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Correction Terms and the Nonorientable Slice Genus

Marco Golla & Marco Marengon

Abstract. By considering negative surgeries on a knot K in S3, we
derive a lower bound on the nonorientable slice genus γ4(K) in terms
of the signature σ(K) and the concordance invariants Vi(K); this
bound strengthens a previous bound given by Batson and coincides
with Ozsváth–Stipsicz–Szabó’s bound in terms of their υ invariant
for L-space knots and quasi-alternating knots. A curious feature of
our bound is superadditivity, implying, for instance, that the bound on
the stable nonorientable slice genus is sometimes better than that on
γ4(K).

1. Introduction

Given a knot K in S3, it is a very classical problem to determine the minimal
genus of an orientable surface F in B4 whose boundary is K . More recently, some
attention has been drawn to the case of nonorientable surfaces instead. Namely,
we can define γ4(K) as the minimal nonorientable genus among all such surfaces,
where the nonorientable genus of F is defined as b1(F ).

Batson and Ozsváth, Stipsicz, and Szabó gave lower bounds in terms of Hee-
gaard Floer data. More precisely, Batson [2] proved that

γ4(K) ≥ σ(K)

2
− d(S3

−1(K)), (1.1)

where d(S3
−1(K)) is the Heegaard Floer correction term (or d-invariant) of the 3-

manifold obtained as (−1)-surgery along K in its unique spinc structure (which is
hence omitted from the notation). Ozsváth, Stipsicz, and Szabó [17, Theorem 1.2]
proved that

γ4(K) ≥
∣∣∣∣σ(K)

2
− υ(K)

∣∣∣∣, (1.2)

where υ is a concordance invariant defined in terms of the Floer homology pack-
age.

The main goal of this paper is to provide a new lower bound that generalizes
that of Batson. It is phrased in terms of the concordance invariants {Vi(K)}i asso-
ciated with the mirror K of K ; these invariants were defined by Rasmussen [20]
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and further studied by Ni and Wu [15] (see also Section 2). We further pack-
age these invariants into a single integer-valued invariant, which we call ϕ,
ϕ(K) = minm≥0{m + 2Vm(K)}.
Theorem 1.1. For every knot K in S3,

γ4(K) ≥ σ(K)

2
− ϕ(K). (1.3)

The existence of such a bound was indicated, but not made explicit, by Batson
in his PhD thesis [3]. Moreover, since d(S3

−1(K)) = 2V0(K) ≥ ϕ(K), this is a
strengthening of (1.1). Equation (1.3) also implies the existence of a bound in
terms of the invariant ν+ defined by Hom and Wu [11]. By definition, we have
Vν+(K)(K) = 0, so Theorem 1.1 implies at once

γ4(K) ≥ σ(K)

2
− ν+(K). (1.4)

Note that this bound is formally identical to (1.1), (1.2), and (1.3); to the best of
the authors’ knowledge, this bound never appeared in the literature.

We further show that the bound of Theorem 1.1 is sharp (see Remark 5.2) and
agrees with that of (1.2) in the case of alternating knots (see Proposition 6.2).

We note here that the bound (1.3) presents the following curious feature: it is
superadditive in the knot K in the sense that the bound for K1#K2 can be strictly
larger than the sum of the two bounds for K1 and K2. In fact, the same is true
for the bounds (1.1) and (1.4). In particular, the bound for nK can give more
information on γ4(K) than the bound for K .

In Proposition 7.1, we exhibit an example where this phenomenon actually
occurs.

Using superadditivity, we can optimize the bound as follows:

γ4(K) ≥ σ(K)

2
− ω(K),

where

ω(K) := lim
n→∞

1

n
ϕ(nK) ≤ ϕ(K).

Organization of the Paper

In Section 2, we recall some basic facts about spinc structures on 3- and
4-manifold and d-invariants, and we state all the results concerning them that
we use in this paper. In Section 3, we fix the notation and construct a cobordism
W ◦ from a particular 3-manifold Q (defined in that section) to S3−n(K), which
will be crucial to deduce the bound in equation (1.3). In Section 4, we label spinc

structures on W ◦, compute their Chern classes, and understand their restrictions
to ∂W ◦. In Section 5, we apply a twisted version of the Ozsváth–Szabó’s inequal-
ity (see Theorem 2.4) to W ◦ to obtain the desired bound on γ4(K). In Section 6,
we compare our bound to those of Batson and Ozsváth–Stipsicz–Szabó (see equa-
tions (1.1) and (1.2)), and we refine it using superadditivity. Finally, in Section 7,
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we give an example of a knot K where the bound for nK is actually better than
the bound for K .

2. All You Need Is Correction Terms

Given an oriented manifold M of dimension 3 or 4, recall that the set of spinc

structures Spinc(M) is an affine space over H 2(M;Z). Given an oriented 4-
manifold X with boundary ∂X = Y , the restriction map

Spinc(X) → Spinc(Y ) (2.1)

is modeled over
H 2(X;Z) → H 2(Y ;Z).

With every spinc structure s ∈ Spinc(M) it is possible to associate an element
in H 2(M;Z), known as the (first) Chern class of s and usually denoted by c1(s).
The map

c1 : Spinc(M) → H 2(M;Z)

is injective if and only if H 2(M;Z) has no 2-torsion. A spinc structure s ∈
Spinc(M) is called torsion if c1(s) is a torsion element in H 2(M;Z).

Let −M denote the manifold M endowed with the opposite orientation. There
is a canonical bijection

ι : Spinc(M) → Spinc(−M),

which is modeled over the canonical isomorphism ι : H 2(M;Z) → H 2(−M;Z)

(see [8, Section 1.2.3]). If s ∈ Spinc(M), then we will denote by the same letter s
the corresponding spinc structure on −M . It is worth noting that such a bijection
commutes with the restriction map (see equation (2.1)) and that

c1(ι(s)) = ι(c1(s)).

Remark 2.1. Let X4 be the trace of the 2-handle cobordism from S3 to S3
n(K),

where K is a knot in S3, and n > 0 is a positive integer. Then we can label the
spinc structures on X as follows: we denote by sk the unique spinc structure on X

such that
〈c1(sk), [
]〉 = n + 2k,

where 
 is a Seifert surface for K pushed into S3 × I and capped off with the
core of the 2-handle. From this labeling we derive a labeling of spinc structures
over S3

n(K) by Z/nZ by setting

tk := sk|S3
n(K),

where we make no distinction between an integer and its class modulo n. Here
and in what follows, we refer the reader to [19, Section 2.4] for further details.

We say that a pair (Y, t), where t is a torsion spinc structure on the 3-manifold Y ,
is a torsion spinc 3-manifold.

