64 (2015), 675-719

Apolarity and Direct Sum
Decomposability of Polynomials

WERONIKA BUCZYNSKA, JAROSEAW BUCZYNSKI,
JOHANNES KLEPPE, & ZACH TEITLER

ABSTRACT. A polynomial is a direct sum if it can be written as a sum
of two nonzero polynomials in some distinct sets of variables, up to
a linear change of variables. We analyze criteria for a homogeneous
polynomial to be decomposable as a direct sum in terms of the apolar
ideal of the polynomial. We prove that the apolar ideal of a polynomial
of degree d strictly depending on all variables has a minimal generator
of degree d if and only if it is a limit of direct sums.

1. Introduction

A homogeneous polynomial F is a direct sum if there exist nonzero polynomials
F1, F> suchthat F = Fy + F; and F1 = Fi(t1,...,t), Fo = Fo(tg+1, ..., ty) for
some linearly independent linear forms 71, .. ., #,,. For example, F = xy is a direct
sum since F = JT(x + y)2 — JT(x — y)2. In coordinate-free terms, F € SV is a
direct sum if F = F| + F, for nonzero F; € SdV,-, i=1,2,suchthat ViV, =V.

Most polynomials are not direct sums; see Lemma 3.3. Nevertheless, it can
be difficult to show that a particular polynomial is not a direct sum. For instance,
S. Shafiei shared with us the following question: is the generic determinant det,, =
det((x;, j)ﬁ j= 1)» @ homogeneous form of degree n in n? variables, a direct sum?
Forn =2, dety = x1,1x2,2 —x1,2X2,1 is visibly a direct sum. On the other hand, for
n > 2, itis easy to see that the determinant is not decomposable as a direct sum in
the original variables, but it is not immediately clear whether it is decomposable
after a linear change of coordinates. We answer this question in the negative; see
Corollary

PrOBLEM A. Give necessary or sufficient conditions for a polynomial to be a
direct sum.
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We approach this problem through apolarity. Suppose S = C[xy, ..., x,]and T =
Clay, . - -, ay]. When the number of variables is small, we may write S = Cl[x, y]
and T = Clea, 8], or S =C[x, y,z] and T = Cle, B, y]. (For simplicity, we as-
sume throughout that our base field is the field of complex numbers C. However,
our results also hold for other algebraically closed base fields of any characteris-
tic. We comment on the applicable modifications in Section 6.3.) We let T' act on
S by letting «; act as the partial differentiation operator d/dx;. This action is de-
noted by the symbol =, as in af% 2 x2y3z* = 83x2y3z%/9xdy? = 12xyz*. This is
the apolarity action; T is called the dual ring of S. Let F € S be a homogeneous
polynomial of degree d. The apolar or annihilating ideal F*+ C T is the set of
polynomials ® € T such that ® = F = 0. The quotient Ar = T/ F~ is called the
apolar algebra of F.

The Waring rank r(F) of F is the least » such that F = E‘f 4+ -+ Ef for
some linear forms ¢;. A lower bound for Waring rank, following from ideas of
Sylvester [53] in 1851, is that r(F') is bounded below by the maximum value of
the Hilbert function of Ar. Ranestad and Schreyer [43] have recently shown that
the Waring rank of F is bounded below by %length(A F), where § is the greatest
degree of a minimal generator of F, and length(Af) is the length of the apolar
algebra, that is, the sum of all the values of the Hilbert function of Ar. The bound
of Ranestad—Schreyer is best when § is small, that is, when F Lis generated in
small degrees. So it is natural to ask when this occurs or, conversely, when F*
has high-degree generators.

PrOBLEM B. Give necessary or sufficient conditions for F to be generated in
low degrees or in high degrees; that is, for the greatest degree § of a minimal
generator of F to be small or large.

As we shall see, “small” and “large” should be considered relative to the degree
dof F.

It is through serendipity that while simultaneously studying Problems A and
as separate problems, the authors noticed that they were actually not separate.
These two problems are linked by the following result (see also [33, Lemma 2.9,
Lemma 3.27)).

THEOREM 1.1. If F is a direct sum, then F* has a minimal generator of degree
deg(F).

Shafiei [47] has shown that the apolar ideal of the generic determinant det, is
generated in degree 2. Thus, we have the following:

COROLLARY 1.2. Forn > 2, the generic determinant is not a direct sum.

Other results of Shafiei concerning apolar ideals of permanents, Pfaffians, and so
on have similar consequences for direct sum indecomposability of these forms.

Despite its centrality in linking Problems A and B, Theorem [ .1 is surprisingly
easy to prove; see Section
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The converse to Theorem does not hold.

EXAMPLE 1.3. F =xy2 € S =C[x, y] has F+ = (2, B3) c T = Cla, B] with
the minimal generator 8> of degree 3, but F is not a direct sum. Indeed, in two
variables, a direct sum x? — y¢ factors as x4 — y¢ = I—[Z=1 (x —¢*y) (¢ aprimitive
dth root of unity) with distinct linear factors, whereas )cy2 does not have distinct
factors; or use Proposition

EXAMPLE 1.4. The cubic F = x%y — y?z = y(x* — yz) € C[x, y,z] has F*+ =
(y% ay,a®+ By, B2, aB?), so FL has two minimal generators of degree 3. Thus,
F satisfies the necessary condition of Theorem |.1. However, F is not a direct sum
by Proposition

Note however that xy? is a limit of direct sums:
xy? = lim i((y +1x)° =y
t—0 3t

asis y(x% + yz):

2 L1 2,43 3 3
y(x©+yz) =lim — ((y +tx +2172)" + (y — 1x)” = 2y7).
1—0 6t
We will show that if F has a minimal generator of degree deg(F), then F is a
limit of direct sums. But the converse does not hold: not every limit F of direct
sums has the property that F- has a minimal generator of degree deg(F).

