A Topological Characterization of the Underlying Spaces of Complete R-Trees

PAUL FABEL

ABSTRACT. We prove that a topological space (P, τ) admits a compatible metric *d* such that (P, d) is a complete R-tree if and only if *P* is a topological R-tree (i.e. metrizable, locally path-connected, and uniquely arcwise connected) and also *locally interval compact*. The latter notion means that each point $x \in P$ has a closed neighborhood \overline{U} such that $\overline{U} \cap \alpha$ is compact for each closed half interval $\alpha \subset P$. For topological R-trees, the property "locally interval compact" is strictly stronger than topological completeness.

1. Introduction

An *R-tree* (P, d) is a uniquely arcwise connected metric space such that for each pair of points $\{x, y\} \subset P$, the arc $([x, y], d) \subset P$ from x to y is isometric to the Euclidean segment [0, d(x, y)]. R-trees have received considerable attention as objects of study in their own right, and R-trees also play a prominent role in geometric group theory, notably in the study of group actions on spaces of nonpositive curvature [1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 14; 15; 16; 17; 18; 20; 21; 22; 23; 24; 25; 26; 29; 30].

However, the following fundamental question has apparently escaped collective inquiry: Which topological spaces (P, τ) underly the complete R-trees?

To answer this question, observe that open metric balls in the metric R-tree (P, d) are path connected and hence (P, τ) is metrizable, uniquely arcwise connected, and locally path connected, that is, R-trees are *topological R-trees*. Thanks to a result of John Mayer and Lex Oversteegen [27], the converse is also true: each topological R-tree (P, τ) is the underlying space of some R-tree (P, d). (A preprint of the author contains an alternate shorter proof [13].)

For the metric R-tree (P, d) to be complete, it is of course necessary that (P, τ) is topologically complete, but somewhat surprisingly, this is not sufficient. Example 1, the planar subspace $([0, 1] \times \{0\}) \cup (\bigcup_{n=1}^{\infty} \{\frac{1}{n}\} \times [0, \frac{1}{n}))$, shows it is *false* that a topologically complete topological R-tree (P, τ) is necessarily the underlying space of some complete R-tree (P, d).

As mentioned in the abstract, to strengthen topological completeness and ensure that the topological R-tree (P, τ) is the underlying space of a complete metric R-tree, it is precisely adequate to demand that (P, τ) has the following extra property:

Received September 29, 2014. Revision received August 8, 2015.

DEFINITION 1. The space (P, τ) is *locally interval compact* if for each $x \in P$, there exists an open set $U \subset P$ such that $x \in U$ and $\alpha \cap \overline{U}$ is compact for all closed subspaces $\alpha \subset P$ such that α is homeomorphic to [0, 1).

We also establish that a metric R-tree (P, d) is locally interval compact if and only if (P, d) is open in its metric completion, and in turn such spaces precisely underly complete R-trees. With the exception of the reference to [27], this paper is self contained, and the main result is the following.

THEOREM 1. Suppose (P, τ) is a topological space. The following are equivalent:

- (1) There exists a compatible metric d such that (P, d) is a complete R-tree.
- (2) There exists a compatible metric d such that (P, d) is an R-tree and such that (P, d) is an open subspace of its metric completion $(\overline{P, d})$.
- (3) *P* is metrizable, locally path connected, uniquely arcwise connected, and locally interval compact.

2. Preliminaries, Examples, Remarks, and Lemmas

An *arc* is a single point or a space homeomorphic to [0, 1]. A *p*-based topological R-tree $(P, \tau, p, \leq, \hat{})$ is a metrizable, uniquely arcwise connected, locally path connected space with $p \in P$ and $[x, y] \subset P$ denoting the unique arc from *x* to *y*. The space *P* enjoys both the associative binary operation $\hat{}$ such that $[p, x^{\hat{}}y] = [p, x] \cap [p, y]$ and the partial order \leq such that $y \leq x$ iff $y \in [p, x]$. Notationally, we may suppress \leq and $\hat{}$ if it is understood that *p* is the basepoint, and τ can be replaced by *d* or *D* if *P* is equipped with the particular metric *d* or *D*. A metric space (P, d) is complete if each Cauchy sequence has a limit, and we remind the reader that every metric space can be embedded as a dense subspace of a complete metric space [28], uniquely up to isometry.

