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Potential Theory for Quaternionic Plurisubharmonic
Functions

Dongrui Wan* & Qianqian Kang

Abstract. In this paper, we establish quaternionic versions of the
potential description of various “small” sets related to quaternionic
plurisubharmonic functions in the n-dimensional quaternionic space
Hn. We use the quaternionic capacity introduced in [31] to character-
ize the (−∞)-sets of plurisubharmonic functions as the sets of vanish-
ing capacity. The latter requirement is also equivalent to the negligi-
bility of a set. We also prove the Josefson theorem on the equivalence
of the locally and globally quaternionic polar sets in Hn, following the
Bedford–Taylor method.

1. Introduction

The pluripotential theory, which is a nonlinear complex counterpart of classical
potential theory, has occupied an important place in mathematics. Although rel-
atively young, the pluripotential theory has attracted considerable interest among
analysts. The central part of the pluripotential theory is occupied by maximal
plurisubharmonic functions and the generalized complex Monge–Ampère opera-
tor. Decisive progress in this field has been made by Bedford and Taylor [6; 7; 8;
9], Demailly [14; 15; 16; 17], Cegrell [10; 11; 12; 13], to mention a few. Cegrell’s
book [10] provides an excellent in-depth study of capacities in Cn. See also [20]
for a detailed discussion on various types of small sets in Cn.

The potential theory for the Hessian equation has also been intensively studied
in recent years. Labutin [21] studied the potential estimates for the real k-Hessian
equation and used a special capacity to investigate the typical questions of poten-
tial theory: local behavior, removability of singularities, and polar, negligible, and
thin sets. See [23; 24; 25; 26; 28] and references therein for other potential results
for the complex Hessian and real Hessian equation.

In the n-dimensional quaternionic space Hn, at present, little is known about
the quaternionic pluripolar sets and the zero sets of the quaternionic capacities.
The purpose of this paper is to give a potential-theoretic description of various
“small” sets related to the quaternionic Monge–Ampère operator.
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Let � be an open set in Hn. The quaternionic Monge–Ampère operator is
defined as the Moore determinant of the quaternionic Hessian of u:

det(u) = det

[
∂2u

∂qj ∂q̄k

(q)

]
.

Alesker [2] proved a quaternionic version of Chern–Levine–Nirenberg estimate
and extended the definition of quaternionic Monge–Ampère operator to contin-
uous quaternionic plurisubharmonic functions. Since it is inconvenient to use
the Moore determinant, the study of the quaternionic Monge–Ampère operator
is much more difficult than that of the complex Monge–Ampère operator.

To define the quaternionic Monge–Ampère operator on general quaternionic
manifolds, Alesker [5] introduced an operator in terms of the Baston operator �,
which is the first operator of the quaternionic complex on quaternionic manifolds.
The nth-power of this operator is exactly the quaternionic Monge–Ampère oper-
ator when the manifold is flat. On the flat space Hn, the Baston operator � is the
first operator of the 0-Cauchy–Fueter complex:

0 → C∞(�,C)
�−→ C∞

(
�,

2∧
C2n

)
D−→ C∞

(
�,

3∧
C2n

)
→ ·· · . (1.1)

Wang [32] wrote down explicitly each operator of the k-Cauchy–Fueter complex
in terms of real variables.

Motivated by this, Wang and the first author introduced in [30] two first-order
differential operators d0 and d1 acting on the quaternionic version of differential
forms. The second operator D in (1.1) can be written as D := (

d0
d1

). The behavior

of d0, d1, and � = d0d1 is very similar to ∂ , ∂ , and ∂∂ in several complex vari-
ables. The quaternionic Monge–Ampère operator can be defined as (�u)n and
has a simple explicit expression, which is much more convenient to use than the
previous definition by using the Moore determinant.

By introducing the quaternionic version of differential forms Wang and the
first author defined in [30] the notions of closed positive forms and closed positive
currents in the quaternionic case, and our definition of closedness well matches
positivity. We proved that �u is a closed positive 2-current for any plurisubhar-
monic function u and showed that when functions u1, . . . , uk are locally bounded,
�u1 ∧· · ·∧�uk is a well-defined closed positive current and is continuous on de-
creasing sequences.

Based on these observations, Zhang and the first author established in [31]
several useful quaternionic versions of results in the complex pluripotential the-
ory, which play key roles in this paper. We showed that quasi-continuity, one of
the most important properties of complex plurisubharmonic functions, holds also
for quaternionic plurisubharmonic functions in Hn. We also proved an equivalent
characterization of the maximal plurisubharmonic functions and comparison the-
orems, which are connected to the uniqueness of the Dirichlet problem of quater-
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nionic Monge–Ampère equations [3; 33]. We also established other quaternionic
versions of results in the complex pluripotential theory [27; 29].

In this paper, we are concerned with the quaternionic capacities and with the
description of exceptional sets related to the quaternionic Monge–Ampère opera-
tor in Hn.

Now we introduce two types of exceptional sets in Hn. A set E ⊂ Hn is said
to be locally quaternionic polar (locally Q-polar for short) if for each point a ∈
E, there are a neighborhood B(a, r) and a function u ∈ PSH(B(a, r)) such that
u|E∩B(a,r) = −∞. A set E ⊂ � in Hn is said to be globally quaternionic polar
(globally Q-polar for short) in � if there exists a function u ∈ PSH(�) such that
E ⊂ {u = −∞}.

We show Josefson’s theorem on the equivalence of the locally and globally
Q-polar sets in Hn following the proof in pluripotential theory on Cn given in [9].
The original proof was given by Josefson [19] basing on complicated estimates
for polynomials.

Theorem 1.1. If P ⊂ Hn is locally Q-polar, then there exists v ∈ PSH(Hn) with
P ⊂ {v = −∞}, that is, P is globally Q-polar in Hn.

