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Carleson Measures and Toeplitz Operators for
Weighted Bergman Spaces on the Unit Ball

Jordi Pau & Ruhan Zhao

Abstract. We obtain some new characterizations on Carleson mea-
sures for weighted Bergman spaces on the unit ball involving product
of functions. For these, we characterize bounded and compact Toeplitz
operators between weighted Bergman spaces. The results are applied
to characterize bounded and compact extended Cesàro operators and
pointwise multiplication operators. The results are new even in the
case of the unit disk.

1. Introduction

Let Cn denote the Euclidean space of complex dimension n. For any two points
z = (z1, . . . , zn) and w = (w1, . . . ,wn) in C

n, we write 〈z,w〉 = z1w̄1 + · · · +
znw̄n, and |z| = √〈z, z〉 = √|z1|2 + · · · + |zn|2. Let Bn = {z ∈ C

n : |z| < 1} be
the unit ball in C

n. Let H(Bn) be the space of all holomorphic functions on
the unit ball Bn. Let dv be the normalized volume measure on Bn such that
v(Bn) = 1. For 0 < p < ∞ and −1 < α < ∞, let Lp,α := Lp(Bn, dvα) denote
the weighted Lebesgue spaces that contain measurable functions f on Bn such
that

‖f ‖p,α =
(∫

Bn

|f (z)|p dvα(z)

)1/p

< ∞,

where dvα(z) = cα(1 − |z|2)α dv(z), and cα is the normalized constant such
that vα(Bn) = 1. We also denote by A

p
α = Lp(Bn, dvα) ∩ H(Bn) the weighted

Bergman space on Bn, with the same norm. If α = 0, then we simply write them
as Lp(Bn, dv) and Ap , respectively, and ‖f ‖p for the norm of f in these spaces.

Let μ be a positive Borel measure on Bn. For λ > 0 and α > −1, we say that
μ is a (λ,α)-Bergman–Carleson measure if for any two positive numbers p and
q with q/p = λ, there is a positive constant C > 0 such that∫

Bn

|f (z)|q dμ(z) ≤ C‖f ‖q
p,α

Received April 30, 2014. Revision received July 31, 2015.
This work was completed while the second author visited the University of Barcelona in 2013.

He thanks the support given by the IMUB and the SGR grant 2009SGR420 (Generalitat de
Catalunya), from which the first author was also partially supported. The first author was also
supported by DGICYT grants MTM2011-27932-C02-01 and MTM2014-51834-P (MCyT/MEC)
and the grant 2014SGR289 (Generalitat de Catalunya).

759

http://www.lsa.umich.edu/math/outreach/michiganmathematicaljournal


760 Jordi Pau & Ruhan Zhao

for any f ∈ A
p
α . We also denote

‖μ‖λ,α = sup
f ∈A

p
α,‖f ‖p,α≤1

∫
Bn

|f (z)|q dμ(z).

The concept of Carleson measures was first introduced by L. Carleson in order
to study interpolating sequences and the corona problem [4; 5] for the algebra H∞
of all bounded analytic functions on the unit disk. It quickly became a powerful
tool for the study of function spaces and operators acting on them. The Bergman–
Carleson measures were first studied by Hastings [10], and further pursued by
Oleinik [18], Luecking [13; 14], Cima and Wogen [7], and many others.

In this paper we will give new characterizations for (λ, γ )-Bergman–Carleson
measures and vanishing (λ, γ )-Bergman–Carleson measures (defined in Sec-
tion 4) on the unit ball Bn by using products of functions in weighted Bergman
spaces. In order to prove these results, we have to characterize bounded and com-
pact Toeplitz operators between weighted Bergman spaces, which is of indepen-
dent interest. Our results will be applied to study boundedness and compactness of
extended Cesàro operators and pointwise multiplication operators from weighted
Bergman spaces to a general family of function spaces.

Theorem 1.1. Let μ be a positive Borel measure on Bn. For any integer k ≥ 1
and i = 1,2, . . . , k, let 0 < pi, qi < ∞ and −1 < αi < ∞. Let

λ =
k∑

i=1

qi

pi

; γ = 1

λ

k∑
i=1

αiqi

pi

. (1.1)

Then μ is a (λ, γ )-Bergman–Carleson measure if and only if there is a constant
C > 0 such that for any fi ∈ A

pi
αi

, i = 1,2, . . . , k,

∫
Bn

k∏
i=1

|fi(z)|qi dμ(z) ≤ C

k∏
i=1

‖fi‖qi
pi ,αi

. (1.2)

A similar result for Hardy spaces on the unit disk was given by the second author
in [26]. Due to lack of Riesz factorization theorem for weighted Bergman spaces,
the proof of the theorem will be quite different and involved. For the proof of one
implication in the case 0 < λ < 1, a description of bounded Toeplitz operators
between different Bergman spaces is needed. We state this result, which may be
of independent interest, as a theorem. Given β > −1 and a positive Borel measure
μ on Bn, define the Toeplitz operator T

β
μ as follows:

T β
μ f (z) =

∫
Bn

f (w)

(1 − 〈z,w〉)n+1+β
dμ(w), z ∈ Bn.

Theorem 1.2. Let 0 < p1,p2 < ∞ and −1 < α1, α2 < ∞. Suppose that

n + 1 + β > nmax

(
1,

1

pi

)
+ 1 + αi

pi

, i = 1,2.
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Let

λ = 1 + 1

p1
− 1

p2
, γ = 1

λ

(
β + α1

p1
− α2

p2

)
.

Let μ be a positive Borel measure on Bn. Then the following statements are equiv-
alent:

(i) T
β
μ is bounded from A

p1
α1 to A

p2
α2 .

(ii) The measure μ is a (λ, γ )-Bergman–Carleson measure.

Moreover, we have

‖T β
μ ‖

A
p1
α1 →A

p2
α2

� ‖μ‖λ,γ .

Remark. In Theorem 1.2, the condition

n + 1 + β > nmax

(
1,

1

p1

)
+ 1 + α1

p1
(1.3)

is used to prove that (i) implies (ii), whereas the condition

n + 1 + β > nmax

(
1,

1

p2

)
+ 1 + α2

p2
(1.4)

is needed to prove that (ii) implies (i). Moreover, when p1 ≥ 1, condition (1.3)
reduces to (1 + β)p1 > 1 + α1, and by Theorem 2.11 of Zhu’s book [28], this
is equivalent to the fact that Pβ is a bounded projection from Lp1(Bn, dvα1)

onto A
p1
α1 . Here, the projection Pβ is defined as

Pβf (z) =
∫
Bn

f (w)dvβ(w)

(1 − 〈z,w〉)n+1+β
.

In a similar way, when p2 ≥ 1, condition (1.4) is equivalent to the fact that Pβ is
a bounded projection from Lp2(Bn, dvα2) onto A

p2
α2 .

An account of the theory of Toeplitz operators acting on Bergman spaces can be
found, for example, in [29, Chapter 7]. Theorems 1.1 and 1.2 are proved together:
we first prove the sufficiency in Theorem 1.1, and this is applied in order to get
the sufficiency in Theorem 1.2. After that, using standard test functions in the case
λ ≥ 1 and a method developed by Luecking [17] using Khinchine’s inequality in
the case 0 < λ < 1, we get the necessity in Theorem 1.2. Finally, applying the
result on Toeplitz operators and mixing several existing techniques in a non stan-
dard an maybe a new way, we prove the necessity in Theorem 1.1. Of particular
importance in the proof is the technical Lemma 3.3, a result that can be of inde-
pendent interest since it may have more applications to be discovered in the next
years.

The product characterization of Carleson measures obtained in Theorem 1.1
can be applied to a number of questions that arise naturally in connection with
function and operator theory in the ball. We are going to give some examples
of that. First, an immediate consequence of Theorem 1.1 is the result stated in
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Corollary 5.1: μ is a (λ, γ )-Bergman–Carleson measure if and only if for any
f ∈ A

p
α and for some (any) t > 0,

sup
a∈Bn

∫
Bn

|f (z)|q (1 − |a|2)t
|1 − 〈z, a〉|s+t

dμ(z) ≤ C‖f ‖q
p,α.

The expression of λ, γ in terms of the parameters p, q , and s and some condi-
tions required on the parameters can be found in the statement of Corollary 5.1.
This result is applied in order to study the boundedness and compactness of the
extended Cesàro operators

Jgf (z) =
∫ 1

0
f (tz)Rg(tz)

dt

t
and Igf (z) =

∫ 1

0
Rf (tz)g(tz)

dt

t

acting from the weighted Bergman spaces At
α to a general family of function

spaces F(p,q, s). Here Rf denotes the radial derivative of the function f . The
operator Jg was first used by Ch. Pommerenke to characterize BMOA functions
on the unit disk. It was first systematically studied by Aleman and Siskakis [2].
They proved that Jg is bounded on the Hardy space Hp on the unit disk if and
only if g ∈ BMOA. Thereafter there have been many works on these operators.
See [1; 3; 11; 19; 20; 21], and [23] for a few examples. The space F(p,q, s) is
defined as the space of all holomorphic functions f on Bn such that

‖f ‖p

F(p,q,s) = sup
a∈Bn

∫
Bn

|Rf (z)|p(1 − |z|2)q+s (1 − |a|2)s
|1 − 〈z, a〉|2s

dv(z) < ∞,

where 0 < p < ∞, −n − 1 < q < ∞, 0 ≤ s < ∞, and q + s > −1. The family of
spaces F(p,q, s) on the unit disk was introduced in [25]. It contains, as special
cases, many classical function spaces, such as the analytic Besov spaces, weighted
Bergman spaces, Dirichlet spaces, the Bloch space, and BMOA and Qp spaces.
See [25] for the details. For F(p,q, s) on the unit ball, we refer to [24].

In Theorem 5.4 we give a complete description of the boundedness of
Jg : At

α → F(p,pβ − n − 1, s), and a similar description for the boundedness
of Ig is obtained in Theorem 5.5. As a consequence, a characterization of the
pointwise multipliers from At

α to F(p,pβ −n−1, s) is obtained in Theorem 5.8.
It looks possible to obtain these results directly (essentially by extracting the rel-
evant parts in the proof of our Theorem 1.1), but the use of Theorem 1.1 gives a
better understanding of what is going on, and it looks that more applications in
the setting of operator theory can be discovered in the future.

The paper is organized as follows. In Section 2 we recall some notation and
preliminary results, which will be used later. Section 3 is devoted to the proofs
of our main results, Theorem 1.1 and Theorem 1.2. In Section 4 we give similar
characterizations for vanishing (λ, γ )-Bergman–Carleson measures. In Section 5
we apply Theorem 1.1 to characterize bounded extended Cesàro operators and
pointwise multiplication operators from weighted Bergman spaces into a general
family of function spaces.
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In the following, the notation A � B means that there is a positive constant C

such that A ≤ CB , and the notation A � B means that both A � B and B � A

hold.

2. Preliminaries

In this section we introduce some notation and recall some well-known results
that will be used throughout the paper.

For any a ∈ Bn with a = 0, we denote by φa(z) the Möbius transformation on
Bn that interchanges the points 0 and a. It is known that φa satisfies the following
properties: φa ◦ φa(z) = z, and

1 − |φa(z)|2 = (1 − |a|2)(1 − |z|2)
|1 − 〈z, a〉|2 , a, z ∈ Bn. (2.1)

For z,w ∈ Bn, the pseudo-hyperbolic distance between z and w is defined by

ρ(z,w) = |φz(w)|,
and the hyperbolic distance on Bn between z and w induced by the Bergman
metric is given by

β(z,w) = tanhρ(z,w) = 1

2
log

1 + |φz(w)|
1 − |φz(w)| .

For z ∈ Bn and r > 0, the Bergman metric ball at z is given by

D(z, r) = {w ∈ Bn : β(z,w) < r}.
It is known that, for a fixed r > 0, the weighted volume

vα(D(z, r)) � (1 − |z|2)n+1+α.

