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Smooth Rational Curves on Singular Rational Surfaces

Ziquan Zhuang

Abstract. We classify all complex surfaces with quotient singulari-
ties that do not contain any smooth rational curves under the assump-
tion that the canonical divisor of the surface is not pseudo-effective.
As a corollary, we show that if X is a log del Pezzo surface such that,
for every closed point p ∈ X, there is a smooth curve (locally analyti-
cally) passing through p, then X contains at least one smooth rational
curve.

1. Introduction

Let X be a projective rationally connected variety defined over C. When X is
smooth, it is well known that there are many smooth rational curves on X: if
dimX = 2, then X is isomorphic to a blowup of either P2 or a ruled surface Fe;
if dimX ≥ 3, then any two points on X can be connected by a very free rational
curve, that is, the image of f : P1 → X such that f ∗TX is ample, and a general
deformation of f is a smooth rational curve on X (for the definition of rationally
connected variety and the mentioned properties, see [Kol96]). It is then natural to
ask about the existence of smooth rational curves on X when X is singular. In this
paper, we study this problem on rational surfaces.

There are some possible obstructions to the existence of smooth rational
curves. It can happen that there is no smooth curve germ passing through the
singular points of X (e.g. when X has an E8 singularity) whereas the smooth lo-
cus of X contains no rational curves at all (this could be the case when the smooth
locus is of log Calabi–Yau or log general type), and then we will not be able to
find any smooth rational curves on X. Hence, to produce smooth rational curves
on X, we need some control on the singularities of X and the “negativity” of its
smooth locus. We show that these restrictions are also sufficient, in particular, we
prove the following theorem, which is one of the main results of this paper.

Theorem. Let X be a surface with only quotient singularities. Assume that

(1) KX is not pseudo-effective;
(2) For every closed point p ∈ X, there is a smooth curve (locally analytically)

passing through p.

Then X contains at least one smooth rational curve.

In fact, we prove something stronger. By studying various adjoint linear systems
on rational surfaces, we show that condition (1), combined with the nonexistence
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of smooth rational curves, has strong implication on the divisor class group of X

(Proposition 2.5), which allows us to classify all surfaces with quotient singular-
ities that satisfy condition (1) but do not contain smooth rational curves (Theo-
rem 2.15). It turns out that all such surfaces have an E8 singularity, which is the
only surface quotient singularity that does not admit a smooth curve germ.

This paper is organized as follows. In Section 2, we study the existence of
smooth rational curves on rational surfaces with quotient singularities whose anti-
canonical divisor is pseudo-effective but not numerically trivial and give the proof
of the main result. In Section 3, we study some examples and propose a few ques-
tions. In particular, we construct some rational surfaces with quotient singularity
and numerically trivial canonical divisor that contain no smooth rational curves.

Conventions

We work over the field C of complex numbers. Unless mentioned otherwise, all
varieties in this paper are assumed to be proper and all surfaces normal. A surface
X is called log del Pezzo if there is an effective Q-divisor D on X such that
(X,D) is klt and −(KX + D) is ample.

2. Proof of Main Theorem

In this section, we classify all surfaces with quotient singularities containing no
smooth rational curves under the assumption that the anticanonical divisor is
pseudo-effective but not numerically trivial. As a corollary, we will see that if
X is a log del Pezzo surface that has no E8 singularity (since E8 is the only
surface quotient singularity whose fundamental cycle contains no reduced com-
ponent, by [GSLJ94] this is equivalent to saying that for every point p ∈ X, there
is a smooth curve germ passing through p), then X contains at least one smooth
rational curve.

We start by introducing a few results on adjoint linear systems that we fre-
quently use to identify smooth rational curves on a surface.

Lemma 2.1. Let X be a smooth rational surface, and D a reduced divisor on X.
Then |KX + D| = ∅ if and only if every connected component of D is a rational
tree (i.e. every irreducible component of D is a smooth rational curve, and the
dual graph of D is a disjoint union of trees).

Proof. We have an exact sequence 0 → ωX → ωX(D) → ωD → 0 that induces a
long exact sequence

· · · → H 0(X,ωX) → H 0(X,ωX(D)) → H 0(D,ωD) → H 1(X,ωX) → ·· · .

Since X is a smooth rational surface, H 0(X,ωX) = H 1(X,ωX) = 0; hence
H 0(X,ωX(D)) = 0 if and only if H 0(D,ωD) = 0. We now show that the lat-
ter condition holds if and only if every connected component of D is a rational
tree. By doing this we may assume that D is connected. Since D is reduced,
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H 0(D,ωD) = 0 is equivalent to pa(D) = 0. Let Di (i = 1, . . . , k) be the irre-
ducible components of D. Then we have 0 = pa(D) = ∑k

i=1 pa(Di)+ e − v + 1,
where e and v are the numbers of edges and vertices in the dual graph of D. Since
each pa(Di) ≥ 0 and e − v + 1 ≥ 0, we have equality everywhere, and hence the
lemma follows. �

We also need an analogous result when X is not smooth.

Lemma 2.2. Let X be a projective normal Cohen–Macaulay variety of dimension
at least 2, and D a Weil divisor on X. Then we have an exact sequence

0 → ωX → OX(KX + D) → ωD → 0, (2.1)

where ωX and ωD are the dualizing sheaves of X and D, and KX is the canonical
divisor of X.

