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Nagata’s Compactification Theorem for Normal Toric
Varieties over a Valuation Ring of Rank One

Alejandro Soto

Abstract. Using invariant Zariski–Riemann spaces, we prove that
every normal toric variety over a valuation ring of rank one can be
embedded as an open dense subset into a proper toric variety equiv-
ariantly. This extends a well-known theorem of Sumihiro for toric va-
rieties over a field to this more general setting.

1. Introduction

Toric geometry has been an important subject in algebraic geometry since its very
beginnings, one of the reasons being the fact that its combinatorial aspects allow
very concrete geometric manipulations. This leads to many explicit examples and
constructions in algebraic geometry.

As every normal toric variety over a field is constructed from a fan, many geo-
metric properties can be understood in combinatorial terms. For instance, a nor-
mal toric variety over a field is proper if and only if the associated fan is complete.
Furthermore, by modifying the fan we can obtain a modification of the given va-
riety. One of the most important examples of this phenomenon is the normalized
blow-up of a toric variety along a center that is invariant under the action of the
torus.

Toric schemes over arbitrary valuation rings of rank one have been introduced
by Gubler [7] to generalize tropical compactifications of closed subvarieties of
the torus Gn

m,K over an arbitrary valued field K of rank one. Those schemes gen-
eralize the toric schemes over discrete valuation rings studied by Mumford in the
1970s; see [9, Chapter IV, Section 3]. In [8], Gubler and the author have general-
ized the classification of normal toric varieties over fields given by rational fans
to the setting of normal toric schemes of finite type over an arbitrary valuation
ring of rank one. The classification is given in terms of certain admissible fans
in Rn × R+, where the extra factor R+ takes into account the valuation of the
ground ring. See Section 2 and [8] for details.

The combinatorial aspects of these toric schemes extend in a natural way the
classical theory over a field. To be more precise, let us fix a rank one valued
field K with valuation ring K◦ and consider the split torus T := Gn

m,K◦ over K◦.
A T-toric variety Y over K◦ is a flat integral separated scheme of finite type
over K◦ such that its generic fiber contains T := Gn

m,K as an open dense subset
and the multiplication action of T on itself extends to an algebraic action of T
on Y over K◦. Suppose that Y is an affine normal T-toric variety over K◦ and
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let σ ⊂ Rn × R+ be its corresponding admissible cone. The generic fiber Yη

is a T -toric variety over K described by the recession cone of the polyhedron
σ1 := {w ∈ Rn | (w,1) ∈ σ }, and the torus orbits in the special fiber correspond to
the vertices of σ1. In this way, we obtain a complete description of the torus orbits
in the generic and the special fiber in terms of the structure of the admissible fan.

It is natural to ask which other properties of toric varieties can be extended to
the setting of T-toric varieties over K◦. One of the main difficulties when trying
to generalize them is the fact that, unless the valuation is discrete, we are working
in a non-Noetherian setting. Hence many standard results in algebraic geome-
try cannot be applied immediately. Regardless of the absence of the Noetherian
condition, the underlying topological space of a T-toric variety is a Noetherian
topological space. Furthermore, the generic fiber is a T -toric variety over K , and
the special fiber is a separated scheme of finite type over the residue field K̃ . The
associated reduced scheme of every irreducible component of the latter is a toric
variety over K̃ ; see Section 2.

In this paper, we address the question of whether a normal T-toric variety
over K◦ can be embedded into a proper T-toric variety over K◦. Our main result
answers this question affirmatively. This generalizes a well-known theorem of
Sumihiro on the equivariant completion of normal toric varieties; see [13] and
[14]. More precisely, we have the following statement.

Theorem 1. Let Y be a normal T-toric variety over the valuation ring K◦. Then
there exists an equivariant open immersion Y ↪→ Ycpt into a proper T-toric va-
riety Ycpt over K◦.

The proof of this theorem follows the lines of the proof of Nagata’s compactifi-
cation theorem as presented by Fujiwara–Kato [4, Appendix F]. The main tool
used there is the Zariski–Riemann space associated with a pair (Y ,U ), where
U ⊂ Y is a quasi-compact open subscheme of Y . It is defined as

〈Y 〉U := lim←−Yi ,

where the limit is taken over the collection of U -admissible blow-ups over Y ,
that is, blow-ups with center disjoint from U . Note that we can identify U with
an open subset of the Zariski–Riemann space 〈Y 〉U . We remark that in the case
U = ∅, these spaces did play a key role in the first proof given by Sumihiro [13].

In our setting, Y is a normal T-toric variety over the valuation ring K◦, U is
an open invariant subscheme, and the transition maps are equivariant; see Defi-
nition 3.5 and 3.11. In this case, we get a locally ringed space endowed with an
action of the torus T.

For toric varieties over a field, there are purely combinatorial proofs of the
existence of the equivariant completion. More precisely, it has been proved that
every rational fan can be completed; see, for instance, [2, III, Theorem 2.8], [3],
and [12]. This gives rise to an equivariant open embedding of the original vari-
ety into a complete normal toric variety. We point out that, as the toric schemes
over discrete valuation rings are described combinatorially by rational fans, these
results also provide an equivariant completion in the discretely valued case.
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The structure of the paper is as follows. In Section 2, we recall the basic def-
initions, constructions, and examples of T-toric varieties over rank one valuation
rings. We have a new result in this section, Proposition 2.9, where we prove that
the normalization of a projective T-toric variety with a linear action of the torus
can be constructed in a canonical way, extending the classical results over a field
and over a discrete valuation ring. This construction is done using the combinato-
rial description of the T-toric variety given by the subdivided weighted polytope;
see Subsection 2.8. Although this result is not needed for the proof of Theorem 1,
we include it here for completeness of the presentation of the T-toric varieties
over K◦.