Ozsváth and Szabó [18] introduced a Heegaard Floer theoretical invariant
d(Y, t), called the correction term or d-invariant, associated with a pair (Y, t),
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where Y is a rational homology 3-sphere equipped with a spinc structure t. In [18,
Section 9], they explain how it is possible to generalize it to invariants db and
dt (bottom and top) associated with a torsion spinc 3-manifold (Y, t), where Y

is now a 3-manifold with standard HF∞ (which is equivalent to having a trivial
triple cup product [14]). See also [13, Section 3] for an introduction to d-invariants
of arbitrary 3-manifolds with standard HF∞. Behrens and the first author [4] used
Heegaard Floer homology with twisted coefficients to further generalize this to an
invariant d(Y, t) associated with an arbitrary torsion spinc 3-manifold (Y, t).

In the case of rational homology 3-spheres, we have

d(Y, t) = db(Y, t) = dt (Y, t) = d(Y, t). (2.2)

More generally, we have the following:

Theorem 2.2 ([18, Proposition 4.2], [13, Proposition 3.7], and [4, Proposi-
tion 3.8]). Let (Y, t) be a torsion spinc 3-manifold, and suppose that Y has stan-
dard HF∞. Then, under the canonical identification Spinc(Y ) ∼= Spinc(−Y),

db(Y, t) = −dt (−Y, t) ≥ d(Y, t).

In the rest of this section, we state the results that we need about d-invariants.
The following result by Ni and Wu allows us to compute d-invariants for surg-

eries on a knot K ⊆ S3 in terms of some knot invariants Vi , which were first
introduced in [20] with a different notation. They are a sequence of nonnegative
integers {Vi(K)}i≥0 satisfying Vi(K) − 1 ≤ Vi+1(K) ≤ Vi(K). We refer to [15,
Section 2.2] for their definition.

Theorem 2.3 ([15, Proposition 1.6 and Remark 2.10]). Given positive integers
0 ≤ k < n, we have

d(S3
n(K), tk) = −n − (2k − n)2

4n
− 2 max {Vk(K),Vn−k(K)} .

Correction terms can be used to give restrictions to intersection forms of 4-
manifolds bounding a given 3-manifold (compare also with [18, Theorem 9.15]).

Theorem 2.4 ([4, Theorem 4.1]). Let (W, s) be a negative semidefinite spinc

cobordism from (Y, t) to (Y ′, t′), two torsion spinc 3-manifolds, such that the map
H1(Y ;Q) → H1(W ;Q) induced by the inclusion is injective. Then

c1(s)
2 + b−

2 (W) ≤ 4d(Y ′, t′) + 2b1(Y
′) − 4d(Y, t) − 2b1(Y ).

3. Notation and Construction

Let K be a knot in S3. If we consider S3 as the boundary of the 4-ball B4, then the
(orientable) slice genus g4 is defined as the minimum genus of a smooth orientable
surface in B4 whose boundary is K , and it is a well-studied invariant of K . More
recently, the nonorientable slice genus γ4 has been studied. We have the following
definition.
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Definition 3.1. Given a knot K in S3, we define its nonorientable slice genus as

γ4(K) = min{b1(F ) | F ↪→ B4 smooth, nonorientable , ∂F = K},
where b1(F ) denotes the first Betti number of F .

Remark 3.2. With this definition of γ4, we always have γ4(K) ≥ 1. We could
also consider the four-dimensional crosscap number instead; this is the minimal
number h such that K bounds a punctured #hRP2 in B4. The two definitions
are indeed equivalent except when K is slice, in which case our definition yields
γ4(K) = 1, whereas the four-dimensional crosscap number is 0. We note here
that, when K is slice, the bound in (1.3) is in any case γ4(K) ≥ 0, so this is in
fact a bound for the four-dimensional crosscap number as well; this is true since,
when K is slice, both σ(K) and ϕ(L) vanish (see Proposition 6.1(2)). Our proof,
however, actually uses Definition 3.1 of γ4, to which therefore we stick.

Batson [2] proved that the nonorientable slice genus of a knot can be arbitrarily
large. More specifically, for a nonorientable surface F as in Definition 3.1, Batson
gives the following inequality (see [2, Theorem 1.5]):

b1(F ) + 2d(S3
−1(K)) ≥ e(F )

2
. (3.1)

Here d(S3
−1(K)) denotes the d-invariant of S3

−1(K) in the unique spinc structure,
whereas e(F ) is the normal Euler number of F : given a nonvanishing section s

of the normal bundle νF (which always exists since F deformation retracts on a
1-complex), we let

e(F ) = − lk(K, s(K)).

Batson [2] combines equation (3.1) and the “signature” inequality from [9]

b1(F ) ≥ σ(K) − e(F )

2
(3.2)

to derive the bound for the nonorientable slice genus in equation (1.1). The main
result of this paper follows from a generalisation of equation (3.1), equation (5.4)
below, where instead of the (−1)-surgery along K we consider (−n)-surgeries for
arbitrary integers n ≥ 1. Inspired by [2] and [13], we construct a negative semi-
definite cobordism from a 3-manifold Q to S3−n(K), and use Theorem 2.4 to give
a lower bound to b1(F ).

We now give the details of the construction illustrated in Figure 1. Let K be
a knot in S3 = ∂B4, and let F denote a smooth nonorientable surface properly
embedded in B4 such that ∂F = K . Fix an integer n > 0. Let W denote the 4-
manifold obtained by attaching a (−n)-framed 2-handle to B4 along K ⊂ ∂B4.
We denote with Y the boundary of W , that is, Y = S3−n(K). Then the surface F

can be capped off with the core of the 2-handle to obtain a closed surface F̂ ⊆ W .
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Figure 1 The 4-manifold W obtained by attaching a (−n)-framed
2-handle to B4 along a knot K ⊆ S3. N = NW (F̂ ) denotes a regular
neighborhood of F̂ in W , and Q = ∂N .

Notice that

b1(F̂ ) + 1 = b1(F ) =: h.

If e = e(F ) denotes the normal Euler number of F , and e(F̂ ) denotes the Euler
number of the closed surface F̂ , then we have

e(F̂ ) = e − n.

As already noticed in [2], e is even because the self-intersection of F in B4 can
be computed algebraically over Z/2Z.

Let N = NW(F̂ ) denote a regular neighborhood of F̂ in W . We define Q =
∂N . Notice that Q (resp. N ) is a circle (resp. disc) bundle over the closed surface
F̂ ∼= (RP2)#h of Euler number e −n. According to the notation in [13, Section 2],
we have N ∼= Ph,e−n and Q ∼= Qh,e−n, and moreover Q has standard HF∞.

