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(p − 1)th Roots of Unity mod pn, Generalized Heilbronn
Sums, Lind–Lehmer Constants, and Fermat Quotients

Todd Cochrane, Dilum De Silva, & Christopher Pinner

Abstract. For n ≥ 3, we obtain an improved estimate for the gen-

eralized Heilbronn sum
∑p−1

x=1 epn(yxpn−1
) and use it to show that

any interval I of points in Zpn of length |I| � p1.825 for n = 2,

|I| � p2.959 for n = 3, and |I| ≥ pn−3.269(34/151)n+o(1) for n ≥ 4
contains a (p − 1)th root of unity. As a consequence, we derive an im-
proved estimate for the Lind–Lehmer constant for the Abelian group
Zn

p and improved estimates for Fermat quotients.

1. Introduction

Let p be a prime, n ∈N, Z∗
pn be the group of units mod pn, and Gn ⊂ Z∗

pn be the
subgroup of (p − 1)th roots of unity,

Gn := {x ∈ Z∗
pn : xp−1 = 1} = {xpn−1

(mod pn) : 1 ≤ x ≤ p − 1}.
For y ∈ Z, let Sn(y) denote the generalized Heilbronn sum

Sn(y) :=
∑
x∈Gn

epn(yx) =
p−1∑
x=1

epn(yxpn−1
),

where epn(·) = e
2πi·
pn , and let

Hn = max
pn�y

|Sn(y)|.

Our interest here is in estimating Hn and studying the distribution of points in Gn.
In particular, we wish to determine how large M must be so that any interval

I := {a + 1, . . . , a + M} ⊂ Zpn (1.1)

of length M is guaranteed to contain an element of Gn. Equivalently, we wish
to determine an upper bound on the maximal gap between consecutive (p − 1)th
roots of unity. It is well known that an estimate for Hn leads to a corresponding
estimate on the size of the gap. We make this explicit in Corollary 3.1, where we
prove that any interval of length |I| ≥ 3pn−1Hn contains an element of Gn.

The current best estimate for H2 is due to Shkredov [17, Thm. 15],

H2 � p
5
6 log

1
6 p, (1.2)
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improving earlier bounds of Heath-Brown [7], Heath-Brown and Konyagin [8],
and Shkredov [16], and we make no further improvement here. For n ≥ 3, Ma-

lykhin [14, Cor. 1] obtained Hn �n p1− 3.906
5n for n ≥ 3. Bourgain and Chang [1,

Cor. 4.4] also obtained a nontrivial bound of the type Hn � p1−δn for some unde-
termined constant δn > 0, as a special case of their very general exponential sum
estimate over subgroups of Z∗

m with m composite. Here, we use the bound for H2

in (1.2) and a recent energy estimate of Shkredov, Solodkova, and Vyugin [18] to
refine the estimate of Malykhin, obtaining in Theorem 8.1 and Corollary 8.1

H3 � p1− 29
702 +o(1) = p0.95868...+o(1); (1.3)

Hn � p1−3.269( 34
151 )n+o(1) for n ≥ 4. (1.4)

The same estimate for H3 was also obtained recently by Shteinikov [21, Thm. 13]
in a similar manner.

From Corollary 3.1 we immediately deduce the following result for n ≥ 3.

Theorem 1.1. Any interval I ⊂ Zpn of length as further given in (1.5) contains
an element of Gn

|I| ≥

⎧⎪⎨
⎪⎩

p2− 575
3276 +o(1) if n = 2;

p3− 29
702 +o(1) if n = 3;

pn−3.269( 34
151 )n+o(1) if n ≥ 4.

(1.5)

To be precise, for n = 2, the o(1) is an undetermined function of p that goes
to 0 as p → ∞, whereas for n ≥ 3, o(1) = cn log logp/ logp for some effectively
computable constant cn. The estimate given for the case n = 2 does not follow
from Theorem 3.1, but requires instead a method of Konyagin and Shparlinski
[10] given in Section 4; the proof for n = 2 is given in Section 5. As a consequence
of the theorem, we obtain an improved estimate for the Lind–Lehmer constant
for the Abelian group Zn

p (Sect. 2) and improved estimates for Fermat quotients
(Sect. 6).