We also consider the so-called negligible sets, which are those of the form

N = {q ∈ �,u(q) < u∗(q)}, (1.2)

where u = supα uα is the upper envelope of a family of functions (uα) ⊂ PSH(�)

that are locally bounded from above in �, and u∗ is the upper semicontinuous
regularization of u, that is, u∗(q) = lim supq ′→q u(q ′) for q ∈ �. We show in
Theorem 1.2 that the negligible sets are precisely the Q-polar sets.

In order to prove the quasi-continuity theorem (Lemma 2.3 in Sect. 2), the first
author introduced in [31] the quaternionic capacities for quaternionic plurisub-
harmonic functions. These capacities are defined in the same way as the ca-
pacities introduced by Bedford and Taylor [9] for plurisubharmonic functions
in Cn.

Let � be a bounded open set of Hn. If K is a compact subset of �, we define
the (relative) quaternionic capacity of K in � by

C(K,�) = sup

{∫
K

(�u)n : u ∈ PSH(�),0 ≤ u ≤ 1

}
. (1.3)

For E ⊂ �, we define

C(E,�) = sup{C(K,�) : K is a compact subset of E}. (1.4)

If E ⊂ � is a Borel set, then we have

C(E,�) = sup

{∫
E

(�u)n : u ∈ PSH(�),0 ≤ u ≤ 1

}
. (1.5)

For any set E ⊂ �, the outer capacity of E is defined by

C∗(E,�) = inf{C(ω,�) : ω is open,E ⊂ ω ⊂ �}. (1.6)
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The main result of this paper is the following theorem giving a characterization
of exceptional sets in terms of the outer capacity.

Theorem 1.2. Let � be a bounded open set of Hn, and E ⊂ �. The following
three statements are equivalent:

(1) E is Q-polar;
(2) E is negligible;
(3) C∗(E,�) = 0.

In particular, if � is a strongly pseudo-convex smooth open set in Hn and
E � �, then each of (1)–(3) is equivalent to

(4) u∗
E = 0.

Here u∗
E is the upper semicontinuous regularization of the relative extremal func-

tion uE defined as (E � �)

uE(q) = uE,�(q) = sup{u(q) : u ∈ PSH(�),u ≤ 0, u|E ≤ −1}, q ∈ �. (1.7)

The function u∗
E is a powerful tool to give the connection between the outer ca-

pacities and the Q-polar sets.
Finally we prove that the outer capacity C∗(·,�) is a generalized capacity in

the sense of Choquet (Theorem 3.1 in Section 3).
Although we use ideas of Bedford and Taylor [9] from the pluripotential the-

ory in Cn, our potential results for the quaternionic Monge–Ampère operator are
completely new. The theory of quaternionic closed positive currents established
recently in [30] allows us to treat the quaternionic Monge–Ampère operator as
an operator of divergence form, and so we can integrate by parts. Since this can
avoid the inconvenience in using Moore determinant, we established several use-
ful quaternionic versions of results in the complex pluripotential theory in [31].
All these preparations play key roles in this paper.

2. Preliminaries on Quaternionic Monge–Ampère Measure

Recall that an upper semicontinuous function u on Hn is said to be quaternionic
plurisubharmonic if u is subharmonic on each right quaternionic line. Denote by
PSH the class of all quaternionic plurisubharmonic functions (see [2; 3; 4; 5] for
more information about quaternionic plurisubharmonic functions).

As in [30], we use the conjugate embedding

τ :Hn ∼= R4n ↪→C2n×2,

(q0, . . . , qn−1) → z = (zjα) ∈C2n×2,
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qj = x4j + ix4j+1 + jx4j+2 + kx4j+3, j = 0,1, . . . ,2n − 1, α = 0,1, with⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z00 z01

z10 z11

...
...

z(2l)0 z(2l)1

z(2l+1)0 z(2l+1)1

...
...

z(2n−2)0 z(2n−2)1

z(2n−1)0 z(2n−1)1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
:=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0 − ix1 −x2 + ix3
x2 + ix3 x0 + ix1

...
...

x4l − ix4l+1 −x4l+2 + ix4l+3
x4l+2 + ix4l+3 x4l + ix4l+1

...
...

x4n−4 − ix4n−3 −x4n−2 + ix4n−1
x4n−2 + ix4n−1 x4n−4 + ix4n−3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.1)

Pulling back to the quaternionic space Hn ∼= R4n by the embedding (2.1), we
define on R4n the first-order differential operators ∇jα as follows:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∇00 ∇01
∇10 ∇11
...

...

∇(2l)0 ∇(2l)1
∇(2l+1)0 ∇(2l+1)1

...
...

∇(2n−2)0 ∇(2n−2)1
∇(2n−1)0 ∇(2n−1)1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
:=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x0 + i∂x1 −∂x2 − i∂x3

∂x2 − i∂x3 ∂x0 − i∂x1
...

...

∂x4l
+ i∂x4l+1 −∂x4l+2 − i∂x4l+3

∂x4l+2 − i∂x4l+3 ∂x4l
− i∂x4l+1

...
...

∂x4n−4 + i∂x4n−3 −∂x4n−2 − i∂x4n−1

∂x4n−2 − i∂x4n−1 ∂x4n−4 − i∂x4n−3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.2)

Let
∧2k

C2n be the complex exterior algebra generated by C2n, 0 ≤ k ≤ n.
Fix a basis {ω0,ω1, . . . ,ω2n−1} of C2n. Let � be a domain in R4n. We define
d0, d1 : C∞

0 (�,
∧p

C2n) → C∞
0 (�,

∧p+1
C2n) by

d0F =
∑
k,I

∇k0fIω
k ∧ ωI ,

d1F =
∑
k,I

∇k1fIω
k ∧ ωI ,

�F = d0d1F,

for F = ∑
I fIω

I ∈ C∞
0 (�,

∧p
C2n), where the multiindex I = (i1, . . . , ip), and

ωI := ωi1 ∧ · · · ∧ ωip . Although d0, d1 are not exterior differentials, their be-
havior is similar to the exterior differential: d0d1 = −d1d0; d2