ExampLE 1.5. For t # 0, x4 — tyd is a direct sum, and lim;_, ¢ x4 — tyd =x4.

However, (x?)+ = («*!, B) has no minimal generator of degree d.

A perhaps more satisfying example is lim,_,o xyz — rw> = xyz, again a limit
of direct sums, with (xyz)' = (a2, B2, 2, 8), having no minimal generator of
degree 3.

It is no coincidence that in both of these examples the limit polynomial uses fewer
variables than the direct sums at r # 0. We will show that in general, if F is a limit
of direct sums that cannot be written using fewer variables, then F' 1 has a minimal
generator of degree deg(F).

We now introduce terminology to give a precise statement of these results.

First, note that FL is a homogeneous ideal containing (o, .. .,oc,,)d‘H, all
forms of degree at least d 4 1. Thus, F is generated in degree at most d + 1:
the § in the Ranestad—Schreyer theorem satisfies 1 < § < d + 1. We mention the
following observation, previously noted by Casnati and Notari [13, Rem. 4.3].

PROPOSITION 1.6. FL has a minimal generator of degree d + 1 if and only if
F = ¢4 is a power of a linear form.

A proof is given in Section
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For brevity, we refer to a minimal generator of F- as an apolar generator
of F. Any apolar generator of degree equal to deg(F) is called an equipotent
apolar generator.

We introduce the notation DirSum = DirSum,,.; for the set of direct sums (of
degree d in n variables), ApoEqu for the set of forms with an equipotent apolar
generator, and Con for the set of forms that cannot be written using fewer vari-
ables. (Such forms are called concise; see Section .) Fix n, d. We will show
that every form with an equipotent apolar generator is a limit of direct sums, so
that we have the following inclusions:

DirSum C ApoEqu - DirSum
U U U
DirSumNCon C ApoEquNCon < DirSumn Con

In fact, most of these inclusions are strict in general. The vertical inclusions
clearly are strict as soon as n > 2. We have DirSumN Con ;Cé ApoEqun Con
(and of course DirSum ; ApoEqu) by Examples and 1.4. We also have
ApoEqu g DirSum by Example

Surprisingly, the last remaining inclusion is in fact an equality (compare with
[33. Cor. 4.7]).

THEOREM 1.7. Forn > 2 and d > 3, every form with an equipotent apolar gener-
ator is a limit of direct sums, and conversely, every concise limit of direct sums has
an equipotent apolar generator. In particular, ApoEqu N Con = DirSum N Con.

This theorem is proved in Section 4.2. One direction is proved in Theorem 4.5,
and the other direction is proved in Theorem 4.8. Moreover, Theorem 4.5 provides
a normal form for the limits of direct sums that are not direct sums. In such cases,

for some choice of basis xq, ..., Xk, Y1, .+, Yk» 215 -+ -5 2Zn—2k Of V,
Fxt, ooy Xk, Y1s ooy Yks 215 oo+ 5 Zn—2k)
k
OH (y1,-.., yk)
=in8—y+G<y1,...,yk,m,...,zn_m e))
i=1 !

for homogeneous polynomials H (y) in k variables and G(y, z) in n — k variables,
both of degree d.

One might naively hope to prove at least one direction of Theorem by ar-
guing that if F; — F, then presumably F;- — F-.If for each t # 0, F; is a direct
sum, then F,J- has a minimal generator of degree d = deg F' by Theorem 1.1;
then one might hope to finish by appealing to the semicontinuity of graded Betti
numbers (see Section 2.6) to show that FL also has at least one minimal gen-
erator of degree d. However, this argument cannot succeed since F; — F does
not imply Ff‘ — F as a flat limit. For instance, consider the family of poly-
nomials F; = tx?d + xyd’] in x and y parameterized by ¢, with d > 4. We have
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1

F, — Fy=xy? ! and

Pl (@B, "V dtp?1y fort 0, or
L a3, g for 1 = 0.
Thus, the flat limit lim,_o(F;Y) = (28, a1, p4) G F§-.

Nevertheless, for those cases in which F; — F, the F; are direct sums, and
FtJ- — F is a flat family, it follows that F has a degree d generator by semi-
continuity. When such a family {F;} exists, we say F is an apolar limit of direct
sums. The locus of apolar limits of direct sums is denoted ApoLim. We have the
following:

THEOREM 1.8. ApoLim C ApoEqu, and:

(i) Forn =14 and d > 28, the inclusion is strict: ApoLim g ApoEqu.
(ii) Ifd =3 orifn =3, then ApoLim = ApoEqu.

The inclusion ApoLim C ApoEqu follows by the semicontinuity of graded Betti
numbers, as described before. The strictness of the inclusion for n = 14 is ex-
plained in Section 5.2, particularly, in Proposition . The proof of the equality
for d = 3 is straightforward, and it is explained in Proposition 5.2. The proof of
the equality for n = 3 is obtained by longer but elementary methods in Theo-
rem . Certainly, using more refined techniques, we may be able to determine
whether ApoLim = ApoEqu also in other cases.