EXAMPLE 1. Let *P* denote the planar subspace $([0, 1] \times \{0\}) \cup (\bigcup_{n=1}^{\infty} \{\frac{1}{n}\} \times [0, \frac{1}{n}))$. Note that *P* is not the underlying space of a complete R-tree since the half open intervals $\{\frac{1}{n}\} \times [0, \frac{1}{n})$ would be forced to have infinite geometric length, violating the topological fact that $x_n \to 0$ if $x_n \in \{\frac{1}{n}\} \times [0, \frac{1}{n})$. Note that *P* is a G_{δ} subspace of the plane (the intersection of countably many open planar sets), and hence *P* is topologically complete.

The following fact follows easily from the algebraic properties of $(P, \hat{,} \leq)$.

LEMMA 1. Suppose $(P, p, \tau \leq, \hat{})$ is a p-based topological R-tree and $[p, z] \cap [x, y] = \emptyset$. Then $x^2 = y^2 z$.

Proof. Note that $a^b \leq b$ since $a^b \in [p, b]$ and $a \leq b \Rightarrow a^b = a$ since $[p, a] \cap [p, b] = [p, a] = [p, a^b]$. Note $\{x^2, x^2y\} \subset [p, x]$ and $x^2 < x^2y$ (since otherwise we obtain the contradiction $x^2 \in [p, z] \cap [x^2y, x] \subset [p, z] \cap [x, y]$). By a symmetric argument we conclude $y^2 < y^2x$. Thus, $\{x^2, y^2\} \subset [p, x^2y]$.

Note that $y^z \in [p, x] \cap [p, z]$ and thus $y^z \le x^z$. By a symmetric argument, $x^z \le y^z$, and thus $x^z = y^z$.

The following lemma is also a consequence of the fact that the metric completion of an R-tree is an R-tree [19; 8].

LEMMA 2. Suppose $(P, d, p, \leq, \hat{})$ is an incomplete *p*-based *R*-tree with metric completion $(P, d, p, \leq, \hat{})$. Suppose $y \in \partial P = (P, d) \setminus P$. There exists an orderpreserving isometric embedding $h : [0, d(x, y)) \to (P, d)$ such that h(0) = p and $y = \lim_{t \to d(x,y)} h(t)$. In particular, since the compactum h([0, d(x, y)]) is closed in the metric space (P, d), $h([0, d(x, y)) = P \cap h([0, d(x, y)])$ is a closed subspace of *P*.

Proof. Obtain a sequence $z_n \in P$ with $d(z_n, y) \to 0$. For each $N \in \{1, 2, 3, ...\}$, obtain $M_N > N$ such that $[p, z_N] \cap [z_m, z_n] = \emptyset$ if $M_N \le m \le n$. Define $y_N = z_N \hat{z}_{M_N}$ and note that by Lemma 1 $y_N = z_N \hat{z}_m \hat{z}_n = z_N \hat{z}_m$ if $M_N \le m \le n$. Note that $y_n \to y$ and by construction there exists a subsequence $y_{k_1} < y_{k_2} \dots$ Let $h : [0, d(x, y)) \to \bigcup_{k=1}^{\infty} [p, y_{n_k}] \subset P$ be the natural isometry mapping $[d(p, y_{k_n}), d(p, y_{k_{n+1}})]$ onto $[y_{k_n}, y_{k_{n+1}}] \subset P$. By construction, h is continuously extendable at d(p, y). □

The following lemma establishes that locally interval compact R-trees are open subspaces of their metric completions.

LEMMA 3. Suppose that (P, d, p) is a p-based incomplete <u>R-tree and</u> $\partial P = (\overline{P, d, p}) \setminus P$ is not a closed subspace of the metric completion $(\overline{P, d, p})$. Then P is not locally interval compact.