2. The Lind–Lehmer Constant for Finite Abelian Groups

Our interest in the distribution of elements of Gn was originally motivated by the
problem of determining the Lind–Lehmer constant for the group Zn

p .
For a polynomial F(x) = a0

∏n
i=1(x − αi) ∈ C[x], we define the traditional

Mahler measure M(F) = |a0|∏n
i=1 max{1, |αi |} and the logarithmic Mahler mea-

sure m(F) = logM(F). Famously, Lehmer [11] asked whether there exists a con-
stant c > 0 such that, for any polynomial F in Z[x], either m(F) = 0 or m(F) > c.
By Jensen’s formula we can write

m(F) =
∫ 1

0
log |F(e2πix)|dx,
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allowing us to generalize the concept of Mahler measure to F ∈C[x1, . . . , xn]:

m(F) :=
∫ 1

0
· · ·

∫ 1

0
log |F(e2πix1 , . . . , e2πixn)|dx1 · · · dxn. (2.1)

Since (see, e.g., Boyd [4])

m(F(x1, x2, . . . , xn)) = lim
k→+∞m(F(x, xk, xk2

, . . . , xkn−1
)),

the infimum of positive measures over polynomials in Z[x1, . . . , xn] reduces to
the classical one-variable Lehmer problem.

Lind [13], viewing (2.1) as an integral over the group R/Z × · · · × R/Z and
F(e2πix1 , . . . , e2πixn) as a linear sum of characters on that group, generalized
the concept of Mahler measure to an arbitrary compact Abelian group G with
normalized Haar measure μ and dual group of characters Ĝ, defining, for an f

in Z[Ĝ],
mG(f ) =

∫
G

log |f |dμ.

Analogously to the Lehmer problem, we can ask what is the smallest positive
measure for that group and define the Lind–Lehmer constant

λ(G) := inf{mG(f ) : f ∈ Z[Ĝ],mG(f ) > 0}.
For example, for a finite Abelian group

G = Zm1 × · · · ×Zmn

and F ∈ C[x1, . . . , xn], we can define, as a natural counterpart to (2.1), the mea-
sure

mG(F) = 1

|G|
m1∑

j1=1

· · ·
mn∑

jn=1

log |F(e2πij1/m1, . . . , e2πijn/mn)|,

and λ(G) will be the minimum positive measure mG(F) over the F ∈ Z[x1, . . . ,

xn].
In [5] the latter two authors showed that

λ(Zn
2) = 1

2n
log(2n − 1)

and, for an odd prime p, that

λ(Zn
p) = 1

pn
logMn,

where
Mn := min{2 ≤ a ≤ pn − 1 : a ∈ Gn}.

Thus, an upper bound on the Lehmer constant λ(Zn
p) will follow at once from any

limitation on the size of an interval not containing an element of Gn. In the next
section we relate this to bounds on the Heilbronn sums; in particular, we show
that

Mn ≤ 3pn−1Hn.
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3. Using Estimates for Hn to Estimate Gap Sizes

In this section we use the standard method to obtain a basic theorem relating the
distribution of elements of Gn to the estimation of the Heilbronn sum. In fact, the
result we obtain can be stated for any subgroup G of Z∗

pn . Set

�G = max
pn�y

∣∣∣∣∑
x∈G

epn(yx)

∣∣∣∣.
Theorem 3.1. For any prime power pn and subgroup G of Z∗

pn , any interval
I ⊂ Zpn of length |I| ≥ 2(�G/|G|)pn contains an element of G.

Applying the theorem to Gn and using the fact that |Gn| = p − 1 ≥ 2
3p for odd p,

we obtain the following corollary. (The statement is trivial for p = 2.)

Corollary 3.1. For any prime power pn, any interval I ⊂ Zpn of length |I| ≥
3pn−1Hn contains an element of Gn.

Proof of Theorem 3.1. Let α : Zpn → R be a real-valued function supported on an
interval I as given in (1.1). If we can show that

∑
x∈G α(x) > 0, then it follows

that G ∩ I is nonempty. To this end, we let α(x) = ∑pn

y=1 a(y)epn(yx) be the

Fourier expansion of α, where for any y, a(y) = p−n
∑pn

x=1 epn(−yx)α(x). Also,
for any integer y, put

S(y) :=
∑
x∈G

epn(yx).