The manifold W ◦ := W \ N is a cobordism between Q and S3−n(K). Since
the labeling of spinc structures is better understood for positive surgeries, we con-
sider also the manifold −W , obtained from W by reversing the orientation; −W is
the 4-manifold obtained by attaching an n-framed 2-handle to B4 along K . This
allows us to label the spinc structures on W and on Y ; by a slight abuse of no-
tation, we write sk and tk , dropping the identifications Spinc(W) ∼= Spinc(−W)

and Spinc(Y ) = Spinc(−Y).
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Table 1

W W ◦ �N Q

H 0 Z Z⊕Z Z

H 1 0 0⊕Zh−1 Zh−1

H 2 Z ?⊕Z/2Z Zh−1 ⊕ T

H 3 0 Z⊕0 Z

4. Labeling Spinc Structures

4.1. (Co)Homological Computations

The aim of this subsection is to compute H 2(W ◦;Z) in order to understand spinc

structures on W ◦. Consider the Mayer–Vietoris long exact sequence in cohomol-
ogy associated with W = W ◦ ∪Q N . When we do not specify it, we assume that
we are using Z coefficients (see Table 1).

The cohomology of W can be easily obtained by recalling that W is con-
structed by attaching a 2-handle to B4. The cohomology of N is also straightfor-
ward, since N deformation retracts on F̂ = (RP2)#h. As for Q, its cohomology
can be deduced from [13, Lemma 2.1], and it is written in the table above, where
T is the torsion subgroup of H1(Q), which is, according to [13, Lemma 2.1],

T =
{
Z/2Z⊕Z/2Z if e(F̂ ) is even,

Z/4Z if e(F̂ ) is odd.

In both cases, the map H 2(N) ∼= Z/2Z → T is nontrivial. From the cohomology
groups that we already know (and the fact that the map H 1(N) → H 1(Q) is an
isomorphism) we can deduce almost all the cohomology groups of W ◦. H 2(W ◦)
will depend on the parity of e(F̂ ), according to the following lemma.

Lemma 4.1. We have

H 2(W ◦) =
{
Zh ⊕Z/2Z if e(F̂ ) is even,

Zh if e(F̂ ) is odd.

Proof. From the long exact sequence above we have an exact sequence

0 → Z → H 2(W ◦) → Zh−1 ⊕Z/2Z → 0,

regardless of the parity of e(F̂ ). The two possible extensions are Zh ⊕ Z/2Z
and Zh.

In the first case, H 2(W ◦;F2) ∼= H 2(W ◦) ⊗ F2 is isomorphic to Fh+1
2 and, in

the second case, to Fh
2 . Therefore, to understand H 2(W ◦), it suffices to determine

the rank of H 2(W ◦;F2).
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Table 2

Q W ◦ �N W

H3 F2 F2 ⊕0 0
H2 H2(Q;F2) ?⊕F2 F2

H1 H1(Q;F2) ?⊕Fh
2 0

H0 F2 F2 ⊕F2 F2

Consider the Mayer–Vietoris long exact sequence in homology associated with
W = W ◦ ∪Q N , with F2 coefficients. Since the coefficient ring is a field, homol-
ogy and cohomology are dual to each other. As in the previous case, the ho-
mologies of W and N are quite straightforward to compute. According to [13,
Proof of Lemma 2.1], H1(Q;F2) ∼= H2(Q;F2) ∼= Fh+1

2 if e(F̂ ) is even, and
H1(Q;F2) ∼= H2(Q;F2) ∼= Fh

2 if e(F̂ ) is odd (see Table 2).
Consider the connecting morphism

∂ : H2(W ;F2) → H1(Q;F2).

Since H2(W ;F2) ∼= F2 is generated by [F̂ ] and F̂ is disjoint from Q = ∂N , ∂ van-
ishes.

From this we deduce that H2(W
◦;F2) ∼= Fh

2 if e(F̂ ) is odd and H2(W
◦;F2) ∼=

Fh+1
2 if e(F̂ ) is even, and hence we conclude the proof of the lemma. �

4.2. Intersection Form

In this section, we study the intersection forms on H2(W) and H 2(W).

Lemma 4.2. The intersection form QW on H2(W) ∼= Z is given by QW = (−n).
The intersection form QW on H 2(W) ∼= Z is given by QW = (− 1

n
).

Proof. The intersection form on H2(W) is (−n) because the 4-manifold W is
obtained by attaching a (−n)-framed 2-handle to B4.

The intersection form on H 2(W) can be worked out by considering the fol-
lowing portion of the long exact sequence in homology associated with the pair
(W,Y ), where Y = S3−n(K):

0 → H2(W) → H 2(W) → H1(Y ) → 0.

Such a short exact sequence is isomorphic to

0 → Z → Z → Z/nZ → 0.

The generator of H2(W) is mapped to n times the generator of H 2(W), so the
intersection form on H 2(W) is represented by the matrix (− 1

n
). �

It is also worth noting that, for each c ∈ H 2(W), c|W ◦ restricts to a torsion class
on both boundary components, and therefore it makes sense to consider its square.
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We claim that
QW ◦

(c|W ◦) = QW(c). (4.1)

Indeed, the class nc ∈ H 2(W) ∼= H2(W,Y ) is in the image of the map H2(W) →
H2(W,Y ). Now, the map ι : H2(W

◦) → H2(W) is surjective: this comes from
the Mayer–Vietoris sequence for W = W ◦ ∪ N , since the connecting morphism
∂ : H2(W) → H1(Q) vanishes (see the proof of Lemma 4.1) and H2(N) = 0.

Therefore, there is an element d ∈ H2(W
◦) such that ι(d) = nc. Note that the

image of d in H2(W
◦, ∂W ◦) represents the Poincaré dual of nc|W ◦ ∈ H 2(W ◦).

The elements d and nc can be represented by some copies of a surface S ⊆
W ◦. The squares QW ◦

(d) and QW(nc) can be computed as the algebraic self-
intersection S · S of S, which in turn can be computed in an arbitrarily small
neighborhood of S.

4.3. Spinc Structures

Recall (see Remark 2.1) that spinc structures on −W are labeled by integers as
follows:

〈c1(sk), [
]〉 = 2k + n.

By symmetry we also get a labeling for Spinc(W), and we still denote the spinc

structures on W by sk . The structures sk and sk′ restrict to the same spinc structure
on Y if and only if n | (k − k′). In such a case, we denote the restriction to Y by
tk = tk′ .

It is worth noting that we have isomorphisms H 2(W) ∼= Z and H 2(Y ) ∼= Z/nZ

such that, under these identifications, the restriction map is the usual projection
Z → Z/nZ, and c1(tk) ≡ 2k (mod n).

To apply Theorem 2.4, we need a spinc structure on the cobordism W ◦ that
restricts to a torsion spinc structure on Q. Therefore, we introduce the following
notation.

Definition 4.3. Given a 4-manifold X, we define Spinc
tor(X) to be the subset of

Spinc(X) of elements that restrict to torsion spinc structures on ∂X.