Proof. See [Kol13, 4.1]. �

Corollary 2.3. Let X be a rational surface with only rational singularities,
and D an integral curve on X. Then D is a smooth rational curve if and only if
|KX + D| = ∅.

Proof. Since X is a normal surface, it is CM, so we can apply the previous lemma
to get the exact sequence (2.1), which induces the long exact sequence

H 0(X,ωX) → H 0(X,OX(KX + D)) → H 0(D,ωD) → H 1(X,ωX) → ·· · .

Since X is a rational surface with only rational singularities, we have H 0(X,

ωX) = H 1(X,ωX) = 0, and hence D is a smooth rational curve iff H 0(D,ωD) =
0 iff |KX + D| = ∅. �

We may notice that the Lemmas 2.1 and 2.2 only apply to rational surfaces
whereas our main theorem is stated for arbitrary surfaces. This is only a minor
issue, as illustrated by the following lemma.

Lemma 2.4. Let X be a surface. Assume that X does not contain any smooth ra-
tional curves. Then either KX is nef, or −KX is numerically ample and ρ(X) = 1.

Here since −KX is in general not Q-Cartier, its nefness or numerical ampleness is
understood in the sense of [Sak87]. In particular, if we further assume that X has
rational singularities (which implies that X is Q-factorial) and KX is not pseudo-
effective (as we do in our main theorem), then −KX is ample, and X is a rational
surface of Picard number one by [KT09, Lemma 3.1].

Proof of Lemma 2.4. First, suppose X is not relatively minimal. By [Sak87, The-
orem 1.4] we may run the KX-MMP on X. Let f : X → Y be the first step in the
MMP. Since −KX is f -ample, by [Sak85, Theorem 6.3] we have R1f∗OX = 0.
Let C ⊆ X be an irreducible curve contracted by f , and IC its ideal sheaf. Since
the fibers of f have dimension ≤ 1, we have R2f∗IC = 0 by the theorem of
formal functions. It then follows from the long exact sequence associated with
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0 → IC → OX → OC → 0 that H 1(C,OC) = R1f∗OC = 0, and hence C is a
smooth rational curve on X, contrary to our assumption.

We may therefore assume that X is relatively minimal. If KX is not nef, then
by [Sak87, Theorem 3.2], either −KX is numerically ample and ρ(X) = 1, or
X admits a fibration g : X → B whose general fiber is P1. However, the latter
case cannot occur since X contains no smooth rational curves. This proves the
lemma. �

Now we come to a useful criterion for whether a surface contains at least one
smooth rational curve.

Proposition 2.5. Let X be a surface with only rational singularities. Assume that
KX is not pseudo-effective. Then the following are equivalent:

(1) X contains no smooth rational curves;
(2) The class group Cl(X) is infinite cyclic and is generated by some effective

divisor D linearly equivalent to −KX .

Proof. First, assume that (2) holds. By [KT09, Lemma 3.1], X is necessarily a
rational surface. If X contains a smooth rational curve C, then by Corollary 2.3,
|KX + C| = ∅, but by (2), we may write C ∼ kD for some integer k ≥ 1, and
KX + C ∼ (k − 1)D is effective, a contradiction, so (1) follows.

Now assume that (1) holds. By Lemma 2.4 and its subsequent remark, X is
a rational surface with ample anticanonical divisor. Let H be an ample divisor
on X and assume that there exists some effective divisor C on X that is not an
integral multiple of −KX in Cl(X). Among such divisors, we may choose C so
that (H.C) is minimal. Clearly, C is integral, and by (1) it is not a smooth rational
curve; hence by Corollary 2.3, KX +C is effective. Since −KX is ample, we have
(KX + C.H) < (C.H), so by our choice of C, KX + C is an integral multiple of
KX , and hence so is C, a contradiction. It follows that every effective divisor on
X is linearly equivalent to a multiple of −KX . Since Cl(X) is generated by the
class of effective divisors, we see that it is infinite cyclic and generated by −KX .
Now let m be the smallest positive integer such that −mKX is effective. Write
−mKX ∼ ∑

aiDi , where ai > 0, and Di is integral. As m is minimal and each Di

is also a multiple of −KX , we have indeed −mKX ∼ D an integral curve. Since
D is not smooth rational by (1), again by Corollary 2.3, KX + D is effective, but
KX + D ∼ −(m − 1)KX , so by the minimality of m we have m = 1, and thus all
the assertions in (2) are proved. �

From now on, X will always be a normal surface that satisfies the assumptions and
the equivalent conditions (1)–(2) of Proposition 2.5. In particular, X is rational,
Q-factorial, −KX is ample, and Pic(X) ∼= Z is generated by −rKX , where r is the
smallest positive integer such that rKX is Cartier (i.e. the index of X). We further
assume that X has at worst quotient singularities (or equivalently, klt singularities,
as we are in the surface case). Let X0 be the smooth locus of X, π : Y → X the
minimal resolution, and E ⊂ Y the reduced exceptional locus.
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Lemma 2.6. With the notation as before, we have an exact sequence

0 → Cl(X)/Pic(X) → H 2(E,Z)/H2(E,Z) → H1(X
0,Z) → 0

and an isomorphism H 2(E,Z)/H2(E,Z) ∼= Z/rZ.