In Section 3, we consider a T-toric variety Y over the valuation ring K◦ and an
open invariant subscheme U . We give a detailed description of the U -admissible
blow-ups. We show that they are preserved under composition and that the collec-
tion of all U -admissible blow-ups is filtered. This allows us to define the invariant
Zariski–Riemann space associated with (Y ,U ) as the projective limit over all the
U -admissible blow-ups.

Finally, in Section 4, we give a proof of our main result. We proceed as fol-
lows. We consider an open invariant affine covering {Ui} of our normal T-toric
variety Y . For each open Ui , we take a compactification Ui , and with it we con-
struct a locally ringed space 〈Ui〉Ypc . It has the property that if Ui ⊂ Uj , then

〈Ui〉Ypc ⊂ 〈Uj 〉Ypc . From this invariant covering we get a collection of invariant

locally ringed spaces {〈Ui〉Ypc }. Due to the compatibility with respect to the in-
clusions, we can glue these spaces along common intersections in order to get a
T-invariant locally ringed space 〈Y 〉cpt called the Zariski–Riemann compactifi-
cation of Y . By construction we have Y ⊂ 〈Y 〉cpt. Finally, in Proposition 4.6,
we show that the locally ringed space 〈Y 〉cpt is algebraic in the following sense:
there exists a scheme Ycpt over K◦ that contains Y as an open and dense subset
and such that the Zariski–Riemann space associated with (Ycpt,Y ) is isomorphic
to 〈Y 〉cpt. This scheme is in fact a proper T-toric variety over the valuation ring
K◦, which concludes the proof of the Theorem 1.

Notation

For sets A and B , the notation A ⊂ B includes the possibility A = B . We let
A \ B denote the complement of B in A. The sets of nonnegative numbers in Z,
Q, and R are denoted by Z+, Q+, and R+ respectively. All rings and algebras
are commutative with unity. For a ring A, the group of units is denoted by A×.
A variety over a field K is an irreducible and reduced scheme that is separated
and of finite type over K .

In the whole paper, we fix a valued field (K,v), which means here that v is
a valuation on the field K with value group � := v(K×) ⊂ R. Note that K is
not required to be algebraically closed or complete and that its valuation can be
trivial. We have a valuation ring K◦ := {x ∈ K | v(x) ≥ 0} with maximal ideal
K◦◦ := {x ∈ K | v(x) > 0} and residue field K̃ := K◦/K◦◦. Let S = Spec(K◦) =
{η, s} with η its generic point.
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We denote by M a free Abelian group of rank n and by N := Hom(M,Z) its
dual. For an Abelian subgroup G ⊂ R, we write MG := M ⊗Z G for the base
change of M to G.

2. Toric Varieties over Valuation Rings

We denote by T = Spec(K◦[M]) the split torus of rank n over the valuation ring
K◦ and by T its generic fiber. In this section, we review the main definitions and
results of T-toric varieties over valuation rings of rank one. For a more detailed
exposition, we refer the reader to the papers [7] and [8]. There is one new result
in this section, namely Proposition 2.9, where we extend a well-known result
concerning the normalization of a projective T-toric variety with a linear action
of the torus; see [5, Chapter 5, Section B] and [10, Proposition 2.3.8].

Definition 2.1. A T-toric variety over K◦ is an integral scheme Y separated
flat of finite type over K◦ such that the generic fiber Yη contains T as an open
dense subset and the multipication action T ×K T → T extends to an algebraic
action T×K◦ Y → Y over K◦.

It follows from the definition that the generic fiber is a T -toric variety over K .
The special fiber Ys is a separated scheme of finite type over the residue field K̃

of K . The induced reduced varieties associated with the irreducible components
of Ys are toric varieties over K̃ . The dense torus acting on each irreducible com-
ponent may vary; see [7, Corollary 6.15]. As the scheme Y is flat over K◦, every
component of the special fiber has the same dimension of the generic fiber.

If the valuation is trivial, then the generic and the special fibers coincide, and
the definition of a T-toric variety agrees with the usual definition of a toric va-
riety over a field. Note that as these schemes are flat and of finite type over K◦,
they are of finite presentation over K◦. This follows from [11, Première partie,
Corollaire 3.4.7].

To construct some examples, we consider the following K◦-algebras associ-
ated with cones in NR ×R+.

2.2. A subset σ ⊂ NR ×R+ is called a �-admissible cone if it can be written as

σ =
⋂
finite

{(w, t) ∈ NR ×R+ | 〈mi,w〉 + ci t ≥ 0}, mi ∈ M,ci ∈ �,

and it does not contain a linear subspace of positive dimension. We denote by σr

the polyhedral complex induced by σ in NR at level r , that is, σr := {w ∈ NR |
(w, r) ∈ σ }. Note that σ0 is the recession cone of the polyhedron σ1, denoted by
rec(σ1).

Given a �-admissible cone σ , we define the following algebra over K◦:

K[M]σ :=
{∑

auχ
u ∈ K[M] ∣∣ 〈u,w〉 + tv(au) ≥ 0,∀(w, t) ∈ σ

}
.

It is a flat K◦-algebra since it is torsion free. If the valuation is discrete, then it
is of finite type over K◦. If the valuation is not discrete, then it is of finite type if
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the vertices of the polyhedron σ1 are in N� ; see [7, Proposition 6.9]. The algebra
K[M]σ is normal, and its quotient field is equal to K(M). Note that it is canoni-
cally endowed with an M-graduation, and hence the affine scheme Spec(K[M]σ )

has an algebraic action of the torus T that extends the multiplication action of
T on itself. If K[M]σ is finitely generated, then it gives rise to a normal T-toric
variety Yσ := Spec(K[M]σ ) over K◦. In this case, the generic fiber (Yσ )η is the
toric variety over K associated with the cone σ0 = rec(σ1). The geometry of the
special fiber is controlled by the polyhedron σ1; for instance, the irreducible com-
ponents of (Yσ )s are in bijection with the vertices of σ1. Roughly speaking, each
component is given by the local cone of a vertex. The character lattice of the torus
acting on the irreducible component associated with the vertex wi is isomorphic
to Mi = {m ∈ M | 〈m,wi〉 ∈ �}; see [7, Corollary 6.15].