Then

∑
x∈G

α(x) =
∑
x∈G

pn∑
y=1

a(y)epn(yx)

= p−n|G|
pn∑

x=1

α(x) +
pn−1∑
y=1

a(y)S(y) := Mα + Eα, (3.1)

say. We call Mα the main term of (3.1), and Eα the error term.
The simplest way to bound the error term Eα is just to say

|Eα| ≤
pn−1∑
y=1

|a(y)S(y)| ≤ �G

pn−1∑
y=1

|a(y)|. (3.2)

We apply this estimate to the weighted function α = 1J ∗ 1K, where

J = {1,2, . . . , �M/2}, K = {a, . . . , a + �M/2�}.
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Here, 1J and 1K are the characteristic functions of the intervals J and K, say
with Fourier coefficients aJ (y) and aK(y) respectively, and ∗ denotes convolu-
tion. We note that α is supported on I ,

Mα = p−n|G|
pn∑

x=1

α(x) = p−n|G||J ||K|,

and that
a(y) = pnaJ (y)aK(y).

Thus, by the Cauchy–Schwarz inequality and Parseval identity,

pn∑
y=1

|a(y)| = pn

pn∑
y=1

|aJ (y)||aK(y)| ≤ pn

( pn∑
y=1

|aJ (y)|2
)1/2( pn∑

y=1

|aK(y)|2
)1/2

= pnp−n

( pn∑
x=1

|1J (x)|2
)1/2( pn∑

x=1

|1K(x)|2
)1/2

= |J |1/2|K|1/2,

and so the main term Mα in (3.1) exceeds the error term Eα , provided that

p−n|G||J ||K| > �G|J |1/2|K|1/2,

that is,
|J ||K| > (�G/|G|)2p2n.

Since |J ||K| = �M/2(1 + �M/2�) > M2/4, we see that it suffices to have M ≥
2(�G/|G|)pn, establishing the theorem. �

4. Improving the Error Estimate

We can improve the estimate of the error term in certain cases using a method
of Konyagin and Shparlinski [10, Chap. 7]. The same method was also used for
related problems in [3] and [2]. Let q = pn, and G be any subgroup of Z∗

q . Parti-
tion Z∗

q into the different cosets of G:

Z∗
q = Gy1 ∪ Gy2 ∪ · · · ∪ GyL,

where L = (pn − pn−1)/|G|. Fix a parameter h < p, to be determined later, and
let

Ni := #{y ∈ Gyi : 0 < |y| ≤ h}
and

φi := |S(yi)|.
It is plain that φi just depends on the coset Gyi and not on the representative yi .
Let

α = 1J1 ∗ 1J2 ∗ · · · ∗ 1Jk
,

where the Ji are intervals of length m = �M
k

�, chosen so that α is supported on I .
Then the Fourier coefficients of α satisfy

a(0) = q−1mk,
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and for any y �= 0 with |y| ≤ q/2, we have

|a(y)| = 1

q

| sink(πym/q)|
| sink(πy/q)| ≤ min

{
mk

q
,

qk−1

2k|y|k
}
. (4.1)

Thus, to estimate the error term in (3.1), we write

|Eα| =
∣∣∣∣
q−1∑
y=1

a(y)S(y)

∣∣∣∣ =
∣∣∣∣ ∑
0<|y|≤q/2

a(y)S(y)

∣∣∣∣
≤

∑
0<|y|≤h

|a(y)||S(y)| +
∑

h<|y|≤q/2

|a(y)||S(y)| = �1 + �2,

say. Noting that, for 0 < |y| ≤ h < p, we must have y ∈ Z∗
q , we obtain

�1 ≤ mk

q

∑
0<|y|<h

|S(y)| = mk

q

L∑
i=1

∑
0<|y|<h
y∈Gyi

φi = mk

q

L∑
i=1

Niφi, (4.2)

whereas for �2, by the definition of �G and (4.1) we have

�2 ≤ max
y �=0

|S(y)|
∑

h≤|y|≤q/2

qk−1

2k|y|k ≤ �G

qk−1

2k−1

(
1

hk
+ 1

(k − 1)hk−1

)

≤ �Gqk−1(k + h − 1)

2k−1hk(k − 1)
.

We succeed with this method provided that �1 ≤ 1
2Mα and �2 < 1

2Mα , with
Mα the main term in (3.1),

Mα = q−1|G|
∑
x

α(x) = q−1|G|mk.

Thus, it suffices to have

�Gqk−1(k + h − 1)

2k−1hk(k − 1)
<

mk|G|
2q

and
mk

q

L∑
i=1

Niφi ≤ |G|mk

2q

or, equivalently,

m >

(
4�G(k + h − 1)

|G|(k − 1)

) 1
k q

2h
and

L∑
i=1

Niφi ≤ |G|
2

.