Proof. Obtain $x \in P \cap \overline{\partial P}$. Suppose $\varepsilon > 0$. Obtain $y \in \partial P$ such that $d(x, y) < \varepsilon$. Obtain by Lemma 2 an isometric embedding $[0, d(p, y)] \to \overline{P}$ such that $0 \mapsto p$, $d(p, y) \mapsto y$, and [0, d(x, y)) is order isometric to a closed subspace $\alpha \subset P$. Let $\delta = \varepsilon - d(x, y)$. Obtain $z \in \alpha$ with $d(z, y) < \delta$. Note that if z < w and $w \in \alpha$, then $d(w, x) = d(w, z) + d(z, x) < (\varepsilon - d(x, y)) + d(x, y) < \varepsilon$. Thus, [z, y) is a closed subspace of P, [z, y) is homeomorphic to [0, 1), $[z, y) \subset \overline{B(x, \varepsilon)}$, and [z, y) is not compact.

REMARK 1. If (P, d, p) is a *p*-based R tree and $\alpha \subset P$ is homeomorphic to [0, 1), then (α, d) is isometric to a unique finite Euclidean half open interval [0, R) for some R > 0 or the infinite ray $[0, \infty)$. If α is closed in P and (α, d) is isometric to the finite interval [0, R), then the preimage of the sequence $R - \frac{1}{n}$ shows that (P, d, p) is incomplete.

The following easy lemma is used in the proof of Lemma 6.

LEMMA 4. Suppose that (X, D) is a metric space and $A \subset X$ and 2^X denotes the collection of compact subsets of X with the Hausdorff distance. Define $L: 2^X \to$

 $[0, \infty)$ as $L(C) = \inf_{(c,a) \in C \times A} D(c, a)$. Then *L* is continuous. If $(P, d, p, \leq, \hat{})$ is an *R*-tree, then λ is continuous if $\lambda : P \to 2^P$ is defined as $\lambda(x) = [p, x]$.

Proof. By definition the Hausdorff distance H(C, B) [28] between compacta $\{B, C\} \subset X$ satisfies $0 \le H(B, C) < \varepsilon$ iff for each $b \in B$, there exists $c \in C$ with $D(b, c) < \varepsilon$ and for each $c \in C$, there exists $b \in B$ with $D(b, c) < \varepsilon$. If $b \in B$ and $c \in C$ with $D(b, c) < \varepsilon$, then $|L(C) - L(B)| < \varepsilon$, and in particular L is continuous. If $\{x, y\} \subset P$ with $d(x, y) < \varepsilon$, then $H([p, x], [p, y]) = d(x, y) < \varepsilon$, and in particular λ is continuous. \Box

The following lemma and its proof also appear in another preprint of the author [13].

LEMMA 5. Suppose that $(P, p, \tau, \leq, \hat{})$ is a p-based topological R-tree. Suppose that the continuous function $l: P \to [0, \infty)$ satisfies $x < y \Rightarrow l(x) < l(y)$. Define $d: P \times P \to [0, \infty)$ as $d(x, y) = l(x) + l(y) - 2l(x^{\circ}y)$. Then d is a metric on the set P, inclusion $\kappa: (P, \tau) \to (P, d)$ is a continuous bijection, each arc $\kappa[x, y] \subset$ (P, d) is isometric to the Euclidean segment [0, d(x, y)], and $d(x, x^{\circ}x_m) \to 0 \Rightarrow$ $x^{\circ}x_m \to x$ in (P, τ) .

Proof. Note that d(x, x) = 0 since $x \, x = x$ and $y \neq x \Rightarrow x \, y < x$ or $x \, y < y$ and hence d(x, y) > 0. d(x, y) = d(y, x) since $x \, y = y \, x$. Note that $0 \leq 2(l(y) - l(x \, y))$ since $x \, y \leq y$. Note that $d(x, z) \leq d(x, y) + d(y, z)$ iff $-2l(x \, z) \leq 2l(y) - 2l(x \, y) - 2l(x \, z)$ iff $0 \leq 2(l(y) - l(x \, y))$. The latter holds since $x \, y \leq y$. Thus, d is a metric on the set P.