The strictness of the inclusion is a consequence of the existence of certain
zero-dimensional Gorenstein local schemes with restricted deformations, which
we call uncleavable schemes. A scheme supported at a single point is uncleavable
if all its deformations are supported at a single point; see Section 5.2 for references
and more details. We show that for at least n = 14, we have ApoLim g ApoEqu.
This is because the shortest nonsmoothable zero-dimensional Gorenstein scheme
of length 14 is uncleavable. However, we expect (but are not able to prove) that
ApoLim ; ApoEqu should hold for all sufficiently large n. We explain in detail
in Section which deformation-theoretic properties of schemes of length n we
need in order to obtain ApoLim # ApoEqu.

In any case, we emphasize that because of Theorem 1.8, the naive hope de-
scribed before cannot suffice to prove Theorem . That is, for some n and d,
there are forms in ApoEqu whose apolar generators of degree d do not arise via
semicontinuity of graded Betti numbers for any family of direct sums. The strict-
ness of ApoLim ; ApoEqu forces a more delicate argument for Theorem

See also [33, Sect. 4.2, Cor. 4.24] for related examples.

It is also interesting to study the case in which F is generated in low degrees.
For example, (det,)t is generated in degree 2, as is (xj - - X))t = (alz, e, aﬁ).
See Table | for examples of plane cubics. We show that an upper bound for the
degrees of minimal generators of F= forces an upper bound on the degree of F';
equivalently, if F has a high degree relative to the number of variables, then F
must have at least one high-degree minimal generator.
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THEOREM 1.9. If F is a homogeneous form of degree d in n variables and § is the
highest among the degrees of minimal generators of F*, then d < (§ — 1)n.

In particular, if F is generated by quadrics, then d < n. It would be interesting
to classify polynomials F of degree d = n such that F is generated by quadrics.
See Section 4.3 for a brief discussion and the proof of the theorem.

NotaTioN 1.10. Throughout the paper, F € S¢V is a homogeneous form of de-
gree d in n = dim V variables. More generally, F' may be a divided-powers form
of degree d; see [29, App. Al.

ReEMARK 1.11. Direct sums and their limits have also appeared in other articles. In
[54], functions (not necessarily polynomials) are called decomposable when they
are sums of functions in independent variables. In [40], they are called sum-maps,
whereas in [39] and [16], they are called direct sums. In [55], polynomials with a
direct sum decomposition are called polynomials of Sebastiani—-Thom type. They
are called connected sums in [47], following [37; 51], where the term connected
sum is used to refer to a closely related concept; see Section 2.8. In [44], forms
(homogeneous polynomials) p and g over C are called unitarily disjoint if they
depend on disjoint sets of variables, after a unitary linear change of variables
with respect to a fixed Hermitian product on the space of linear forms (see [44]
for details). In [33], direct sum decompositions are called regular splittings, and
limits of direct sum decompositions are called degenerate splittings.

In [20] and references therein, the authors study apolar algebras of homoge-

neous forms F that are either direct sums F = x4 + G(y1,.--,Yn—1) of “type”
(1,n — 1) or their limits xyd_l + G(y,z1,...,2Zn—2)—compare with the normal
form (1) for k = 1. Their work is motivated by earlier articles [30; 21], where the

special case of n = 4 has been studied. In this series of articles, the direct sums
and their limits serve the purpose of a classification of Gorenstein Artin algebras
with prescribed invariants. We believe that our results in this article may have
similar applications.

1.1. Outline of Paper

In the remainder of this Introduction, we give proofs of some elementary state-
ments including Theorem 1.1 and Proposition

In Section 2, we review background, including apolarity, conciseness, secant
varieties, and border rank, the easy cases of binary forms and plane cubics, semi-
continuity of graded Betti numbers, Gorenstein Artin algebras, and connected
sums.

In Section 3, we discuss the dimension of the direct sum locus and uniqueness
of direct sum decompositions.

In Section 4, we collect results that relate quadratic apolar generators to direct
sums and to equipotent apolar generators. We prove Theorem 1.7. Then we prove
Theorem

In Section 5, we prove Theorem
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In Section 6, we generalize some of our results to vector spaces of forms (linear
series). We consider “overlapping sums”. Finally, we discuss the generalization of
our results to algebraically closed fields in any characteristic.

1.2. Equipotent Apolar Fenerator of a Direct Sum

We begin with a few elementary statements.

Proof of Theorem 1.1. Let F = G — H where G € §* =Clxy,...,x;],He S¥ =
Cly1,...,yjl, and G, H # 0. Let us denote the dual rings 7% = Clay, ..., o;],
TP =C[B1,....Bj]. We work in S = §* ® S¥ = C[x1,...,%;, 1, ..., y;] with
dualring T =T* ® Th =Clay,...,a;, B1,..., Bl

We have G- N HL c FL, where G and H~ are computed in 7 rather than
T, TP. On the other hand, if ® € (F1), then ®4G=0-He S} , NS, ,.
But this intersection is zero if k £ d, so we must have ® 4G = ® 2 H = 0. Thus,
(GtNHbY) = (FL) forall k #4d.

Now let 8 € Tj‘ be such that §; /=G =1, and let §, € Tdﬂ be such that
82~ H = 1. Such elements exist in abundance: there is an affine hyperplane
of them in 7 and in Td’g by the hypothesis that G and H are nonzero. Let
A=68+8.Then A-G=A-"H=1,50A¢G-NH but A2 F=0.