Taking k = �logp and observing that(
4�G(k + h − 1)

|G|(k − 1)

) 1
k ≤

(
4(k + h − 1)

k − 1

) 1
k ≤

[
4

(
1 + p

�logp�
)] 1

�logp�
< 6

(the maximum value of the latter expression, 5.2915. . . , occurring at p = 7), we
see that the first condition holds provided that m ≥ 3q

h
. Thus, we arrive at the

following generalization and refinement of [10, Lemma 7.1], which was stated
for the case of subgroups of Z∗

p .
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Proposition 4.1. Suppose that q = pn is a prime power, G is a subgroup of Z∗
q ,

and that h < p is such that
∑L

i=1 Niφi <
|G|
2 . Then any interval of length M ≥

� 3q
h

�logp contains a point in G.

In comparison, the result of [10, Lemma 7.1] for n = 1 requires M �ε p1+ε/h

for the same conclusion.
We can estimate the sum

∑L
i=1 Niφi using the Hölder inequality:

L∑
i=1

Niφi ≤
( L∑

i=1

Ni

) 1
2
(∑

i

N2
i

) 1
4
( L∑

i=1

φ4
i

) 1
4

. (4.3)

Now
L∑

i=1

Ni =
L∑

i=1

∑
y∈Gyi|y|≤h

1 =
∑
y∈Z∗

q

|y|≤h

1 ≤ 2h,

L∑
i=1

N2
i =

L∑
i=1

#{(y, z) : y, z ∈ Gyi, |y| ≤ h, |z| ≤ h} = N(h),

where
N(h) := #{(y, z) : y/z ∈ G, |y| ≤ h, |z| ≤ h},

and
L∑

i=1

φ4
i =

L∑
i=1

∣∣∣∣∑
x∈G

eq(yix)

∣∣∣∣
4

= 1

|G|
∑
y∈Z∗

q

∣∣∣∣∑
x∈G

eq(yx)

∣∣∣∣
4

≤ 1

|G|
∑
y∈Zq

∣∣∣∣∑
x∈G

eq(yx)

∣∣∣∣
4

= q

|G|T2(G),

where T2(G) is the additive energy of G,

T2(G) := #{(x1, x2, y1, y2) : xi, yi ∈ G,x1 + x2 = y1 + y2}.
Thus, by (4.3) we have

L∑
i=1

Niφi ≤ (2h)
1
2 N(h)

1
4 (q/|G|) 1

4 T2(G)
1
4 . (4.4)

In order to proceed further, we need good estimates for N(h) and for T2(G).
Bourgain, Konyagin, and Shparlinski [3, Thm. 1] established that, for any non-
negative integer q , subgroup G of Z∗

q , and positive integer ν,

N(h) ≤ hq
1

4ν(ν+1)
+o(1) + h2q− 1

2ν
+o(1),

where the o(1) indicates a function that tends to zero as q → ∞. The optimal
choice for our application is ν = 6, where we have

N(h) ≤ hq
1

168 +o(1) + h2q− 1
12 +o(1). (4.5)
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In the next section we apply this estimate to the subgroup G2 of (p − 1)th roots
of unity in Z∗

p2 .

5. Proof of the Case n = 2 of Theorem 1.1

Inserting the bound for N(h) into (4.5) and the current record breaking bound for
T2(G2) of Shkredov, Solodkova, and Vyugin [18, Thm. 24],

T2(G2) � p
32
13 log

14
13 p � p2.46153...+o(1), (5.1)

from (4.4) we obtain

L∑
i=1

Niφi � h
1
2 (h

1
4 p

1
336 +o(1) + h

1
2 p− 1

24 +o(1))p
1
4 (p

32
13 log

14
13 p)

1
4

≤ h
3
4 p

3793
4368 +o(1) + hp

257
312 +o(1). (5.2)

Thus, Proposition 4.1 applies, provided that h � p
575
3276 +o(1), and so we see that

any interval of length |I| ≥ p
5977
3276 +o(1) = p1.82448...+o(1) contains a pth power,

proving the case n = 2 of Theorem 1.1.

Remark 5.1. It is conjectured [3] that, for ε > 0 and h < pn−1,

N(h) �ε hqε. (5.3)

See also an analogous conjecture in [10, Quest. 7.8] for the case of prime moduli.
Such a bound follows from GRH as we demonstrate in the following proposition.
If we use the conjectured upper bound on N(h) in the previous argument, then we

would obtain the improvement |I| ≥ p
49
27 +ε = p1.81481...+ε .