If $x_m \to x$ in (P, τ) , then $x \, \hat{x}_m \to x$ in (P, τ) . Thus, since *l* is continuous at $x, l(x) - l(x_m) \to 0$ and $l(x) - l(x \, \hat{x}_m) \to 0$. Hence, $(l(x) - l(x \, \hat{x}_m)) + (l(x_m) - l(x \, \hat{x}_m)) + (l(x) - l(x \, \hat{x}_m)) = d(x, x_m) \to 0$.

Note that if $\{w, z\} \subset (P, \tau)$ then $w \leq z$ iff $w = z^{*}w$, and hence by definition, d(w, z) = l(z) - l(w). Thus, if $\{x, y\} \subset (P, \tau)$, then the natural homeomorphism $h_{x,y}: \kappa[x^{*}y, x] \rightarrow [0, l(x) - l(x^{*}y)]$ (defined as $h_{x,y}(z) = l(z) - l(x^{*}y)$) is an isometry onto the Euclidean segment since $w < u < z \Rightarrow d(z, w) = l(z) - l(w) =$ (l(z) - l(u)) + (l(u) - l(w)) = d(z, u) + d(u, z). Pasting at 0 ($h_{y,x}^{-1}$ union the reverse of $h_{x,y}^{-1}$) yields the natural isometry $[l(x^{*}y) - l(x), l(y) - l(x^{*}y)] \rightarrow$ $\kappa[x, y]$.

Suppose $d(x, x^*x_m) \to 0$. Then $\{x^*x_m\}$ is a sequence in the (metrizable) compact arc $[p, x] \subset (P, \tau)$. Since κ is continuous at y, if $y \in [p, x] \subset (P, \tau)$ is a subsequential limit of $\{x^*x_m\}$, then $y = \kappa(y) = x$. Hence, $x^*x_m \to x$ in (P, τ) . \Box

The standard fact that a space *U* is topologically complete if *U* is an open subspace of some complete metric space (X, d) is often established [28] via a closed embedding $\phi : U \to X \times R$ with $u \mapsto (u, \frac{1}{\partial(u, \partial U)})$. For several reasons, this proof does not work "off the shelf" when trying to obtain a complete R-tree metric for a connected open subspace $P \subset Q$ of a complete R-tree (Q, D). Instead, we build a strictly increasing length function $l : P \to [0, \infty)$ such that $l(x_n) \to \infty$ if $x_n \rightarrow \partial P$, apply Lemma 5, and verify completeness of the metric and continuity of the inverse mapping.

LEMMA 6. Suppose that (Q, D) is a complete metric space, suppose that the subspace $P \subset Q$ is open, nonempty, and dense, and suppose that he metric space $(P, D, p, \leq, \hat{})$ is a *p*-based *R*-tree. There exists a topologically compatible metric *d* on *P* such that (P, d, p) is a complete *R*-tree.

Proof. Let $\partial P = Q \setminus P$. Define $L : P \to [0, \infty)$ as $L(x) = \inf\{D(y, z) \mid y \in [p, x] \text{ and } z \in \partial P\}$. Note that L > 0 since [p, x] is compact and ∂P is closed. Note that $y \le x \Rightarrow L(y) \ge L(x)$ since $[p, y] \subset [p, x]$. Define $l : P \to [0, \infty)$ as $l(x) = D(p, x) + \frac{1}{L(x)}$. Note that *l* is continuous since *D* is continuous and by Remark 4 *L* is continuous. Observe that $\{x, y\} \subset P$ and $x < y \Rightarrow D(p, x) < D(p, y)$ (since (P, D) is an R-tree) and $\frac{1}{L(x)} \le \frac{1}{L(y)}$ since $L(y) \ge L(x)$, and hence l(x) < l(y). Thus, applying Lemma 5, the metric $d(x, y) = l(x) + l(y) - 2l(x \land y)$ ensures that the inclusion $\kappa : (P, D) \to (P, d)$ is a continuous bijection, and $\kappa[x, y] \subset (P, d)$ is isometric to the Euclidean segment [0, d(x, y)]. By definition, $D(x, y) = d(x, y) - l(x) - l(y) \le d(x, y)$. Hence, κ is a homeomorphism. Thus, (P, d) is uniquely arcwise connected, and hence (P, d) is an R-tree.