Here we identify H2(E,Z) as a subgroup of H 2(E,Z) by the composition
H2(E,Z) → H2(Y,Z) → H 2(Y,Z) → H 2(E,Z), where the first and last maps
are induced by the inclusion E ⊂ Y , and the second by the Poincaré duality.
In other words, the intersection pairing on Y induces a nondegenerate pairing
H2(E,Z) × H2(E,Z) → Z, and hence we may view H2(E,Z) as a subgroup of
H 2(E,Z). Note that the intersection numbers between irreducible components
of E only depend on the singularities of X, so the quotient H 2(E,Z)/H2(E,Z)

should be considered as a local invariant of the singularities of X.

Proof of Lemma 2.6. The existence of the exact sequence follows from [MZ88,
Lemma 2]. If Cl(X) ∼= Z · [−KX], then from what we just said Pic(X) ∼=
Z · [−rKX], and hence Cl(X)/Pic(X) ∼= Z/rZ. It remains to prove that H1(X

0,

Z) = 0. Since the intersection matrix of E is nondegenerate, H1(X
0,Z) is finite.

If it is not zero, X0 admits a nontrivial étale cyclic covering of degree d > 1, and
hence Pic(X0) ∼= Cl(X) contains a d-torsion, a contradiction. �

If p ∈ X is a singular point, then let rp be the local index of p, that is, the
smallest positive integer m such that mKX is Cartier at p, and define Clp =
H 2(Ep,Z)/H2(Ep,Z) in the same way as in Lemma 2.6 with Ep = π−1(p)red.
As explained in the next lemma, it can be viewed as the “local class group” of X

at p. Since (X,p) has quotient singularities, it is locally (in the analytic topol-
ogy) isomorphic to a neighborhood in C2/G of the image of the origin, where G

is a finite subgroup of GL(2,C), and then rp = |H |, where H is the image of G

under the determinant map det : G ⊂ GL(2,C) → C∗, and Clp is isomorphic to
the abelianization of G:

Lemma 2.7. In the same notation, Clp ∼= G/G′.

Proof. By definition, Clp only depends on the intersection matrix of Ep , and
hence we may replace X by an étale neighborhood of p; in particular, we may
assume that (X,p) ∼= (C2/G,0). As before, π : Y → X is the minimal resolu-
tion, and thus Ep is a deformation retract of Y . As X is affine and has rational
singularities, Hi(Y,OY ) = Hi(X,OX) = 0 for all i > 0, so by the long exact se-
quence associated with the exponential sequence 0 → Z → OY → O∗

Y → 0 we
have Pic(Y ) ∼= H 2(Y,Z) ∼= H 2(Ep,Z) and hence the following commutative di-
agram (where U = X \ p = Y \ Ep and Ep,i are the irreducible components of
Ep):

⊕Z[Ep,i]
∼=

Pic(Y )

∼=

Pic(U) 0

H2(Ep,Z) H 2(Ep,Z) Pic(U) 0
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It follows that Clp ∼= Pic(U). Let V = C2 \ 0. Then Pic(V ) = 0, and giving a
line bundle on U is equivalent to giving a G-action on the trivial line bundle
on V that is compatible with the G-action on V . Such objects are classified by
H 1(G,O∗

V ) = H 1(G,C∗) ∼= G/G′, so the lemma follows. �

In particular, rp ≤ |Clp |. Since r is the lowest common multiple of all rp and

H 2(E,Z)/H2(E,Z) ∼= Z/rZ

is the direct sum of all Clp , we obtain the following:

Corollary 2.8. Clp ∼= Z/rpZ for all p ∈ Sing(X).

Quotient surface singularities are classified in [Bri68, Satz 2.11], using the table
there together with the well-known classification of Du Val singularities (see e.g.
[Dur79]), we see that each singularity of X has to be one of the following: the
cyclic singularity 1

n
(1, q) where (q,n) = (q + 1, n) = 1, type 〈b;2,1;3,1;3,2〉

(recall from [Bri68, Satz 2.11] that a type 〈b;n1, q1;n2, q2;n3, q3〉 singularity
is the one whose dual graph is a fork such that the central vertex represents a
curve with self intersection number −b and the three branches are dual graph of
the cyclic singularity (1/ni)(1, qi) (i = 1,2,3)), or 〈b;2;3;5〉 (meaning that it is
of type 〈b;2, r;3, s;5, t〉 for some r , s, t). In particular, E8 is the only Du Val
singularity that appears in the list.

We now turn to the classification of surfaces without smooth rational curves.

Lemma 2.9. X has at most one non-Du Val singular point.

Proof. Since X satisfies (2) of Proposition 2.5, there is an effective divisor D ∈
| − KX| (which is necessarily an integral curve). Let D̃ be its strict transform
on Y . We may write

KY + D̃ +
∑

aiEi = π∗(KX + D) ∼ 0, (2.2)

where the Ei are the irreducible components of E, and ai ∈ Z (as KX + D is
Cartier on X). Since Y is the minimal resolution, KY + D̃ is π -nef, and thus by
the negativity lemma [KM98, Lemma 3.39], all ai ≥ 0, and we have ai ≥ 1 if D

passes p = π(Ei) or X is not Du Val at p. In the latter case, since KX is not
Cartier at p, D must pass through p.

