 2i∗(γ ) ∈ IZ̃ . �

5.5. The Ideal i∗(AGL3∗ (Z2)) Is Contained in (α1, α2, α3, δ2)

Let us consider the map

P(W1) × P(W2)
π2−→ Z2.

We denote by h1 and h2 two hyperplane classes corresponding to the pull–back
of hyperplane classes through the two projections:

P(W1) × P(W2)

pr1 pr2

P(W1) P(W2)

By arguing as in Proposition 4.1, we have a splitting exact sequence of A∗
GL3

-
modules

0 (P{1}(x),P[2](y))

A∗
GL3

[x, y] ev(h1,h2)
A∗

GL3
(P(W1) × P(W2))

ψ

0.

First, let us determine the class δ2.

Proposition 5.16. We have the identity

δ2 = 21h2
3 − 42h3c1 + 9c2 + 18c2

1. (10)

Moreover, the classes α1, α2, α3, δ2 are a set of independent generators for the
ideal (α1, α2, α3, δ2).

Proof. We refer to Section 3. Since δ2 = δ{1,2}, we evaluate formula (3) for μ =
{1,2} and d = 3.

By preliminary computations we get

cT
top(TQ(1,0,0)

P(W1)) = (l2 − l1)(l3 − l1),

cT
top(TQ(0,1,0)

P(W1)) = (l1 − l2)(l3 − l2),

cT
top(TQ(0,0,1)

P(W1)) = (l1 − l3)(l2 − l3),

cT
top(TQ(2,0,0)

P(W2)) = 4(l2 − l1)
2(l3 − l1)

2(l2 + l3 − 2l1),

cT
top(TQ(0,2,0)

P(W2)) = 4(l1 − l2)
2(l3 − l2)

2(l1 + l3 − 2l2),

cT
top(TQ(0,0,2)

P(W2)) = 4(l1 − l3)
2(l2 − l3)

2(l1 + l2 − 2l3),
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cT
top(TQ(1,1,0)

P(W2)) = −(l1 − l2)
2(2l3 − l1 − l2)(l3 − l1)(l3 − l2),

cT
top(TQ(1,0,1)

P(W2)) = −(l1 − l3)
2(2l2 − l1 − l3)(l2 − l1)(l2 − l3),

cT
top(TQ(0,1,1)

P(W2)) = −(l2 − l3)
2(2l1 − l2 − l3)(l1 − l2)(l1 − l3).

Straightforward computations show the desired identity

δ2 = 21h2
3 − 42h3c1 + 9c2 + 18c2

1.

Now, our goal is to prove that the classes α1, α2, α3, δ2 are a set of independent
generators for the ideal (α1, α2, α3, δ2).

Notice that it suffices to consider the homogeneous ideal (α1, α2, α3, δ2) up
to degree two. By working mod 2 we see that δ2 is not in the ideal (α1, α2). On
the other hand, considering the classes mod 3, we see that α2 is not in the ideal
(α1, δ2). �

Remark 5.17. From the identity

2δ2 = (5h3 − 3c1)α1 − 3α2

we have that 2δ2 ∈ IZ̃ .

Proposition 5.18. We have the inclusion

i∗(AGL3∗ (Z2)) ⊂ (α1, α2, α3, δ2).

Proof. Since we already know that i∗(AG∗ (Z3)) is contained in IZ̃ , we can restrict
ourselves to Z2. First, notice that the restriction map

U2 := P(W1) × P(W2)|Z2

π2−→ Z2

is an isomorphism, and therefore π2∗ is an isomorphism of A∗
GL3

-modules. Con-
sequently, it suffices to check that the pushforwards of classes in A∗

GL3
(U2) are

contained in the restriction of (α1, α2, α3, δ2) to Z2. Therefore, it suffices to show
that

π2∗(A∗
GL3

(P(W1) × P(W2))) ⊂ (α1, α2, α3, δ2).

We denote by h1 and h2 two hyperplane classes corresponding to the pullback
of hyperplane classes through two projections from P(W1)×P(W2) to P(W1) and
to P(W2). By arguing as in Proposition 4.1, we have a splitting exact sequence of
A∗

GL3
-modules

0 (P{1}(x),P[2](y))

A∗
GL3

[x, y] ev(h1,h2)
A∗

GL3
(P(W1) × P(W2))

ψ

0.