We refer to [28] for these facts.
We cite two results for Bergman–Carleson measures that justify the fact that a

Bergman–Carleson measure depends only on α and the ratio λ = q/p. The first
result was obtained by several authors and can be found, for example, in [27,
Theorem 50] and the references there.

Theorem A. For a positive Borel measure μ on Bn, 0 < p ≤ q < ∞, and −1 <

α < ∞, the following statements are equivalent:

(i) There is a constant C1 > 0 such that, for any f ∈ A
p
α ,∫

Bn

|f (z)|q dμ(z) ≤ C1‖f ‖q
p,α.

(ii) There is a constant C2 > 0 such that, for any real number r with 0 < r < 1
and any z ∈ Bn,

μ(D(z, r)) ≤ C2(1 − |z|2)(n+1+α)q/p.

(iii) There is a constant C3 > 0 such that, for some (every) t > 0,

sup
a∈Bn

∫
Bn

(1 − |a|2)t
|1 − 〈z, a〉|[(n+1+α)q/p]+t

dμ(z) ≤ C3.



764 Jordi Pau & Ruhan Zhao

Furthermore, the constants C1, C2, and C3 are all comparable to ‖μ‖λ,α with
λ = q/p.

Remark. Let λ = q/p. Then this result states that a positive Borel measure μ on
Bn is a (λ,α)-Bergman–Carleson measure if and only if

sup
s∈Bn

∫
Bn

(1 − |a|2)t
|1 − 〈z, a〉|(n+1+α)λ+t

dμ(z) < ∞

for some (every) t > 0.
For the case 0 < q < p < ∞, we need a well-known result on decomposition of

the unit ball Bn. A sequence {ak} of points in Bn is called a separated sequence (in
the Bergman metric) if there exists a positive constant δ > 0 such that β(zi, zj ) >

δ for any i = j . The following result is Theorem 2.23 in [28].

Lemma A. There exists a positive integer N such that for any 0 < r < 1, we can
find a sequence {ak} in Bn with the following properties:

(i) Bn = ⋃
k D(ak, r).

(ii) The sets D(ak, r/4) are mutually disjoint.
(iii) Each point z ∈ Bn belongs to at most N of the sets D(ak,4r).

Any sequence {ak} satisfying the conditions of the lemma is called a lattice (or
an r-lattice if one wants to stress the dependence on r) in the Bergman metric.
Obviously, any r-lattice is separated. For convenience, we will denote by Dk =
D(ak, r) and D̃k = D(ak,4r). Then Lemma A says that Bn = ⋃∞

k=1 Dk and there
is a positive integer N such that every point z in Bn belongs to at most N of
sets D̃k .

The following result is essentially due to Luecking [16; 17] for the case α = 0
(note that the discrete form (iii) is actually given in Luecking’s proof). For −1 <

α < ∞, the result can be similarly proved as in [17]. The condition in part (iv) first
appeared in [6] (see also [27, Theorem 54]), where it was used for the embedding
of harmonic Bergman spaces into Lebesgue spaces.

Theorem B. For a positive Borel measure μ on Bn, 0 < q < p < ∞, and −1 <

α < ∞, the following statements are equivalent:

(i) There is a constant C1 > 0 such that, for any f ∈ A
p
α ,∫

Bn

|f (z)|q dμ(z) ≤ C1‖f ‖q
p,α.

(ii) The function

μ̂r (z) := μ(D(z, r))

(1 − |z|2)n+1+α

is in Lp/(p−q),α for any (some) fixed r ∈ (0,1).
(iii) For any r-lattice {ak} and Dk as in Lemma A, the sequence

{μk} :=
{

μ(Dk)

(1 − |ak|2)(n+1+α)(q/p)

}



Carleson Measures and Toeplitz Operators 765

belongs to 	p/(p−q) for any (some) fixed r ∈ (0,1).
(iv) For any s > 0, the Berezin-type transform Bs,α(μ) belongs to Lp/(p−q),α .

Furthermore, with λ = q/p, we have

‖μ̂r‖p/(p−q),α � ‖{μk}‖	p/(p−q) � ‖Bs,α(μ)‖p/(p−q),α � ‖μ‖λ,α.

Here, for a positive measure ν, the Berezin-type transform Bs,α(ν) is

Bs,α(ν)(z) =
∫
Bn

(1 − |z|2)s
|1 − 〈z,w〉|n+1+s+α

dν(w).

As a consequence of Theorem B, for 0 < λ < 1, a positive Borel measure μ on
Bn is a (λ,α)-Bergman–Carleson measure if and only if

μ(D(z, r))(1 − |z|2)−n−1−α ∈ L1/(1−λ),α

or
{μ(Dk)(1 − |ak|2)−(n+1+α)λ} ∈ 	1/(1−λ)

for any (some) fixed r ∈ (0,1).
The following integral estimate (see [28, Thm. 1.12]) has become indispens-

able in this area of analysis and will be used several times in this paper.

Lemma B. Suppose z ∈ Bn, c > 0 and t > −1. The integral

Ic,t (z) =
∫
Bn

(1 − |w|2)t
|1 − 〈z,w〉|n+1+t+c

dv(w)

is comparable to (1 − |z|2)−c .

We also need a well known variant of the previous lemma.

Lemma C. Let {zk} be a separated sequence in Bn, and let n < t < s. Then
∞∑

k=1

(1 − |zk|2)t
|1 − 〈z, zk〉|s ≤ C(1 − |z|2)t−s , z ∈ Bn.

Lemma C can be deduced from Lemma B after noticing that, if a sequence {zk}
is separated, then there is a constant r > 0 such that the Bergman metric balls
D(zk, r) are pairwise disjoint. With all these preparations, now we are ready to
prove the main results.

3. Proofs of Theorems 1.1 and 1.2

We first need the following lemma.

Lemma 3.1. Let −1 < α < ∞. For i = 1,2, . . . , k, let 0 < pi, qi < ∞, and let
fi ∈ A

pi/qi
αi

. Let

λ =
k∑

i=1

qi

pi

; γ = 1

λ

k∑
i=1

αiqi

pi

.
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Then
∏k

i=1 fi ∈ A
1/λ
γ , and∥∥∥∥

k∏
i=1

fi

∥∥∥∥
1/λ,γ

�
k∏

i=1

‖fi‖pi/qi ,αi
.

Proof. Let fi ∈ A
pi/qi
αi

(i = 1,2, . . . , k). Since piλ/qi > 1 for any i = 1,2, . . . , k,
we can apply Hölder’s inequality to obtain∥∥∥∥

k∏
i=1

fi

∥∥∥∥
1/λ,γ

=
(

cγ

∫
Bn

k∏
i=1

|fi(z)|1/λ(1 − |z|2)γ dv(z)

)λ

�
k∏

i=1

(∫
Bn

|fi(z)|(1/λ)(piλ/qi )(1 − |z|2)(qiαi/(piλ))(piλ/qi ) dv(z)

)qi/pi

=
k∏

i=1

(∫
Bn

|fi(z)|pi/qi (1 − |z|2)αi dv(z)

)qi/pi

�
k∏

i=1

‖fi‖pi/qi ,αi
.

The result is proved. �

Proposition 3.2. Let μ be a positive Borel measure on Bn. For any integer k ≥ 1
and i = 1,2, . . . , k, let 0 < pi, qi < ∞ and −1 < αi < ∞, and let λ and γ be as
in (1.1). If μ is a (λ, γ )-Bergman–Carleson measure, then (1.2) holds.

Proof. If k = 1, then the result is just the definition. Let us now assume that k ≥ 2.
Let hi ∈ A

pi/qi
αi

, i = 1,2, . . . , k. By Lemma 3.1,
∏k

i=1 hi ∈ A
1/λ
γ , and∥∥∥∥

k∏
i=1

hi

∥∥∥∥
1/λ,γ

�
k∏

i=1

‖hi‖pi/qi ,αi
.

Since μ is a (λ, γ )-Bergman–Carleson measure,∫
Bn

∣∣∣∣
k∏

i=1

hi(z)

∣∣∣∣dμ(z) ≤ C

∥∥∥∥
k∏

i=1

hi

∥∥∥∥
1/λ,γ

≤ C

k∏
i=1

‖hi‖pi/qi ,αi
. (3.1)

Let

dμ1 =
( k∏

i=2

|hi |dμ

)/( k∏
i=2

‖hi‖pi/qi ,αi

)
.

Then (3.1) is equivalent to∫
Bn

|h1(z)|dμ1(z) ≤ C‖h1‖p1/q1,α1 .
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Thus, μ1 is a (q1/p1, α1)-Bergman–Carleson measure. Thus, for any f1 ∈ A
p1
α1 ,∫

Bn

|f1(z)|q1 dμ1(z) ≤ C‖f1‖q1
p1,α1 ,

which is the same as∫
Bn

|f1(z)|q1

k∏
i=2

|hi(z)|dμ(z) ≤ C‖f1‖q1
p1,α1

k∏
i=2

‖hi‖pi/qi ,αi
. (3.2)

Let

dμ2 =
(

|f1|q1

k∏
i=3

|hi |dμ

)/(
‖f1‖q1

p1,α1

k∏
i=3

‖hi‖pi/qi ,αi

)
.

Then (3.2) is the same as∫
Bn

|h2(z)|dμ2(z) ≤ C‖h2‖p2/q2,α2 .

Thus, μ2 is a (q2/p2, α2)-Bergman–Carleson measure. Thus, for any f2 ∈ A
p2
α2 ,∫

Bn

|f2(z)|q2 dμ2(z) ≤ C‖f2‖q2
p2,α2

or∫
Bn

|f1(z)|q1 |f2(z)|q2

k∏
i=3

|hi(z)|dμ(z) ≤ C‖f1‖q1
p1,α1‖f2‖q2

p2,α2

k∏
i=3

‖hi‖pi/qi ,αi
.

Continuing this process we will eventually get (1.2). �

3.1. Proof of Theorem 1.2

3.1.1. (i) Implies (ii). We divide this part into two cases: λ ≥ 1 and 0 < λ < 1.
Case 1: λ ≥ 1. Fix a ∈ Bn and let fa(z) = (1 − 〈z, a〉)−(n+1+β). Under the

condition (n + 1 + β)p1 > n + 1 + α1, it is easy to check using Lemma B that
fa ∈ A

p1
α1 with

‖fa‖p1
p1,α1 � (1 − |a|2)(n+1+α1)−(n+1+β)p1 .

Since

T β
μ fa(z) =

∫
Bn

fa(w)

(1 − 〈z,w〉)n+1+β
dμ(w)

=
∫
Bn

dμ(w)

(1 − 〈z,w〉)n+1+β · (1 − 〈w,a〉)n+1+β
,

we get

T β
μ fz(z) =

∫
Bn

dμ(w)

|1 − 〈z,w〉|2(n+1+β)
≥ C

μ(D(z, r))

(1 − |z|2)2(n+1+β)
.
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On the other hand, by the pointwise estimate for functions in Bergman spaces
(see [28, Thm. 2.1]) together with the boundedness of the Toeplitz operator T

β
μ ,

we get

T β
μ fz(z) = |T β

μ fz(z)| ≤ ‖T β
μ fz‖p2,α2(1 − |z|2)−(n+1+α2)/p2

≤ ‖T β
μ ‖ · ‖fz‖p1,α1(1 − |z|2)−(n+1+α2)/p2

� ‖T β
μ ‖(1 − |z|2)(n+1+α1)/p1−(n+1+α2)/p2−(n+1+β).

Hence,

μ(D(z, r)) � ‖T β
μ ‖(1 − |z|2)(n+1+β)+(n+1+α1)/p1−(n+1+α2)/p2

= ‖T β
μ ‖(1 − |z|2)(n+1+γ )λ.