When the valuation is discrete, and π ∈ K is a choice of uniformizing param-
eter, the algebra K[M]σ is generated by the elements {πkχu}{(u,k)∈I }, where I is
a set of generators of the semigroup σ̌ ∩ (M ×Z). If the valuation is not discrete,
then we can give a set of generators of this algebra as follows. Let us consider the
set of vertices {wi} of the polyhedron σ1 ⊂ NR, and let {uij }j be the generators
of the semigroup σ̌i ∩M with σi = LCwi

(σ1) the local cone of σ1 at wi . Then, we
have that

K[M]σ = K◦[αijχ
uij ],

where the constants αij satisfy the conditions v(αij ) + 〈uij ,wi〉 = 0.

Remark 2.3. It follows from [7, Lemma 6.13] that if the valuation v is not discrete
or if the vertices of σ1 are contained in N� , then the special fiber of Yσ is reduced.
In this case, every irreducible component of (Yσ )s is a toric variety over K̃ .

Example 2.4. Suppose that the valuation is not discrete and consider the cone σ

in R2 ×R+ generated by the polyhedron σ1 ×{1}, where σ1 ⊂ R2 is the polytope

σ1 = Conv{(0,0), (0, λ), (λ,0)} ⊂ R2, λ > 0.

See Figure 1. We assume that λ ∈ �. In this case the algebra is given by

K[M]σ = K◦[x, y, ax−1, ay−1, ax−1y, axy−1]
with a ∈ K◦ such that v(a) = λ. It is isomorphic to

K◦[x, y, ax−1y−1] = K◦[x, y, z]/(xyz − a).

With this algebra, we get a T-toric variety Yσ = Spec(K[M]σ ) whose generic
fiber is the toric surface given by

Spec(K[x, y, z]/(xyz − a)) � G2
m,K,

and the special fiber is the reduced scheme of finite type over K̃ given by
Spec(K̃[x, y, z]/(xyz)). Note that each irreducible component is isomorphic to
A2

K̃
, with its structure as a toric variety over K̃ with torus TK̃ = Spec(K̃[Z2]). If

we take K = C{{t}} to be the Puiseaux series and a = t , then this example gives a
one-parameter family of complex tori degenerating to three copies of the complex
affine plane. Note that in this case K◦ is non-Noetherian.
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Figure 1 Level 1 of the cone σ

2.5. This construction can be generalized by gluing affine T-toric varieties. For
this, we note that faces of �-admissible cones are again �-admissible cones and
they give rise to open immersions. In this way, given a �-admissible fan 
, that
is, a fan consisting of �-admissible cones, we can glue affine T-toric varieties
along the open immersions coming from the common faces. This procedure gives
rise to a normal T-toric variety Y
 over K◦.

In this way, we obtain, up to isomorphism, all normal T-toric varieties over K◦.
More concretely, we have the following theorem, which extends the well-known
classification of normal toric varieties over a field in terms of convex rational
polyhedral fans; see [9, Chapter I, Section 2, Theorem 6].

Theorem. Let Y be a normal T-toric variety over K◦. Then there is a �-
admissible fan 
 such that Y � Y
 . If the valuation is not discrete, then the
cones in this �-admissible fan satisfy an extra condition, namely the vertices of
the corresponding level 1 polyhedron must have coordinates in �.

Proof. If Y is affine, then this follows from [8, Theorem 1]. If Y is not affine,
then it follows from [8, Theorem 2] that every point of Y admits an open affine T-
invariant neighborhood corresponding to some �-admissible cone. Finally, in [8,
Theorem 3], it is shown that all these cones form a �-admissible fan 
, proving
the statement. �

Remark 2.6. The extra condition on the cones, stated in the theorem, is required
to guarantee that the toric scheme constructed from the �-admissible fan 
 is of
finite type over K◦.

2.7. It is well known that a normal toric variety over a field is proper if and only if
the associated fan is complete, that is, it has support NR. For T-toric varieties over
K◦, properness is characterized in a similar way. We say that a �-admissible fan

 is complete if its support is NR×R+. A T-toric variety Y
 is universally closed
over K◦ if and only if 
 is a complete �-admissible fan; see [7, Proposition 11.8].
In this case the generic and the special fiber of Y
 are proper schemes over K and
K̃ , respectively. If the valued group is discrete or divisible, then completeness
of the fan is equivalent to being proper over K◦. If the �-admissible fan 
 is
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complete and consist of cones satisfying the extra condition stated in the previous
theorem, then the T-toric variety Y
 is proper over K◦.

2.8. Projective toric varieties over a field can be obtained by taking closures of
torus orbits in the projective space. In general, we may end up with a nonnormal
toric variety, which also admits a very neat combinatorial description. Actually,
from this description it is possible to obtain in a canonical way the normalization
of the given variety; see [5, Proposition 4.9]. We briefly review the construction
over K◦; for details, see [7, Section 9].

Let A = (m0, . . . ,mN) ∈ MN+1 and consider the action of T on a point y =
(y0 : · · · : yN) ∈ PN

K◦(K) given by

t · y := (χm0(t)y0 : · · · : χmN (t)yN).

By taking the closure of T · y in PN
K◦ we get a projective T-toric variety over K◦

with a linear action of T. It does not depend on the point y ∈ PN
K◦(K) but rather

on the valuation of its coordinates. This information is encoded on the height
function defined by a : {0, . . . ,N} → � ∪ {∞}, j �→ v(yj ). This projective toric
variety is denoted by YA,a . Every projective T-toric variety over K◦ with a linear
action of the torus is of this form; see [7, Proposition 9.8].