This element A is a minimal generator of F=: it cannot be generated in lower
degrees, since all elements in lower degrees lie in G- N H. O

For future reference, we record the additional details given in the previous proof
(see also [33, Lemma 3.27]).

LEMMA 1.12. Let F = G — H be a direct sum decomposition of degree d with
nonzero G and H. Then

FL=G*nH+(A),

where A =81 + 6> € Ty is homogeneous of degree d, 51 -G =8~ H =1, 51 can
be written only using variables dual to variables of G, and 8, can be written only
using variables dual to variables of H .

Proof. The only statement left to prove is that any degree d element of F* is in
the ideal G- N H- + (A). Let ® € (F1)4. Then ©® =G = ® ~ H € C; call this
value ¢. We have ® —cA e GT N HL. O

See also [12, Lemma 3.1] for a description of F L in terms of the extensions of
the ideals GE N T*, HL N TA.

We call F an s-fold direct sum when F can be written as a direct sum of s
terms, thatis, F = F; +---+ Fy witheach F; e V;and V| @& --- @ V, = V.

COROLLARY 1.13. If F = F| + --- + F is an s-fold direct sum, then F* has at
least s — 1 equipotent apolar generators.
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Proof. 1t follows by induction on s from Lemma . Explicitly, if F = F; +
-+ + Fy, then

dim Fjf = 1 +dim(Fi- N (Fa+ -+ + F)Y)a
=...=s—1+dim(F{-N---NF),,
so F* has at least s — 1 minimal generators of degree d. O

We will use frequently the following simple characterization of direct sums.

COROLLARY 1.14. Let V. =V @ V> and F € SV . Then the following are equiv-
alent:

(i) F = Fi 4 F> where Fi € SV} and F> € §¢V, (possibly, F{ =0 or F» =0),
(i) V;vy C FL,
(iii)) V71 U V; contains the common affine scheme-theoretic zero locus V ((F 1),)

of the quadrics in F*.

If furthermore Vi, Vo # 0 and F* has no linear generators, then conditions (i)—
(iii) imply that F1, F> # 0 and F = F1 + F; is a direct sum decomposition.

Proof. If F = F| + F,, then clearly the reducible quadrics in V" V" annihilate F.
In the other direction, if V'V, C F L, and we give V| a basis x1,...,x, and V»
a basis yi, ..., Yn—a, then condition (ii) implies that F' cannot have mixed terms
divisible by x;y;. Thus, F is as in (i).

Observe that (iii) is simply a geometric rephrasing of (ii), using the correspon-
dence between ideals and affine schemes.

Finally, if, say, F1 = 0 and V| # 0, then Vl* c Ft gives linear generators
in FL. O

We give an alternate proof of the statement observed by Casnati and Notari [
Rem. 4.3] that a form F of degree d has an apolar generator of degree d + 1 if
and only if F = x“ has Waring rank 1. This follows also from [29. Prop. C.33].
Our proof illustrates in a simple case some of the techniques we will use later.

Proof of Proposition 1.6. If F = xf, then F+ = (a‘f“,az, s, Q).

Conversely suppose F has degree d and F j;r | has a minimal generator. Let
I = (F1)y, the ideal generated by forms in F* of degree at most d, and
note that Iy+1 C Ty = F j—+1 has codimension at least 1 because otherwise
no generator would be needed. Then there is a nonzero polynomial G of de-
gree d + 1 annihilated by [ since G is annihilated by 7 if and only if it is an-
nihilated by I;41 (see [8, Prop. 3.4(iii)]). Moreover, I; = (F 1), has codimen-
sion exactly 1 since I; = (F)* is the annihilator of the span of F, which has
dimension 1. Now I; C (G1)y ; Ty, so I; = (G1)4. Thus, the Hilbert func-
tion of Ag has hu;(d) = 1. By the symmetry of the Hilbert function of Ag
(see Section 2.7) we have ha;(1) = 1. Then G has only one essential variable
(see Section 2.2), so G can be written as a homogeneous form of a single vari-
able; necessarily, G has Waring rank 1. Say G = x4*!. We have G+ C F since
(GHeid=1I<g=(FY)<gand (F1)s441 = Tsg41.S0 F = =G = cx? for some
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o by Lemma 2.1, that is, by the inclusion-reversing part of the Macaulay inverse
system theorem. (]

An alternative proof, following a suggestion from the referee, applies Gotzmann’s
persistence theorem, [25, Thm. 3.8] or [8. Cor. 5.3], to the consecutive values
hr/1(d) =hr/1(d + 1) =1 to deduce that / is the ideal of a point {x} and hence
F = x? by the apolarity lemma; see, for example, [29. Thm. 5.3]. This is similar
to the proof of [29. Prop. C.33].

See also a generalization in Proposition

2. Background

For a homogeneous ideal I in the polynomial ring S, a minimal generator of
I is a nonzero homogeneous element of the graded module //m/ where m =
(x1,...,x,) is the irrelevant ideal. By the “number” of minimal generators of a
given degree k we mean the dimension of the kth graded piece (I /mI[).

Following the convention of [26], by an (algebraic) variety we always mean an
irreducible algebraic set. By a general element of an algebraic variety we always
mean any element of some suitably chosen open dense subset.

When V is a vector space, PV denotes the projective space of lines through
the origin of V. When v € V is a nonzero vector, [v] denotes the point in PV
determined by v, that is, the line through the origin of V spanned by v.