We claim that D contains at most one singular point of X, and hence at
most one singular point of X is not Du Val. Suppose that this is not the case
and p1,p2 ∈ D ∩ Sing(X). Let �j = ∑

π(Ei)=pj
aiEi (j = 1,2). Then we have

�j > 0 and (D̃.�j ) ≥ 1. On the other hand, by (2.2) we have 2pa(D̃) − 2 +
(�1 + �2.D̃) = (KY + D̃ + �1 + �2.D̃) ≤ 0, and hence pa(D̃) = 0, D̃ ∼= P1,
and (D̃.�j ) = 1 (j = 1,2). Since KY + D̃ + �j ≡π 0 over pj , we can apply
[KM98, Proposition 5.58] to see that (Y, D̃ + �j) is lc (hence every curve in
�j appears with coefficient one) and the dual graph of D̃ + �j is a loop, which
contradicts the fact that (D̃.�j ) = 1. �
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If X is Gorenstein, then by the previous discussion it has only E8-singularities,
and hence by the classification of Gorenstein log del Pezzo surfaces, X is one of
the two types of S(E8) as discussed in [KM99, Lemma 3.6], and it is straight-
forward to verify that neither of them contains smooth rational curves (e.g. using
Proposition 2.5). So from now on we assume that X is not Gorenstein, and by
Lemma 2.9 we may denote by p the unique non-Du Val singular point of X and
let � = π−1(p)red. We also get the following immediate corollary from the proof
of Lemma 2.9.

Corollary 2.10. With the same notation, every effective divisor D ∼ −KX

passes through p and no other singular points of X.

In some cases, the curve D constructed in the previous proof turns out to be al-
ready a smooth rational curve on X. To be precise, we have the following:

Proposition 2.11. Let D ∈ |−KX|, and D̃ its strict transform on Y . Then either
X has a cyclic singularity at p and KY + D̃ +� ∼ 0, or (X,p) is a singular point
of type 〈b;2,1;3,1;3,2〉 or 〈b;2;3;5〉 with b = 2.

Proof. We have KY + D̃ + ∑
aiEi ∼ 0 as in (2.2), where ai ∈ Z>0 and Ei ⊂

Supp� by Corollary 2.10. If some ai ≥ 2, then |KY + D̃ + �| = ∅, and hence by
Lemma 2.1 D̃ + � is a rational tree, in particular, (D̃.�) = 1, and if, in addition,
� is the fundamental cycle of (X,p) (i.e. −� is π -nef; this is the case if (X,p)

has cyclic singularity or if the central curve of � has self-intersection at most
−3), then by [KM99, Lemma 4.12], D is a smooth rational curve on X, but by
Corollary 2.3 this contradicts our assumption since |KX + D| �= ∅. We already
know that the singularity of X at p is cyclic, 〈b;2,1;3,1;3,2〉 or 〈b;2;3;5〉, and
hence, in the first case, all ai = 1, and we claim that, in the latter two cases, at
least one ai ≥ 2, and it follows that b = 2. Suppose that all ai = 1. Then KY +
D̃ + � ∼ 0, but the LHS has a positive intersection with the central curve of �, a
contradiction. �

We need a more careful analysis in the cyclic case, so assume for the moment that
X has cyclic singularity at p. As before, D is an effective divisor in | − KX|, and
D̃ its birational transform on Y , whereas � = π−1(p)red.

Lemma 2.12. D̃ is a (−1)-curve on Y .

Proof. Since |KY +D̃| = |−�| = ∅, D̃ is a smooth rational curve by Lemma 2.1.
We first show that (D̃2) < 0. Suppose (D̃2) ≥ 0. Then the exact sequence 0 →
OY → OY (D̃) → O

D̃
(D̃) → 0 and H 1(Y,OY ) = 0 imply that OY (D̃) is base

point free, and hence we can choose D to pass through any point on X. By Corol-
lary 2.10 this implies that p is the unique singular point of X. If C is a (−1)-curve
on Y , then C is not contained in the support of D̃+�, and since KY +D̃+� ∼ 0,
we get (KY + D̃ + �.C) = −1 + (D̃ + �.C) = 0; hence, (C.�) ≤ 1, and π(C)

is a smooth rational curve on X (using [KM99, Lemma 4.12] as in the proof of
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Proposition 2.11), a contradiction. It follows that Y contains no (−1)-curves, and
hence Y ∼= Fe(e ≥ 2) and X ∼= P(1,1, e), but then X contains many smooth ra-
tional curves, so these cases cannot occur. Hence (D̃2) < 0. If (D̃2) ≤ −2, then
by [Zha88, Lemma 1.3] D̃ is contained in E (the exceptional locus of π ), so the
lemma follows. �

Lemma 2.13. There exists a birational morphism f : Y → Ȳ such that

(1) Ȳ is an S(E8);
(2) Ex(f ) consists of all but one component of D̃ + E;
(3) f (D̃) is a smooth point on Ȳ .