The combinatorial description of a projective T-toric variety with a linear ac-
tion of the torus is given as follows. First, let us consider the weight polytope in
MR given by

Wt(y) := Conv(A(y)),

where A(y) := {mi ∈ M | yi �= 0}. With the height function a, we subdivide this
polytope by projecting the faces of the convex hull of {(mi, λi) ∈ MR ×R+ | λi ≥
a(i)} into MR. This subdivided weight polytope is denoted by Wt(y, a). Dually,
we get a polyhedral complex in NR as the domain of linearity of the piecewise
linear function g : NR → R, given by w �→ g(w) := min{a(i) + 〈mi,w〉}. We
denote this polyhedral complex as C (A,a). It is dual to Wt(y, a) in the sense that
cones of C (A,a) of dimension d correspond to faces of Wt(y, a) of dimension
n − d . Explicitly, given a face Q of Wt(y, a), we have the cone σQ defined by

{w ∈ NR | g(w) = 〈mi,w〉 + a(i), i ∈ Q ∩ A(y)}.
Dually, given a cone σ ∈ C (A,a), we get the face Qσ given by the convex

hull of
{mi ∈ A(y) | g(w) = a(i) + 〈mi,w〉,∀w ∈ σ }.

Now, we can describe the torus orbits of YA,a as follows. The T -orbits of
the generic fiber (YA,a)η are in one-to-one correspondence with the faces of the
weight polytope Wt(y) and hence with the cones of its normal fan. The T-orbits
of the special fiber (YA,a)s are in one-to-one correspondence with the faces of
the weight subdivided polytope Wt(y, a) and hence with the polyhedra of the
polyhedral complex C (A,a). Note that the irreducible components of the special
fiber are in one-to-one correspondence with the maximal cells of the subdivided
weight polytope. Let 
(A,a) be the fan generated by C (A,a) in NR × R+. It
follows from the construction that it is a �-admissible fan. We have seen that
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the T-toric variety associated with a �-admissible fan is normal. Thus Y
(A,a) is
normal.

In general, the T-toric variety YA,a is not normal. The relation between the
T-toric varieties Y
(A,a) and YA,a is given in the following proposition. This
generalizes a result of Qu in the case of discrete valuations; see [10, §2.3].

Proposition 2.9. Let YA,a ↪→ PN
K◦ be the projective T-toric variety over K◦ as-

sociated with A ∈ MN+1 and with a height function a. Then the normal T-toric
variety Y
(A,a) associated with the �-admissible fan 
(A,a) is the normaliza-
tion of YA,a over K◦.

Proof. Let {ui}Ni=0 be the set of vertices of Wt(y, a), and let z0, . . . , zN be
the coordinates of PN

K◦ . Let y = (y0 : · · · : yN) ∈ PN
K◦(K) be a point associ-

ated with the height function a, that is, v(yj ) = a(j) for j = 0, . . . ,N . Con-
sider Ui � AN

K◦ to be the affine open subscheme in PN
K◦ given by {zi �= 0}.

Denoting xk := zk/zi , we have Ui = Spec(K◦[x0, . . . , x̂i , . . . , xN ]) and T =
Spec(K◦[M]) = Spec(K◦[x±1

0 , . . . , x̂i , . . . , x
±1
N ]). The T-toric variety Ui ∩ YA,a

is isomorphic to the closure of T · y(i) in AN
K◦ with

y(i) = (y0/yi, . . . , ŷi/yi, . . . , yN/yi) ∈AN
K◦(K)

under the action

t · y(i) := (χm0−mi (t)y0/yi, . . . , χ
mN−mi (t)yN/yi).

This action is equivalent to the morphism

K[x0, . . . , x̂i , . . . , xN ] → K[M], xj �→ yj /yiχ
mi−mj .

The closure of this orbit in AN
K◦ is given by the image of the induced map

K◦[x1, . . . , x̂i , . . . , xN ] → K[M],
which is Bi := K◦[y1/yiχ

m1−mi , . . . , yN/yiχ
mN−mi ].

Now, recall that given a semigroup S ⊂ M × �, the K◦-algebra K◦[S] is nor-
mal over K◦ if and only if S is saturated: it is proved in [8, Lemma 4.1] that
normality implies saturation; the converse follows the same lines as in the proof
of [9, Lemma 1]. From the proof of [8, Proposition 4.4] we know that, for any
semigroup S, its saturation is given by cone(S) ∩ (M × �). In our case, S is the
semigroup given by {(m,v(b)) | bχm ∈ Bi}. By [8, Lemma 4.2] the cone gener-
ated by S is equal to the cone generated by

{(0,1), (mj − mi, v(yj ) − v(yi)) | j ∈ {1, . . . , î, . . . n}} ⊂ M × �

in MR ×R. We have that K◦[cone(S) ∩ (M × �)] is the same as K[M]σi , where
σi is the dual cone of cone(S). Since this cone is �-admissible, it follows that
Uσi

is an affine normal T-toric variety over K◦. Let us see that this is in fact the
normalization of Ui ∩ YA,a . First, note that K[M]σi is integral over Bi . In fact,
any element f ∈ K[M]σi can be written as

f = c(y1/yiχ
m1−mi )λ1 · · · (y1/yiχ

mN−mi )λN ,
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where λi ∈Q+ for i = 1, . . . ,N and c ∈ K ; see [8, Proposition 4.4]. Then f k ∈ Bi

for k large enough. This means that f is a root of the polynomial T k −f k ∈ Bi[T ].
Now take an element f ∈ Frac(Bi) = K(M) that is integral over Bi . Without loss
of generality, we may assume that it is of the form bχm for some m ∈ M and
b ∈ K . It satisfies

(bχm)n + f1(bχm)n−1 + · · · + fn−1(bχm) + fn = 0 with f1, . . . , fn ∈ Bi .

It follows that r(m,v(b)) ∈ cone(S) ∩ (M × �) for some r ∈ Z+. By saturation
we have that (m,v(b)) ∈ cone(S) ∩ (M × �), then bχm ∈ K[M]σi .