Proposition 5.1. On the assumption of GRH, we have that, for h < q ,

N(h) �ε

h2

pn−1
+ hqε.

Proof. We have

N(h) = 1

pn−1

∑
|y|≤h

∑
|z|≤h

∑
χpn−1=χ0

χ(y/z)

� h2

pn−1
+ 1

pn−1

∑
χpn−1 =χ0

χ �=χ0

∣∣∣∣
h∑

y=1

χ(y)

∣∣∣∣
2

�ε

h2

pn−1
+ 1

pn−1
pn−1(h1/2qε)2,

the latter inequality being a consequence of GRH, as noted by Montgomery and
Vaughan [15]. �
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Remark 5.2. The estimate for n = 2 has strong parallels with the following result
of Shteinikov [21, Thm. 10] for subgroups of Z∗

p . We restate his result in the
notation of this paper.

Theorem 5.1. Let G be a subgroup of Z∗
p of order |G| ≥ √

p. Then any interval

I of length |I| ≥ p
5977
6552 +o(1) contains an element of G.

The square root threshold needed for applying the theorem, in the context of sub-
groups of Z∗

pn , is satisfied by G2 when n = 2, where |G2| = (p − 1) is roughly√
p2, but fails for Gn with n > 2. This is why we were able to obtain the im-

provement for n = 2 but not for n > 2. The proof in [21] follows a similar line of
argument as our proof before for n = 2. Indeed, its main appeal is to the result of
Konyagin and Shparlinski [10, Lemma 7.1] (analogous to our Prop. 4.1) and to
the estimate of Bourgain, Konyagin, and Shparlinski in (4.5) (with q = p).

6. Fermat Quotients

For prime power pn with n ≥ 2 and integer u with p � u, we define the Fermat
quotient qpn−1(u) to be the unique integer with 0 ≤ qpn−1(u) ≤ pn−1 − 1 and

qpn−1(u) ≡ up−1 − 1

p
(mod pn−1).

It is plain that qpn−1 is constant on any coset of Gn and that it takes on distinct
values on distinct cosets of Gn. Thus, the Fermat quotients take on all values
from 0 to pn−1 − 1 as u runs through a complete residue system mod pn. Fol-
lowing Shparlinski [19], we define �pn−1 to be the minimal value L such that, on
any interval of length L, qpn−1(u) takes on a full spectrum of values from 0 to
pn−1 − 1,

�pn−1 := min{L : ∀K ∈ Z, we have

#{qpn−1(K + 1), . . . , qpn−1(K + L)} = pn−1}.
A value L is permissable if for any coset of Gn and any interval I of length L, I
contains an element of the coset. It is plain from the proof of Theorem 1.1 that the
theorem holds identically with Gn replaced with any coset of Gn. Thus we obtain
the following:

Theorem 6.1. We have

�pn−1 ≤

⎧⎪⎨
⎪⎩

p2− 575
3276 +o(1) if n = 2;

p3− 29
702 +o(1) if n = 3;

pn−3.269( 34
151 )n+o(1) if n ≥ 4.

The theorem improves on a result of Shparlinski, who obtained, for n = 2, the

estimate �p ≤ p
463
252 +o(1).
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Of perhaps greater interest in the study of Fermat quotients is the determination
of p , the minimal positive value of u for which qp(u) �= 0. Lenstra [12] obtained
the uniform upper bound p ≤ 4 log2 p for all primes p. This was improved by

Bourgain, Ford, Konyagin, and Shparlinski [2] to p ≤ (logp)
463
252 +o(1) as p →

∞, by Shkredov [16] to p ≤ (logp)
7829
4284 +o(1), and by Shkredov, Solodkova, and

Vyugin [18, Thm. 28] to p ≤ (logp)
5977
3276 +o(1) = (logp)1.82448...+o(1). Sharper

estimates have been obtained that hold for almost all primes, p ≤ (logp)
5
3 +ε in

[2] and p ≤ (logp)
3
2 +ε in [20]. Granville [6, Conj. 10] conjectured that p =

o(log
1
4 p). Lenstra [12] suggested that the truth may in fact be p ≤ 3 for all p.

Here, we generalize the problem to any prime power pn with n ≥ 2, defining
pn−1 to be the minimal positive integer u such that pn is not a divisor of up−1 −1,
that is, u /∈ Gn.