Proof. Let Y → Y0 be the contraction of all curves in E \ �. Then every closed
point of Y0 is either smooth or an E8-singularity (every Du Val singularity of X

is an E8-singularity). We run the K-negative MMP starting with Y0:

Y0
φ1−→ Y1

φ2−→ · · · φm−→ Ym
g−→ Z,

where each step is the contraction of an extremal ray, φi are birational, and
dimZ < 2 (Y0 is a Gorenstein rational surface, so the MMP stops at a Mori fiber
space). By [KM99, Lemma 3.3] each φi is the contraction of a (−1)-curve con-
tained in the smooth locus of Yi−1. If this (−1)-curve is not a component of the
image of D̃ + E, then let C be its strict transform in Y . Then C is a smooth ratio-
nal curve with negative self-intersection, and hence by [Zha88, Lemma 1.3] it is a
(−1)-curve. Now the same argument as in Lemma 2.12 shows that (C.�) ≤ 1 and
π(C) is a smooth rational curve in X, a contradiction. So the exceptional locus of
Y0 → Ym is contained in D̃ + E. In particular, since D̃ is the only component of
D̃ + E that is a (−1)-curve, φ1 is the contraction of D̃.

We claim that Z is a point. Suppose it is not; then g is a P1-fibration. By
[KM99, Lemma 3.4], since Ym has only singularities of E8 type, it is actually
smooth and isomorphic to Fe for some e ≥ 0. If e = 1, then we can choose to
contract the (−1)-curve from Ym, and then Ym+1 = P2, whereas Z is a point. So
we may assume that e = 0 or e ≥ 2. Since Cl(X) is generated by −KX , we see
that Cl(Y ) is freely generated by −KY and the components of E, or equivalently,
by the components of D̃ + E. Letting � be the image of D̃ + E on Ym, we have
KYm + � ∼ 0, and the irreducible components of � freely generate Cl(Ym). Since
ρ(Ym) = 2 in this case, � has exactly two irreducible components. However, this
contradicts the next lemma.

Hence Z is a point, and Ym is a Gorenstein rank one del Pezzo. By construc-
tion Cl(Ym) is generated by the effective divisor � ∼ −KYm ; in other words, Ym

contains no smooth rational curves, and hence by the discussion on the Du Val
case, Ym is an S(E8), and the lemma follows by taking Ȳ = Ym. �

The following lemma is used in the proof.

Lemma 2.14. Let S = Fe where e = 0 or e ≥ 2. Then −KS cannot be written as
the sum of two irreducible effective divisors that generate Pic(S).
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Proof. It is quite easy to see that when e = 0, such a decomposition of −KS is
not possible, so we assume that e ≥ 2. Let C0 be the unique section of negative
self-intersection, and F be a fiber. Then Pic(S) is freely generated by C0 and F .
If M = aC0 + bF represents an irreducible curve, then M = aC0, or b ≥ ae ≥ 0.
Suppose −KS ∼ 2C0 + (e + 2)F ∼ M1 + M2, where M1 and M2 are irreducible
and generate Pic(S). Then we must have Mi = C0 + miF with mi ≥ e and m1 +
m2 = e + 2, which is only possible when m1 = m2 = e = 2, but then M1 = M2

cannot generate Pic(S). �

Back to the general case. To finish the classification, let us now construct some
surfaces that satisfy the conditions in Proposition 2.5. Let Ȳ be an S(E8) with
� ∈ | − KȲ | a rational curve. We have � ⊂ Ȳ 0 and (�2) = 1. Let q be the unique
double point of �. Let Y → Ȳ be the blowup at q1 = q , q2, · · · , qm where each
qi is infinitely near qi−1 (i > 1). If q is a node of �, then we also require that qi

always lies on the strict transform of either � or exceptional curves of previous
blowup (there are two different choices of qi for each i > 1). If q is a cusp,
then we require that m = 1,2, or 4 and that qi lies on the strict transform of � for
i = 2,3 whereas q4 is away from � and previous exceptional curves. Let Ei be the
strict transform of the exceptional curve coming from the blowup of qi . We define
X(Ȳ ,�;q1, . . . , qm) to be the contraction from Y of � and Ei (i = 1, . . . ,m− 1).
It has two singular points, one of which is an E8 singularity, and the other is
a cyclic singularity except when � has a cusp at q and m = 4, in which case
the second singularity has type 〈2;2,1;3,1;5,1〉. Arguing inductively, we get
−KY ∼ � + ∑m

i=1 Ei unless � has a cusp at q and m = 4, in which case we
instead have −KY ∼ � + E1 + E2 + 2E3 + E4. Since Cl(Y ) is generated by �

and all Ei , it is not hard to verify that X(Ȳ ,�;q1, . . . , qm) satisfies condition (2)
in Proposition 2.5.

Theorem 2.15. If X is a surface with only quotient singularities that satis-
fies the conditions in Proposition 2.5, then it is either an S(E8) or one of the
X(Ȳ ,�;q1, . . . , qm) constructed before.