Doing this on each coordinate chart in PN
K◦ , we get a normal T-toric variety

Y
 over K◦ associated with the fan 
(A,a) = {σi | ui vertex of Wt(y, a)}. To
end the proof, we just need to show that 
1(A,a) = C (A,a). But this is clear
from the construction. Explicitly, we have

σi = {(ω, t) ∈ NR ×R |
〈mj − mi,ω〉 + t (a(j) − a(i)) ≥ 0,∀j ∈ {1, . . . , î, . . . n}}

= {(ω, t) ∈ NR ×R |
〈mj ,ω〉 + ta(j) ≥ 〈mi,ω〉 + ta(i),∀j ∈ {1, . . . , î, . . . n}}.

Then the polyhedron at level 1 is given by

(σi)1 = {ω ∈ NR|〈mj ,ω〉 + a(j) ≥ 〈mi,ω〉 + a(i),∀j ∈ {1, . . . , î, . . . n}}
= {ω ∈ NR|g(ω) = 〈mi,ω〉 + a(i)∀j ∈ {1, . . . , î, . . . n}},

which is the corresponding polyhedron of the complex C (A,a). �

3. T-Invariant Blow-Ups and Zariski–Riemann Spaces

In this section, we review some classical results on blow-ups of toric varieties
along invariant closed subschemes adapted to the setting of T-toric varieties over
K◦. They are fundamental elements in the proof of Nagata’s compactification
theorem as can be seen in [1] and [14]. After proving some basic properties of
admissible blow-ups, we will be able to define the T-invariant Zariski–Riemann
space associated with a pair (Y ,U ), where Y is a T-toric variety over K◦, and
U ⊂ Y is a T-invariant open dense subset. This locally ringed space, canonically
endowed with a T-action, is our main tool for proving Theorem 1.

We recall that the blow-up of a scheme Y over K◦ with center on a closed
subscheme Z with coherent ideal sheaf I is given by the projective morphism

BlZ (Y ) := Proj(
⊕

I n)
β−→ Y . Note that it is of finite type as the ideal sheaf is

coherent.

Proposition 3.1. Let Y be a T-toric variety over K◦, and let Z ⊂ Y be a T-
invariant closed subscheme of finite type over K◦ with ideal sheaf I . Then the
blow-up of Y with center Z is a T-toric variety over K◦.

Proof. We have BlZ (Y ) = Proj(
⊕

I n) over Y . Since Z is T-invariant, its
ideal sheaf I has an M-graduation. Then, clearly so does

⊕
I n, and hence
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BlZ (Y ) has a T-action over K◦ extending the multiplication action of T on
itself. It is flat over K◦ as it is torsion free and the finite type property follows
from the fact that Z is of finite type over K◦. �

Remark 3.2. It is well known that, in general, the blow-up of a normal toric
variety along a closed invariant center is not necessarily normal, for example, the
blow-up of A2

K along (x2, y2) is not normal. As we do not require normality in
the definition of T-toric varieties, the previous proposition shows that we remain
in the category of T-toric varieties after performing a blow-up along an invariant
center.

3.3. Note that given a T-invariant open subset U in a T-toric variety Y over K◦,
there is a coherent T-invariant ideal sheaf I such that V(I ) = Y \U . It is clear
that the ideal sheaf I associated with the closed subset Y \ U is T-invariant,
we just need to see that it is of finite type. Since the problem is local, we may
assume that Y = Spec(A) and that I is the ideal sheaf associated with an ideal
I ⊂ A. In general, we have I = lim−→ Ik for finitely generated ideals Ik . By the same
arguments as in [1, Lemma 1.3] we see that there is one element Ik , big enough in
this family, such that V(Ik) = V(I ). It is clear that Ik is a T-invariant ideal. Note
that the ideal Ik is not canonical, and, in particular, there may be many of them
satisfying this condition.

3.4. Consider a blow-up β : Y ′ → Y with center Z of finite type over K◦.
If X ↪→ Y is a closed subscheme, then the strict transform is defined as the
scheme-theoretic closure of β−1(X \ Z ) in Y ′ and is denoted by X ′. Equiv-
alently, it is the blow-up of X with center X ∩ Z . To make an explicit de-
scription of the strict transform, let us consider an affine open Spec(A) of Y ,
and let I = I (Spec(A)) ⊂ A. Let f1, . . . , fk be a set of generators of I . It
is well known that the blow-up over Spec(A) is covered by the open schemes
Spec(A[f1/fi, . . . , fk/fi]) for i = 1, . . . , k. If on Spec(A) the closed subscheme
X is defined by the ideal J , then the strict transform X ′ over Spec(A) is cut
out locally by the ideals Jfi

∩ A[f1/fi, . . . , fk/fi] in Spec(A[f1/fi, . . . , fk/fi]),
where Jfi

is the image of the ideal J in Afi
under the canonical map A → Afi

.
From this local description we see that if the blow-up β : Y ′ → Y and the closed
subscheme X are compatible with the T-action, then the strict transform and the
induced morphism X ′ → Y ′ are T-equivariant.

In toric geometry, we are interested in the study of blow-ups of toric varieties
along closed invariant centers. The complement of the center can be identified
with an open invariant subscheme of the blow-up. We focus on blow-ups that do
not modify a given T-invariant open subscheme.

Definition 3.5. Let U ⊂ Y be a T-invariant open subset. A blow-up of Y along
a closed T-invariant center contained in Y \ U is called U -admissible.

Remark 3.6. This definition differs slightly from the standard notion of U -
admissible blow-up, where the center is not required to be T-invariant. Note that
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the center of the blow-up can be strictly contained in Y \ U , and therefore not
every center disjoint from U is necessarily T-invariant.

In the remainder of this section, we fix a T-toric variety Y over K◦ and a T-
invariant open subscheme U ⊂ Y . In what follows, we prove some basic prop-
erties of U -admissible blow-ups. The next proposition shows that blow-ups of
T-invariant closed subschemes of a T-toric variety can be extended to blow-ups
of the whole variety in a compatible way with the torus action. More precisely,
we have the following result.