Notice that, in our case, Spinc
tor(W

◦) is given by all spinc structures that restrict
to torsion spinc structures on Q, because all spinc structures on Y are already
torsion. We will now give a description of Spinc

tor(W
◦) in the case of e(F̂ ) odd

(or, equivalently, n odd).

4.4. Case of e(F̂ ) Odd

By Lemma 4.1 we have that H 2(W ◦) ∼= Zh. From the Mayer–Vietoris exact se-
quence associated with W = W ◦ ∪Q N we find:

0 H 2(W)

�

H 2(W ◦) ⊕ H 2(N)

�

H 2(Q)

�

0

0 Z
α

Zh ⊕Z/2Z
β

Zh−1 ⊕Z/4Z 0
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We have that α(1) = (c,1) for some nonzero c ∈ Zh; otherwise, the quotient
would contain a Z/2Z summand. Then we have that

Zh−1 ⊕Z/4Z ∼= Zh ⊕Z/2Z

〈(c,1)〉
∼= Zh

〈2c〉 .

This implies that c = 2d , where d ∈ Zh is a primitive element. We denote by
x ∈ H 2(W ◦) the element that corresponds to d , and we let A = 〈x〉 ⊆ H 2(W ◦).
Therefore, Spinc

tor(W
◦) is an affine space over A.

It follows from the exact sequence above that the image of the map

Spinc(W) → Spinc(W ◦)

is contained inside Spinc
tor(W

◦). Moreover, the map is modeled on the map

H 2(W) ∼= Z
·2−→ Z ∼= A.

It follows from the naturality of the first Chern class that c1(sk|W ◦) = (2n + 4k)x

Spinc(W)

c1

Spinc
tor(W

◦)

c1

n + 2Z ·2 2n + 4Z ⊆ A

The Chern classes of all spinc structures in Spinc
tor(W

◦) form the subset 2n+2Z=
2Z ⊆ Z ∼= A. This motivates the following definition.

Definition 4.4. We define s◦
k ∈ Spinc

tor(W
◦) to be the spinc structure on W ◦ that

restricts to a torsion spinc structure on Q and satisfies

c1(s
◦
k) = (2n + 2k)x.

Remark 4.5. It follows from the computations that

Spinc(W) → Spinc
tor(W

◦)
sk �→ s◦

2k

and also that s◦
k ∈ Spinc

tor(W
◦) extends to a spinc structure on W if and only if k

is even.

We now want to understand the restriction of the spinc structure s◦
k to Y . This

is done in the following lemma. Instead of W , we use Wn = −W and S3
n(K) =

−Y to label the spinc structure, so we can stick to the usual positive surgery
conventions.

Lemma 4.6. For all k ∈ Z, we have

s◦
2k|S3

n(K) = tk and s◦
n+2k|S3

n(K) = tk.
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Proof. Consider the following commutative diagram:

H 2(Wn)

π

A

r

Z
·2

π

Z

r

H 2(S3
n(K)) Z/nZ

Recall that we chose isomorphisms H 2(Wn) ∼= Z and H 2(S3
n(K)) ∼= Z/nZ such

that π(1) = 1 ∈ Z/nZ. Then

c1(tk) = π(c1(sk)) = n + 2k = 2k.

Since n is odd, 2 is invertible modulo n, so every spinc structure on S3
n(K) is

determined by its first Chern class.
By the naturality of the Chern class we have that, for every k ∈ Z, the following

diagram commutes:

c1(sk)

π

c1(s
◦
2k)

r

n + 2k
·2

π

2n + 4k

r

c1(tk) 2k

From this we obtain that s◦
2k|S3

n(K) = tk .
For the case of s◦

n+2k , recall that c1(s
◦
n+2k) = 4n+4k. From the commutativity

of the diagram below we deduce that s◦
n+2k|S3

n(K) = tk .

2n + 2k

π

4n + 4k

r

2k �

4.5. Case of e(F̂ ) Even

When e(F̂ ) is even, H 2(W ◦) ∼= Zh ⊕ Z/2Z by Lemma 4.1. We can check that
Spinc

tor(W
◦) is an affine space over a submodule

Z⊕Z/2Z ⊆ Zh ⊕Z/2Z,

where the Z summand is generated by a primitive element x. We can then define

s◦
k := sk|W ◦ ∈ Spinc

tor(W
◦),

and, if γ denotes the generator of the Z/2Z summand, then

s̃◦
k := s◦

k + γ ∈ Spinc
tor(W

◦).

We can check that s̃◦
k restricts to Q to a nonextendible spinc structure t̃, and to Y
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to the spinc structure tk+ n
2
. Moreover, we have that

c1(s̃
◦
k)

2 = − (n + 2k)2

n
.

Note that n is even because so is e(F̂ ), so k + n
2 is an integer.

5. A Bound for the Nonorientable Slice Genus

We now prove Theorem 1.1, which we restate here. Recall that we have defined
ϕ(K) to be the quantity minm≥0{m + 2Vm(K)}.
Theorem 1.1. For every knot K in S3,

γ4(K) ≥ σ(K)

2
− ϕ(K). (1.3)

Proof. Choose an odd integer n > 0, and let k be any integer. We denote by [k]
the representative for the residue class of k modulo n such that 0 ≤ [k] < n. By
Remark 4.5 and Lemma 4.6 the spinc structure s◦

n+2k restricts to a nonextendible
spinc structure on Q, which we denote by t̃, and to tk on Y .

We apply Theorem 2.4 to the cobordism (W ◦, s◦
n+2k) turned upside down, that

is, seen as a cobordism from (−Y, tk) to (−Q,̃ t): the assumption of the injectivity
of the map H1(Y ;Q) → H1(W

◦;Q) is automatically satisfied, since Y is a ratio-
nal homology sphere. Moreover, in this case, by (2.2), d(Y, t) = d(Y, t) for each
t ∈ Spinc(Y ). The inequality of Theorem 2.4 then reads as follows:

c1(s
◦
n+2k)

2 + b−
2 (W ◦) ≤ 4d(−Q,̃ t) + 2b1(Q) − 4d(−S3−n(K), tk). (5.1)

We now compute each term of equation (5.1). We have that b−
2 (W ◦) = 1 and

b1(Q) = h − 1. Moreover,

c1(s
◦
n+2k)

2 = ((4n + 4k)x)2 = − 1

4n
· (4n + 4k)2 = −4

n
· (n + k)2,

where we used the fact that QW ◦
(2x,2x) = − 1

n
.

As for the d-invariant of S3−n(K), by Theorems 2.2 and 2.3 we have

d(−S3−n(K), tk) = d(S3
n(K), tk) = −n − (2[k] − n)2

4n
− 2 max

{
V [k],V n−[k]

}
,

where we set V i := Vi(K).
Finally, by [13, Theorem 5.1] and Theorem 2.2 we have that

d(−Q,̃ t) ≤ −dt (Q,̃ t) = −
(

e(F̂ ) − 2

4
+ a

)
≤ −e − n − 2

4
.