By Theorem A this means that μ is a (λ, γ )-Bergman–Carleson measure
with

‖μ‖λ,γ � ‖T β
μ ‖.

Case 2: 0 < λ < 1. Notice that the condition 0 < λ < 1 is equivalent to 0 <

p2 < p1 < ∞. Let rk(t) be a sequence of Rademacher functions (see [9, App. A]),
and {ak} be any r-lattice on Bn. Since

n + 1 + β > nmax

(
1,

1

p1

)
+ 1 + α1

p1
,

we know from Theorem 2.30 in [28] that, for any sequence of real numbers
{λk} ∈ 	p1 , the function

ft (z) =
∞∑

k=1

λkrk(t)
(1 − |ak|2)n+1+β−(n+1+α1)/p1

(1 − 〈z, ak〉)n+1+β

is in A
p1
α1 with ‖ft‖p1,α1 � ‖{λk}‖	p1 for almost every t in (0,1). Denote by

fk(z) = (1 − |ak|2)n+1+β−(n+1+α1)/p1

(1 − 〈z, ak〉)n+1+β
.

Since T
β
μ is bounded from A

p1
α1 to A

p2
α2 , we get that for almost every t in (0,1),

‖T β
μ ft‖p2

p2,α2 =
∫
Bn

∣∣∣∣
∞∑

k=1

λkrk(t)T
β
μ fk(z)

∣∣∣∣p2

dvα2(z)

� ‖T β
μ ‖p2 · ‖ft‖p2

p1,α1 � ‖T β
μ ‖p2

( ∞∑
k=1

|λk|p1

)p2/p1

.

Integrating both sides with respect to t from 0 to 1, and using Fubini’s theorem
and Khinchine’s inequality (see, e.g., [17]), we get∫

Bn

( ∞∑
k=1

|λk|2|T β
μ fk(z)|2

)p2/2

dvα2(z) � ‖T β
μ ‖p2 · ‖{λk}‖p2

	p1 . (3.3)
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Let {Dk} be the associated sets to the lattice {ak} in Lemma A. Then

∞∑
k=1

|λk|p2

∫
D̃k

|T β
μ fk(z)|p2 dvα2(z)

=
∫
Bn

( ∞∑
k=1

|λk|p2 |T β
μ fk(z)|p2χ

D̃k
(z)

)
dvα2(z).

If p2 ≥ 2, then 2/p2 ≤ 1, and from the fact that 	1 injects continuously into 	p2/2

we have

∞∑
k=1

|λk|p2

∫
D̃k

|T β
μ fk(z)|p2 dvα2(z)

≤
∫
Bn

( ∞∑
k=1

|λk|2|T β
μ fk(z)|2χD̃k

(z)

)p2/2

dvα2(z)

≤
∫
Bn

( ∞∑
k=1

|λk|2|T β
μ fk(z)|2

)p2/2

dvα2(z).

If 0 < p2 < 2, then 2/p2 > 1. Thus, by Hölder’s inequality we get

∞∑
k=1

|λk|p2

∫
D̃k

|T β
μ fk(z)|p2 dvα2(z)

≤
∫
Bn

( ∞∑
k=1

|λk|2|T β
μ fk(z)|2χD̃k(z)

)p2/2(∑
k

χ
D̃k

(z)

)1−p2/2

dvα2(z)

≤ N1−p2/2
∫
Bn

( ∞∑
k=1

|λk|2|T β
μ fk(z)|2

)p2/2

dvα2(z)

since any point z belongs to at most N of the sets D̃k . Combining the last two
inequalities and applying (3.3), we obtain

∞∑
k=1

|λk|p2

∫
D̃k

|T β
μ fk(z)|p2 dvα2(z)

≤ max{1,N1−p2/2}
∫
Bn

( ∞∑
k=1

|λk|2|T β
μ fk(z)|2

)p2/2

dvα2(z)

� ‖T β
μ ‖p2 · ‖{λk}‖p2

	p1 .

Since, by subharmonicity (see [28, Lemma 2.24]) we have

|T β
μ fk(ak)|p2 � 1

(1 − |ak|2)n+1+α2

∫
D̃k

|T β
μ fk(z)|p2 dvα2(z),
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we get
∞∑

k=1

|λk|p2(1 − |ak|2)n+1+α2 |T β
μ fk(ak)|p2 � ‖T β

μ ‖p2 · ‖{λk}‖p2
	p1 . (3.4)

Now, notice that

T β
μ fk(ak) = (1 − |ak|2)n+1+β−(n+1+α1)/p1

∫
Bn

dμ(w)

|1 − 〈w,ak〉|2(n+1+β)
.

Therefore,
μ(Dk)

(1 − |ak|2)n+1+β+(n+1+α1)/p1
� T β

μ fk(ak),

and putting this into (3.4), we get
∞∑

k=1

|λk|p2

(
μ(Dk)

(1 − |ak|2)s
)p2

� ‖T β
μ ‖p2 · ‖{λk}‖p2

	p1

with

s = n + 1 + β + (n + 1 + α1)

p1
− (n + 1 + α2)

p2
= (n + 1 + γ )λ. (3.5)

Since the conjugate exponent of (p1/p2) is (p1/p2)
′ = p1/(p1 − p2) by duality,

we know that

{νk} :=
{(

μ(Dk)

(1 − |ak|2)s
)p2

}
∈ 	p1/(p1−p2)

with
‖{νk}‖	p1/(p1−p2) � ‖T β

μ ‖p2

or

{μk} :=
{

μ(Dk)

(1 − |ak|2)(n+1+γ )λ

}
∈ 	p1p2/(p1−p2) = 	1/(1−λ)

with
‖{μk}‖	1/(1−λ) = ‖{νk}‖1/p2

	p1/(p1−p2) � ‖T β
μ ‖.

By Theorem B this means that μ is a (λ, γ )-Bergman–Carleson measure with

‖μ‖λ,γ � ‖T β
μ ‖.

3.1.2. (ii) Implies (i). Now suppose (ii) holds, that is, μ is a (λ, γ )-Bergman–
Carleson measure. We show that this implies (i). We divide the proof into three
cases.

Case 1: p2 > 1. For this case, let p′
2 and α′

2 be two numbers satisfying

1

p2
+ 1

p′
2

= 1; α2

p2
+ α′

2

p′
2

= β. (3.6)

Then

α′
2 =

(
β − α2

p2

)
p′

2 = βp2 − α2

p2 − 1
> −1
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since β > (1 + α2)/p2 − 1. By a duality result due to Luecking (see [15] or [28,

Thm. 2.12]), we know that (A
p2
α2 )

∗ = A
p′

2
α′

2
under the integral pairing

〈f,g〉β =
∫
Bn

f (z)g(z) dvβ(z).

Let f ∈ A
p1
α1 and h ∈ A

p′
2

α′
2
. An easy computation using Fubini’s theorem and

the reproducing formula for Bergman spaces shows

〈h,T β
μ f 〉β =

∫
Bn

h(z)f (z) dμ(z).

The conditions for λ and γ in the theorem are equivalent to

λ = 1

p1
+ 1

p′
2
, γ = 1

λ

(
α1

p1
+ α′

2

p′
2

)
.

Thus, by Proposition 3.2,

|〈h,T β
μ f 〉β | ≤

∫
Bn

|h(z)||f (z)|dμ(z) � ‖μ‖λ,γ · ‖f ‖p1,α1 · ‖h‖p′
2,α

′
2
.

Hence, T
β
μ is bounded from A

p1
α1 to A

p2
α2 with ‖T β

μ ‖ � ‖μ‖λ,γ .
Case 2: p2 = 1. Let f ∈ A

p1
α1 . For this case, since β > (1 + α2)/1 − 1 = α2, by

Fubini’s theorem and Lemma B we have

‖T β
μ f ‖1,α2 ≤

∫
Bn

(∫
Bn

|f (w)|
|1 − 〈z,w〉|n+1+β

dμ(w)

)
dvα2(z)

=
∫
Bn

|f (w)|
(∫

Bn

(1 − |z|2)α2

|1 − 〈z,w〉|n+1+β
dv(z)

)
dμ(w)

�
∫
Bn

|f (w)|(1 − |w|2)α2−β dμ(w). (3.7)

Let ν be the measure defined by dν(w) = (1 − |w|2)α2−β dμ(w). Since μ is a
(λ, γ )-Bergman–Carleson measure, using Theorems A and B, we easily see that ν

is a (1/p1, α1)-Bergman–Carleson measure and, moreover, ‖ν‖1/p1,α1 � ‖μ‖λ,γ .
Thus, for any f ∈ A

p1
α1 , we have∫

Bn

|f (w)|dν(w) � ‖ν‖1/p1,α1 · ‖f ‖p1,α1 � ‖μ‖λ,γ · ‖f ‖p1,α1 .

Thus, by (3.7) it follows that

‖T β
μ f ‖1,α2 � ‖μ‖λ,γ · ‖f ‖p1,α1 ,

and so T
β
μ is bounded from A

p1
α1 to A

p2
α2 with ‖T β

μ ‖ � ‖μ‖λ,γ .
Case 3: 0 < p2 < 1. Let {ak} be an r-lattice of Bn in the Bergman met-

ric, and {Dk} be the corresponding sets as in Lemma A. Then we know that
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Bn = ⋃∞
k=1 Dk and there is a positive integer N such that each point in Bn be-

longs to at most N of the sets D̃k . Then

|T β
μ f (z)| �

∞∑
k=1

∫
Dk

|f (w)|
|1 − 〈z,w〉|n+1+β

dμ(w)

�
∞∑

k=1

1

|1 − 〈z, ak〉|n+1+β

∫
Dk

|f (w)|dμ(w).

Now, for w ∈ Dk , we have

|f (w)|p1 � 1

(1 − |ak|2)n+1+α1

∫
D̃k

|f (z)|p1 dvα1(z).

From this we get∫
Dk

|f (w)|dμ(w)� 1

(1 − |ak|2)(n+1+α1)/p1

(∫
D̃k

|f (z)|p1 dvα1(z)

)1/p1

μ(Dk).

Since 0 < p2 < 1, this implies

|T β
μ f (z)|p2 �

∞∑
k=1

1

|1 − 〈z, ak〉|(n+1+β)p2

μ(Dk)
p2

(1 − |ak|2)(n+1+α1)(p2/p1)

×
(∫

D̃k

|f (z)|p1 dvα1(z)

)p2/p1

.

Therefore, since (n + 1 + β)p2 > n + 1 + α2, we can apply Lemma B to obtain

‖T β
μ f ‖p2

p2,α2 �
∞∑

k=1

μ(Dk)
p2

(1 − |ak|2)(n+1+α1)(p2/p1)

(∫
D̃k

|f (z)|p1 dvα1(z)

)p2/p1

×
∫
Bn

(1 − |z|2)α2 dv(z)

|1 − 〈z, ak〉|(n+1+β)p2

�
∞∑

k=1

μ(Dk)
p2

(1 − |ak|2)(n+1+α1)(p2/p1)

(∫
D̃k

|f (z)|p1 dvα1(z)

)p2/p1

× (1 − |ak|2)n+1+α2−(n+1+β)p2 . (3.8)

First, assume that λ ≥ 1. Since μ is a (λ, γ )-Bergman–Carleson measure, by The-
orem A we get

μ(Dk) � ‖μ‖λ,γ (1 − |ak|2)(n+1+γ )λ.