0 = d2
1 = 0; for

F ∈ C∞
0 (�,

∧p
C2n) and G ∈ C∞

0 (�,
∧q

C2n), we have

dα(F ∧ G) = dαF ∧ G + (−1)pF ∧ dαG, α = 0,1,

d0� = d1� = 0,
(2.3)

and (1.1) is a complex since D� = 0.
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For u1, . . . , un ∈ C2, from (2.3) it easily follows that �u1 ∧ · · ·∧�un satisfies
the following remarkable identities:

�u1 ∧ �u2 ∧ · · · ∧ �un

= d0(d1u1 ∧ �u2 ∧ · · · ∧ �un)

= −d1(d0u1 ∧ �u2 ∧ · · · ∧ �un) = d0d1(u1�u2 ∧ · · · ∧ �un)

= �(u1�u2 ∧ · · · ∧ �un).

For u ∈ C2, we define

�ij u := 1

2
(∇i0∇j1u − ∇i1∇j0u).

Then, for u1, . . . , un ∈ C2,

�u1 ∧ · · · ∧ �un =
∑

i1,j1,...

�i1j1u1 . . .�injnunω
i1 ∧ ωj1 ∧ · · · ∧ ωin ∧ ωjn

=
∑

i1,j1,...

δ
i1j1...injn

01...(2n−1)�i1j1u1 . . .�injnun�2n,

where �2n is defined as

�2n := ω0 ∧ ω1 ∧ · · · ∧ ω2n−2 ∧ ω2n−1, (2.4)

and δ
i1j1...injn

01...(2n−1) := the sign of the permutation from (i1, j1, . . . , in, jn) to (0,1, . . . ,

2n − 1) if {i1, j1, . . . , in, jn} = {0,1, . . . ,2n − 1}; otherwise, δ
i1j1...injn

01...(2n−1) = 0. In
particular, when u1 = · · · = un = u, �u1 ∧ · · · ∧ �un coincides with (�u)n :=∧n �u.

Although a 2n-form is not an authentic differential form and we can-
not integrate it, we can define

∫
�

F := ∫
�

f dV if we write F = f �2n ∈
L1(�,

∧2n
C2n), where dV is the Lebesgue measure, and �2n is given by

(2.4). In particular, if F is a positive 2n-form, then
∫
�

F ≥ 0. For a 2n-current
F = μ�2n where the coefficient is a measure μ, define∫

�

F :=
∫

�

μ.

We proved that �u is a closed positive 2-current for any u ∈ PSH(�). Induc-
tively, for u1, . . . , up ∈ PSH ∩ L∞

loc(�), we showed that

�u1 ∧ · · · ∧ �up := �(u1�u2 . . . ∧ �up) (2.5)

is a closed positive 2p-current. In particular, for u1, . . . , un ∈ PSH ∩ L∞
loc(�),

�u1 ∧ · · · ∧ �un = μ�2n for a well-defined positive Radon measure μ. See [30]
for the detailed information about the closed positive currents in Hn.

Lemma 2.1 (Thm. 3.1 in [30]). Let v1, . . . , vk ∈ PSH ∩ L∞
loc(�), and let

{v1
j }j∈N, . . . , {vk

j }j∈N be decreasing sequences of PSH functions in � such that

limj→∞ vt
j = vt pointwise in � for each t . Then the currents �v1

j ∧ · · · ∧ �vk
j

converge weakly to �v1 ∧ · · · ∧ �vk as j → ∞.
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Alesker [5, Prop. 6.3] gave a quaternionic version of Chern–Levine–Nirenberg
estimate, and we gave an elementary and simpler proof in [30].

Lemma 2.2 (Chern–Levine–Nirenberg-type estimate; see Prop. 3.10 in [30]). Let
� be a domain in Hn. Let K , L be compact subsets of � such that L is contained
in the interior of K . Then there exists a constant C depending only on K , L, �

such that, for any v ∈ PSH(�) and u1, . . . , un ∈ PSH ∩ C2(�), we have

‖�u1 ∧ · · · ∧ �uk‖L ≤ C‖u1‖L∞(K) · · · ‖uk‖L∞(K), (a)

‖�u1 ∧ · · · ∧ �uk‖L ≤ C‖u1‖L1(K)‖u2‖L∞(K) · · · ‖uk‖L∞(K), (b)

‖v�u1 ∧ · · · ∧ �uk‖L ≤ C‖v‖L1(K)‖u1‖L∞(K) · · · ‖uk‖L∞(K). (c)

We can get (b) by following the proof of (a) in Proposition 3.10 in [30] and using
the fact that∫

L∩B
′
j

�w ∧ βn−1 ≤
∫

Bj

χ�w ∧ βn−1 =
∫

Bj

w�χ ∧ βn−1 ≤ C‖w‖L1(K) (2.6)

for any w ∈ PSH(�). Estimate (c) can be proved by following the proof of the
complex Monge–Ampère case in Demailly’s book ([16], p. 149, Prop. 3.11). This
estimate also holds for any u1, . . . , uk ∈ PSH ∩ L∞

loc(�).
Analogous classical results for subharmonic functions also hold for the quater-

nionic plurisubharmonic functions. We list these properties here without proofs;
all of them can be derived from the subharmonic case (see Chap. 2 in [20]).

Proposition 2.1. Let � be an open subset of Hn.

(1) The family PSH(�) is a convex cone, that is, if α, β are nonnegative numbers
and u,v ∈ PSH(�), then αu + βv ∈ PSH(�) and max{u,v} ∈ PSH(�).

(2) If � is connected and {uj } ⊂ PSH(�) is a decreasing sequence, then u =
limj→∞ uj ∈ PSH(�) or u ≡ −∞.