Therefore, equation (5.1) becomes

−4

n
· (n + k)2 + 1 ≤ n − (2[k] − n)2

n

+ 8 max
{
V [k],V n−[k]

} − (e − n − 2) + 2h − 2,
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which can be re-written as follows:

2h + 8 max
{
V [k],V n−[k]

} ≥ e − n − 4(n + k)2 − (2[k] − n)2

n
. (5.2)

Given a fixed integer m ≥ 0, it is not difficult to check that the best bound
for h coming from equation (5.2) and involving V m is obtained by setting n =
2m + 2j + 1 and k = −n ± m (where j is an arbitrary non-negative integer). The
bound for h that we obtain in this case is then:

h ≥ e

2
− 2m − 4V m. (5.3)

By taking the maximum over m ≥ 0, we obtain the generalisation of (3.1), namely

b1(F ) ≥ e(F )

2
− 2ϕ(K). (5.4)

By combining it with equation (3.2) as in [2], we obtain

γ4(K) ≥ σ(K)

2
− ϕ(K). (5.5)

�

Remark 5.1. By definition, ϕ(K) = min{m + 2Vm(K)}, hence we obtain:

γ4(K) ≥ σ(K)

2
− m − 2Vm(K). (5.6)

By setting m = 0, we obtain exactly Batson’s inequality (1.1).

Remark 5.2. For every m ≥ 0, the bound in equation (5.6) is sharp in the sense
that, for each m, there exists a knot Km such that γ4(Km) = σ(Km)

2 − m −
2Vm(Km). The knot K0 = T3,−4 exhibits that the inequality is sharp for m = 0, as
already shown by Batson [2].

For m ≥ 1, consider the torus knot K = T3,−5, whose signature is 8. Since
K = T3,5 is a positive torus knot, hence an L-space knot, the invariants Vi(T3,5)

coincide with the torsion coefficients [18, Corollary 7.5]:

Vi(K) =
∑
j>0

jaj+i ,

where
�K(t) = a0 +

∑
j>0

aj (t
j + t−j )

is the Alexander polynomial of K . We can explicitly compute that, for K = T3,5,

�T3,5(t) = t4 − t3 + t − 1 + t−1 − t−3 + t−4.

It follows that V1(K) = 1 and that equation (5.6) for m = 1 gives

γ4(K) ≥ 8

2
− (1 + 2) = 1.

Since K bounds a Moebius band in B4, as shown in Figure 2 (see also [2, Sec-
tion 5]), it follows that (5.6) is sharp for m = 1.
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Figure 2 A nonorientable cobordism of genus 1 from T3,5 to the
unknot. The rectangle represents a torus, which is embedded in S3 in
the standard way. The (nonoriented) band surgery above carries T3,5
to the unknot.

For all m > 1, consider the knot mK , the connected sum of m copies of K .
Recall from [5, Proposition 6.1] that the sequence {Vi(·)}i satisfies the following
subadditivity property: Vj+l (J#L) ≤ Vj (J )#Vl(L) for each pair (j, l) of nonneg-
ative integers and each pair (J,L) of knots. By subadditivity of γ4, subadditivity
of the Vi , and additivity of the signature we obtain

m = mγ4(K) ≥ γ4(mK) ≥ σ(mK)

2
− (m + 2Vm(mK))

≥ m

(
σ(K)

2
− (1 + 2V1(K))

)
= m.

It follows that here all the inequalities are in fact equalities and that therefore (5.6)
is sharp for every m ≥ 1.

Remark 5.3. In the proof of Theorem 1.1, we only considered surgery with some
odd framing n > 0. If we considered the case of even n and applied Theorem 2.4
to the torsion spinc structure s̃◦

k (defined in Section 4.5), we would have obtained
exactly the same bound as equation (5.6) for all m ≥ 0.

6. Comparison to Other Bounds

In this section, we study some properties of the functions ϕ and ω defined in the
Introduction and discuss the relationship between the bounds given by (1.1), (1.2),
and (1.3).

Proposition 6.1. The invariant ϕ is a concordance invariant with values in the
nonnegative integers. It has the following properties:

(1) 0 ≤ ϕ(K) ≤ min{ν+(K),2V0(K)};
(2) ϕ(K) = 0 if and only if V0(K) = ν+(K) = 0; in particular, if K is slice, then

ϕ(K) = 0;
(3) if there is an orientable genus-g cobordism from K1 to K2, then |ϕ(K1) −

ϕ(K2)| ≤ g;
(4) if K+ is obtained from K− by performing a crossing change from negative to

positive, then ϕ(K−) − 1 ≤ ϕ(K+) ≤ ϕ(K−);
(5) for every two knots K1, K2, ϕ(K1#K2) ≤ ϕ(K1) + ϕ(K2).
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We remark here that, in particular, ϕ, much like ν+, and by contrast with σ and
υ , does not induce a homomorphism from the concordance group to the integers.

Proof of Proposition 6.1. The sequence {Vi(K)}i is a concordance invariant, and
hence so is ϕ; moreover, the quantity m + 2Vm(K) is a nonnegative integer for
each m, and hence so is ϕ(K).

(1) When m = 0, m + 2Vm(K) = 2V0(K), whereas for m = ν+(K), m +
2Vm(K) = ν+(K). By definition, ϕ(K) ≤ 2V0(K) and ϕ(K) ≤ ν+(K).

(2) Observe that m + 2Vm(K) is always strictly positive if m > 0; hence, if
ϕ(K) = minm{m + 2Vm(K)} = 0, then the minimum can only be attained at
m = 0, and, in that case, V0(K) = 0, which implies ν+(K) = 0. The converse
follows from point (1).

When K is slice, ν+(K) = 0, and hence ϕ(K) vanishes, too.
(3) By [5, Lemma 5.1] we have that, under the given assumptions, Vm+g(K1) ≤

Vm(K2) for each nonnegative integer m. It follows that m+g+2Vm+g(K1) ≤
m + 2Vm(K2) + g, and hence, minimizing over m, we have

ϕ(K1) ≤ min
m′≥g

{m′ + 2Vm′(K2)} ≤ ϕ(K2) + g.