Bearing in mind (3.5), this, together with (3.8) and the fact that p2 ≥ p1 (due to
the assumption λ ≥ 1), yields

‖T β
μ f ‖p2

p2,α2 � ‖μ‖p2
λ,γ

∞∑
k=1

(∫
D̃k

|f (z)|p1 dvα1(z)

)p2/p1

� ‖μ‖p2
λ,γ

( ∞∑
k=1

∫
D̃k

|f (z)|p1 dvα1(z)

)p2/p1

� ‖μ‖p2
λ,γ · ‖f ‖p2

p1,α1 .
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Hence, T
β
μ is bounded from A

p1
α1 to A

p2
α2 with ‖T β

μ ‖ � ‖μ‖λ,γ . Next, assume that
0 < λ < 1. Then p1 > p2, and using Hölder’s inequality in (3.8), we get

‖T β
μ f ‖p2

p2,α2 �
∞∑

k=1

μ(Dk)
p2

(1 − |ak|2)(n+1+γ )λp2

(∫
D̃k

|f (z)|p1 dvα1(z)

)p2/p1

≤
{ ∞∑

k=1

[
μ(Dk)

p2

(1 − |ak|2)(n+1+γ )λp2

]p1/(p1−p2)
}1−p2/p1

×
( ∞∑

k=1

∫
D̃k

|f (z)|p1 dvα1(z)

)p2/p1

.

Since μ is a (λ, γ )-Bergman–Carleson measure, by Theorem B we get that
∞∑

k=1

[
μ(Dk)

p2

(1 − |ak|2)(n+1+γ )λp2

]p1/(p1−p2)

=
∞∑

k=1

[
μ(Dk)

(1 − |ak|2)(n+1+γ )λ

]1/(1−λ)

� ‖μ‖1/(1−λ)
λ,γ = ‖μ‖p1p2/(p1−p2)

λ,γ ,

and so

‖T β
μ f ‖p2

p2,α2 � ‖μ‖p2
λ,γ

( ∞∑
k=1

∫
D̃k

|f (z)|p1 dvα1(z)

)p2/p1

� ‖μ‖p2
λ,γ · ‖f ‖p2

p1,α1 .

Hence, T
β
μ is bounded from A

p1
α1 to A

p2
α2 with ‖T β

μ ‖ � ‖μ‖λ,γ . The proof is com-
plete.

3.2. A Key Lemma

Now, we are going to use the result just proved on Toeplitz operators to obtain the
following technical result that will be the key for the proof of the remaining part
in Theorem 1.1.

Lemma 3.3. Let μ be a positive Borel measure on the unit ball Bn. For s, r > 0
and α1 > −1, let

Sr
μ,α1

f (z) = (1 − |z|2)s
∫
Bn

|f (w)|r dμ(w)

|1 − 〈z,w〉|n+1+s+α1
.

For q > 1, p > 0, and α2 > −1, let

λ = 1 + r

p
− 1

q
and γ = 1

λ

(
α1 + α2r

p
− α1

q

)
. (3.9)

Assume that

n + s > nmax

(
1,

1

p

)
+ 1 + α2

p
. (3.10)

The following conditions are equivalent:

(a) μ is a (λ, γ )-Bergman–Carleson measure.
(b) There is a positive constant K such that ‖Sr

μ,α1
f ‖q,α1 ≤ K‖f ‖r

p,α2
for

f ∈ A
p
α2 .
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Moreover, we have ‖μ‖λ,γ � K .

Proof. Suppose first that μ is a (λ, γ )-Bergman–Carleson measure. Consider a
lattice {aj } and its associated sets {Dj }. Since |1 − 〈z,w〉| is comparable with
|1 − 〈z, aj 〉| for w in Dj , we have

|Sr
μ,α1

f (z)| � (1 − |z|2)s
∞∑

j=1

∫
Dj

|f (w)|r dμ(w)

|1 − 〈z,w〉|n+1+s+α1

� (1 − |z|2)s
∞∑

j=1

1

|1 − 〈z, aj 〉|n+1+s+α1

∫
Dj

|f (w)|r dμ(w).

Using the notation

|f̂ (aj )| :=
(

1

(1 − |aj |2)n+1+α2

∫
D̃j

|f (ζ )|p dvα2(ζ )

)1/p

,

we have
|f (w)|r � |f̂ (aj )|r , w ∈ Dj .

This gives

|Sr
μ,α1

f (z)|q � (1 − |z|2)sq
( ∞∑

j=1

|f̂ (aj )|rμ(Dj )

|1 − 〈z, aj 〉|n+1+s+α1

)q

.

Now, pick ε > 0 so that α1 − ε max(q, q ′) > −1 with q ′ being the conjugate
exponent of q , that is, 1/q + 1/q ′ = 1. By Hölder’s inequality with exponent
q > 1 we get( ∞∑

j=1

|f̂ (aj )|rμ(Dj )

|1 − 〈z, aj 〉|n+1+s+α1

)q

≤
( ∞∑

j=1

(1 − |aj |2)n+1+α1−εq ′

|1 − 〈z, aj 〉|n+1+s+α1

)q−1

×
( ∞∑

j=1

|f̂ (aj )|rqμ(Dj )
q(1 − |aj |2)(n+1+α1)(1−q)+εq

|1 − 〈z, aj 〉|n+1+s+α1

)
.

Since the sequence {aj } is separated and n + 1 + α1 − εq ′ > n, using Lemma C,
we have ∞∑

j=1

(1 − |aj |2)n+1+α1−εq ′

|1 − 〈z, aj 〉|n+1+s+α1
� (1 − |z|2)−s−εq ′

,

and therefore

|Sr
μ,α1

f (z)|q

� (1 − |z|2)s−εq

( ∞∑
j=1

|f̂ (aj )|rqμ(Dj )
q(1 − |aj |2)(n+1+α1)(1−q)+εq

|1 − 〈z, aj 〉|n+1+s+α1

)
.
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This, together with the typical integral estimate in Lemma B, gives

‖Sr
μ,α1

f ‖q
q,α1 �

∞∑
j=1

|f̂ (aj )|rqμ(Dj )
q(1 − |aj |2)(n+1+α1)(1−q)+εq

×
∫
Bn

(1 − |z|2)s+α1−εq

|1 − 〈z, aj 〉|n+1+s+α1
dv(z)

�
∞∑

j=1

|f̂ (aj )|rqμ(Dj )
q(1 − |aj |2)(n+1+α1)(1−q).

If λ ≥ 1, then μ(Dj ) � ‖μ‖λ,γ (1 − |aj |2)(n+1+γ )λ due to Theorem A. More-
over, the condition λ ≥ 1 also implies p/(rq) ≤ 1, and therefore we have

‖Sr
μ,α1

f ‖q
q,α1 � ‖μ‖q

λ,γ

∞∑
j=1

|f̂ (aj )|rq(1 − |aj |2)(n+1+α2)rq/p

≤ ‖μ‖q
λ,γ

( ∞∑
j=1

|f̂ (aj )|p(1 − |aj |2)n+1+α2

)rq/p

.

If 0 < λ < 1, then we use Hölder’s inequality with exponent p/(rq) > 1. Ob-
serve that the conjugate exponent of p/(rq) is

p/(rq)

p/(rq) − 1
= p

p − rq
= 1

q(1 − λ)
.

We obtain, after an application of Theorem B,

‖Sr
μ,α1

f ‖q
q,α1 �

( ∞∑
j=1

|f̂ (aj )|p(1 − |aj |2)n+1+α2

)rq/p

×
( ∞∑

j=1

(
μ(Dj )

(1 − |aj |2)(n+1+γ )λ

)1/(1−λ))q(1−λ)

� ‖μ‖q
λ,γ

( ∞∑
j=1

|f̂ (aj )|p(1 − |aj |2)n+1+α2

)rq/p

.

Finally, in both cases, we obtain the inequality in part (b) after noticing that

∞∑
j=1

|f̂ (aj )|p(1 − |aj |2)n+1+α2 � ‖f ‖p
p,α2 .

Conversely, assume that (b) holds. We want to show that μ is a (λ, γ )-
Bergman–Carleson measure. We split the proof in two cases.

If λ ≥ 1, then, for each a ∈ Bn, consider the functions

fa(z) = (1 − 〈z, a〉)−σ



776 Jordi Pau & Ruhan Zhao

with σ big enough, that is, with pσ > n + 1 + α2. By Lemma B we have

‖fa‖p
p,α2 =

∫
Bn

dvα2(z)

|1 − 〈z, a〉|pσ
� (1 − |a|2)n+1+α2−pσ .

Also, for any τ > 0, we get

(1 − |z|2)s |fa(a)|r
|1 − 〈z, a〉|n+1+s+α1

μ(D(a, τ)) � (1 − |z|2)s
∫

D(a,τ)

|fa(w)|r dμ(w)

|1 − 〈z,w〉|n+1+s+α1

≤ Sr
μ,α1

fa(z).

Moreover, since vα1(D(a, τ )) � (1 − |a|2)n+1+α1 , we have

(1 − |a|2)(n+1+α1)(1−q) �
∫

D(a,τ)

(
(1 − |z|2)s

|1 − 〈z, a〉|n+1+s+α1

)q

dvα1(z)

≤
∫
Bn

(
(1 − |z|2)s

|1 − 〈z, a〉|n+1+s+α1

)q

dvα1(z).

Hence,

(1 − |a|2)(n+1+α1)(1−q)|fa(a)|rqμ(D(a, τ ))q �
∫
Bn

Sr
μ,α1

fa(z)
q dvα1(z)

≤ Kq‖fa‖rq
p,α2

� Kq((1 − |a|2)n+1+α2−pσ )rq/p.

This gives

μ(D(a, τ)) � K(1 − |a|2)(n+1+α1)(q−1)/q(1 − |a|2)(n+1+α2)r/p

= K(1 − |a|2)(n+1+γ )λ.

By Theorem A it follows that μ is a (λ, γ )-Bergman–Carleson measure with
‖μ‖λ,γ � K .

For 0 < λ < 1, we split the proof in several cases.
Case r = 1: In that case, it is easy to see that the condition implies that the

Toeplitz operator T
β
μ : A

p
α2 → A

q
σ is bounded with

β = s + α1 and σ = α1 + sq.

Therefore, part (a) is an immediate consequence of Theorem 1.2 after checking
that the parameter β satisfies the conditions of that theorem, that is, we need to
check (1.3) and (1.4). Observe that, since β > s − 1, condition (3.10) ensures that
β satisfies (1.3). On the other hand, since q > 1, (1.4) becomes

1 + β >
1 + σ

q
⇔ 1 + α1 >

1 + α1

q
⇔ q > 1.

This finishes the proof of this case.
Case r > 1: We want to show that μ is a (λ, γ )-Bergman–Carleson measure,

or equivalently, that Bs,γ (μ) belongs to L1/(1−λ),γ . By Theorem B and the result
on Toeplitz operators (Theorem 1.2) we have

‖Bs,γ (μ)‖1/(1−λ),γ ≤ C‖T β
μ ‖A

p
α2→At

σ
(3.11)
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with

β = s + α1

r
+ γ (r − 1)

r
,

t = 1

1 − λ + 1/p

and σ is determined by the relation

γ = 1

λ

(
β + α2

p
− σ

t

)
.

Again, it must be checked that the parameter β satisfies the condition indicated in
the second line of the statement of Theorem 1.2. Since β > s − 1, condition (1.3)
is satisfied due to (3.10). On the other hand, the corresponding condition (1.4)
becomes

n + 1 + β > nmax

(
1,

1

t

)
+ 1 + σ

t
.

It is easy to see that t > 1, so that we must check the condition

1 + β >
1 + σ

t

or, equivalently,

1 + β >
1

t
+ β + α2

p
− γ λ.

Taking into account the expression for λγ given in (3.9), we see that this condition
is equivalent to

1 >
1

t
+ α2

p
(1 − r) − α1

q
(q − 1) = (1 + α2)

p
(1 − r) + (1 + α1)

q
− α1.