2.1. Apolarity

Let S be a polynomial ring, and T its dual ring. For a fixed homogeneous
F € S; of degree d, the ith catalecticant C ; is a linear map Ty—; — S; de-
fined by C;(@) = ® - F. The term “catalecticant” was introduced by Sylvester
[53]in 1851. The images of the catalecticants are the inverse systems studied by
Macaulay [36].

The catalecticant maps give an isomorphism between Ag = /G~ and the
principal T-submodule of S generated by G, consisting of elements ® - G for
®eT.

LEMMA 2.1. Suppose F, G € S are two homogeneous polynomials. If G- C F*,
then F = ® <G for some ©® € T.

Indeed, by the inclusion-reversing part of [18. Thm. 21.6] the T-submodule of S
generated by F is contained in the T-submodule generated by G.

One connection between apolarity and geometry is indicated by Exercise 21.6
of [18], which relates the apolar ideals of plane conics to their ranks. Another con-
nection is given by the following well-known lemma (see, e.g., [17, Prop. 4.1]).

LEMMA 2.2. Let a € Ty be a linear form. Then o* € F if and only if F vanishes

to order at least d — k + 1 at the corresponding point in the projective space
[a] e PTy = PSY.
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In particular, «?~! € F= if and only if V (F) is singular at [«].

Proof of Lemma 2.2. o € F* is equivalent to @aX = F =0 for all ® € Ty_g,
equivalently, ok (@ 3 F) =0 for all ® € T;_. For such ®, OF is a form of
degree k, so X 4 (® 2 F) is equal to the evaluation of ® = F at the point [er] (up
to scalar multiple). This vanishes for all ® € T;_ precisely when F vanishes at
[] to order at leastd — k + 1. U

More detailed treatments of apolarity may be found in [ Lect. 8], [
Sect. 1.1], and [8].

2.2. Conciseness

A homogeneous form F € C[xy, ..., x,] is concise (with respect to xp, ..., x,)
if F cannot be written as a polynomial in fewer variables. That is, if there
are linearly independent linear forms 7y, ..., # such that F € C[ty,..., 1] C
Clxi, ..., xp], then k = n. In coordinate-free terms, F € S?V is concise (with
respect to V) if F € SYW with W C V implies W = V.

Concise polynomials are also called nondegenerate, but we will follow the
terminology of the tensor literature.

The following are equivalent:

(i) F € 8V is concise.
(i1) The hypersurface V (F) C PV* is not a cone.
(iii) There is no point in PV* at which F vanishes to order d.
(iv) The catalecticant C 117 is onto.
(v) The apolar ideal F L has no linear elements: F IJ- =0.

We define the span of F, denoted (F'), to be the image of the catalecticant C },
We have F € S(F). With this notation, G + H is a direct sum decomposition
if and only if (G) N (H) = {0} and G, H # 0. The elements of (F) are called
essential variables of F; by the number of essential variables of F we mean the
dimension dim(F) of (F) as a C-vector space. See [10].

The locus in SV of nonconcise polynomials is a Zariski-closed subset called
the subspace variety and denoted Sub. Its complement is the open set Con.

2.3. Secant Varieties and Border Rank

Letvg: PV — ]P’(SdV) be the Veronese map, vy ([£]) = [e4].

Recall that F € SV has Waring rank r if and only if F is a sum of r dth
powers of linear forms in V, but not fewer. Equivalently, [F] € P(S¢V) lies in
the linear span of some r points in the Veronese variety vy (PV) but does not
lie in the span of any fewer points. The Zariski closure of the set of projective
points corresponding to affine points of rank at most r is the rth secant variety
or(vg(PV)) of the Veronese variety. The border rank of F, denoted br(F), is
the least k such that [F] lies in the kth secant variety of the Veronese variety.
Evidently, br (F) < r(F), and strict inequality may occur.
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Note that dim(F) < br(F). Indeed, dim(F) < r(F) clearly, so dim(F) <r
for all F in a dense subset of o, (vg(PV)). Since dim(F) =rank C 117 varies lower
semicontinuously in F, we have dim(F) <r for all F in o, (vg(PV)).

The second secant variety o2 (v (PV)) is the disjoint union of the set of points
of rank 2, the set vy (PV) itself, and (for d > 2) the set of points on tangent lines
to vy (PV). Points of the third type have border rank 2, so only two essential
variables. Such a point necessarily has the form xy?~! after a linear change of
variables; we have r(xy?~!) = d. Thus, br(F) =2 if and only if either F =
x4+ y?and r(F)=2,0or F=xy* ! and r(F)=d.

We remark that the extreme case of direct sum, that is, the n-fold direct sum
in an n-dimensional vector space V coincides with a sufficiently general element
of the nth secant variety oy, (vg(PV)). In particular, the closure of the set of such
extreme direct sums is equal to this secant variety.

2.4. Binary Forms

The following lemma is standard; see, for example, [29, Thm. 1.44].

LEMMA 2.3. The apolar ideal of a homogeneous binary form F of degree d is a
complete intersection ideal generated in degrees r and d + 2 — r for some integer
1<r<(d+2)/2. The border rank of F is r.

COROLLARY 2.4. Let F be a binary form of degree d. The apolar ideal of F has
a generator of degree d if and only if F has border rank 2.