Exchanging the roles of K1 and K2, we obtain the symmetric inequality.
(4) Observe that there is a genus-1 cobordism from K− to K+, obtained by

smoothing the double point in the trace of the crossing change homotopy.
Thus, point (3) shows that ϕ(K−) − 1 ≤ ϕ(K+). Using [6, Theorem 6.1] we
also obtain

Vm(K+) ≤ Vm(K−),

from which, for each m ≥ 0,

m + 2Vm(K+) ≤ m + 2Vm(K−),

and minimizing over all values of m yields the desired inequality.
(5) For all nonnegative integers k, l, Vk+l(K1#K2) ≤ Vk(K1) + Vl(K2) by [5,

Proposition 6.1], and hence

ϕ(K1#K2) = min
n

{n + 2Vn(K1#K2)}
≤ min

n
min

k+l=n
{k + l + 2Vk(K1) + 2Vl(K2)}

= min
k

{k + 2Vk(K1)} + min
l

{l + 2Vl(K2)}
= ϕ(K1) + ϕ(K2). �

We will compare our bound with (1.2) obtained by Ozsváth–Stipsicz–Szabó, and
in order to do so, we need to compare υ(K) with ϕ(K). We say that a knot is
Floer-thin if its knot Floer homology is supported on the diagonal i−j = −τ(K).

Proposition 6.2. When K is a Floer-thin knot with τ(K) ≥ 0 or an L-space knot,
then ϕ(K) = −υ(K) and ϕ(K) = 0.
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In particular, the bound given by (5.6) for both K and K is at most as strong as
that given by υ when K is an L-space knot or an alternating knot.

Proof. Recall that, for a Floer-thin knot K with τ(K) = ±n, we have Vi(K) =
Vi(T2,±(2n+1)) [1, equation (8)], and hence ϕ(K) = ϕ(T2,±(2n+1)). Analogously,
it follows from [16, Theorem 1.14] that υ(K) = υ(T2,±(2n+1)). It follows that it
suffices to prove the statement for L-space knots.

When K is an L-space knot, then a direct computation from the knot Floer
complex shows that Vi(K) = 0 for every i; hence, ϕ(K) = 0. On the other hand,
Borodzik and Hedden [6, Proposition 4.6] have shown that

υ(K) = ϒK(1) = −min
n

{n + 2Vn(K)} = −ϕ(K),

as desired. �

In the case of Floer-thin knots, we can actually say more about ϕ.

Proposition 6.3. If K is a Floer-thin knot with τ(K) ≥ 0, then we have

ϕ(K) = ν+(K) = τ(K) = −υ(K).

If, additionally, K is quasi-alternating, then ϕ(K) = −σ(K)/2, and in this case
the bounds (1.2) and (1.3), applied to K and K , yield

γ4(K) ≥ 0.

Proof. By [1, equation (8)] we know that the minimum of {m + 2Vm(K)} is at-
tained at m = τ(K) = ν+(K). This implies at once that ϕ(K) = τ(K). The equal-
ity with −υ(K) follows from Proposition 6.2.

When K is quasi-alternating, then τ(K) = −σ(K)/2, and the second part of
the statement readily follows. �

In many instances, the bound given by υ is better than that given by ϕ; this is true,
for example, for many knots of the form K1#K2, where K1 and K2 are L-space
knots.

Example 6.4. Consider the two knots K1 = T2,3, K2 = T5,6, and let K = K1#K2.
We compute σ(K1) = −2, σ(K2) = −16, υ(K1) = −1, and υ(K2) = −6. Using
the techniques from [12] as in [5], we can also compute ϕ(K) = 6 and ϕ(K) = 0.

It follows that the bound given by (1.3), applied to both K and K , gives
γ4(K) ≥ 1, whereas the bound given by (1.2) is γ4(K) ≥ 2.

As a consequence of Proposition 6.1, we deduce the following interesting feature
of ϕ.

Corollary 6.5. The invariant ϕ(K) is subadditive. In particular, the following
identity holds:

lim
n→∞

1

n
ϕ(nK) = inf

n

1

n
ϕ(nK).
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Proof. By property (5) of Proposition 6.1 the function n �→ ϕ(nK) is subadditive
in the sense that ϕ(aK +bK) ≤ ϕ(aK)+ϕ(bK) for every a, b ≥ 0. The existence
of the limit follows from Fekete’s lemma [10]. �

Definition 6.6. We call ω(K) = limn
1
n
ϕ(nK).

We now introduce the stable nonorientable 4-genus γ st
4 (K) of K , that is, the limit

limn→∞ 1
n
γ4(nK). Notice that the limit exists since the sequence {γ4(nK)}n is

subadditive and that γ st
4 (K) ≤ γ4(K).

Theorem 6.7. The invariant ω(K) is a concordance invariant of K , and it de-
scends to a subadditive homogeneous function ω : C →R≥0. Additionally:

(1) γ st
4 (K) ≥ σ(K)

2 − ω(K);
(2) if there is an orientable genus-g cobordism between K1 and K2, then

|ω(K1) − ω(K2)| ≤ g;
(3) if there is a crossing change (from negative to positive) from K− to K+, then

ω(K−) − 1 ≤ ω(K+) ≤ ω(K−).

Remark 6.8. It follows immediately from subadditivity that if the inequality in
Theorem 1.1 is an equality for each of the two knots K and L, then the inequality
is also an equality for K#L, and γ4(K#L) = γ4(K) + γ4(L). In particular, if the
inequality in Theorem 1.1 is an equality for a knot K , then γ4(nK) = nγ4(K) for
each n, and γ st

4 (K) = γ4(K). Analogously, if the inequality in Theorem 6.7(1)
is an equality for both K and L, then it is also sharp for K#L, and γ st

4 (K#L) =
γ st

4 (K) + γ st
4 (L).

As remarked for ϕ before, ω is not a homomorphism, since it takes only non-
negative values. Note also that ω is not identically 0, since, by Proposition 6.3
applied to nK for all n ≥ 0, ω(K) coincides with σ(K)/2 for Floer-thin knots
with positive signature.

Also, by definition, ω(K) ≤ ϕ(K), and in particular the bound for γ st
4 (K)

given by ω can be better than that given by ϕ on γ4(K) (see Proposition 7.1
for an example). This is in contrast with the bound given, for example, by τ , s, or
ν+ on the stable orientable slice genus: the first two are linear, whereas the third
is sublinear in K [5, Theorem 1.4].

Proof of Theorem 6.7. The invariant ω is a concordance invariant, since ϕ is, and
it takes nonnegative values, since ϕ does. Moreover, it is subadditive by construc-
tion:

ω(K#L) = lim
n

{
1

n
ϕ(n(K#L))

}
≤ lim

n

{
1

n
(ϕ(nK) + ϕ(nL))

}
= lim

n

{
1

n
ϕ(nK)

}
+ lim

n

{
1

n
ϕ(nL)

}
= ω(K) + ω(L),

where the inequality follows from the subadditivity of ϕ (Property (5) of Propo-
sition 6.1).
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It is also homogeneous, in the sense that ω(nK) = nω(K):

ω(nK) = lim
m

1

m
ϕ(mnK)

= n lim
m

1

mn
ϕ(mnK)

= n lim
m′

1

m′ ϕ(m′K) = nω(K).