Proposition 3.7. Let X ↪→ Y be a T-equivariant closed immersion, and let
X ′ → X be a V -admissible blow-up with V = U ∩ X . Then there is a U -
admissible blow-up Y ′ → Y such that the diagram

X ′ j ′
Y ′

X
j

Y

commutes and is compatible with the torus action.

Proof. From [4, Proposition E.1.6] it follows that there exists a blow-up Y ′ → Y
with center disjoint from U such that it extends X ′ → X making the diagram
commutative. With our hypothesis, the same construction gives rise to a diagram
that is actually T-equivariant. Explicitly, the construction goes as follows. Let
J be the ideal sheaf of the center of the V -admissible blow-up X ′ → X . Let
I be a T-invariant quasi-coherent ideal sheaf on Y with support Y \ U such
that I|X ⊂ J . The quotient ideal sheaf J /I|V in V(I ) ∩ X , which is T-

invariant, can be extended to a T-invariant sheaf J̃ /I|V on V(I ). This follows
from [6, 6.9.2], and by a limit argument we can assume that it is of finite type.

As the closed embedding V(I ) → Y is T-equivariant, the push forward K

of J̃ /I|X is a T-invariant ideal sheaf on Y . It is clear that the blow-up with
center K is U -admissible and makes the diagram T-equivariant. �

As we may expect, U -admissible blow-ups are stable under composition. This is
the content of the following proposition.

Proposition 3.8. Let f : Y ′ → Y be a U -admissible blow-up, and g : Y ′′ →
Y ′ be a f −1(U )-admissible blow-up. Then g ◦ f : Y ′′ → Y is a U -admissible
blow-up.

Proof. Let I and I ′ be the centers of the blow-ups f and g, respectively. By [11,
Première partie, Lemme (5.1.4)] there is a quasi-coherent ideal sheaf I ′′ ⊂ OY
such that I ′′OY ′ = I nI ′mOY ′ for some n,m > 0. Furthermore, g ◦ f is a
blow-up with center I I ′′. Since I and I ′ are coherent, so is I ′′. It is also
clear that if f and g are blow-ups with T-invariant centres, then so is g ◦ f . �
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Given a morphism that is a local open immersion, we can use blow-ups to extend
it to an open immersion.

Lemma 3.9. Let Y be a T-toric variety, and let U ⊂ Y be an open T-invariant
subscheme. Consider a T-equivariant morphism f : Z → Y of T-toric varieties
of finite type such that the induced morphism f −1(U ) = U ×Y Z → U is an
open immersion. Then there exists a U -admissible blow-up Y ′ → Y such that
the induced morphism Z ′ → Y ′ is an open immersion, where Z ′ is the strict
transform of Z .

Proof. The existence of the U -admissible blow-up giving rise to the open im-
mersion follows from [11, Première partie, Corollaire 5.7.11]. Note that it is ad-
missible in our sense, since everything is compatible with the action of the torus.
From the construction of the U -admissible blow-up we have that the induced
morphism is T-equivariant. �

Now, given two U -admissible blow-ups, there is a U -admissible blow-up that
dominates both. This shows that the collection of U -admissible blow-ups is fil-
tered.

Proposition 3.10. Let β1 : Y1 → Y and β2 : Y2 → Y be two U -admissible
admissible blow-ups along the ideal sheaves I1 and I2, respectively. Then there
is a U -admissible blow-up β : Y12 → Y such that the following diagram com-
mutes:

Y12

β ′
2

β ′
1

Y2

β2

Y1
β1

Y

Proof. It follows from the proof of [4, Proposition E.2.1] that β2 : Y12 =
BlI1I2(Y ) → Y induces a commutative diagram as before. Since β1, β2 are
U -admissible blow-ups, it follows that β12 is U -admissible as well. Clearly, the
induced morphisms are T-equivariant. �

A T-invariant coherent ideal sheaf I with V(I ) ∩ U = ∅ induces a U -
admissible blow-up. Let T-AId(Y ,U ) be the set of coherent ideal sheaves in-
ducing U -admissible blow-ups.

We endow this set with an order relation as follows: we say that I ≤ I ′ if
there is a U -admissible ideal sheaf I ′′ such that I = I ′I ′′. That is, if the
U -admissible blow-up with center I can be obtained from I ′ by modifying its
center in a precise way. Given an ideal sheaf I1 smaller than or equal to an ideal
sheaf I2, it follows from Proposition 3.10 that we have an induced morphism
β21 : BlI1(Y ) → BlI2(Y ). Since those blow-ups over Y are U -admissible,
we can see that the corresponding morphism β21 is U -admissible as well by
identifying β−1

i (U ) with U , where βi : BlIi
(Y ) → Y for i = 1,2.
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We have the inverse system {Yi , βij }, where βij : Yi → Yj are the morphisms
described before. They are compatible with the corresponding U -admissible
blow-ups βi : Yi → Y .

Definition 3.11. The T-invariant Zariski–Riemann space associated with the
pair (Y ,U ) is given by the limit

〈Y 〉U := lim←−Yi

in the category of locally ringed spaces. Using the canonical projections πi :
〈Y 〉U → Yi , the structure sheaf O〈Y 〉U is O〈Y 〉U := lim−→π−1

i OYi
. Note that

the stalks of this sheaf are given as the direct limits of the stalks on each space Yi .
That is, for a point y ∈ 〈Y 〉U , we have O〈Y 〉U ,y = lim−→OYi ,yi

with yi = πi(y).

Remark 3.12. The inverse system {Yi , βij } is compatible with the action of the
torus T as the induced morphisms are T-equivariant. In addition, since Hom com-
mutes with inverse limits, the space 〈Y 〉U is a locally ringed space endowed with
a canonical T-action given by (t, (xi)) �→ (txi).

One of the main features of the T-invariant Zariski–Riemann space is the follow-
ing well-known fact.