Note that the condition br (F) = 2 excludes polynomials of rank 1, so F must
be concise. Thus the locus of concise forms with an equipotent degree apolar
generator is exactly the locus of concise forms that are limits of direct sums, that
is, ApoEqu N Con = DirSum N Con. This is the case n = 2 of Theorem

2.5. Plane Cubics

If a plane cubic F is a direct sum, then in suitable coordinates, we may write
F=x3+ G(y,z), where G is a nonzero binary cubic form. We may choose
coordinates so that G (y, z) is y3, y3 +z°, or y?z, that is, 7(G) = 1, 2, or 3. Thus,
up to change of coordinates, there are exactly three plane cubics that are direct
sums.

We summarize the types of plane cubics in Table |, adapted from [35]. The
columns mean the following: f; ; is the number of apolar generators of degree i,
r is the Waring rank, and br is the border rank. (We omit By 4 =1 for F = x3.)
The rows representing direct sums are in boldface, and the rows representing
nonconcise polynomials are in italic face.

This table shows the case n =3, d = 3 of Theorem

COROLLARY 2.5. Let F be a concise plane cubic. The apolar ideal of F has a
minimal generator of degree 3 if and only if F is a limit of direct sums.
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Table 1 Plane cubic curves

Description normal form Bir Bz Pz r br
triple line x3 2 0 0 1 1
three concurrent lines x3—y3 1 1 1 2 2
double line + line x2y 1 1 1 3 2
irreducible (Fermat) By 3 3 2 3 3
irreducible yiz—x3 —xz? 3 0 4 4
cusp vz —x3 3 2 4 3
triangle xyz 3 0 4 4
conic + transversal line x(x%2 4+ yz) 3 0 4 4
irreducible, smooth y2z—x3 —axz? -3 3 0 4 4
(@ #0,-27/4)
irreducible, singular yzz —x3—axz?-7 3 0 4 4
(a®=-27/4)
conic + tangent line y(x% + yz) 3 2 5 3

Proof. Table | shows that a concise plane cubic has a minimal apolar generator
of degree 3 if and only if the cubic has border rank 3, which is equivalent to its
being a limit of Fermat cubics. (]

2.6. Semicontinuity of Graded Betti Numbers

In this section, we work over an arbitrary algebraically closed field k. Let I be a
homogeneous ideal in a polynomial ring T = k[e1, ..., o,] with standard grad-
ing. The graded Betti numbers of I are defined as follows. Fix a minimal free
resolution of T'/1,

0T <—@PTN «@PT=jP «- .

The B; ; are the graded Betti numbers of I (more precisely, of 7/I). We have
Bi,; = dimy Tor’ (1,k); [19. Prop. 1.7].

In the proof of Theorem 4.8, we will use the fact that when the ideal / varies
in a flat family, the graded Betti numbers vary upper-semicontinuously. That is, if
I; is a flat family of ideals, then B; ;(lo) > lim;_0 B;, j (I;).

Boratynski and Greco [5] proved that when the ideal / varies in a flat fam-
ily, the Hilbert functions and Betti numbers vary semicontinuously. Ragusa and
Zappalé [42, Lem. 1.2] proved the semicontinuity of graded Betti numbers of flat
families of zero-dimensional ideals. Semicontinuity of graded Betti numbers more
generally seems to be a well-known “folk theorem”; for example, different ideas
for proofs are sketched in [4 |, Remark following Thm. 1.1] and in [34, Cor. 3.3].
We give a quick proof here for the sake of self-containedness.
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PrROPOSITION 2.6. Let T =Kk[ay, ..., o] with standard grading, and consider the
power series ring K[[U]] with degU = 0. Suppose that I C T Qy Kk[[U]] is a
homogeneous ideal, flat over Spec(k[[U]]). For p € Spec(k[[U]]), let I, =1 ®
k(p). Fix any i and j. Then the function p — B; j(Ip) is upper-semicontinuous.

Proof. Start with the Koszul resolution of k = T'/(«q, . .., o), regarded as a sheaf
on Spec(k[[U]]) (although independent of U). Tensor the resolution with 7, take
the degree j part of the resulting complex, and denote by I the kth graded
piece of I,. The Tor we are interested in is the homology of this complex of
vector spaces:

i—1 i i+1
<_/\ V*QIj—iy1,p <—/\ V*QIi—ip <—/\ V¥QIj_i—1,p<---,

where V* is the vector space spanned by «j, ..., a,. By [18, Exer. 20.14], the
dimensions of the vector spaces I, are locally (in p) constant. Locally in p,
then, this is a complex of fixed finite-dimensional vector spaces with differentials
given by matrices whose entries are polynomial in p. The graded Betti number
Bi,j is the dimension of the ith cohomology of this complex; the dimensions of
cohomology of such complexes are upper semicontinuous. O

REMARK 2.7. Graded Betti numbers of flat families of ideal sheaves on projective
space are not semicontinuous. For example, let three points in P> move from
linearly independent position for u # 0 to collinear position when u = 0. For
u # 0, the ideal sheaf I, is generated by three quadrics having two linear syzygies.
At u = 0, the ideal sheaf Iy is a complete intersection of type (1, 3) (with one
linear generator, one cubic generator, and just one syzygy).

The point is that the sheaf io is the sheafification of the flat limit ideal /. In the
previous example, the flat limit ideal has an embedded point at the origin, which
is lost in the sheafification.

Our brief proof does not recover the “consecutive cancellation” as in [4 1], but we
will not use consecutive cancellation.