(1) Applying (5.6) for nK , we obtain, for each n ≥ 1:

γ4(nK) ≥ σ(nK)

2
− ϕ(nK) = n

σ(K)

2
− ϕ(nK),

from which

γ st
4 (K) = lim

n

γ4(nK)

n
≥ σ(K)

2
− lim

n

ϕ(nK)

n
= σ(K)

2
− ω(K).

Properties (2) and (3) follow immediately from the corresponding properties of ϕ

stated in Proposition 6.1. �

7. An Example

An interesting feature of ω is that – by contrast with ϕ – it can attain noninteger
values, as we shall see presently. To this end, we study an example in detail:
we show that ω(T2,3 − T5,6) = 26

5 . Before doing so, we recall some facts about
Krcatovich’s reduced knot Floer complex.

Krcatovich [12] associates with each knot J ⊂ S3 a reduced version of the
knot Floer complex, denoted by CFK−(J ). The reduced knot Floer complex for
L-space knots is of a particularly simple form in that it only consists of a single
tower, that is, it is isomorphic to F2[U ] as an F2[U ]-module, but not as a graded
module (see [12, Corollary 4.2]).

Krcatovich also observed that if we are only concerned with correction terms,
then the connected sum of two L-space knots behaves as an L-space knot [12,
Example 2]; more specifically, he showed that if K and K ′ are L-space knots,
then CFK−(K#K ′) fits in a short exact sequence of complexes:

0 → T → CFK−(K#K ′) → A → 0,

where T is a tower, and A is acyclic. In this case, we write CFK−(K#K ′) ≈ T ;
moreover, if C is another chain complex such that C ≈ T , then we also write
CFK−(K#K ′) ≈ C. In Krcatovich’s terminology, CFK−(K#K ′) has a represen-
tative staircase, which is determined by T ; conversely, the staircase determines
T and the collection {Vi(K#K ′)}i . Moreover, for any other knot L, we can use T

as a substitute for CFK−(K#K ′) to compute CFK−(K#K ′#L) in the sense that
there is a filtered quasi-isomorphism

T ⊗ CFK−(L) ∼= CFK−(K#K ′) ⊗ CFK−(L).
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Proposition 7.1. Let K = T2,3 − T5,6. Then ω(K) = 26
5 < ϕ(K) = 6. Moreover,

ω(K) <
ϕ(nK)

n
for all n ∈ Z>0, so the limit in Definition 6.6 is not attained at

any n.

Before proving the proposition, recall that, in the case of torus knots Tp,q , the
representative staircase is determined by the arithmetics of p and q (compare also
with [12, Example 2] and [7, Section 5]). In what follows, we will be concerned
with the connected sum nT5,6 of n copies of T5,6, and in this case the result reads:

CFK−(nT5,6) ≈ CFK−(T5,5n+1),

that is, the representative staircase for nT5,6 is the staircase of T5,5n+1.
We will also need a lemma about nT2,3. We expect that this is true in wider

generality.

Lemma 7.2. For each positive integer n, the complex CFK∞(±nT2,3) is filtered
chain homotopy equivalent to CFK∞(±T2,2n+1) ⊕ A±n, where A±n is an acyclic
complex over F2[U ].
Proof. It suffices to prove the statement for CFK∞(nT2,3), since the correspond-
ing statement for CFK∞(−nT2,3) follows by taking duals: in fact, CFK∞(K) is
isomorphic to the dual of CFK∞(K), and taking duals preserves direct sums and
acyclicity.

We will now prove the statement for CFK∞(nT2,3) by induction on n: re-
call that CFK∞((n + 1)T2,3) is filtered quasi-isomorphic to CFK∞(nT2,3) ⊗
CFK∞(T2,3) and that CFK∞(T2,3) is filtered quasi-isomorphic to (F2[U,

U−1]a ⊕F2[U,U−1]b ⊕F2[U,U−1]c, ∂1), where ∂1b = Ua + c and a and c are
cycles; moreover, the Alexander gradings of the generators are A(a) = 1,A(b) =
0,A(c) = −1.

By induction we can assume that CFK∞(nT2,3) = CFK∞(T2,2n+1) ⊕ An,
where CFK∞(T2,2n+1) is generated over F2[U,U−1] by x1, . . . , x2n+1 and is
equipped with the differential ∂n defined by

∂nx2i = Ux2i−1 + x2i+1, ∂nx2i+1 = 0,

and the Alexander grading is A(xi) = n + 1 − i.
We observe that, whenever A is acyclic, A ⊗ C is acyclic for every other com-

plex C. Therefore, to prove the theorem, it suffices to show that CFK∞(T2,2n+1)⊗
CFK∞(T2,3) ∼= CFK∞(T2,2n+3) ⊕ A, where A is acyclic.

To this end, consider the subspace V of CFK∞(T2,2n+1) ⊗ CFK∞(T2,3)

spanned by
V = SpanF2[U,U−1]{x1a, x1b, xic},

where we drop the ⊗ between generators to ease readability, so that x1a re-
ally means x1 ⊗ a. It is easy to check that V is in fact a subcomplex of
CFK∞(T2,2n+1) ⊗ CFK∞(T2,3) and that V is indeed isomorphic to
CFK∞(T2,2n+3). In fact, an explicit isomorphism is given by x1a �→ x1, x1b �→
x2, xic �→ xi+2.
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We claim that V has a complement, which is the direct sum of copies of rank-4
subspaces W2i for i = 1, . . . , n:

W2i = SpanF2[U,U−1]{x2ib, x2i−1b + x2ia, x2i+1b + x2ic, x2i+1a + x2i−1c}.
It is easy to prove that W2i is in fact an acyclic subcomplex for each i and that the
W2i , together with V , spans all of CFK∞(T2,2n+1) ⊗ CFK∞(T2,3).

Moreover, since the ranks of V and W2i add up to the rank of
CFK∞(T2,2n+1) ⊗ CFK∞(T2,3), this is in fact a direct sum decomposition of
complexes. Since the W2i are acyclic, we have exhibited the desired decomposi-
tion. �

We can now turn to the proof of Proposition 7.1.

Proof of Proposition 7.1. Let K1 = T2,3, K2 = T5,6, and K = K1 −K2. Note that
ϕ(K) = 6 was already observed in Example 6.4. Let now Ln = nK = nK1 −nK2,
and n = 5�. We will prove that, for all positive integers �, we have

ϕ(L5�) = 26� + 1.

This implies at once that ω(K) = limn
ϕ(Ln)

n
= 26

5 , and that ϕ(L5�) > ω(K) · 5�

for each �. Moreover, by definition, for each n,

ϕ(Ln) ≥ 26

5
n

for all positive integers n; since the right-hand side is an integer only if n is a
multiple of 5, the inequality is strict also for all n not divisible by 5, and hence
the limit is never attained.