Theorem 6.2. (i) We have p ≤ (logp)2− 575
3276 +o(1) as p → ∞.

(ii) For n ≥ 2, given an upper bound Hn ≤ p1−εn on the Heilbronn sum, we
have

pn−1 ≤ n(logp)1+ 1−εn
n−1 +o(1)

as pn → ∞.

We note that the upper bound in (ii) for n = 2, using H2 � p
5
6 +o(1), is slightly

weaker than the bound in part (i). The estimate in (i) is the result of [18] mentioned
before. For the convenience of the reader, we include a proof here. The estimate in

(ii) for n = 3, using H3 ≤ p1− 29
702 +o(1), was obtained by Shteinikov [21, Thm. 16].

For n ≥ 4, using the estimate for Hn in (1.4), from (ii) we obtain

pn−1 ≤ n(logp)1+ 1
n−1 − 3.269

n−1 ( 34
151 )n+o(1). (6.1)

Proof. (i) The proof follows identically [2] (and its subsequent improvements),
and so we sketch only the outline here. We start with the upper bound of [3,
Lemma 12], which in the notation of Section 4 can be stated for any interval I of
points in Zpn :

|Gn ∩ I| �ε

(p − 1)

q
|I| + |I|

q

L∑
i=1

Niφi (6.2)

with h = min{q1+ε/|I|, q/2}. Using the upper bound in (5.2), we have, for n = 2,

|G2 ∩ I| �ε

|I|
p2

(p + h
3
4 p

3793
4368 +o(1) + hp

257
312 +o(1)).

Taking |I| = �p2− 575
3276 +3ε�, we have h � p

575
3276 −ε and

|G2 ∩ I| �ε

|I|
p

.

Next, let I = [1,M] with M = �p2− 575
3276 +3ε�. Since up−1 ≡ 1 (mod p2) for

all u ≤ p , the same is true for all integers in I comprised of prime factors ≤ p .
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By [9, Thm. 2.1], the number of such integers is at least M1−log logM/ logp , and
thus

M1−log logM/ logp � M/p,

from which the theorem follows.
(ii) For n ≥ 3, we follow the method of Section 3, taking (with M even) I =

[1,M], J = [−M
2 +1, M

2 ], α = 1I ∗1J . Noting that α(x) ≥ M/2 on I , we obtain
the upper bound

|Gn ∩ I| ≤ 2

M

∑
x∈Gn

α(x) ≤ 2

M
(p−n|Gn|M2 + HnM) < 2

|I|
pn−1

+ 2Hn.

Say Hn ≤ p1−εn . Then with M = �pn−εn we have |Gn ∩ I| ≤ 4 M

pn−1 and so,
as before,

M
1−log logM/ log 

pn−1 ≤ 4M/pn−1,

from which we derive

pn−1 ≤ n(logp)1+ 1−εn
n−1 +o(1)

as pn → ∞. �

7. Asymptotic Formula for Tk(Gn)

For k ∈ N, let G2k
n denote the Cartesian product of Gn with itself 2k-times and

Tk(Gn)

= #{(x,y) ∈ G2k
n : x1 + · · · + xk = y1 + · · · + yk}

= #

{
(x,y) ∈ Z2k : 1 ≤ xi, yi ≤ p − 1,

k∑
i=1

x
pn−1

i ≡
k∑

i=1

y
pn−1

i (mod pn)

}
.

In particular, T1(Gn) = |Gn|, and T2(Gn) denotes the additive energy of the
group Gn. As noted by Malykhin [14], we have the elementary estimate,

Tk(Gn) ≤ Tk(Gn−1) (7.1)

for any k, n with n ≥ 2. The estimate follows from the observation that if 1 ≤ xi ,
yi < p are integers such that

x
pn−1

1 + · · · + x
pn−1

k ≡ y
pn−1

1 + · · · + y
pn−1

k (mod pn),

then, since x
pn−1

i ≡ x
pn−2

i (mod pn−1), we also have

x
pn−2

1 + · · · + x
pn−2

k ≡ y
pn−2

1 + · · · + y
pn−2

k (mod pn−1).

As noted in (5.1), Shkredov, Solodkova, and Vyugin established that T2(G2) �
p

32
13 log

14
13 p. In the next section we obtain T3(G2) � p

161
39 log

55
39 p and prove as-

ymptotic results for Tk(Gn). The key lemma needed for proving these is as fol-
lows.
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Lemma 7.1. For any positive integers n, k, l with k ≥ l, we have

Tk(Gn) = (p − 1)2kp−n + O(H 2k−2l
n Tl(Gn)),

where the constant in the big-O is less than 1.