2.7. Gorenstein Artin Algebras

Let A be an algebra. Most of the time, we will consider standard graded algebras,
that is, A is a graded algebra with Ag = C, and A is generated in degree 1. In this
situation, the embedding dimension of A is dimA;. Let m = P;_ A; be the
graded maximal ideal. The socle of a graded algebra A is the ideal Soc(A) =
(0 : m), that is, the annihilator of the graded maximal ideal in A. When A is
Artinian, the socle includes A; where d = max{i : A; 7 0}. When A is Artinian,
A is Gorenstein if and only if Soc(A) is one-dimensional. The socle degree of A
is max{i : A; # 0}.

We use [ 18, Cor. 21.16]. Let F be a concise homogeneous form of degree d in
n variables, and I = F be a zero-dimensional Gorenstein ideal, so that A = T /1
is a Gorenstein Artin algebra. Then A has socle degree d = deg F' and embedding
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dimension n. Let A = T /I have the minimal free resolution M,:

d d dy
0<—T=My<M < &M, 0.

The resolution M, is self-dual, that is, isomorphic to its dual, up to shifts in grad-
ing and homological degrees. We call this isomorphism the Gorenstein symmetry.
In particular, writing each M; = @j T(—a;), we have:

Mn:Mék:T(_d_l’l) and Mn—t:M,*:eBT(—d—n—i—a;)

The main focus of this paper is Gorenstein ideals having a minimal generator
in degree d, that is 81 4(I) > 0. Throughout the article, we will frequently use the
following consequence of the Gorenstein symmetry:

Bra(FY) = Buo1n(FH),  thus B a(FY) > 0= Buo1 n(FH) > 0. (2)

As we shall see, 8,—1 » (FJ-) can be easier to control than ,Bl,d(FJ-).

We will also use the more elementary symmetry of the Hilbert function of
a graded Gorenstein Artin algebra, hs(i) = ha(d — i) for a Gorenstein Artin
algebra A of socle degree d. See, for example, [52, Thm. 4.1].

We will make use of the following two results. The first is a special case of
[19. Thm. 8.18].

LEmMA 2.8 ([19, Thm. 8.18]). Suppose that I C T is a homogeneous ideal with
Bu—1.n(I) > 0 and no linear generators. Then there exists a choice of coordinates

a1, ...,y of T and linearly independent linear forms €1, ..., ¢y € T for some

0 < k < n such that the 2 x 2 minors of the following matrix are contained in I:
o] e @ Qgpl ccc O

(6w ). ®

The second is a special case of [19, Thm. 8.11].

LEmMA 2.9 ([ Thm. 8.11]). Suppose that n > 2, I C T is a homogeneous
ideal containing no linear forms, and J C I is a homogeneous subideal. Then

,Bn—l,n(-]) = ﬁn—l,n([)-

In Section 5, we will also mention Gorenstein Artin algebras that are not neces-
sarily graded. More precisely, we will consider finite Gorenstein schemes that are
spectra of those algebras. These schemes arise naturally when treating deforma-
tions of graded Gorenstein Artin algebras.

2.8. Connected Sum

When A, A’ are graded Gorenstein Artin algebras over a field k, both of socle
degree d, the (formal) connected sum A#A' is defined as follows [37; 51]. A#A’
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is the graded algebra with graded pieces

k, k=0,
(A#A ) = { A ® A, O0<k<d,
k k=d,

in which the products of two elements in A or in A’ are as before modulo the iden-
tification of Ay = A;l = (A#A')4, and the product of a positive-degree element in
A with one in A’ is zero. (See also [1; 2] for more general constructions.)

The name the “connected sum” of algebras is motivated by the following ex-
ample. If X, Y are d-dimensional connected closed manifolds with cohomology
rings Ay, Ay, then the cohomology ring of the connected sum X#Y is the con-
nected sum of the cohomology rings: Axsy = Ax#Ay.

When a polynomial is a direct sum as we have defined it, its apolar algebra is
a connected sum in the stated sense (see also [33, Lemma 3.27]).

ProposiTiON 2.10. If F = G — H is a direct sum decomposition, then Ar =
AGgH#Ap.

Proof. Letd =degF, T, T“, and T* be as in the proof of Lemma

By Lemma the annihilators satisfy (GHyN(H ) = (FL)y whenk < d.
Note that 7{* € H' and T € G*. Thus for p.q > 0, T¢T) ¢ G*NH' c F*.
Recall that G~ is the apolar ideal of G in T, that is, of G as an element of §; the
apolar ideal of G in T% (considering G € $*) is G N T, and similarly for H.
Hence, for0 <k < d,

(Ap) = Ti/F- = ( &y Tl‘,"Tqﬁ)/FL

p+q=k
= (T*)% /(G N T ® (TP /(HX NTP) = (AG)k ® (Am)i,

as claimed. O

We can use this to give a simple “toy” application of our results. Suppose that X
and Y are d-dimensional connected closed complex manifolds with cohomology
rings Ax and Ay, and suppose that these rings are standard graded (which is by no
means typical: cohomology rings of manifolds can contain generators of different
degrees). Write Ax = $*/G' and Ay = §¥/H~*. Then the connected sum X#Y
has cohomology ring Axsy = Ax#Ay = ($* ® §)/(G + H)~L. Therefore, if M
is a d-dimensional connected closed complex manifold whose cohomology ring
Ay = S/F1 is standard graded and F is not decomposable as a direct sum, then
M 1is not decomposable as a connected sum, at least not into factors whose coho-
mology rings are standard graded. In particular, if £ has no minimal generator
in degree d, then this holds by Theorem

There are well-known topological consequences of a direct sum decomposi-
tion, for example, involving monodromy [45] and logarithmic vector fields [55].
It is not immediately obvious what geometric consequences may follow from a
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direct sum decomposition. R. Lazarsfeld shared with the fourth author the obser-
vation that if F = F| + F5 is a direct sum, then Sing(V (F)) = Sing(V (F1)) N
Sing(V (F>)), that is, the singular locus of F is an intersection of two cones
with disjoint vertices. Furthermore, defining ¥,(G) = {p | mult,(G) > a}, the
common zero locus of the ath partial derivatives of G (so that Xo(G) = V(G),
¥1(G) =Sing V(G)), we have X, (F) = X,(F1) N X, (F>) forall a > 0.