(3) Let {uα}α∈A ⊂ PSH(�) be such that its upper envelope u = supα∈A uα is
locally bounded above. Then the upper semicontinuous regularization u∗ ∈
PSH(�).

(4) Let ω be a nonempty proper open subset of �, u ∈ PSH(�), v ∈ PSH(ω), and
lim supq→ζ v(q) ≤ u(ζ ) for each ζ ∈ ∂ω ∩ �. Then

w :=
{

max{u,v} in ω

u in �\ω ∈ PSH(�).

(5) Let F be a closed subset of � of the form F = {q ∈ �,v(q) = −∞}, where
v ∈ PSH(�). If u ∈ PSH(�\F) is bounded above, then

ũ(q) :=
{

u(q), q ∈ �\F
lim supq ′ /∈F,q ′→q u(q ′), q ∈ F

∈ PSH(�).

Lemma 2.3 (Quasicontinuity theorem; see Thm. 1.1 in [31]). Let � be an open
subset of Hn, and let u be a locally bounded PSH function. Then, for each ε > 0,
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there exists an open subset ω of � such that C(ω) < ε and u is continuous on
�\ω.

After appropriate results are later proved in Section 3, it will be clear in Re-
mark 3.1 that the assumption of local boundedness of the function u is super-
fluous.

We have already seen in Lemma 2.1 that the quaternionic Monge–Ampère op-
erator is continuous on decreasing sequences of locally bounded PSH functions.
It turns out that this operator also behaves well on increasing sequences just as the
complex Monge–Ampère operator. See [9] for an analogous result in the complex
case.

Lemma 2.4 (Prop. 4.1 in [31]). Let {uj }j∈N be a sequence in PSH ∩ L∞
loc(�)

that increases to u ∈ PSH ∩ L∞
loc(�) almost everywhere in � (with respect to

the Lebesgue measure). Then the currents (�uj )
n converge weakly to (�u)n as

j → ∞.

By using the quasi-continuity theorem and the convergence result we proved in
[31] the following comparison theorem, which will be a useful tool in this paper.
This comparison result implies the minimum principle results in [2], which are es-
sential to the uniqueness of the Dirichlet problem of quaternionic Monge–Ampère
equations (see [3; 33]).

Lemma 2.5 (See Thm. 1.2 in [31]). Let � be a bounded open set of Hn. Let
u,v ∈ PSH ∩ L∞(�). If for any ζ ∈ ∂�,

lim inf
ζ←q∈�

(u(q) − v(q)) ≥ 0,

then ∫
{u<v}

(�v)n ≤
∫

{u<v}
(�u)n. (2.7)

3. Capacity and Description of Exceptional Sets

Let � be a bounded open set of Hn. The Chern–Levine–Nirenberg-type esti-
mate (Lemma 2.2) shows that the capacity defined by (1.3) and (1.4) satisfies
C(E,�) < +∞ for any E ⊂ �. We give some elementary properties of capacity.

Proposition 3.1. (1) If E1 ⊂ E2 ⊂ �, then C(E1,�) ≤ C(E2,�).
(2) If E ⊂ �1 ⊂ �2, then C(E,�1) ≥ C(E,�2).
(3) If E1,E2, . . . are subsets of �, then

C

( ∞⋃
j=1

Ej ,�

)
≤

∞∑
j=1

C(Ej ,�).
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(4) If E1 ⊂ E2 ⊂ · · · are Borel subsets of �, then

C

( ∞⋃
j=1

Ej ,�

)
= lim

j→∞C(Ej ,�).

(5) If �1 ⊂ �2 � Hn and ω � �1, then there exists a constant A > 0 such that,
for all Borel subsets E ⊂ ω, we have C(E,�1) ≤ AC(E,�2).

Proof. Note that (1)–(4) are direct consequences of definitions (1.3), (1.4), and
(1.5). We give a proof of property (5) here. Without loss of generality, we may
suppose that ω � �1 are concentric balls, say, �1 = B(0, r) and ω = B(0, r − ε),
ε > 0. For each u ∈ PSH(�1) with 0 ≤ u ≤ 1, define

ũ(q) =
{

max{u(q),λ(‖q‖2 − r2) + 2} on �1,

λ(‖q‖2 − r2) + 2 on �2\�1.

Take a constant λ sufficiently large such that λ((r − ε)2 − r2) + 2 ≤ 0. Then
ũ = u on ω, and u(q) < λ(‖q‖2 − r2) + 2 on ∂�1. By Proposition 2.1 we have
ũ ∈ PSH(�2). Since 0 ≤ ũ ≤ M for some constant M > 0, 0 ≤ ũ

M
≤ 1. For any

Borel subset E ⊂ ω, we have∫
E

(�u)n =
∫

E

(�ũ)n ≤ MnC(E,�2).

Hence, C(E,�1) ≤ MnC(E,�2). �

Lemma 3.1. Let � be a bounded open set of Hn. Let K be a compact subset of �,
and ω � � a neighborhood of K . There is a constant A > 0 such that, for each
v ∈ PSH(�),

C(K ∩ {v < −m},�) ≤ 1

m
A‖v‖L1(ω).

Proof. For each u ∈ PSH(�) such that 0 ≤ u ≤ 1, by Lemma 2.2 we have∫
K∩{v<−m}

(�u)n ≤ 1

m

∫
K

|v|(�u)n ≤ 1

m
CK,ω‖v‖L1(ω). �

Note that the outer capacity C∗(·,�) given by (1.6) also satisfies properties
(1)–(3) in Proposition 3.1. For any E ⊂ �, the definitions imply C(E,�) ≤
C∗(E,�), and from the definitions and Proposition 3.1 it follows that C(E,�) =
C∗(E,�) for all open sets E ⊂ �.

Corollary 3.1. Let � be a bounded open set of Hn. If P is globally Q-polar in
�, then C∗(P,�) = 0.