Since r > 1, this holds if

1 + α1 >
1 + α1

q
,

and this is clearly satisfied because q > 1 and (1 + α1) > 0.
Next, we continue with the proof. Assume first that μ has compact support

on Bn. By Hölder’s inequality,

|T β
μ f (z)|t ≤

(∫
Bn

|f (w)|r dμ(w)

|1 − 〈z,w〉|n+1+s+α1

)t/r(∫
Bn

dμ(w)

|1 − 〈z,w〉|n+1+s+γ

)t/r ′

,

where r ′ = r
r−1 is the conjugate exponent of r . This yields

‖T β
μ f ‖t

t,σ ≤
∫
Bn

(∫
Bn

(1 − |z|2)s |f (w)|r dμ(w)

|1 − 〈z,w〉|n+1+s+α1

)t/r

(Bs,γ μ(z))t/r ′
dvσ−st (z).

Now, since r ′/((1 − λ)t) > 1 (because (1 − λ)t < 1), we can apply Hölder’s in-
equality again to obtain

‖T β
μ f ‖t

t,σ ≤ ‖Bs,γ (μ)‖t/r ′
1/(1−λ),γ

×
[∫

Bn

(∫
Bn

(1 − |z|2)s |f (w)|r dμ(w)

|1 − 〈z,w〉|n+1+s+α1

)q

dvγ+(σ−st−γ )η(z)

]1/η

.
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Observe that

η :=
(

r ′

(1 − λ)t

)′
= r ′/((1 − λ)t)

r ′/((1 − λ)t) − 1
= r ′

r ′ − (1 − λ)t
= r

r − (1 − λ)t (r − 1)

and therefore
tη

r
= t

r − (1 − λ)t (r − 1)
= 1

r/t − (1 − λ)(r − 1)

= 1

r(1 − λ + 1/p) − (1 − λ)(r − 1)
= 1

r/p + 1 − λ
= q.

After some long and tedious but elementary computations, it is possible to check
that

γ + (σ − st − γ )η = α1. (3.12)

Indeed, since 1 − η = −(1−λ)t (r−1)
r−(1−λ)t (r−1)

, identity (3.12) is equivalent to

−γ (1 − λ)t (r − 1) + σr − str = α1[r − (1 − λ)t (r − 1)].
Using that σ = βt + α2t/p − γ λt and the expression of β , after some simplifica-
tions, we see that the previous identity is equivalent to

−γ λt + α2t
r

p
= α1r − α1tr(1 − λ) − α1λt.

Now, using the expressions of λ,γ given in (3.9), we must check that
α1t

p
= α1 − α1t (1 − λ).

This is obvious if α1 = 0. If α1 = 0, this is equivalent to

t = 1

1 − λ + 1/p
,

and this is our choice of t . Hence, (3.12) holds.
Then, by our condition (b) we obtain

‖T β
μ f ‖t

t,σ ≤ ‖Bs,γ (μ)‖t/r ′
1/(1−λ),γ

· ‖Sr
μ,α1

f ‖q/η
q,α1

≤ Kq/η · ‖Bs,γ (μ)‖t/r ′
1/(1−λ),γ · ‖f ‖t

p,α2
.

This, together with (3.11), gives

‖Bs,γ (μ)‖1/(1−λ),γ � ‖T β
μ ‖ � Kq/ηt · ‖Bs,γ (μ)‖1/r ′

1/(1−λ),γ ,

and since q/ηt = 1/r , this implies

‖Bs,γ (μ)‖1/(1−λ),γ � K,

proving the result when μ has compact support on Bn. The result for arbitrary μ

follows from this by an easy limit argument.
Case r < 1: Fix a number m > 1 and consider the measure μ̃ given by

dμ̃(z) = (1 − |z|2)A dμ(z)

with

A = (m − r)
(n + 1 + α2)

p
.
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Let

γ ∗ = γ + A

λ
,

β = s + α1

m
+ γ ∗(m − 1)

m
,

t = 1

1 − λ + 1/p
,

and let σ be determined by the relation

γ ∗ = 1

λ

(
β + α2

p
− σ

t

)
.

As done in the previous cases, it can be checked that the parameter β satisfies the
condition indicated in the second line of the statement of Theorem 1.2.

Again, assume first that μ has compact support on Bn. Obviously, then the
measure μ̃ also has compact support. By Theorem 1.2 applied to the Toeplitz
operator T

β
μ̃ : A

p
α2 → At

σ we have

‖Bs,γ ∗(μ̃)‖1/(1−λ),γ ∗ ≤ C‖T β
μ̃ ‖A

p
α2→At

σ
. (3.13)

Arguing as in the previous case, we get

‖T β
μ̃ f ‖t

t,σ ≤ ‖Bs,γ ∗(μ̃)‖t/m′
1/(1−λ),γ ∗ · ‖Sm

μ̃,α1
f ‖t/m

q1,α1 ,

where m′ denotes the conjugate exponent of m, and

q1 = 1

m/p + 1 − λ
.

Since m > r , we have q1 < (r/p + 1 − λ)−1 = q , and hence

‖Sm
μ̃,α1

f ‖q1,α1 ≤ ‖Sm
μ̃,α1

f ‖q,α1 .

Therefore,
‖T β

μ̃ f ‖t
t,σ ≤ ‖Bs,γ ∗(μ̃)‖t/m′

1/(1−λ),γ ∗ · ‖Sm
μ̃,α1

f ‖t/m
q,α1 . (3.14)

Now, applying the pointwise estimate for f ∈ A
p
α2 , we obtain

‖Sm
μ̃,α1

f ‖q
q,α1 =

∫
Bn

(
(1 − |z|2)s

∫
Bn

|f (w)|r |f (w)|m−r

|1 − 〈z,w〉|n+1+s+α1
dμ̃(w)

)q

dvα1(z)

≤ ‖f ‖q(m−r)
p,α2

∫
Bn

(
(1 − |z|2)s

×
∫
Bn

|f (w)|r (1 − |w|2)A−(m−r)(n+1+α2)/p

|1 − 〈z,w〉|n+1+s+α1
dμ(w)

)q

dvα1(z)

= ‖f ‖q(m−r)
p,α2 · ‖Sr

μ,α1
f ‖q

q,α1 .

Putting this into (3.14) and using the inequality in part (b), we obtain

‖T β
μ̃ f ‖t,σ ≤ ‖Bs,γ ∗(μ̃)‖1/m′

1/(1−λ),γ ∗ · ‖f ‖(m−r)/m
p,α2 · ‖Sr

μ,α1
f ‖1/m

q,α1

≤ K1/m · ‖Bs,γ ∗(μ̃)‖1/m′
1/(1−λ),γ ∗ · ‖f ‖p,α2 .
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This, together with (3.13), yields

‖Bs,γ ∗(μ̃)‖1/(1−λ),γ ∗ �K1/m · ‖Bs,γ ∗(μ̃)‖1/m′
1/(1−λ),γ ∗ ,

which proves that

‖Bs,γ ∗(μ̃)‖1/(1−λ),γ ∗ � K (3.15)

for μ with compact support on Bn. Then a standard limit argument gives (3.15)
for a general positive measure μ.

Now, let {ak} be any lattice in Bn. Since (n + 1 + γ ∗)λ − A = (n + 1 + γ )λ,
applying Theorem B, we get that

‖μ‖1/(1−λ)
λ,γ �

∑
k

(
μ(Dk)

(1 − |ak|)(n+1+γ ∗)λ−A

)1/(1−λ)

�
∑

k

(
μ̃(Dk)

(1 − |ak|)(n+1+γ ∗)λ

)1/(1−λ)

� ‖μ̃‖1/(1−λ)
λ,γ ∗ � ‖Bs,γ ∗(μ̃)‖1/(1−λ)

1/(1−λ),γ ∗ .

Then, from (3.15) we have that μ is a (λ, γ )-Bergman–Carleson measure with

‖μ‖λ,γ � K.

The proof is complete. �

3.3. Proof of Theorem 1.1

The following result, together with Proposition 3.2, concludes the proof of Theo-
rem 1.1.

Proposition 3.4. Let λ > 0. If (1.2) holds, then μ is a (λ, γ )-Bergman–Carleson
measure. Furthermore, ‖μ‖λ,γ � C, where C is the constant appearing in (1.2).

Proof. Assume first that λ ≥ 1. Let

fi,a(z) = (1 − |a|2)(n+1+αi)/pi

(1 − 〈z, a〉)2(n+1+αi )/pi
.

Then it can be easily checked that for every a ∈ Bn and for all i = 1,2, . . . , k,
‖fi,a‖pi,αi

� 1. Thus, (1.2) implies

∫
Bn

k∏
i=1

|fi,a(z)|qi dμ(z) ≤ C

k∏
i=1

‖fi,a‖qi
pi ,αi

= C, (3.16)

where C is a positive constant independent of a. An easy computation shows that

k∑
i=1

(n + 1 + αi)
qi

pi

= (n + 1 + γ )λ.
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Thus, (3.16) is equivalent to∫
Bn

(1 − |a|2)(n+1+γ )λ

|1 − 〈z, a〉|2(n+1+γ )λ
dμ(z) ≤ C.

Since λ ≥ 1, by Theorem A we know that μ is a (λ, γ )-Bergman–Carleson mea-
sure with ‖μ‖λ,γ � C.

Next, we consider the case 0 < λ < 1. We use induction on k. If k = 1, then
(1.2) is just the definition of a Bergman–Carleson measure. Now, let k ≥ 2 and
assume that the result holds for k − 1 functions. Set λk = λ, γk = γ and

λk−1 =
k−1∑
i=1

qi

pi

, γk−1 = 1

λk−1

k−1∑
i=1

αiqi

pi

.

Considering the measure

dμk(z) = |fk(z)|qk dμ(z),

we see that our condition∫
Bn

k∏
i=1

|fi(z)|qi dμ(z) ≤ C

k∏
i=1

‖fi‖qi
pi ,αi

is equivalent to the condition∫
Bn

k−1∏
i=1

|fi(z)|qi dμk(z) ≤ C(fk)

k−1∏
i=1

‖fi‖qi
pi ,αi

with C(fk) = C · ‖fk‖qk
pk,αk

. By induction this implies that μk is a (λk−1, γk−1)-
Bergman–Carleson measure with ‖μk‖λk−1,γk−1 � C(fk). Since 0 < λk−1 <

λ < 1, Theorem B implies that Bs,γk−1(μk) belongs to L1/(1−λk−1),γk−1 for any
s > 0 with

‖Bs,γk−1(μk)‖1/(1−λk−1),γk−1 � C(fk).

That is, we have∫
Bn

(∫
Bn

(1 − |z|2)s |fk(w)|qk dμ(w)

|1 − 〈z,w〉|n+1+s+γk−1

)1/(1−λk−1)

dvγk−1(z)

� (C · ‖fk‖qk
pk,αk

)1/(1−λk−1)

or, equivalently,

‖Sqk
μ,γk−1

fk‖1/(1−λk−1),γk−1 � C · ‖fk‖qk
pk,αk

whenever fk is in A
pk
αk

. Thus, by Lemma 3.3 the measure μ is a (λ∗, γ ∗)-
Bergman–Carleson measure with ‖μ‖λ∗,γ ∗ � C, where

λ∗ = 1 + qk

pk

− (1 − λk−1) and γ ∗ = 1

λ∗

(
γk−1 + αkqk

pk

− γk−1(1 − λk−1)

)
.

Simple algebraic manipulations show that λ∗ = λ and γ ∗ = γ , concluding the
proof. �
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4. Vanishing (λ, γ )-Bergman–Carleson Measures

We say that μ is a vanishing (λ,α)-Bergman–Carleson measure if for any two
positive numbers p and q satisfying q/p = λ and any sequence {fk} in A

p
α with

‖fk‖p,α ≤ 1 and fk(z) → 0 uniformly on any compact subset of Bn,

lim
k→∞

∫
Bn

|fk(z)|q dμ(z) = 0.

It is well known that, for λ ≥ 1, μ is a vanishing (λ,α)-Bergman–Carleson mea-
sure if and only if

lim|a|→1

∫
Bn

(1 − |a|2)t
|1 − 〈z, a〉|(n+1+α)λ+t

dμ(z) = 0 (4.1)

for some (any) t > 0. It is also well known that, for 0 < λ < 1, μ is a vanishing
(λ,α)-Bergman–Carleson measure if and only if it is a (λ,α)-Bergman–Carleson
measure. We refer to [27] for these facts.