The free A∗
GL3

-module ψ(A∗
GL3

(P(W1) × P(W2))) is generated by the mono-
mial xv1yv2 such that 0 ≤ v1 ≤ 2 and 0 ≤ v2 ≤ 5. Moreover, π∗

2 (h3) = h1 + h2,
and by the push–pull formula it suffices to evaluate π2∗(h1) and π2∗(h2

1). We also
have the identity

π2∗(h1) + π2∗(h2) = h3δ2. (11)
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Now, consider the following commutative diagram:

P(W1) × P(W2) × P(E)
π̃2

σ2

P(W3) × P(E)

π1

P(W1) × P(W2)
π2

P(W3)

where σ2 is the natural projection, and π̃2 is the lifting of π2. We also have a
splitting exact sequence of A∗

GL3
-modules

0 (P[1](x),P[2](y),P[1](−z))

A∗
GL3

[x, y, z] ev(h1,h2,t)
A∗

GL3
(P(W1) × P(W2) × P(E))

ψ

0.

Let S2 ⊂ P(W1)×P(W2)×P(E) be the locus of points of intersection between
a linear form and a quadratic form. Then S2 is the complete intersection of the
hypersurfaces given by the equations∑

v∈N3(1)

avX
v = 0,

∑
v∈N3(2)

avX
v = 0.

By using Lemma 2.1 we can restrict our computations to A∗
T . We can therefore

apply Lemma 2.8 to get

[S2] = (h1 + t)(h2 + 2t).

On the other hand, we have the inclusion π̃2(S2) ⊂ Z̃. Let γ be any multiple of
the class [S2]. By commutativity of the diagram we have

π2∗(σ2∗(γ )) ∈ IZ̃.

Now, we choose γ := t · [S2]. A simple computation shows that

ψ(γ ) = (2x + y − 2c1)z
2 + (xy − 2c2)z − 2c3.

Arguing as in Lemma 4.4, we get that σ2∗(γ ) is the coefficient of z2 evaluated
at (h1, h2), that is, σ2∗(γ ) = 2h1 + h2 − 2c1. In particular, we get

2π2∗(h1) + π2∗(h2) − 2c1δ2 ∈ IZ̃. (12)

Combining identities (11) and (12), we get

π2∗(h1) ∈ (α1, α2, α3, δ2).

To determine π2∗(h2
1), we first apply the push–pull formula to get

π2∗(h2
1) + 2π2∗(h1h2) + π2∗(h2

2) = h2
3δ2. (13)

Arguing as before, we have

σ2∗(h2t[S2]) = 2h1h2 + h2
2 − 2c1h2,
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and, consequently,

2π2∗(h1h2) + π2∗(h2
2) − 2c1π2∗(h2) ∈ IZ̃.

Combining with identity (13), we get

π2∗(h2
1) ∈ (α1, α2, α3, δ2). �

5.6. The Ideal i∗(AGL3∗ (Z)) Is Contained in (α1, α2, α3, δ2)

Since we already know that i∗(AG∗ (Z2)) is contained in (α1, α2, α3, δ2), we can
restrict to Z1. Notice that Z1 has a stratification given by the locus of nodal cubics
Z′

1 and the locus of cubics with a cusp Z′′
1 . First of all, notice that the restriction

map

Z̃|Z′
1

π1−→ Z′
1

is an isomorphism, and therefore π1∗ is an isomorphism of A∗
GL3

-modules.
Let us now consider the restriction map:

Z̃|Z′′
1

π1−→ Z′′
1 .

A simple calculation shows that the length of the fibers is two, and since char(k) >

2, it follows that the map is a Chow envelope.
We then argue as in Corollary 5.8 to conclude the proof of the following theo-

rem.

Theorem 5.19. Assume that the base field k has the characteristic different from
2 and 3. Then

i∗(AGL3∗ (Z)) = (α1, α2, α3, δ2),

where
α1 = 12(h3 − c1),

α2 = 6h2
3 − 4h3c1 − 6c2,

α3 = h3
3 − h2

3c1 + h3c2 − 9c3,

δ2 = 21h2
3 − 42h3c1 + 9c2 + 18c2

1.

Main Theorem in the Introduction follows immediately.

Acknowledgments. We would like to thank the referees for useful comments
and suggestions.
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