Proof. If X is Gorenstein, then it is an S(E8), so we may assume that X is not
Gorenstein. Let p be its unique non-Du Val singular point. By Proposition 2.11,
there are three possibilities for the singularity of (X,p), and we analyze them one
by one:

(1) (X,p) is a cyclic singularity. Let Y0 be as in Lemma 2.13, by which there
exists a birational morphism f : Y0 → Ȳ where Ȳ is an S(E8) such that f

contracts all but one component of D̃ + � to a smooth point (we use the
same letters for strict transforms of D̃ and � on Y0). By Proposition 2.11,
KY0 + D̃ + � ∼ 0, and thus the dual graph of D̃ + � is a loop. It follows
that � = f (D̃ + �) ∼ −KȲ is a rational curve with a double point q . In
addition, q is a cusp if and only if D̃ + � consists of two rational curves that
are tangent to each other or three rational curves that intersect at the same
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point. In particular, D̃ + � has at most three components when q is a cusp.
Since f is a composition of blowing down of (−1)-curves, we recover Y0 as
a successive blowup from Ȳ of nodes on the images of D̃ +�. Let q1, . . . , qm

be the centers of these blowups. Clearly, q1 = q , and if q is a cusp, then m ≤ 2.
Since D̃ is the only (−1)-curve among the components of D̃ + �, each qi is
infinitely near qi−1. It is now easy to see that X is a X(Ȳ ,�;q1, . . . , qm) with
� nodal or � cuspidal and m ≤ 2.

(2) (X,p) has type 〈2;2,1;3,1;3,2〉. By assumption H 2(Y,Z) = Pic(Y ) is
freely generated by KY and the components in E. Since the intersection par-
ing on H 2(Y,Z) is unimodular, the intersection matrix of KY and E has
determinant ±1. Write KY + G = π∗KX where G is supported on E (and
can be easily computed from the given singularity type). Since π∗KX is the
orthogonal projection of KY to the span of the components of E, we must
then have (K2

X) = ((KY + G)2) = (K2
Y ) + (KY .G) = 10 − ρ + (KY .G) = 1

r
,

where r = |det((Ei.Ej ))|, and ρ is the Picard number of Y . It is straightfor-
ward to compute that G = 5

9E1 + · · · , where E1 is the only component of E

with self-intersection (−3) (and this is the only component whose coefficient
is relevant to us), (KY .G) = 5

9 , and r = 9. But ρ is an integer, so this case
cannot occur.

(3) (X,p) has type 〈2;2;3;5〉. A similar computation as in case (2) shows that
to have 10 − ρ + (KY .G) = 1

r
, (X,p) must has type 〈2;2,1;3,1;5,1〉 and

ρ = 13. Since the other singularities of X are of E8-type, X has exactly one
E8-singularity. By the same proof as that of Lemma 2.12, D̃ is a (−1)-curve.
Let E1 be the central curve of �, and E2, E3, E5 be the other three com-
ponents of � with self-intersections −2, −3, and −5, respectively. Write
KY + D̃ + ∑

aiEi = π∗(KX + D) ∼ 0 as before. We have a1 ≥ 2 since oth-
erwise the LHS has positive intersection with E1. By Lemma 2.1, D̃ + � is a
rational tree, and thus D intersects transversally with exactly one component
of �. It is straightforward to find the discrepancies ai once we know which
component D̃ intersects. But as ai are integers, we find that D̃ intersects E1

by enumerating all the possibilities and that a2 = a3 = a5 = 1. Now, as in
Lemma 2.13, we may contract D̃, E1, E2, E3 and all components of E \ �

from Y to obtain Ȳ , which is an S(E8), such that the image of E5 is a cuspi-
dal rational curve � ∼ −KȲ . Reversing this blowing down procedure, we see
that X is isomorphic to some X(Ȳ ,�;q1, . . . , q4) where Ȳ is an S(E8) and �

is cuspidal. �

It is well known that E8 is the only surface quotient singularity that does not
admit a smooth curve germ [GSLJ94]. Hence the following corollary immediately
follows from the theorem.

Corollary 2.16. Let X be a surface with only quotient singularities. Assume
that

(1) KX is not pseudo-effective;
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(2) For every closed point p ∈ X, there is a smooth curve (locally analytically)
passing through p.

Then X contains at least one smooth rational curve.

3. Examples and Questions

If X is a log del Pezzo surface, then a curve of minimal degree on X seems to be a
natural candidate for the smooth rational curve (such a curve is used extensively in
the study of log del Pezzo surfaces). However, the following example shows that
this is not always the case, even if X is known to contain some smooth rational
curve.

Example 3.1. Let Y �= S(E8) be a Gorenstein log del Pezzo surface of degree 1
such that the linear system | − KY | contains a nodal curve D. Let Ȳ → Y be the
blow up of the node of D. Let E be the exceptional curve, and D̄ the strict trans-
form of D. Contract the (−3)-curve D̄ to get our surface X. It is straightforward
to verify that the image of E under the contraction is the only curve of minimal
degree on X. But since E intersects D̄ at two points, its image on X is not smooth.
In fact, the smooth rational curves on X are usually given by the strict transform
of (−1)-curves on the minimal resolution of Y . Observe that since KX + E ∼ 0,
we have that KX + C is ample for any smooth rational curve C on X.