Theorem 4.1. Let μ be a positive Borel measure on Bn. For any integer k ≥ 1
and i = 1,2, . . . , k, let 0 < pi, qi < ∞ and −1 < αi < ∞. Let

λ =
k∑

i=1

qi

pi

; γ = 1

λ

k∑
i=1

αiqi

pi

.

Then the following statements are equivalent.

(i) μ is a vanishing (λ, γ )-Bergman–Carleson measure.
(ii) For any sequence {f1,l} in the unit ball of A

p1
α1 that is convergent to 0 uni-

formly in compact subsets of Bn,

lim
l→∞F(l) = 0,

where

F(l) = sup

{∫
Bn

|f1,l(z)|q1

k∏
i=2

|fi(z)|qi dμ(z) : ‖fi‖pi,αi
≤ 1, i = 2, . . . , k

}
.

(iii) For any k sequences {f1,l}, {f2,l}, . . . , {fk,l} in the unit balls of A
p1
α1 ,A

p2
α2 ,

. . . ,A
pk
αk

, respectively, that are all convergent to 0 uniformly in compact sub-
sets of Bn,

lim
l→∞

∫
Bn

|f1,l(z)|q1 |f2,l(z)|q2 · · · |fk,l(z)|qk dμ(z) = 0.

Proof. By the remark preceding the statement of the theorem, the case 0 < λ < 1
is just a consequence of Theorem 1.1. So, we assume that λ ≥ 1. Let (i) be true,
so μ is a vanishing (λ, γ )-Bergman–Carleson measure. Let {f1,l} be a sequence
in the unit ball of A

p1
α1 that is convergent to 0 uniformly in compact subsets of Bn,

and let {fi} be arbitrary functions in the unit balls of A
pi
αi

, i = 2,3, . . . , k.
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Let μr = μ|
Bn\Dr

, where Dr = {z ∈ Bn : |z| < r}. Then μr is also a (λ, γ )-
Bergman–Carleson measure, and

lim
r→1

‖μr‖λ,γ = 0.

(See, p. 130 of [8].) Hence,∫
Bn\Dr

|f1,l(z)|q1 |f2(z)|q2 · · · |fk(z)|qk dμ(z)

≤
∫
Bn

|f1,l(z)|q1 |f2(z)|q2 · · · |fk(z)|qk dμr(z)

≤ C‖μr‖λ,γ ≤ Cε (4.2)

as r sufficiently close to 1. Fix such an r . Since {f1,l} converges to 0 uniformly
in compact subsets of Bn, there is a constant K > 0 such that for any l > K ,
|f1,l(z)| < ε for any z ∈ Dr . Therefore, using Theorem 1.1, we have∫

Dr

|f1,l(z)|q1 |f2(z)|q2 · · · |fk(z)|qk dμ(z)

≤ ε

∫
Bn

|f2(z)|q2 · · · |fk(z)|qk dμ(z)

= ε

∫
Bn

|1|q1 |f2(z)|q2 · · · |fk(z)|qk dμ(z)

� ε‖1‖p1
p1,α1‖f2‖p2

p2,α2 · · · ‖fk‖pk
pk,αk

� ε (4.3)

for any z ∈ Dr . Combining (4.2) and (4.3), we get (ii).
It is obvious that (ii) implies (iii). Now let (iii) be true. Let

fi,a(z) = (1 − |a|2)(n+1+αi)/pi

(1 − 〈z, a〉)2(n+1+αi )/pi
.

Then, as before, we know that for every a ∈ Bn and for all i = 1,2, . . . , k,
‖fi,a‖pi,αi

� 1, and it can be easily checked that

lim|a|→1
|fi,a(z)| = 0

uniformly on any compact subset of Bn. Thus, (iii) implies

lim|a|→1

∫
Bn

k∏
i=1

(1 − |a|2)(n+1+αi)qi/pi

|1 − 〈z, a〉|2(n+1+αi )qi/pi
dμ(z) = 0.

Since
∑k

i=1(n + 1 + αi)qi/pi = (n + 1 + γ )λ, this equality is the same as

lim|a|→1

∫
Bn

(1 − |a|2)(n+1+γ )λ

|1 − 〈z, a〉|2(n+1+γ )λ
dμ(z) = 0.

Thus, by (4.1) μ is a vanishing (λ, γ )-Bergman–Carleson measure. The proof is
complete. �

Vanishing Bergman–Carleson measures are also useful in order to describe the
compactness of Toeplitz operators between weighted Bergman spaces.
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Theorem 4.2. Let μ be a positive Borel measure on Bn, 0 < p1,p2 < ∞, and
−1 < α1, α2 < ∞. Let β , λ, and γ be as in Theorem 1.2. Then T

β
μ is compact

from A
p1
α1 to A

p2
α2 if and only if μ is a vanishing (λ, γ )-Bergman–Carleson mea-

sure.

Proof. If 0 < λ < 1, then by the remark preceding Theorem 4.1 a vanishing
(λ, γ )-Bergman–Carleson measure is the same as a (λ, γ )-Bergman–Carleson
measure. Also, since 0 < λ < 1, we have 0 < p2 < p1 < ∞, and therefore the
result follows from Theorem 1.2 since in that case T

β
μ is compact from A

p1
α1 to

A
p2
α2 if and only if it is bounded due to a general result of Banach space theory:

it is known that, for 0 < p2 < p1 < ∞, every bounded operator from 	p1 to 	p2

is compact (see, e.g., [12, Thm. I.2.7, p. 31]), and the weighted Bergman space
A

p
α is isomorphic to 	p (see [22, Thm. 11, p. 89]; note that the same proof there

works for weighted Bergman spaces on the unit ball Bn).
Next, we consider the case λ ≥ 1. If T

β
μ is compact, then ‖T β

μ fk‖p2,α2 → 0
for any bounded sequence {fk} in A

p1
α1 converging to zero uniformly on compact

subsets of Bn. Let {ak} ⊂ Bn with |ak| → 1− and consider the functions

fk(z) = (1 − |ak|2)(n+1+β)−(n+1+α1)/p1

(1 − 〈z, ak〉)n+1+β
.

Due to the conditions on β and Lemma B, we have supk ‖fk‖p1,α1 < ∞, and it
is obvious that fk converges to zero uniformly on compact subsets of Bn. Hence,
‖T β

μ fk‖p2,α2 → 0. Therefore, proceeding as in the proof of the case λ ≥ 1 of that
(i) implies (ii) in Theorem 1.2, for any r > 0, we get

μ(D(ak, r))

(1 − |ak|2)(n+1+γ )λ
� (1 − |ak|2)(n+1+β)+(n+1+α1)/p1−(n+1+γ )λT β

μ fk(ak)

= (1 − |ak|2)(n+1+α2)/p2T β
μ fk(ak)

� ‖T β
μ fk‖p2,α2 → 0.

Thus, by [27, p. 71], the measure μ is a vanishing (λ, γ )-Bergman–Carleson mea-
sure.

Conversely, let μ be a vanishing (λ, γ )-Bergman–Carleson measure with
λ ≥ 1. To prove that T

β
μ is compact, we must show that ‖T β

μ fk‖p2,α2 → 0 for any
bounded sequence {fk} in A

p1
α1 converging to zero uniformly on compact subsets

of Bn. If p2 > 1, then, as in the proof of Theorem 1.2, by duality and Theorem 4.1
we have (the numbers p′

2 and α′
2 are the ones defined by (3.6))

‖T β
μ fk‖p2,α2 � sup

‖h‖p′
2,α′

2
≤1

|〈h,T β
μ fk〉β |

≤ sup
‖h‖p′

2,α′
2
≤1

∫
Bn

|fk(z)||h(z)|dμ(z) → 0.
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If 0 < p2 ≤ 1, from the estimates obtained in the proof of that (ii) implies (i) in
Theorem 1.2 (see (3.8)) it follows that, for any lattice {aj }, we have

‖T β
μ fk‖p2

p2,α2

�
∞∑

j=1

(
μ(Dj )

(1 − |aj |2)(n+1+γ )λ

)p2
(∫

D̃j

|fk(z)|p1 dvα1(z)

)p2/p1

. (4.4)

Let ε > 0. Since μ is a vanishing (λ, γ )-Bergman–Carleson measure, due to [27,
p. 71], there is 0 < r0 < 1 such that

sup
|aj |>r0

μ(Dj )

(1 − |aj |2)(n+1+γ )λ
< ε. (4.5)

Split the sum appearing in (4.4) in two parts: one over the points aj with |aj | ≤ r0
and the other over the points with |aj | > r0. Since {fk} converges to zero uni-
formly on compact subsets of Bn, it is clear that the sum over the points aj with
|aj | ≤ r0 (a finite sum) goes to zero as k goes to infinity. On the other hand, by
(4.5) and since p2 ≥ p1 (because λ ≥ 1), we have∑

j : |aj |>r0

(
μ(Dj )

(1 − |aj |2)(n+1+γ )λ

)p2
(∫

D̃j

|fk(z)|p1 dvα1(z)

)p2/p1

< εp2
∑

j : |aj |>r0

(∫
D̃j

|fk(z)|p1 dvα1(z)

)p2/p1

≤ εp2‖fk‖p2
p1,α1 ≤ Cεp2 .

Thus, ‖T β
μ fk‖p2,α2 → 0, finishing the proof. �

5. Applications

As a direct consequence of Theorem 1.1 and Theorem 4.1, we have the following
result.

Corollary 5.1. Let μ be a positive Borel measure on Bn. Let p,q > 0, s ≥ 0,
and α, δ > −1 be given constants such that q/p + s/(n + 1 + δ) ≥ 1. Let

λ = q

p
+ s

(n + 1 + δ)
and γ = 1

λ

(
αq

p
+ δs

n + 1 + δ

)
.

Then μ is a (λ, γ )-Bergman–Carleson measure if and only if for any f ∈ A
p
α and

for some (any) t > 0,

sup
a∈Bn

∫
Bn

|f (z)|q (1 − |a|2)t
|1 − 〈z, a〉|s+t

dμ(z) � ‖f ‖q
p,α; (5.1)

and μ is a vanishing (λ, γ )-Bergman–Carleson measure if and only if for some
(any) t > 0 and for any sequence {fk} in A

p
α with ‖fk‖p,α ≤ 1 and fk(z) → 0

uniformly on any compact subset of Bn,

lim
k→∞ sup

a∈Bn

∫
Bn

|fk(z)|q (1 − |a|2)t
|1 − 〈z, a〉|s+t

dμ(z) = 0. (5.2)
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Remark. Note that (5.1) does not depend on δ, which means that, in this corol-
lary, we can choose any real number δ > −1 satisfying q/p + s/(n + 1 + δ) ≥ 1
for λ and γ . Furthermore, if s = 0, then we can also take t = 0 since then the
result reduces to the definition of (vanishing) Bergman–Carleson measures.

Proof of Corollary 5.1. We begin with the first part. The case s = 0 follows
directly from the definition of Bergman–Carleson measures and the trivial in-
equality |1 − 〈z, a〉| ≥ (1 − |a|) for z ∈ Bn. So we assume that s > 0. Since
s/(n + 1 + δ) > 0, we can choose two positive numbers p2 and q2 such that
s/(n + 1 + δ) = q2/p2. Then

λ = q

p
+ s

n + 1 + δ
= q

p
+ q2

p2
≥ 1

and

γ = 1

λ

(
αq

p
+ δs

n + 1 + δ

)
= 1

λ

(
αq

p
+ δq2

p2

)
.