We now set out to prove that ϕ(L5�) = 26� + 1.
Since CFK−(nK2) ≈ CFK−(T5,5n+1), we can use Lemma 7.2 and results

from [5] to compute the invariants Vi(nK2 − nK1), treating nK2 as T5,5n+1 and
−nK1 as −T2,2n+1. Indeed, let Ji = 5�Ki for i = 1,2.

Given a semigroup � ⊆ N = {0,1, . . . }, we denote by �(·) its enumerating
function, that is, the unique strictly increasing function

� : N →N

that is surjective on �. Note that �(0) = 0. Given an integer x, we de-
note (x)+ = max {0, x}. Since CFK∞(−nT2,3) is, up to an acyclic summand,
CFK∞(−T2,2n+1), we can apply [5, Theorem 3.1 and Remark 3.3] and obtain

ν+
v (5�K) := min

{
i | Vi(5�K) ≤ v

}
=

(
max
k≥0

{
g(J2) − g(J1) + �J1(k) − �J2(k + v)

})
+,

where �J1(·) and �J2(·) are the enumerating functions associated with the semi-
groups

�J1 = 〈2,10� + 1〉 and �J2 = 〈5,25� + 1〉.
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The genera of the knots J1 and J2 are respectively 5� and 50�, so the formula for
ν+
v becomes

ν+
v (L5�) =

(
45� − min

k≥0

{
�J2(k + v) − �J1(k)

})
+. (7.1)

Note that, with this notation, we have

ϕ(L5�) = min
v≥0

{
ν+
v (L5�) + 2v

}
, (7.2)

which we are now going to compute.
The enumerating functions �J1(·) and �J2(·) can be expressed in the following

equations:

�J1(k) =
{

2k, 0 ≤ k ≤ 5�,

5� + k, k ≥ 5�,

�J2(k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

5k, 0 ≤ k ≤ 5�,

25� + 5� k−5�
2 � + [k − 5�]2, 5� ≤ k ≤ 15�,

50� + 5� k−15�
3 � + [k − 15�]3, 15� ≤ k ≤ 30�,

75� + 5� k−30�
4 � + [k − 30�]4, 30� ≤ k ≤ 50�,

50� + k, k ≥ 50�.

Note that in equation (7.1) we can in fact take the minimum over 0 ≤ k ≤ 5�,
because for k ≥ 5� the function �J1(k) increases at a lesser or equal rate than any
translate of �J2 : specifically, �J1(k+j)−�J1(k) = j ≤ �J2(k+v+j)−�J2(k+
v). Therefore

ν+
v (L5�) =

(
45� − min

0≤k≤5�

{
�J2(k + v) − �J1(k)

})
+.

Now we return to the proof of Proposition 7.1. Recall that we want to prove
that ϕ(L5�) = 26� + 1. By (7.2) we have

ϕ(L5�) = min
v≥0

{
ν+
v (L5�) + 2v

}
.

As further shown in Lemma 7.3, the choice v = 13� gives ν+
v (L5�) + 2v =

26� + 1. Moreover, it also follows from Lemma 7.3 that V0(L5�) = 13� + 1, and
hence choosing v ≥ 13� + 1 yields 2v ≥ 26� + 2 > 26� + 1.

We now distinguish between v ≤ 5� − 1 and v ≥ 5�. By Lemma 7.4, for v ∈
[0,5� − 1], we have

ν+
v (L5�) + 2v = 45� − 3v ≥ 45� − 15� + 3 > 26� + 1;

by Lemma 7.5, on the other hand, for v ∈ [5�,13� − 1], we have

ν+
v (L5�) + 2v ≥ 2(13� − v) + 1 + 2v = 26� + 1.

This shows that ϕ(L5�) = 26� + 1, as desired. �

Lemma 7.3. ν+
13�(L5�) = 1.
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Proof. Note that k + 13� ∈ [13�,18�] since k ≤ 5�. Therefore the difference of
the enumerating functions is

f (k) := �J2(k + 13�) − �J1(k)

=
{

45� + 5� k
2� + [k]2 − 2k, 0 ≤ k ≤ 2�,

50� + 5� k−2�
3 � + [k − 2�]3 − 2k, 2� ≤ k ≤ 5�.

In the first interval, f (k + 2) ≥ f (k), whereas in the second interval, f (k +
3) ≤ f (k). It follows that the minimum is attained for some k ∈ {0,1,5� − 2,

5� − 1,5�}. A direct computation for these five values shows that the mini-
mum is 45� − 1, attained both at k = 1 and at k = 5� − 1. It follows that
ν+

13�(L5�) = 45� − (45� − 1) = 1. �

Lemma 7.4. For each v = 0, . . . ,5� − 1, ν+
v (L5�) = 45� − 5v.

Proof. Note that, since we only need to test k ≤ 5� when computing the minimum
in (7.1), we can assume that, for each value of v in the statement, k +v ≤ 10�−1.
Therefore the difference of the enumerating functions is

f (k) := �J2(k + v) − �J1(k)

=
{

5v + 3k, 0 ≤ k ≤ 5� − v,

25� + 5� k+v−5�
2 � + [k + v − 5�]2 − 2k, 5� − v ≤ k ≤ 5�.

Such a function is increasing on the interval 0 ≤ k ≤ 5� − v, and, on the second
interval, it satisfies the condition f (k+2)−f (k) ≥ 1. It follows that the minimum
is attained for some k = 0,5� − v or 5� − v + 1. A direct computation for these
values shows that the minimum is 5v, attained at k = 0. Therefore, ν+

v (L5�) =
45� − 5v. �

Lemma 7.5. Let v = 13� − s for some 0 < s ≤ 8�. Then ν+
v (L5�) ≥ 2s + 1.

Proof. Choosing k = 0 in equation (7.1), we obtain

ν+
v (L5�) ≥ 45� − �J2(13� − s).

Since 13� − s ∈ [5�,13�] ⊆ [5�,15�], we have

�J2(13� − s) = 45� + 5�− s

2
� + [s]2.

If s ≥ 2 is even, then �J2(13� − s) = 45� − 5
2 s ≤ 45� − 2s − 1. If s is odd,

then �J2(13� − s) = 45� − 5
2 (s + 1) + 1 ≤ 45� − 2s − 1. In both cases, we have

�J2(13� − s) ≤ 45� − 2s − 1, so we obtain

ν+
v (L5�) ≥ 45� − �J2(13� − s) ≥ 2s + 1. �

With techniques similar to those used in Proposition 7.1, we can show that ω at-
tains many other positive noninteger values. We conclude with a couple of ques-
tions concerning the image of ω and the stable nonorientable slice genus.
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Question 7.6. Is Q≥0 ⊆ im(ω)? Can ω take irrational values? Can γ st
4 attain

noninteger values? What is the image of γ st
4 ?
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