Proof. By the definition of globally Q-polar we assume that P ⊂ {v = −∞} with
v ∈ PSH(�). Let � = ⋃

j≥1 �j with �j � �. By Lemma 3.1 there is an open set

Gj = �j ∩ {v < −mj } with C(Gj ,�) < ε2−j . So we have {v = −∞} ⊂ G :=⋃
Gj and C(G,�) < ε. �
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The main tool in the proof of our main result (Theorem 1.2) is the relative extremal
function uE defined by (1.7). Its upper semicontinuous regularization u∗

E is PSH
in � (by Prop. 2.1), and −1 ≤ u∗

E ≤ 0 in �. If � is strongly pseudo-convex, then
u∗

E(q) → 0 as q → ∂�. This function is defined in the same way as the relative
extremal function given by Demailly [17] for the complex case (see also [20]
for a detailed discussion). In the complex case, u∗

E is sometimes called the PSH
measure of E relative to � [22] or the regularized relative extremal function.

Lemma 3.2. Fix a ball B ⊂ �. For any g ∈ PSH ∩ L∞
loc(�), there exists a PSH

function g̃ such that g̃ ≥ g on �, g̃ = g on �\B , and (�g̃)n = 0 on B .

Proof. First consider the case where g is continuous in �. We shall use the
Perron–Bremermann function defined by Alesker (Sect. 6 in [3]):

u = sup
{
v : v is finite PSH on B, lim sup

q→ζ

v(q) ≤ g(ζ ),∀ζ ∈ ∂B
}
.

Then by Theorem 6.1 in [3], u ∈ PSH(B) is continuous on B and u = g on ∂B .
Note that u is maximal in B . By Theorem 1.3 in [31] we have (�u)n = 0 on B .
Let

g̃ =
{

u on B,

g on �\B.

Then g̃ ≥ g on B . Since g̃ is the decreasing limit of PSH functions

gk =
{

max{u,g + 1
k
} on B,

g + 1
k

on �\B,

we get g̃ ∈ PSH(�) by Proposition 2.1.
For an arbitrary function g ∈ PSH ∩ L∞

loc(�), its regularization gl :=
g ∗ ρ 1

l
↘ g. The function g̃ := liml→+∞ g̃l has all required properties. �

Lemma 3.3 (Choquet’s lemma). Every family (uα) has a countable subfamily
(uα(j)) whose upper envelope v satisfies v ≤ u ≤ u∗ = v∗, where u is the upper
envelope of (uα).

Proposition 3.2. Let � be an open set in Hn, and let K ⊂ � be compact. Then
(�u∗

K)n = 0 on �\K .

Proof. By Lemma 3.3 there exists a sequence {vj } ⊂ PSH(�) such that vj ≤ 0
on �, vj ≤ −1 on K and v∗ = u∗

K . Replacing vj by max{−1, v1, . . . , vj }, we can
assume that {vj } is increasing and vj ≥ −1 for all j .

Fix a ball B ⊂ �\K . Let ṽj be as in Lemma 3.2. We have ṽj ≤ 0 on � and
ṽj ≤ −1 on K . Then vj ≤ ṽj ≤ uK and ṽ = limj ṽj such that v∗ = ṽ∗ = u∗

K

and lim ṽj = limvj = u∗
K a.e. in �. Since (�ṽj )

n = 0 on B , by Lemma 2.4 we
have (�u∗

K)n = 0 on B . Since B is taken arbitrary, it follows that (�u∗
K)n = 0 on

�\K . �
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Corollary 3.2. For arbitrary sets E � �, we have the following properties of
the regularized relative extremal functions u∗

E :

(1) If E1 ⊂ E2 ⊂ �1 ⊂ �2, then u∗
E1,�1

≥ u∗
E2,�1

≥ u∗
E2,�2

.

(2) u∗
E = uE = −1 on E0 and (�u∗

E)n = 0 on �\E; so, (�u∗
E)n is supported by

∂E.

Proof. (1) is obvious. From the definition it follows directly that u∗
E = uE = −1

on E0, and hence (�u∗
E)n = 0 on E0. By Proposition 3.2, (�u∗

E)n = 0 on �\E.
So, (�u∗

E)n is supported by ∂E. �

Proposition 3.3. Let � ⊂ Hn be a strongly pseudo-convex smooth open set. For
arbitrary sets E � �, we have C∗(E,�) = ∫

�
(�u∗

E)n.

Proof. First, we show that, for a compact set K ⊂ �,

C(K,�) =
∫

�

(�u∗
K)n =

∫
K

(�u∗
K)n. (3.1)

The second equality in (3.1) directly follows from Proposition 3.2. Since −1 ≤
u∗

K ≤ 0 on �, C(K,�) ≥ ∫
K

(�u∗
K)n by definition. Let ψ < 0 be a smooth strictly

PSH exhaustion function of �. Then we have Aψ ≤ −1 on K for A large enough.
As in the proof of Proposition 3.2, there exists an increasing sequence {vj } ⊂

PSH(�) such that −1 ≤ vj ≤ 0 on �, vj ≤ −1 on K , and v∗ = u∗
K . We can

assume that vj ≥ Aψ on � (otherwise, we can replace vj by max{vj ,Aψ}). Take
ε ∈ (0,1) and ω ∈ PSH(�) such that 0 ≤ ω ≤ 1 − ε. Now we have

K ⊂ {vj ≤ ω − 1} ⊂ {Aψ ≤ ω − 1} ⊂ {Aψ ≤ −ε}.
Note that vj ≥ Aψ > −ε > v − 1 near ∂� sufficiently. By the comparison theo-
rem (Lemma 2.5) we have∫

K

(�ω)n ≤
∫

{vj ≤ω−1}
(�ω)n ≤

∫
{vj ≤ω−1}

(�vj )
n ≤

∫
{Aψ≤−ε}

(�vj )
n.