Let μ be a (λ, γ )-Bergman–Carleson measure. Then, from the previous observa-
tion and Theorem 1.1 we know that for any f ∈ A

p
α and g ∈ A

p2
δ , we have∫

Bn

|f (z)|q |g(z)|q2 dμ(z) � ‖f ‖q
p,α · ‖g‖q2

p2,δ
. (5.3)

For any t > 0, let

g(z) = ga(z) = (1 − |a|2)t/q2

(1 − 〈z, a〉)(n+1+δ)/p2+t/q2
.

Using Lemma B, we easily check that ga ∈ A
p2
δ and supa∈Bn

‖ga‖p2,δ � 1. Put
g = ga in equation (5.3), take the supremum over all a ∈ Bn, and we get (5.1).

Conversely, suppose (5.1) holds for some t > 0. Given an arbitrary t1 > 0, let

fa(z) = (1 − |a|2)t1/q
(1 − 〈z, a〉)(n+1+α)/p+t1/q

.

As before, it is easy to check that fa ∈ A
p
α and ‖fa‖p,α � 1. It is clear that

(n + 1 + γ )λ = s + (n + 1 + α)q/p,

and therefore, due to (5.1), we get∫
Bn

(1 − |a|2)t+t1

|1 − 〈z, a〉|(n+1+γ )λ+t+t1
dμ(z) =

∫
Bn

|fa(z)|q (1 − |a|2)t
|1 − 〈z, a〉|s+t

dμ(z)� 1.

Therefore,

sup
a∈Bn

∫
Bn

(1 − |a|2)t+t1

|1 − 〈z, a〉|(n+1+γ )λ+t+t1
dμ(z) < ∞.

Since λ ≥ 1, by Theorem A we see that μ is a (λ, γ )-Bergman–Carleson measure.
Next, we deal with the part concerning vanishing Bergman–Carleson mea-

sures. If s = 0, then the result follows easily from the definition of vanishing
Bergman–Carleson measures, and so we assume that s > 0. If μ is a vanishing
(λ, γ )-Bergman–Carleson measure, then, proceeding as in the first part, but using
Theorem 4.1 instead of Theorem 1.1, we obtain (5.2). Conversely, suppose that
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(5.2) holds for some t > 0. Let {ak} ⊂ Bn with |ak| → 1 and, for arbitrary t1 > 0,
consider the functions

fk(z) = (1 − |ak|2)t1/q
(1 − 〈z, ak〉)(n+1+α)/p+t1/q

.

Then supk ‖fk‖p,α ≤ C and {fk} converges to zero uniformly on compact subsets
of Bn, and using (5.2), we see that∫
Bn

(1 − |ak|2)t+t1

|1 − 〈z, ak〉|(n+1+γ )λ+t+t1
dμ(z) =

∫
Bn

|fk(z)|q (1 − |ak|2)t
|1 − 〈z, ak〉|s+t

dμ(z)

≤ sup
a∈Bn

∫
Bn

|fk(z)|q (1 − |a|2)t
|1 − 〈z, a〉|s+t

dμ(z)

−→ 0.

Since λ ≥ 1, it follows from (4.1) that μ is a vanishing (λ, γ )-Bergman–Carleson
measure. The proof is complete. �

5.1. Applications to Extended Cesàro Operators

For g ∈ H(Bn), the radial derivative is defined by

Rg(z) =
n∑

k=1

zk

∂g

∂zk

(z),

and the extended Cesàro operator is defined by

Jgf (z) =
∫ 1

0
f (tz)Rg(tz)

dt

t
, f ∈ H(Bn).

In the case of one variable, the operator is the same as

Jgf (z) =
∫ z

0
f (ξ)g′(ξ) dξ,

which is also called the Riemann–Stieltjes operator. Here we are considering
boundedness and compactness of these operators from a weighted Bergman space
into the general space F(p,q, s) on the unit ball, which is defined as the space of
all holomorphic functions f on Bn such that

‖f ‖p

F(p,q,s) = sup
a∈Bn

∫
Bn

|Rf (z)|p(1 − |z|2)q(1 − |φa(z)|2)s dv(z) < ∞,

where 0 < p < ∞, −n − 1 < q < ∞, 0 ≤ s < ∞, and q + s > −1. We also say
that f ∈ F0(p, q, s) if

lim|a|→1

∫
Bn

|Rf (z)|p(1 − |z|2)q(1 − |φa(z)|2)s dv(z) = 0.

Here, for our purpose, we point out that if s > n and α > 0, then for any p > 0,
the space F(p,pα − n − 1, s) = Bα , the α-Bloch space, which means the space
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of all functions f ∈ H(Bn) such that

‖f ‖Bα = sup
z∈Bn

|Rf (z)|(1 − |z|2)α < ∞.

When α = 1, B1 = B , the classical Bloch space.
For the case of the unit disk, this result can be found in [25]. For the case of

the unit ball Bn, the result may be also known, but we were not able to find a
reference, so we provide a brief proof here. First, we show that F(p,q, s) are all
subspaces of some α-Bloch space.

Proposition 5.2. Let 0 < p < ∞, −n−1 < q < ∞, 0 ≤ s < ∞, and q +s > −1.
Then F(p,q, s) ⊆ B(n+1+q)/p .

Proof. Let f ∈ F(p,q, s). By subharmonicity we have that, for a fixed r ,
0 < r < 1,

|Rf (a)|p � 1

(1 − |a|2)n+1

∫
D(a,r)

|Rf (z)|p dv(z).

Let α = (n + 1 + q)/p. Then q = pα − n − 1. Hence,

|Rf (a)|p(1 − |a|2)pα � 1

(1 − |a|2)n+1−pα

∫
D(a,r)

|Rf (z)|p dv(z)

�
∫

D(a,r)

|Rf (z)|p(1 − |z|2)pα−n−1 dv(z).

Since |1 − 〈z, a〉| � (1 − |z|2) � (1 − |a|2) for z ∈ D(a, r), we know from (2.1)
that 1 − |φa(z)|2 � 1 for z ∈ D(a, r), and so, for s ≥ 0,

|Rf (a)|p(1 − |a|2)pα �
∫

D(a,r)

|Rf (z)|p(1 − |z|2)pα−n−1(1 − |φa(z)|2)s dv(z)

�
∫
Bn

|Rf (z)|p(1 − |z|2)pα−n−1(1 − |φa(z)|2)s dv(z).

This clearly implies F(p,pα − n − 1, s) ⊆ Bα , or F(p,q, s) ⊆ B(n+1+q)/p . �

Proposition 5.3. Let 0 < p < ∞, −n−1 < q < ∞, 0 ≤ s < ∞, and q +s > −1.
If s > n, then F(p,q, s) = B(n+1+q)/p .

Proof. Let α = (n+ 1 + q)/p. The inclusion F(p,q, s) ⊆ Bα has been proved in
the previous proposition. Now we are proving the opposite inclusion. Let f ∈ Bα

and assume that s > n. Then, by Lemma B,

‖f ‖p

F(p,q,s) = sup
a∈Bn

∫
Bn

|Rf (z)|p(1 − |z|2)pα−n−1(1 − |φa(z)|2)s dv(z)

≤ ‖f ‖p
Bα sup

a∈Bn

∫
Bn

(1 − |z|2)−n−1(1 − |φa(z)|2)s dv(z)

� ‖f ‖p
Bα sup

a∈Bn

(1 − |a|2)s
∫
Bn

(1 − |z|2)s−n−1

|1 − 〈z, a〉|2s
dv(z)

� ‖f ‖p
Bα ,
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and so f ∈ F(p,q, s). The proof is complete. �

In a similar way we can prove that, under the same restrictions on the parame-
ters, F0(p, q, s) ⊆ B

(n+1+q)/p

0 , and F0(p, q, s) = B
(n+1+q)/p

0 if s > n, where, for
α > 0, Bα

0 is the closed subspace of Bα that consists of functions f ∈ H(Bn) such
that

lim|z|→1
|Rf (z)|(1 − |z|2)α = 0

and is called the little α-Bloch space. We will frequently use the following well-
known result [28, Exer. 7.7] for the α-Bloch space: for α > 1, an analytic function
f ∈ Bα if and only if

sup
z∈Bn

|f (z)|(1 − |z|2)α−1 < ∞,

and the norm of f in Bα is

|f (0)| + ‖f ‖Bα � sup
z∈Bn

|f (z)|(1 − |z|2)α−1, α > 1. (5.4)

Theorem 5.4. Let 0 < p, t,α < ∞, −1 < β < ∞, 0 ≤ s < ∞, with pβ +
s > n. Let g ∈ H(Bn) and suppose that β − (n + 1 + α)/t > 0 and p/t +
s/(n + 1 + δ) ≥ 1 for some δ > −1. Then

(a) Jg is a bounded operator from At
α into F(p,pβ − n − 1, s) if and only if

g ∈ Bβ−(n+1+α)/t ;
(b) Jg is a compact operator from At

α into F(p,pβ − n − 1, s) if and only if

g ∈ B
β−(n+1+α)/t

0 .

Proof. An easy computation shows that R(Jgf ) = f Rg. By definition, Jg is
bounded from At

α into F(p,pβ − n − 1, s) if and only if, for any f ∈ At
α ,

‖Jgf ‖p

F(p,pβ−n−1,s)

= sup
a∈Bn

∫
Bn

|f (z)|p|Rg(z)|p(1 − |z|2)pβ−n−1(1 − |φa(z)|2)s dv(z)

= sup
a∈Bn

∫
Bn

|f (z)|p|Rg(z)|p(1 − |z|2)s+pβ−n−1 (1 − |a|2)s
|1 − 〈z, a〉|2s

dv(z)

= sup
a∈Bn

∫
Bn

|f (z)|p (1 − |a|2)s
|1 − 〈z, a〉|2s

dμg(z)

≤ C‖f ‖p
t,α,

where dμg(z) = |Rg(z)|p(1 − |z|2)s+pβ−n−1 dv(z). By Corollary 5.1, this is
equivalent to that μg is an (λ, γ )-Bergman–Carleson measure, where

λ = p

t
+ s

n + 1 + δ
and γ = 1

λ

(
αp

t
+ δs

n + 1 + δ

)
.
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Then, by the condition in the theorem, λ ≥ 1, and it is easy to check that γ > −1.
Thus, by Theorem A the boundedness of Jg is equivalent to

sup
a∈Bn

∫
Bn

(1 − |a|2)(n+1+γ )λ

|1 − 〈z, a〉|2(n+1+γ )λ
|Rg(z)|p(1 − |z|2)s+pβ−n−1 dv(z) < ∞. (5.5)

An easy computation shows that

(n + 1 + γ )λ = s + (n + 1 + α)
p

t
,

and (5.5) becomes

sup
a∈Bn

∫
Bn

(1 − |a|2)s+(n+1+α)p/t

|1 − 〈z, a〉|2(s+(n+1+α)p/t)
|Rg(z)|p(1 − |z|2)s+pβ−n−1 dv(z) < ∞,

which is the same as

sup
a∈Bn

∫
Bn

|Rg(z)|p(1 − |z|2)p(β−(n+1+α)/t)−n−1

× (1 − |φa(z)|2)s+(n+1+α)p/t dv(z) < ∞.

Thus, the operator Jg is bounded from At
α into F(p,pβ − n − 1, s) if and only if

g ∈ F

(
p,q, s + (n + 1 + α)

p

t

)
(5.6)

with

q = p

(
β − n + 1 + α

t

)
− n − 1.

Since λ ≥ 1 and γ > −1, we know that

s + (n + 1 + α)
p

t
= (n + 1 + γ )λ ≥ n + 1 + γ > n,

and so, by Proposition 5.3, condition (5.6) is equivalent to g ∈ Bβ−(n+1+α)/t ,
which proves part (a).

Using the second part of Corollary 5.1, the criterion for the compactness in
part (b) is proved in the same way. We omit the details. �

Our next result is for the integral operator

Igf (z) =
∫ 1

0
Rf (tz)g(tz)

dt

t
.