We are also interested in whether the smooth rational curve C we find supports
a tiger of the log del Pezzo surface X (i.e. there exists D ∼Q −KX such that
Supp(D) = C and (X,D) is not klt. See [KM99, Definition 1.13]). At least, when
C passes through at most one singular point, we have a positive answer:

Lemma 3.2. Let C be a smooth rational curve on a rank 1 log del Pezzo surface X.
Assume that C passes through at most one singular point of X. If α ∈ Q is chosen
such that KX + αC ≡ 0, then the pair (X,αC) is not klt.

Proof. If C lies in the smooth locus of X, then by adjunction (KX + C.C) =
−2 < 0, hence α > 1, and the result is clear. Otherwise, we may assume that
C ∩ Sing(X) = {p}. Let β be the log canonical threshold of the pair (X,C), and
π : X̃ → X the minimal resolution. It suffices to show that (KX + βC.C) ≤ 0.
Since C is a smooth rational curve, π is also a log resolution of (X,C). Write
π∗(KX + βC) = K

X̃
+ βC̃ + ∑

aiEi , where the Ei are the exceptional curves
of π . We have ai ≤ 1 by the choice of β , and C̃ only intersects one Ei . Now since
X is of rank 1, we have (C̃2) ≥ −1 by [Zha88, Lemma 1.3] and (K

X̃
+C̃.C̃) = −2

by adjunction; thus

(KX + βC.C) =
(

K
X̃

+ βC̃ +
∑

aiEi.C

)
≤ −1 − β +

∑
(Ei.C̃)

≤ −β < 0. �
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On the other hand, once C passes through more singular points of X, the situation
becomes more complicated. The following example suggests that even if X has a
tiger, then in general there is no guarantee that the tiger can be supported on C.

Example 3.3. Similarly to the previous example, let Y be a Gorenstein log del
Pezzo surface of degree 1 with an A8-singularity and D ∈ | − KY | a nodal curve.
Blow up the node and one of its infinitely near points to get a new surface Ȳ

and let X be the contraction of the strict transform of D and the first exceptional
curve. The second singularity of X has a dual graph of type 〈4,2〉. Every smooth
rational curve on X is a (−1)-curve on the minimal resolution and intersects both
singular points of X. By direct computation we have β = 1

2 (where β = lct(X,C)

as in the proof of Lemma 3.2) and (KX + βC.C) > 0, and hence by the same
reasoning as in Lemma 3.2 we know that C does not support a tiger. However,
−KX is effective, so X does have a tiger.

In view of Proposition 2.5, we may ask for a similar classification of surfaces with
rational singularities that contain no smooth rational curves. The next example
shows that we do get additional cases.

Example 3.4. The construction is similar to that of X(Ȳ ,�;q1, . . . , qm). Let Ȳ

be an S(E8) with � ∈ | − KȲ | a cuspidal rational curve, and let q be the cusp
of �. Let Y → Ȳ be the blowup at q1 = q , q2, . . . , qm (m ≥ 5) where each qi is
infinitely near qi−1 (i > 1) such that qi lies on the strict transform of � for i < m

whereas qm is away from � and the previous exceptional curves. Let Ei be the
strict transform of the exceptional curve coming from the blowup of qi . The dual
graph of � and Ei (i = 1, . . . ,m − 1) is given as follows:

(−2) (−2) − · · · − (−2) − (−m − 1)

(−2)

(−3)

We define X to be the contraction from Y of these curves. It has two singular
points, one of which is an E8 singularity, and the other is not a quotient singularity
since we assume that m ≥ 5. Nevertheless, it is a rational singularity (one way to
see this is to attach m auxiliary (−1)-curves to � and notice that the corresponding
configuration of curves contracts to a smooth point, and hence any subset of these
curves also contracts to a rational singularity by [Art66, Proposition 1]). We also
have −KY ∼ �+E1 +E2 +2

∑m−1
i=3 Ei +Em by induction on m, and it follows as

before that Cl(X) is generated by the image of Em, which is linearly equivalent to
−KX . By Proposition 2.5, X is a surface with rational singularities that contains
no smooth rational curves.

We observe that the surfaces in this example still contain E8 singularities and
thus violate the second assumption of Corollary 2.16. In addition, the construction
does not seem to have many variants. It is therefore natural to ask the following
question.
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Question 3.5. Let X be a surface with rational singularities. Assume that KX

is not pseudo-effective and every closed point of X admits a smooth curve germ.
Is it true that X contains a smooth rational curve? More aggressively, classify all
surfaces with rational singularities that contain no smooth rational curves.

Finally, we investigate what happens if we remove the assumption on KX in our
main theorem. Clearly, there are many smooth surfaces (e.g. Abelian surfaces, ball
quotients, etc.) with nef canonical divisors that even contain no rational curves.
Since we are mostly interested in the existence of smooth rational curves, we
restrict ourselves to rational surfaces. We construct some examples of rational
surfaces with cyclic quotient singularities that contain no smooth rational curves.
These rational surfaces X are the quotient of certain singular K3 surfaces and
satisfy KX ∼Q 0, and hence assumption (1) in our main theorem is necessary.