Proof. We have, for k ≥ l,

Tk(Gn) = p−n

pn−1∑
λ=0

∑
x∈Gk

n

∑
y∈Gk

n

epn(λ(x1 + · · · + xk − y1 − · · · − yk))

= p−n|Gn|2k + p−n

pn−1∑
λ=1

|Sn(λ)|2k

= p−n|Gn|2k + O

(
p−nH 2k−2l

n

pn−1∑
λ=1

|Sn(λ)|2l

)

= (p − 1)2kp−n + O(H 2k−2l
n Tl(Gn)). �

For n = 2, using H2 � p
5
6 log

1
6 p and T2(G2) � p

32
13 log

14
13 p (though in fact

much weaker bounds will do), from the lemma we obtain

Tk(G2) = p2k−2 + O(p2k−3) + O(p
5
3 k− 34

39 +o(1))

for k ≥ 2, and thus the asymptotic formula Tk(G2) ∼ p2k−2 holds for k ≥ 4. The
asymptotic result for n ≥ 3 is given in the next section.

In order to state our next lemma, we define

H ′
n := max

p�y
|Sn(y)|.

Plainly, for n ≥ 2,
Hn = max{H ′

n,Hn−1}.
The key lemma needed for estimating the higher-order Heilbronn sums is the
well-known Hölder-type inequality relating H ′

n to the Tk(Gn) (see, e.g., [10]). A
proof is provided in the Appendix for the convenience of the reader.

Lemma 7.2. For any positive integers n, k, l, we have

H ′
n ≤ (pnTk(Gn)Tl(Gn))

1
2kl (p − 1)1− 1

k
− 1

l .

8. Estimation of Hn and Tk(Gn)

From Lemma 7.1, Lemma 7.2, and (7.1) we obtain an iterative process for esti-
mating successive Hn, Tk(Gn), starting from estimates for H2 and T2(G2). We
suppose that

H2 � pγ , T2(G2) � pλ (8.1)

and define
β := max{4,2γ + λ}. (8.2)
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From Lemma 7.1 we thus have Tk(G2) ∼ p2k−2 for k ≥ 4 and

T3(G2) = p4 + O(H 2
2 T2(G2)) � pβ. (8.3)

The exponents γ = 5
6 + o(1), λ = 32

13 + o(1) mentioned before give β = 161
39 +

o(1) = 4.1282 . . . .

Theorem 8.1. Let {n} and {kn} be the sequences of positive integers defined by

2 := 4, 3 :=
⌈

3β

9 − 2β

⌉
, n+1 :=

⌈(
8 − β

5 − β

)
n

⌉
for n ≥ 3

and

k2 := 3, k3 :=
⌊

3β

9 − 2β

⌋
, kn+1 :=

⌊(
8 − β

5 − β

)
n

⌋
for n ≥ 3.

For n ≥ 2, we have Tk(Gn) � p2k−n for k ≥ ln with Tk(Gn) ∼ p2k−n for k > kn.
For n ≥ 3, we have

Hn � p1−εn, εn :=
{

(9 − 2β)/18 for n = 3,

(5 − β)/6ln−1 for n ≥ 4.

Proof. From Lemma 7.2, (7.1), and (8.3) we have

H ′
3 ≤ (p3T3(G3)

2)
1
18 p

1
3 = p

1
2 T3(G3)

1
9 ≤ p

1
2 T3(G2)

1
9 � p

1
2 + β

9 = p1−ε3 .

Since 1
2 + β

9 ≥ 1
2 + 4

9 > γ , we also have

H3 = max{H ′
3,H2} � p1−ε3 .

Hence, by Lemma 7.1, for k ≥ 3, we get

Tk(G3) = (p − 1)2kp−3 + O(H 2k−6
3 T3(G2))

= p2k−3 + O(p2k−4) + O(p( 1
2 + β

9 )(2k−6)+β).