By Lemma 2.4, (�vj )
n converges weakly to (�u∗

K)n as j → ∞. Thus,∫
K

(�ω)n ≤
∫

{Aψ≤−ε}
(�u∗

K)n =
∫

K

(�u∗
K)n,

where the last identity follows from Proposition 3.2. Note that

C(K,�) = (1 − ε)−n sup

{∫
K

(�ω)n : ω ∈ PSH(�),0 ≤ ω ≤ 1 − ε

}
.

Then (3.1) follows.
Now, for every open set G� �, we are going to show that

C∗(G,�)(= C(G,�)) =
∫

G

(�u∗
G)n =

∫
�

(�u∗
G)n =

∫
�

(�uG)n. (3.2)

Let K1 ⊂ K2 ⊂ · · · be compact subsets of G with Kj ⊂ K0
j+1 and

⋃
j Kj = G.

Then u∗
Kj

= −1 on K0
j ⊃ Kj−1, and limj u∗

Kj
= −1 on G. Since Kj ⊂ G, from

Corollary 3.2(1) it directly follows that u∗
G ≤ u∗

Kj
. Then u∗

G ≤ limj u∗
Kj

. On the
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other hand, limj u∗
Kj

≤ uG by definition (1.7). Therefore, u∗
G ≤ limj u∗

Kj
≤ uG ≤

u∗
G. Then (3.2) follows from (3.1) and Proposition 3.1(4).

Now let E � � be arbitrary, and let ψ < 0 be a strictly PSH exhaustion func-
tion of �. For every open set E ⊂ G � �, we have u∗

G ≥ Aψ and u∗
E ≥ u∗

G by
Corollary 3.2(1). Note that 0 ≥ u∗

G ≥ Aψ and u∗
G(q) → 0 as q → ∂�. By the

comparison theorem (Lemma 2.5) we have∫
�

(�u∗
E)n ≤

∫
�

(�u∗
G)n = C(G,�).

Thus,
∫
�
(�u∗

E)n ≤ C∗(E,�) by definition (1.6).
On the other hand, Lemma 3.3 shows that there exists a sequence {vj } ⊂

PSH with −1 ≤ vj ≤ 0, vj ≥ Aψ and limvj = uE a.e. in �. Consider
the open sets Gj = {q ∈ �,(1 + 1

j
)vj (q) < −1}. Then Gj ⊃ E, Gj is

decreasing, and (1 + 1
j
)vj ≤ uGj

≤ u∗
Gj

. Noting that u∗
Gj

↗ u∗
E , we have

C∗(E,�) ≤ limj C(Gj ,�) = limj

∫
�
(�u∗

Gj
)n = ∫

�
(�u∗

E)n. The proposition is
finally proved. �

Corollary 3.3. If � ⊂ Hn is open, then, for all ω � � and u ∈ PSH(�),

lim
j→∞C({u < −j} ∩ ω,�) = 0.

Proof. Assume that u < 0 on ω. Cover ω by a finite union of balls in �. By Propo-
sition 3.1 we can assume that � is strongly pseudo-convex. Set Pj = {u < −j} ∩
ω. Then we have max{u

j
,−1} ≤ uPj

≤ 0. Therefore, limj→∞ uPj
= 0 almost ev-

erywhere in �. By (3.2) and Lemma 2.4 we have limj→∞ C(Pj ,�) = 0. �

Remark 3.1. By Corollary 3.3 we can generalize the quasi-continuity theorem
(Lemma 2.3) to the unbounded case, that is, for arbitrary u ∈ PSH(�) and any
ε > 0, there exists an open subset ω ⊂ � with C(ω) < ε such that u is continuous
on �\ω.

Lemma 3.4. Let � be a bounded open subset of Hn. Let u,v ∈ PSH ∩ L∞(�). If
lim supζ←∂� |u(ζ ) − v(ζ )| = 0 and (�u)n = (�v)n in �, then u ≡ v in �.

Proof. It suffices to prove that u ≥ v. Let ϕ < 0 be a smooth strictly PSH function
in �. Suppose that {u < v} is not empty. Then the set S = {u < v + εϕ} is also
nonempty for some proper ε > 0. Since u and v + εϕ are both subharmonic, by
the classical result for the subharmonic functions we know that the set S must
have positive Lebesgue measure. By Lemma 2.5,∫

S

(�u)n ≥
∫

S

(�(v + εϕ))n ≥
∫

S

(�v)n + εn

∫
S

(�ϕ)n.

The last integral over S is strictly positive, so we get a contradiction. �

By Proposition 3.3 and Lemma 3.4 we have the following conclusion.
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Corollary 3.4. Let � be a strongly pseudo-convex smooth open set in Hn, and
let E � �. Then C∗(E,�) = 0 if and only if u∗

E = 0.

Proposition 3.4. Let � be a connected bounded open set in Hn, and let E ⊂ �.
The following statements are equivalent:

(1) u∗
E ≡ 0;

(2) there exists v ∈ PSH(�), v ≤ 0, such that E ⊂ {v = −∞}.
Proof. The implication (2) ⇒ (1) is obvious. If v is as in (2), then for each ε > 0,
εv ≤ uE . So, uE = 0 on �\{v = −∞}. It follows that u∗

E ≡ 0.
Now assume that u∗

E ≡ 0. By Lemma 3.3 there exists a sequence {vj } ⊂
PSH(�), −1 ≤ vj ≤ uE , converging increasingly a.e. in � to u∗

E . We can ex-
tract a subsequence such that

∫
�

|vj |dλ < 2−j . Since vj ≤ 0 and vj ≤ −1 on E,
the function v := ∑

vj ≤ 0, and v = −∞ on E. Since v is the limit of the de-
creasing sequence of its partial sums and v �≡ −∞ in �, we have v ∈ PSH(�) by
Proposition 2.1. �

Now we prove the Josefson theorem on Hn following the proof given in [9] in
pluripotential theory on Cn.