Proposition 3.13. Keeping the notation of Definition 3.11, the T-invariant
Zariski–Riemann space 〈Y 〉U is quasi-compact.

Proof. It follows from [4, 0.2.2.10] by noting that every T-toric scheme Yi is a
coherent and sober space. �

The following notion is important for the gluing of T-invariant Zariski–Riemann
spaces.

Definition 3.14. Let U ↪→ Y be a quasi-compact open immersion, and let
U → X be a morphism. Consider the induced map

i : U → Y ×K◦ X ,

which is an immersion as well. The closure of U in Y ×K◦ X is called the
join of Y and X along U and is denoted by Y ∗U X . If Y , X are T-
toric varieties over K◦, then U is T-invariant, and the morphisms U ↪→ Y and
U → X are T-equivariant, and then the induced map i : U → Y ×K◦ X is
T-equivariant. In this case the join Y ∗U X is a closed T-invariant subscheme
of Y ×K◦ X .



112 Alejandro Soto

We have the following T-equivariant diagram:

Y

U
i

Y ∗U X ⊂ Y ×K◦ X

p

q

X

(1)

where p and q are the canonical projections. We will see that, after performing
a U -admissible blow-up, the morphisms in the upper triangle of the diagram
become open immersions compatible with the T-action. More precisely, we have
the following proposition.

Proposition 3.15. Consider diagram (1). There exists a U -admissible blow-up

Y ′ → Y such that the strict transform p′ : Z → Y ′ of Y ∗U X
p−→ Y and the

induced morphism U → Z are T-equivariant open immersions. If X is proper
over K◦, then the induced morphism p′ is an isomorphism.

If, in addition, the morphism U → X is an open immersion, then there is
a U -admissible blow-up X ′ → X such that the strict transform Z ′ → X ′
of Z → X is an open immersion as well. Furthermore, we may assume that
Z ′ → Y ′ is a T-equivariant open immersion.

Proof. By Lemma 3.9 there is a U -admissible blow-up Y ′ → Y such that the
strict transform p′ : Z → Y ′ is a T-equivariant open immersion. If Y is proper
over K◦, then the induced morphism p′ is proper, and therefore it is an isomor-
phism. Now suppose that U → X is an open immersion. By the same argu-
ment there is a U -admissible blow-up X ′ → X such that the strict transform
Z ′ → X ′ of Z → X is a T-equivariant open immersion. It follows from Propo-
sition 3.7 that the U -admissible blow-up Z ′ → Z can be extended to a U -
admissible blow-up Y ′′ → Y ′ such that Z ′ → Y ′′ is an open immersion com-
patible with the T-action. Since U -admissible blow-ups are stable under compo-
sition, we may assume that Z ′ ↪→ Y ′. �

Suppose that U ⊂ Y is compactifiable by a proper T-toric scheme U over K◦
and set

〈U 〉cpt := 〈U 〉U .

It is called the canonical compactification of U over K◦. It follows from Proposi-
tion 3.15 that this locally ringed space is independent of the choice of an algebraic
compactification of U .

Lemma 3.16. With the same notation, we have 〈Y 〉U ↪→ 〈U 〉cpt T-equivariantly.

Proof. By Proposition 3.15, after U -admissible blow-ups, we have an open em-
bedding Y ′ ↪→ U

′
, where Y ′ → Y and U

′ → U are U -admissible blow-ups.
By considering the inverse systems giving rise to 〈U 〉cpt and 〈Y 〉U it is clear that



Nagata’s Compactification Theorem 113

we have an embedding 〈Y 〉U ↪→ 〈U 〉cpt. Since all the maps are T-equiraviant,
so is the induced map. �

Proposition 3.17. Let U ↪→ Y1 and U ↪→ Y2 be T-equivariant open immer-
sions into T-toric varieties over K◦. Then we have

〈Y1 ∗U Y2〉U = 〈Y1〉U ∩ 〈Y2〉U
in 〈U 〉cpt.

Proof. By Proposition 3.15 there exist U -admissible blow-ups Y ′
i → Yi ,

i = 1,2, such that the induced morphisms Z → Y ′
i , i = 1,2, are open immer-

sions with the strict transform Z → Y1 ∗U Y2. Then we have induced maps
〈Y1 ∗U Y2〉U → 〈Yi〉U , i = 1,2, which are open immersions. This implies that
〈Y1 ∗ Y2〉U ⊂ 〈Y1〉U ∩ 〈Y2〉U . The other inclusion is clear since U ⊂
Y1 ∗U Y2. �

One of the most important propositions for constructing the T-equivariant com-
pletion of Y is the following:

Proposition 3.18. Keeping the notation from the last proposition, there exists a
T-equivariant open immersion U ↪→ Z such that

〈Z 〉U = 〈Y1〉U ∪ 〈Y2〉U .

Proof. From [4, Lemma F.3.2] it follows that an open embedding with the re-
quired property exists. Explicitly, after U -admissible blow-ups Y ′

i → Yi , the
strict transform Z ′ → Y1 ∗U Y2 admits open immersions into Y ′

i for i = 1,2.
Then Z is given by the gluing of Y ′

1 and Y ′
2 along Z ′. Since Y ′

1 , Y ′
2 , and Z ′

are T-toric varieties, after gluing, we end up with a T-toric variety as well. It is
clear that all the morphisms are compatible with the T-action. �

This proposition allows us to glue schemes keeping track of the T-invariant
Zariski–Riemann spaces. This is crucial for the construction of the proper T-toric
variety containing Y as an open and dense subscheme.

4. Equivariant Compactification

In this section, we use the results on T-invariant Zariski–Riemann spaces to prove
that every normal T-toric variety can be embedded into a proper T-toric variety
over K◦. Here we follow the lines of the proof of Nagata’s embedding theorem
given by Fujiwara–Kato [4, Appendix F], adapted to our setting. The main idea
is to construct first a locally ringed space 〈Y 〉cpt containing Y as an open dense
subset; see Definition 4.2. After that, we construct a T-toric variety Ycpt proper
over K◦ such that 〈Ycpt〉Y = 〈Y 〉cpt as locally ringed spaces.