For k >
3β

9−2β
, the exponent 2k − 3 dominates, and we get Tk(G3) ∼ p2k−3

with

Tk(G3) � p2k−3, k ≥ 3, and Tk(G3) � p( 1
2 + β

9 )(2k−6)+β, 3 ≤ k < 3,

establishing the case n = 3 of Theorem 8.1.
For n > 3, we proceed by induction. Suppose that, for a given n, we have

already established that

Hn � p1−εn , (8.4)

Tk(Gn) � p2k−n for k ≥ n. (8.5)

Hence, by Lemma 7.2, (7.1), (8.3), and (8.5),

H ′
n+1 ≤ (pn+1T3(Gn+1)Tln(Gn+1))

1
6ln p

2
3 − 1

ln

≤ (pn+1T3(G2)Tln(Gn))
1

6ln p
2
3 − 1

ln

� p
n+1
6ln (pβ)

1
6ln p

(2ln−n) 1
6ln p

2
3 − 1

ln = p
1− 1

ln
(

5−β
6 ) = p1−εn+1 ,
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and thus, since εn+1 < εn,

Hn+1 = max{H ′
n+1,Hn} � p1−εn+1 .

Therefore, by Lemma 7.1 and (7.1), for k ≥ n, we have

Tk(Gn+1) = (p − 1)2kp−(n+1) + O(H
2k−2n

n+1 Tn(Gn))

= p2k−(n+1)(1 + O(p−1) + O(p1−εn+1(2k−2n))).

Consequently, for k > n + 1
2εn+1

= (
8−β
5−β

)ln, we have Tk(Gn+1) ∼ p2k−(n+1) with

Tk(Gn+1) � p2k−(n+1) for k ≥ ln+1

and

Tk(Gn+1) � p
2k−n− (5−β)

6ln
(2k−2ln) for ln ≤ k < ln+1,

and we recover the claim of the theorem for (n + 1). �

In the following corollary we make the growth with n explicit.

Corollary 8.1. For n ≥ 4, we have

Hn �n p
1− (5−β)n−3

6(l3+(5−β)/3)(8−β)n−4
.

Proof. This follows at once from the bound

n =
⌈(

8 − β

5 − β

)
n−1

⌉
≤

(
8 − β

5 − β

)
n−1 + 1

≤
(

8 − β

5 − β

)n−3

3 +
(

8 − β

5 − β

)n−4

+ · · · + 1

= 3

(
8 − β

5 − β

)n−3

+
(

5 − β

3

)((
8 − β

5 − β

)n−3

− 1

)

<

(
3 + 5 − β

3

)(
8 − β

5 − β

)n−3

. �

Thus, when β = 161/39 + o(1), the optimal value currently available, we have
k2 = 3, k3 = 16, k4 = 75, k5 = 337, . . . , and H3 � p0.95868..., H4 � p0.99145...,

H5 � p0.99808..., . . . , with kn ≤ ln ≤ 0.1974( 151
34 )n, and Hn � p1−3.269( 34

151 )n .

Appendix: Proof of Lemma 7.2

We shall use the following version of Hölder’s inequality.

Lemma A.1. For any nonnegative real numbers ai , bi , 1 ≤ i ≤ n, and any positive
real number , we have

n∑
i=1

aibi ≤
( n∑

i=1

ai

)1− 1

( n∑

i=1

a2
i

) 1
2

( n∑
i=1

b2
i

) 1
2

.
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First, we note that for any integer λ and positive integer k, we have

(p − 1)

( ∑
x∈Gn

epn(λx)

)k

=
∑
y∈Gn

( ∑
x∈Gn

epn(λyx)

)k

=
∑

x1∈Gn

· · ·
∑

xk∈Gn

∑
y∈Gn

epn(λy(x1 + · · · + xk))

=
pn−1∑
b=0

n(b)
∑
y∈Gn

epn(λyb),

where

n(b) = #{(x1, . . . , xk) : xi ∈ Gn,1 ≤ i ≤ k, x1 + · · · + xk = b}.
By Lemma A.1 and the elementary identities

pn−1∑
b=0

n(b) = (p − 1)k and
pn−1∑
b=0

n(b)2 = Tk(Gn),

we obtain, for any positive integer l and integer λ with p � λ,

(p − 1)

∣∣∣∣ ∑
x∈Gn

epn(λx)

∣∣∣∣
k

≤
(pn−1∑

b=0

n(b)

)1− 1
l
(pn−1∑

b=0

n(b)2
) 1

2l
(pn−1∑

b=0

∣∣∣∣ ∑
y∈Gn

epn(λyb)

∣∣∣∣
2l) 1

2l

= (p − 1)k(1− 1
l
)Tk(Gn)

1
2l (Tl(Gn)p

n)
1
2l .

Dividing by (p − 1) and taking the kth root yield the lemma.
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