Proof of Theorem 1.1. By the definition of locally Q-polar we can find sets Pj

and �j with �j strongly pseudo-convex smooth open such that Pj � �j �Hn,⋃
j≥1 Pj = P , and Pj is contained in the −∞ poles of a single plurisubharmonic

function in �j . By Propositions 3.3 and 3.4 we have C∗(Pj ,�j ) = 0.
Let i1, i2, . . . be a listing of the positive integers such that each one appears

infinitely many times. For a sequence c1 < c2 < · · · , cj → +∞, set Bj = {q ∈
Hn,‖q‖ < cj }. We can choose cj large enough such that �ij � Bj and |q|− cj <

−1 on Pij . It follows from C∗(Pij ,�ij ) = 0 and �ij � Bj that C∗(Pij ,Bj ) = 0.
Hence, by Corollary 3.4 the extremal function u∗

Pij
in Bj is zero, and we can find

vj ∈ PSH(Bj ) with vj ≤ 0 on Bj , vj ≤ −1 on Pij , and
∫
Bj

|vj |dV < 2−j . Define

ṽj (q) =
{

‖q‖ − cj , q ∈Hn\Bj ,

max{vj (q),‖q‖ − cj }, q ∈ Bj .

Then ṽj ≤ −1 on Pij and ṽj ∈ PSH(Hn) by Proposition 2.1. Since ṽj < 0 on Bj

and
∫
Bj

|vj |dV < 2−j , v = ∑∞
j=1 ṽj is a PSH function on Hn. Since ṽj = −1

on Pij and each Pi repeated infinitely many times, it follows that v = −∞ on
P = ⋃

j≥1 Pj . This completes the proof. �

Lemma 3.5. Let � �Hn, and let K1 ⊃ K2 ⊃ · · · , K = ⋂
j Kj be compact sub-

sets of �. Then

(a) limC(Kj ,�) = C(K,�);
(b) C∗(K,�) = C(K,�).

In particular, C∗(K,�) = C(K,�) for any compact set K ⊂ �.
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Proof. (a) follows from Lemma 2.4 and Proposition 3.3. Note that Kj are neigh-
borhoods of K , and (b) follows directly from (a). �

As an application of the quasi-continuity theorem, we can prove an interesting in-
equality for the quaternionic Monge–Ampère operator. Here we follow the proof
of the complex case in Demailly [17].

Proposition 3.5 (Demailly’s inequality). Let u, v be locally bounded PSH func-
tions on �. Then we have the inequality of quaternionic Monge–Ampère measures

(�max{u,v})n ≥ χ{u≥v}(�u)n + χ{u<v}(�v)n. (3.3)

Proof. By changing the roles of u and v it suffices to prove that∫
K

(�max{u,v})n ≥
∫

K

(�u)n (3.4)

for every compact set K ⊂ {u ≥ v}. Since u, v are bounded, we may assume that
0 ≤ u,v ≤ 1 and 0 ≤ uε, vε ≤ 1, where uε := u ∗ ρε is the standard regularization
of u. By Lemma 2.3 we can assume that G ⊂ � is an open set of small capacity
such that u, v are continuous on �\G. Then uε , vε converge uniformly to u, v on
�\G, respectively, as ε tends to 0. For any δ > 0, we can find an arbitrarily small
neighborhood L of K such that uε > vε − δ on L\G for ε sufficiently small. By
Lemma 2.1, (�uε)

n converges weakly to (�u)n. So we have∫
K

(�u)n ≤ lim inf
ε→0

∫
L

(�uε)
n ≤ lim inf

ε→0

(∫
G

(�uε)
n +

∫
L\G

(�uε)
n

)
≤ C(G,�) + lim inf

ε→0

∫
L\G

(�max{uε + δ, vε})n

= C(G,�) +
∫

L\G
(�max{u + δ, v})n.

The third inequality follows from the definition of capacity and the fact that
max{uε + δ, vε} = uε + δ on a neighborhood of L\G.

By taking L very close to K and C(G,�) arbitrarily small we have
∫
K

(�u)n ≤∫
K

(�max{u + δ, v})n. Let δ → 0 to get (3.4). �

Let {uα} be a family of PSH functions in � that is locally bounded from above.
Then the function u = supα uα is not in general PSH or even upper semicontinu-
ous. But its upper semicontinuous regularization

u∗(q) = lim sup
q ′→q

u(q ′) ≥ u(q), q ∈ �,

is PSH by Proposition 2.1(3). A set of the form

N = {q ∈ � : u(q) < u∗(q)}
is called negligible. By the well-known result for the subharmonic functions, u∗ =
u almost everywhere in �. So the Lebesgue measure of any negligible set N is
zero.
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Proposition 3.6. Let � be a bounded open set of Hn. Every negligible set N ⊂ �

satisfies C∗(N,�) = 0.

Proof. By Lemma 3.3 every negligible set is contained in a Borel negligible set
N = {v < v∗} with v = supvα , where {vα} is an increasing sequence of PSH
functions with vα ≥ −1 for all α. By Lemma 2.3 there exists an open set G ⊂ �

such that all vα and v∗ are continuous on �\G and C(G,�) < ε. Since G is open,
C∗(G,�) = C(G,�) < ε.

Write

N ⊂ G ∪ (N ∩ (�\G)) = G ∪
( ⋃

δ,λ,μ

Kδλμ

)
with

Kδλμ = {q ∈ �δ\G,v(q) ≤ λ < μ ≤ v∗(q)}, λ < μ,λ,μ ∈Q, δ > 0.