Observe that for real numbers, if 0 < t < s, then $1 < \frac{1}{t} - \frac{1}{s}$ iff st < s - t.

To obtain a contradiction, suppose that (P, d) is incomplete. Let $\overline{(P, d)}$ denote the metric completion of (P, d). By Lemma 2 obtain $y \in \overline{(P, d)} \setminus P$, and an isometric embedding $h : [0, d(p, y)] \rightarrow \overline{(P, d)}$, so that h(0) = p, h(d(p, y)) = y and h|[0, d(p, y)) is an order-preserving embedding into P. Let $y_m = h(\frac{d(p, y)m}{m+1})$. Note that $\{y_m\}$ is Cauchy in (P, d) and hence $\{y_m\}$ is Cauchy in (P, D) since $D \le d$.

Note that for all $m \ge 1$ and $k \ge 1$, $0 < L(y_m) \le D(y_m, y_{m+k})$ since $[p, y_m] \subset [p, y_{m+k}]$. Thus, since $\{y_m\}$ is Cauchy in (P, D), the sequence $L(y_m) \to 0$. Hence (applying the continuity of $\times : R \times R \to R$ and $- : R \times R \to R$ (familiar multiplication and substraction of real numbers)), for each $M \ge 1$, we obtain $N_M > M$ so that $L(y_M) \times L(y_n) < L(y_M) - L(y_n)$. Thus, if $n \ge N_M > M$, then $y_M = y_M \hat{y}_n$, and hence $d(y_n, y_M) = D(y_n, y_M) + (\frac{1}{L(y_n)} - \frac{1}{L(y_M)}) \ge (\frac{1}{L(y_n)} - \frac{1}{L(y_M)}) > 1$, contradicting the fact that $\{y_m\}$ is Cauchy in (P, d).

3. Proof of Theorem 1

For $3 \Rightarrow 2$, suppose that (P, τ) is a locally interval complete topological R-tree. Obtain by [27] a topologically compatible metric d such that (P, d) is an R-tree. If (P, d) = (P, d), then note that (P, d) is open in (P, d). If $(P, d) \neq (P, d)$, then Lemma 3 ensures that P is open in (P, d). For $2 \Rightarrow 1$, suppose that (P, d) is an Rtree, open in its metric completion (P, d). Apply Lemma 6. For $1 \Rightarrow 3$, suppose that (P, d) is a complete R-tree. Note that, by definition, (P, d) is metrizable and uniquely arcwise connected, and (P, d) is locally path connected since open metric balls are path-connected. Recall Remark 1 and observe that the bounded open metric balls of radius 1 establish that (P, d) is locally interval compact.