This operator can be considered as a companion of the operator Jg .

Theorem 5.5. Let 0 < p, t,β < ∞, −1 < α < ∞, 0 ≤ s < ∞ with pβ + s > n.
Let g ∈ H(Bn) and suppose that p/t + s/(n + 1 + δ) ≥ 1 for some δ > −1. Then
Ig is a bounded operator from At

α into F(p,pβ − n − 1, s) if and only if

(i) g ∈ Bβ−(n+1+α)/t for β > 1 + (n + 1 + α)/t ;
(ii) g ∈ H∞ for β = 1 + (n + 1 + α)/t ;

(iii) g ≡ 0 for 0 < β < 1 + (n + 1 + α)/t .
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Proof. Assume that either (i), or (ii), or (iii) holds. We proceed to show that the
operator Ig : At

α → F(p,pβ − n − 1, s) is bounded. First, we consider case (i),
that is, when β > 1 + (n+ 1 +α)/t . Let g ∈ Bβ−(n+1+α)/t . An easy computation
shows that R(Igf ) = gRf . Hence, due to (5.4), for any f ∈ At

α , we have

‖Igf ‖p

F(p,pβ−n−1,s)

= sup
a∈Bn

∫
Bn

|g(z)|p|Rf (z)|p(1 − |z|2)pβ−n−1(1 − |φa(z)|2)s dv(z)

= sup
a∈Bn

∫
Bn

|g(z)|p|Rf (z)|p(1 − |z|2)s+pβ−n−1 (1 − |a|2)s
|1 − 〈z, a〉|2s

dv(z)

≤ ‖g‖p

Bβ−(n+1+α)/t sup
a∈Bn

∫
Bn

|Rf (z)|p (1 − |a|2)s
|1 − 〈z, a〉|2s

dμ(z), (5.7)

where dμ(z) = (1−|z|2)(n+1+α)p/t+p+s−n−1 dv(z). By Lemma B, for any η > 0,
we have

sup
a∈Bn

∫
Bn

(1 − |a|2)η
|1 − 〈z, a〉|η+(n+1+α)p/t+p+s

dμ(z)

= sup
a∈Bn

(1 − |a|2)η
∫
Bn

(1 − |z|2)(n+1+α)p/t+p+s−n−1

|1 − 〈z, a〉|η+(n+1+α)p/t+p+s
dv(z)

< ∞. (5.8)

Notice that the application of Lemma B here is correct since if we let

λ = p

t
+ s

n + 1 + δ
and γ = 1

λ

(
(t + α)p

t
+ δs

n + 1 + δ

)
,

then, by the condition in the theorem, λ ≥ 1, and it is easy to check that γ > −1.
Also, an easy computation shows that

(n + 1 + γ )λ = s + (n + 1 + α + t)
p

t
= (n + 1 + α)

p

t
+ p + s. (5.9)

Thus, we have

(n + 1 + α)
p

t
+ p + s − n − 1 = (n + 1 + γ )λ − n − 1

≥ n + 1 + γ − n − 1 = γ > −1.

Hence, due to (5.9), condition (5.8) means that μ is a (λ, γ )-Bergman–Carleson
measure, and so by (5.7), Corollary 5.1, and [28, Thm. 2.16] we have that

‖Igf ‖p

F(p,pβ−n−1,s) � ‖g‖p

Bβ−(n+1+α)/t ‖Rf ‖p
t,t+α � ‖g‖p

Bβ−(n+1+α)/t ‖f ‖p
t,α,

and so Ig : At
α → F(p,pβ − n − 1, s) is bounded.

Case (ii) is proved in the exactly same way as the proof for case (i) with
‖g‖Bβ−(n+1+α)/t replaced by ‖g‖H∞ . Case (iii) is trivial.

Conversely, suppose that Ig : At
α → F(p,pβ − n − 1, s) is bounded. Then,

by Proposition 5.2 the operator Ig : At
α → Bβ is also bounded. For η > 0 and
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a ∈ Bn, let

fa(z) = (1 − |a|2)η
(1 − 〈z, a〉)η+(n+1+α)/t

.

It is easy to check that supa∈Bn
‖fa‖t,α ≤ C. An easy computation shows that

Rfa(z) = 1

η + (n + 1 + α)/t

(1 − |a|2)η
(1 − 〈z, a〉)η+(n+1+α)/t+1

.

Note that R(Igfa)(z) = Rfa(z)g(z), and therefore

(1 − |a|2)β−(n+1+α)/t−1|g(a)| � |Rfa(a)||g(a)|(1 − |a|2)β
≤ sup

z∈Bn

|Rfa(z)||g(z)|(1 − |z|2)β

= ‖Igfa‖Bβ ≤ C‖Ig‖. (5.10)

This directly gives (ii), and, by the maximum principle, we also obtain (iii). Part (i)
follows from (5.4). The proof is complete. �

Similarly, by a standard method, we can prove the following compactness result.

Theorem 5.6. Let 0 < p, t,β < ∞, −1 < α < ∞, 0 ≤ s < ∞ with pβ + s > n.
Let g ∈ H(Bn) and suppose that p/t + s/(n + 1 + δ) ≥ 1 for some δ > −1. Then
Ig is a compact operator from At

α into F(p,pβ − n − 1, s) if and only if

(i) g ∈ B
β−(n+1+α)/t

0 for β > 1 + (n + 1 + α)/t ;
(ii) g ≡ 0 for 0 < β ≤ 1 + (n + 1 + α)/t .

Proof. If Ig is a compact operator from At
α into F(p,pβ − n − 1, s), then

Ig : At
α → Bβ is also compact due to Proposition 5.2. Let {ak} ⊂ Bn with

|ak| → 1 and, for η > 0, consider the sequence of holomorphic functions {fk}
given by

fk(z) = (1 − |ak|2)η
(1 − 〈z, ak〉)η+(n+1+α)/t

.

As before, supk ‖fk‖t,α ≤ C, and {fk} converges to zero uniformly on compact
subsets of Bn. Since Ig is compact, from (5.10) we get

(1 − |ak|2)β−(n+1+α)/t−1|g(ak)| � ‖Igfk‖Bβ → 0.

This gives (ii) by the maximum principle and also (i) since, as in (5.4), for σ > 1,
a function f ∈ H(Bn) is in Bσ

0 if and only if lim|z|→1−(1 − |z|2)σ−1|f (z)| = 0.
Conversely, assume that (i) holds, that is, β > 1 + (n + 1 + α)/t and

g ∈ B
β−(n+1+α)/t

0 . Then, given ε > 0, there is 0 < r0 < 1 such that

sup
r0<|z|<1

(1 − |z|2)β−(n+1+α)/t−1|g(z)| < ε. (5.11)

Let {fk} be a bounded sequence in At
α converging to zero uniformly on compact

subsets of Bn. From (5.7) we get

‖Igfk‖p

F(p,pβ−n−1,s) = I1(k) + I2(k) (5.12)
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with

I1(k) := sup
a∈Bn

∫
|z|≤r0

|g(z)|p|Rfk(z)|p(1 − |z|2)s+pβ−n−1 (1 − |a|2)s
|1 − 〈z, a〉|2s

dv(z)

and

I2(k) := sup
a∈Bn

∫
r0<|z|<1

|g(z)|p|Rfk(z)|p(1 − |z|2)s+pβ−n−1 (1 − |a|2)s
|1 − 〈z, a〉|2s

dv(z).

Since {Rfk} also converges to zero uniformly on compact subsets of Bn, there is
a positive integer k0 such that sup|z|≤r0

|Rfk(z)| < ε for k ≥ k0. Then, using (5.4),
we easily see that

I1(k) ≤ Cεp‖g‖p

Bβ−(n+1+α)/t .

On the other hand, by (5.11) and arguing as in the proof of Theorem 5.5, we obtain

I2(k) < Cεp‖fk‖p
t,α ≤ Cεp. (5.13)

This shows that ‖Igfk‖F(p,pβ−n−1,s) → 0, proving that Ig is compact. Since
case (ii) is trivial, the proof is complete. �

5.2. Pointwise Multipliers

For an holomorphic function g in Bn, the pointwise multiplication operator Mg is
defined as follows: Mgf = gf for f ∈ H(Bn).

Lemma 5.7. Let −1 < α < ∞, 0 < t,β < ∞, and suppose that Mg : At
α → Bβ

is bounded. Then

(i) g ∈ Bβ−(n+1+α)/t if β > 1 + (n + 1 + α)/t ;
(ii) g ∈ H∞ if β = 1 + (n + 1 + α)/t ;

(iii) g ≡ 0 if 0 < β < 1 + (n + 1 + α)/t .

Proof. By definition it is easy to see that Bβ1 ⊆ Bβ2 for β1 < β2. Hence, in
case (iii) we may assume that 1 < β < 1 + (n + 1 + α)/t . For η > 0 and a ∈ Bn,
let

fa(z) = (1 − |a|2)η
(1 − 〈z, a〉)η+(n+1+α)/t

.

We have seen before that {fa} is uniformly bounded in At
α . Since Mg : At

α → Bβ

is bounded, we know that

sup
a∈Bn

(|g(0)fa(0)| + ‖gfa‖Bβ ) � sup
a∈Bn

‖fa‖t,α < ∞.

However, since β > 1, by (5.4) we get

|g(0)fa(0)| + ‖gfa‖Bβ = |g(0)|(1 − |a|2)η + sup
z∈Bn

|g(z)||fa(z)|(1 − |z|2)β−1

≥ |g(a)||fa(a)|(1 − |a|2)β−1

= |g(a)|(1 − |a|2)β−1−(n+1+α)/t .
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Hence, we get
sup
a∈Bn

|g(a)|(1 − |a|2)β−1−(n+1+α)/t < ∞,

which gives (i) and (ii) and also gives (iii) by the maximum principle. �
Now we are ready to prove the following characterizations for bounded pointwise
multiplication operators from At

α to F(p,q, s) spaces.

Theorem 5.8. Let 0 < p, t,β < ∞, −1 < α < ∞, 0 ≤ s < ∞ with pβ + s > n.
Let g ∈ H(Bn) and suppose that p/t + s/(n + 1 + δ) ≥ 1 for some δ > −1. Then
Mg : At

α → F(p,pβ − n − 1, s) is bounded if and only if

(i) g ∈ Bβ−(n+1+α)/t for β > 1 + (n + 1 + α)/t ;
(ii) g ∈ H∞ for β = 1 + (n + 1 + α)/t ;

(iii) g ≡ 0 for 0 < β < 1 + (n + 1 + α)/t .

Proof. Suppose that either (i), or (ii), or (iii) is satisfied. Then, by Theorem 5.4
and Theorem 5.5 we know that both Jg and Ig are bounded from At

α to F(p,

pβ − n − 1, s). Since

R(Mgf ) = f Rg + gRf = R(Igf ) + R(Jgf ),

we easily see that Mg is also bounded from At
α to F(p,pβ − n − 1, s).

Conversely, suppose that Mg : At
α → F(p,pβ − n − 1, s) is bounded. By

Proposition 5.2 we know that Mg : At
α → Bβ is also bounded, and so by

Lemma 5.7 we directly get (i), (ii), and (iii). �
The result on the compactness of the multiplication operator is stated next.

Theorem 5.9. Let 0 < p, t,β < ∞, −1 < α < ∞, 0 ≤ s < ∞ with pβ + s > n.
Let g ∈ H(Bn) and suppose that p/t + s/(n + 1 + δ) ≥ 1 for some δ > −1. Then
Mg : At

α → F(p,pβ − n − 1, s) is compact if and only if

(i) g ∈ B
β−(n+1+α)/t

0 for β > 1 + (n + 1 + α)/t ;
(ii) g ≡ 0 for 0 < β ≤ 1 + (n + 1 + α)/t .

This follows, using standard arguments, arguing in a similar way as in Theo-
rem 5.8. We omit the proof here.
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