Example 3.6. Let T be a smooth del Pezzo surface of degree 1. For general
choice of T , the linear system | − KT | contains at least two nodal rational curves
Ci (i = 1,2). Let Qi be the node of Ci , and P = C1 ∩ C2. Let π : Y → T be the
blowup of both Qi with exceptional divisors Ei , and let C̃i be the strict transform
of Ci on Y . Then KY = π∗KT + E1 + E2 and C̃i = π∗Ci − 2Ei = π∗(−KT ) −
2Ei , and thus −2KY ∼ C̃1 + C̃2. We also have (C̃2

i ) = −3 and (C̃1.C̃2) = 1, and
hence we can contract both C̃i simultaneously to get a rational surface X with a
cyclic singularity p of type 1

8 (1,3). The next three lemmas tell us that for very
general choice of T and Ci , such X contains no smooth rational curves.

Lemma 3.7. Every smooth curve on X is away from p.

Proof. Let p ∈ C be a smooth curve on X, and C̃ its strict transform on Y . Then
(C̃.C̃1 + C̃2) = 1. But we have C̃1 + C̃2 = −2KY , so the intersection must be
even, a contradiction. �

Let Y ′ → Y be the blowup of P , and C′
i the strict transform of C̃i . Then C′

1 +
C′

2 = −2KY ′ , and hence we can take the double cover f : S → Y ′ ramified along
C′

1 + C′
2. The surface S is smooth since C′

1 and C′
2 are smooth and disjoint, and

S is indeed a K3 surface since KS = f ∗KY ′( 1
2 (C′

1 + C′
2)) ∼ 0 and H 1(S,OS) =

H 1(Y ′,OY ′) ⊕ H 1(Y ′,OY ′(KY ′)) = 0.

Lemma 3.8. For very general choice of T and Ci , the K3 surface S has Picard
number 12.

Proof. We have ρ(S) ≥ 12 since it is a double cover of Y ′ and ρ(Y ′) = 12. Since
the moduli space of K3 surfaces is 20-dimensional, the locus of those with Picard
number at least 13 is a countable union of subvarieties of dimension at most 7. On
the other hand, the above construction gives us an eight-dimensional family of K3
surfaces: we have an eight-dimensional family of del Pezzo surfaces of degree 1.
Hence, for very general choice of T , we get a K3 surface S with ρ(S) = 12. �

We now get the following:
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Lemma 3.9. For very general choice of Ci , the rational surface X constructed
contains no smooth rational curve.

Proof. Suppose C ⊆ X is a smooth rational curve. By Lemma 3.7, p /∈ C, and
hence its strict transform C′ in Y ′ is disjoint from C′

1 + C′
2. Since f : S → Y ′ is

étale outside C′
1 +C′

2, f −1(C′) splits into a disjoint union of two smooth rational
curves D1, D2. This implies ρ(S) ≥ 13 (D1, D2, and the pullback of the orthog-
onal complement of C′ in Pic(Y ′) generate a sublattice of rank 13), which cannot
happen for very general choice of T and Ci by Lemma 3.8. �

By allowing more singular points we can give a similar construction with a sim-
pler proof of nonexistence of smooth rational curves.

Example 3.10. Instead of taking a smooth del Pezzo surface of degree 1, let T

be a Gorenstein rank one log del Pezzo surface of degree 1. Assume that either
T has a unique singular point or it has exactly two An-type singular points. Then
a similar argument as the proof of [KM99, Lemma 3.6] implies that, for general
choice of T , | − KT | contains two nodal rational curves Ci (i = 1,2) lying inside
the smooth locus of T . Let X be the surface obtained by the same construction in
Example 3.6 (i.e. blow up the nodes Qi of Ci and contract both C̃i ). Then it has
the same singularities as T and a cyclic singularity p of type 1

8 (1,3). Suppose
X contains a smooth rational curve C. As before, we know that C ⊂ U = X \
p, and since 2KX ∼ 0, we have a double cover g : Y → X that is unramified
over U (since KX is Cartier over U ). Since C ∼= P1 is simply connected, we
see that g−1(C) consists of two disjoint copies of P1. By construction, X has
Picard number one; hence, C is ample, and thus g∗C is also ample on Y , but
this contradicts [Har77, III.7.9]. In some cases, we can also derive a contradiction
without using the double cover. For example, suppose T has a unique A8-type
singularity q . Then modulo torsion Cl(X) is generated by E, the strict transform
of the exceptional curve over either one of the Qi , and (E2) = 1

2 . It follows that

deg(KC + DiffC(0)) = (KX + C.C) = (C2) ≥ 1

2
, (3.1)

but degKC = −2, and since C is smooth at q , the dual graph of (X,C) at q is
a fork with C being one of the branches. It is then straightforward to compute
that deg DiffC(0) = ( 1

m
+ 1

n
)−1 ≤ 20

9 , where m, n are the indices of the other
two branches of the dual graph (i.e. one larger than the number of vertices in the
branch), which contradicts (3.1).

Inspired by these examples, we may expect to take certain quotients of Calabi–
Yau varieties and construct higher-dimensional rationally connected varieties with
klt singularities that contain no smooth rational curves. Unfortunately, we are un-
able to identify such an example and therefore leave it as the following question.

Question 3.11. Let X be a rationally connected variety of dimension ≥ 3 with
klt singularities. Does X always contain a smooth rational curve?
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We remark that if X is indeed log Fano, then a folklore conjecture predicts that
the smooth locus of X is rationally connected and thus contains a smooth rational
curve since dimX ≥ 3.
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