References

- A. G. Aksoy and M. A. Khamsi, A selection theorem in metric trees, Proc. Amer. Math. Soc. 134 (2006), no. 10, 2957–2966.
- [2] J. A. Behrstock, Asymptotic geometry of the mapping class group and Teichmüller space, Geom. Topol. 10 (2006), 1523–1578.
- [3] V. N. Berestovskii and C. P. Plaut, Covering R-trees, R-free groups, and dendrites, Adv. Math. 224 (2010), no. 5, 1765–1783.
- [4] M. Bestvina, *R-trees in topology, geometry, and group theory*, Handbook of geometric topology, pp. 55–91, North-Holland, Amsterdam, 2002.
- [5] B. H. Bowditch and J. Crisp, Archimedean actions on median pretrees, Math. Proc. Cambridge Philos. Soc. 130 (2001), no. 3, 383–400.
- [6] M. R. Bridson and A. Haefliger, *Metric spaces of non-positive curvature*, Springer-Verlag, Berlin, 1999.
- [7] J. W. Cannon, *The theory of negatively curved spaces and groups*, Ergodic theory, symbolic dynamics, and hyperbolic spaces, Oxford Sci. Publ., pp. 315–369, Oxford Univ. Press, New York, 1991.
- [8] I. Chiswell, Introduction to Λ-trees, World Scientific Publishing Co., Inc., River Edge, NJ, 2001.
- [9] I. Chiswell, T. W. Müller, and J.-C. Schlage-Puchta, *Completeness and compactness criteria for R-trees*, preprint.
- [10] J. J. Dijkstra and K. I. S. Valkenburg, *The instability of nonseparable complete Erdős spaces and representations in R-trees*, Fund. Math. 207 (2010), no. 3, 197–210.
- [11] A. Dranishnikov and M. Zarichnyi, Universal spaces for asymptotic dimension, Topology Appl. 140 (2004), no. 2–3, 203–225.
- [12] C. Drutu and M. V. Sapir, Groups acting on tree-graded spaces and splittings of relatively hyperbolic groups, Adv. Math. 217 (2008), no. 3, 1313–1367.
- [13] P. Fabel, A short proof characterizing topologically the underlying spaces of *R*-trees, preprint.
- [14] H. Fischer and A. Zastrow, Combinatorial R-trees as generalized Cayley graphs for fundamental groups of one-dimensional spaces, Geom. Dedicata 163 (2013), 19–43.
- [15] M. Gromov, *Hyperbolic groups*, Essays in group theory, Math. Sci. Res. Inst. Publ., 8, pp. 75–263, Springer, New York, 1987.
- [16] V. Guirardel and A. Ivanov, *Non-nesting actions of Polish groups on real trees*, J. Pure Appl. Algebra 214 (2010), no. 11, 2074–2077.
- [17] M. Hamann, On the tree-likeness of hyperbolic spaces, preprint.
- [18] B. Hughes, *Trees and ultrametric spaces: a categorical equivalence*, Adv. Math. 189 (2004), no. 1, 148–191.
- [19] W. Imrich, On metric properties of tree-like spaces, Contributions to graph theory and its applications (Internat. Colloq., Oberhof, 1977), pp. 129–156, Tech. Hochschule Ilmenau, Ilmenau, 1977.
- [20] I. Kapovich and N. Benakli, *Boundaries of hyperbolic groups*, Combinatorial and geometric group theory, Contemp. Math., 296, pp. 39–93, Amer. Math. Soc., Providence, RI, 2002.
- [21] I. Kapovich and M. Lustig, *Stabilizers of R-trees with free isometric actions of* F_N , J. Group Theory 14 (2011), no. 5, 673–694.
- [22] W. A. Kirk, *Hyperconvexity of R-trees*, Fund. Math. 156 (1998), no. 1, 67–72.
- [23] _____, *Fixed point theorems in* CAT(0) *spaces and R-trees,* Fixed Point Theory Appl. 4 (2004), 309–316.

- [24] G. Levitt, *Non-nesting actions on real trees*, Bull. Lond. Math. Soc. 30 (1998), no. 1, 46–54.
- [25] J. C. Mayer, L. K. Mohler, L. G. Oversteegen, and E. D. Tymchatyn, *Characteriza-tion of separable metric R-trees*, Proc. Amer. Math. Soc. 115 (1992), no. 1, 257–264.
- [26] J. C. Mayer, J. Nikiel, and L. G. Oversteegen, Universal spaces for R-trees, Trans. Amer. Math. Soc. 334 (1992), no. 1, 411–432.
- [27] J. C. Mayer and L. G. Oversteegen, A topological characterization of *R*-trees, Trans. Amer. Math. Soc. 320 (1990), no. 1, 395–415.
- [28] J. R. Munkres, *Topology: a first course*, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1975.
- [29] F. Paulin, The Gromov topology on R-trees, Topology Appl. 32 (1989), no. 3, 197– 221.
- [30] K. Ruane, CAT(0) groups with specified boundary, Algebr. Geom. Topol. 6 (2006), 633–649.

Department of Mathematics and Statistics Mississippi State University Drawer MW Mississippi State, MS 39762 USA

pfpoke@gmail.com