Set K = Kδλμ for short. Since v∗ is continuous and v lower semicontinuous
on �\G, we see that K is either compact or empty. It suffices to show that
C(K,�) = 0. Taking an open set ω � �, we may assume that v∗ ≤ 0 on ω. Set
λ = −1. Then vα ≤ 0 on ω and vα ≤ v ≤ −1 on K . So, v ≤ uK , v∗ ≤ u∗

K , and
u∗

K ≥ μ > −1 on K . By Proposition 3.5 we have

C(K,ω) =
∫

K

(�u∗
K)n ≤

∫
K

(�max{u∗
K,μ})n ≤ |μ|nC(K,ω)

since −1 ≤ |μ|−1 max{u∗
K,μ} ≤ 0. Since |μ| < 1, we have C(K,ω) = 0. By

Lemma 3.5 we have C∗(K,�) = C(K,�) = 0. So, C∗(N,�) < ε for every
ε > 0. �

Corollary 3.5. Let � be a bounded open set of Hn, and P ⊂ �. Then P is
Q-polar in � if and only if C∗(P,�) = 0.

Proof. If C∗(P,�) = 0, then by Proposition 3.1 there exists A > 0 such that
C∗(P ∩ω′,ω) ≤ AC∗(P ∩ω′,�) ≤ AC∗(P,�) = 0 for all concentric balls ω′ �
ω ��. It follows that C∗(P ∩ω′,ω) = 0. By Corollary 3.4 we get u∗

P∩ω′ = 0, and
by Proposition 3.4 there exists 0 ≥ v ∈ PSH(ω) such that P ∩ ω′ ⊂ {v = −∞},
that is, P is locally Q-polar. Then the conclusion follows from Theorem 1.1 and
Corollary 3.1. �

Proposition 3.7. If � ⊂ Hn is strongly pseudo-convex smooth open, then each
Q-polar set P ⊂ � is negligible.

Proof. Since P is Q-polar in �, by Corollary 3.5 we have C∗(P,�) = 0. Since �

is strongly pseudo-convex smooth open, it follows from Corollary 3.4 that u∗
P = 0

in �. Then by Proposition 3.4 there exists v ∈ PSH(�), v ≤ 0 such that v|P =
−∞. Consider the PSH family vε = εv, ε > 0, and U = supε>0 vε . Then U(q) =
0 if v(q) �= −∞, and U |P = −∞. So, U∗ = 0 on �, and the set P is of the form
{U < U∗} and thus is negligible on �. �
Finally, we are ready to combine all results obtained to prove Theorem 1.2.
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Proof of Theorem 1.2. By Corollary 3.5 it suffices to show that negligible sets are
the same as Q-polar sets. Proposition 3.6 and Corollary 3.5 imply that every neg-
ligible set is locally Q-polar. Now we are in the position to show that each locally
Q-polar set is negligible by using the method in the proof of Proposition 3.7. If P

is locally Q-polar, then P is globally Q-polar in Hn by Theorem 1.1. So we can
find v ∈ PSH(Hn) such that v|P = −∞. Note that v is also a function in PSH(�)

and PSH(B) with � ⊂ B ⊂ Hn. Then, as in the proof of Proposition 3.7, we con-
sider the PSH family on �: vε = εv, ε > 0, and U = supε>0 vε . Then U(q) = 0
if v(q) �= −∞, and U |P = −∞. So U∗ = 0 on �, and the set P is of the form
{U < U∗} and thus is negligible on �. Finally, Theorem 1.2 follows from Corol-
lary 3.4. �

Theorem 3.1. If � ⊂ Hn is strongly pseudo-convex smooth open, then the func-
tion E → C∗(E,�) is a generalized capacity. This means:

(1) C∗(∅,�) = 0.
(2) If K1 ⊃ K2 ⊃ · · · is a sequence of compact subsets of �, then

lim
j→∞C∗(Kj ,�) = C∗

( ∞⋂
j=1

Kj ,�

)
.

(3) If E1 ⊂ E2 ⊂ · · · is a sequence of arbitrary subsets of �, then

lim
j→∞C∗(Ej ,�) = C∗

( ∞⋃
j=1

Ej ,�

)
.

All Suslin (in particular, all Borel) subsets E of � are capacitable, that is,
C∗(E,�) = C(E,�).

Proof. Property (1) is obvious, and (2) was shown in Lemma 3.5. By
Proposition 3.1, for each Ej , C∗(Ej ,�) ≤ C∗(

⋃∞
j=1 Ej ,�). It follows that

limj→∞ C∗(Ej ,�) ≤ C∗(
⋃∞

j=1 Ej ,�).
To prove the opposite inequality, it suffices to show this under the hypothesis

that the sets Ej � �. Take ε, δ ∈ (0,1). By Theorem 1.2 the sets Ẽj := {q ∈
Ej ,u

∗
Ej

> −1} are Q-polar sets and satisfy C∗(Ẽj ,�) = 0. By Proposition 3.1

the union F := ⋃∞
j=1 Ẽj satisfies C∗(F,�) = 0. It follows from definition (1.6)

that there exists an open set G such that F ⊂ G ⊂ � and C∗(G,�) < ε. Define

Uj = {q ∈ � : u∗
Ej

< −1 + δ} and Vj = Uj ∪ G.

Since u∗
Ej

is upper semicontinuous, Uj and Vj are open. Note that 1
1−δ

u∗
Ej

≤ u∗
Uj

in �. Then by the subadditivity of capacity C(·,�) and Proposition 3.3 we have

C∗(Vj ,�) ≤ C∗(G,�) + C∗(Uj ,�) ≤ ε +
∫

�

(�u∗
Uj

)n

≤ ε + (1 − δ)−n

∫
�

(�u∗
Ej

)n = ε + (1 − δ)−nC∗(Ej ,�).
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Therefore, we have

C∗
( ∞⋃

j=1

Ej ,�

)
≤ C∗

( ∞⋃
j=1

Vj ,�

)
= C

( ∞⋃
j=1

Vj ,�

)
= lim

j→∞C(Vj ,�) ≤ ε + (1 − δ)−n lim
j→∞C∗(Ej ,�).

Finally, let ε, δ → 0 to obtain the required estimate. It is the classical Choquet re-
sult that the last conclusion of the theorem follows from (1)–(3); see, for example,
Chapter 2 in [1] and Chapter 3 in [18]. �
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