4.1. We fix a normal T-toric variety Y over K◦. Let U ⊂ Y be a T-invariant
open affine subset. By [8, Theorem 1] we know that it is an affine normal T-
toric variety. We can take its closure U in some projective space over K◦. From
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[8, Theorem 2] we know that Y admits an affine T-invariant open covering, which
implies that any U -admissible blow-up β : Y ′ → Y also does. This follows from
the fact that β−1(Ui ) → Ui is the blow-up of Ui along I|Ui

with the center I
of β , which is T-invariant.

Note that from Lemma 3.16 it follows that, for an affine T-invariant open cov-
ering {Ui} of Y , we have canonical open immersions 〈Y 〉Ui

↪→ 〈Ui〉cpt.

Definition 4.2. The partial compactification of U relative to Y is

〈U 〉Ypc := 〈U 〉cpt \ 〈Y 〉U \ U .

Remark 4.3. The locally ringed spaces 〈U 〉cpt and 〈U 〉Ypc are endowed with a
T-action. Clearly, we have that U ⊂ 〈U 〉cpt is open and quasi-compact.

Lemma 4.4. For any point z ∈ 〈U 〉cpt, there is a T-invariant open neighborhood
W ⊂ 〈U 〉cpt that contains z.

Proof. Recall that 〈U 〉cpt = lim←−U
′
with an inverse system {U ′} of U -admissible

blow-ups. Set z′ = π ′(z), where π ′ : 〈U 〉cpt → U
′

is the canonical projection.
Let W ⊂ 〈U 〉cpt be an open neighborhood of z. Then we know from [4, Propo-

sition 0.2.2.9] that there exist an element U
′

in the inverse system and an open
neighborhood V ⊂ U

′
such that W = π ′−1

(V ). Furthermore, we may assume
that U ⊂ V . By taking V ′ := ⋃

t · V with t ∈ T ◦(K) := {t ∈ T (K) | |t | = 1},
if necessary, we get an open T-invariant subset of U

′
. Therefore, the open

W ′ = π ′−1
(V ′) is a T-invariant neighborhood of z. �

Proposition 4.5. Let U1 ⊂ U2 be two T-invariant open affine subsets of Y . Then
we have a T-equivariant open embedding

〈U1〉Ypc ↪→ 〈U2〉Ypc

extending the inclusion of U1 into U2.

Proof. Let U2 be a compactification of U2 over K◦. By taking the closure of
U1 in U2 we get a compactification of U1 over K◦ as well. We have a canon-

ical morphism 〈U1〉cpt
ϕ−→ 〈U2〉cpt extending the inclusion U1 ↪→ U2. Now let

x, y ∈ 〈U1〉cpt \ U1 be such that ϕ(x) = ϕ(y) ∈ 〈U2〉cpt and therefore having

the same projection on U2
′ \ U1, where U2

′ → U2 is a U2-admissible blow-
up. After replacing x and y by generizations of x and y if needed, we may as-
sume that π(x) = π(y) ∈ U1

′ ∩ U2, where π : 〈U1〉cpt → U1
′

is the projection,

and U1
′ → U1 is a U1-admissible blow-up. By Proposition 3.7 this implies that

x, y ∈ 〈U2〉U1 = 〈Y 〉U1 ⊂ 〈U1〉cpt. Therefore the induced map 〈U1〉Ypc → 〈U2〉cpt

is an open immersion. �

Now consider an open covering {Ui} of the T-toric variety Y . Given two ele-
ments of this covering Ui , Uj , we have the canonical inclusions Ui ∩ Uj ↪→ Ui
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and Ui ∩ Uj ↪→ Uj , which by the previous proposition give rise to open embed-
dings 〈Ui ∩ Uj 〉Ypc ↪→ 〈Ui〉Ypc and 〈Ui ∩ Uj 〉Ypc ↪→ 〈Uj 〉Ypc . Therefore we have

well-defined maps �〈Ui ∩Uj 〉Ypc ⇒p
q �〈Ui〉Ypc coming from those inclusions. We

define the T-invariant Zariski–Riemann compactification 〈Y 〉cpt of Y as the cok-
ernel of these maps in the category of locally ringed spaces. We get the exact
sequence

�〈Ui ∩ Uj 〉Ypc

p
⇒
q

�〈Ui〉Ypc → 〈Y 〉cpt.

By construction 〈Y 〉cpt is T-equivariant.
To show that this space is algebraic, we proceed as follows.

Proposition 4.6. Given a point z ∈ 〈Y 〉cpt, there exists a dense open immersion
over K◦ Y ↪→ Yz of T-toric varieties over K◦ such that 〈Yz〉Y contains the
point z.

Proof. This follows from [4, Lemma F.3.3] by noting that from the proof of
Lemma 4.4 we may assume that there is a T-invariant open subset V ⊂ U

′
that

contains U and such that π−1(V ) = W , where π : 〈U 〉cpt → U
′
is the canonical

projection, and U
′ → U is a U -admissible blow-up. Hence, Yz is obtained by

gluing Y and V along U as in Proposition 3.18. �

Finally, using the quasi-compactness of the T-invariant Zariski–Riemann space,
we can prove our main result.

Proof of Theorem 1. For any point z ∈ 〈Y 〉cpt, construct Yz as in Proposition 4.6.
Since 〈Y 〉cpt is quasi-compact, there exist finitely many points zi ∈ 〈Y 〉cpt such
that {〈Yzi

〉Y } is an open covering of 〈Y 〉cpt. Then by applying Proposition 3.18
we get a T-toric variety Ycpt over K◦ that contains Y and satisfies 〈Ycpt〉Y =
〈Y 〉cpt. It follows from [4, Corollary F.2.13] that it is proper over K◦. �
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