One necessary condition for F to be a direct sum can be deduced immediately
from Proposition 4.2 of [51], which we state here for the reader’s convenience.
We use the following terminology, taken from [51]: A standard graded Poincaré
duality algebra of formal dimension d is precisely a (standard graded) Gorenstein
Artin algebra of socle degree d (together with a choice of a nonzero socle element,
which we ignore). The rank of such an algebra H is the dimension of H;. The
x-length of a subspace V C Hj is the least integer ¢ such that any product of
¢+ 1 elements of V is zero in H if such an integer exists; otherwise, the x-length
of V is infinite. In particular, V has x-length strictly less than d if and only if any
product of d elements of V is zero in H.

ProposITION 2.11 (Proposition 4.2 of [51]). Let H be a standard graded Poincaré
duality algebra of formal dimension d. Suppose that there is a codimension one
subspace V C H\ of x-length strictly less than d. Then, either

(1) H is indecomposable with respect to the connected sum operation #, or
(i) H has rank two, and H = F[x, y]/(xy, x? — y¥) = (F[x]/ (x4 t))#Fly]/
o).

See [51] for a proof, valid over any field [F. Note that we work over the base field
F=C.

From Proposition we can deduce the following necessary condition for F'
to be a direct sum.

PrROPOSITION 2.12. If F has a linear factor, then either F is not a direct sum, or
F =x% — y? for some linear forms x, y.

Proof. By changing coordinates if necessary, suppose x; divides F. Let W =
le = (a2,...,ay) C V* = Tj. This is a codimension 1 subspace whose dth
power is in F+, that is, wy---wWy € F+ for every wi, ..., wg € W. Indeed, each
monomial appearing in F has at least one factor x; and hence is annihilated by
every product of d elements of W.

Let H=Afr = T/FL. Then W) = W/Fll is a codimension 1 subspace of H
such that the product of any d elements in Wy is zero in H. By Proposition ,
either H is indecomposable with respect to the connected sum operation, or H =
Cla, B1/(ap, a — B4y = (Cla]/a?TH#(C[B]/BT"). In the first case, it follows
that F is not a direct sum. In the second case, it follows that F = x — yd after a
suitable change of coordinates. (]
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We remark in passing that this proposition is essentially just a restatement of
Proposition . We have seen that if F has a linear factor, then there is a codi-
mension 1 subspace Wi C (AF); such that the product of any d elements in W}
is zero in A, that is, the x-length of Wy is less than d. Conversely, if W is
such a subspace, say W = le = (a2, ...,0y), then every degree d monomial in
a2, ..., o, annihilates F, so F' does not contain any terms that are monomials in
just the variables x, ..., x,. That is, every monomial appearing in F has at least
one factor x1, and so F is divisible by x1. Thus, the hypotheses of Proposition

and Proposition are equivalent. Similarly, the conclusions are equivalent.

3. Dimension of Direct Sum Locus and Uniqueness

We discuss the uniqueness of the subspaces over which F € DirSum splits, and
we compute the dimension of DirSum.

3.1. Uniqueness of Direct Sum Decompositions

Thom [54] conjectured that every germ at O of an analytic function F has a unique
finest decomposition as a sum of germs of functions in independent variables, up
to analytic equivalence. This means that if

F=F+F+ - +F

with F; in independent variables and each F; cannot be written as such a sum, then
Thom expected that for any other such decomposition F = G|+ G2 +--- + Gy,
we must have k =/, and there exists an analytic isomorphism near 0 preserv-
ing F and transporting G; to F; (up to permuting the G;). This was proved for
quasi-homogeneous functions in [22]. We may ask also if a homogeneous poly-
nomial has a unique finest decomposition as a sum of polynomials in independent
variables.

More generally, for a homogeneous polynomial F, we say that one direct de-
composition is finer than another if every direct summand subspace appearing
in the second decomposition is a direct sum of subspaces appearing in the first
(finer) one. That is, if F = G| + --- 4+ Gy with G; € S4V; fori =1,...,k and
Vid---@Vy=Vandalso F =G} +---+ G| with G, e SV for j=1,...,1
and V{ @ --- @ V/ =V, then the direct sum decomposition G1 + - - - + G is finer
than G| + - -- 4+ G| if every V/ is a direct sum of one or more of the V.

Clearly, if F is concise, then a direct sum decomposition F = G| + --- +
Gy is maximally fine if and only if each summand G; € $9V; is concise with
respect to V; and indecomposable as a direct sum. Clearly, every concise F has a
maximally fine direct sum decomposition. The uniqueness question asks whether
every concise F has a unique maximally fine direct sum decomposition.

In fact, quadrics decompose as direct sums over many splittings of the vector
space: for example, x2 + y2 = (cx + sy)? + (sx — cy)? for any c, s such that
c% + 52 = 1. For this reason, we usually restrict to degrees d > 3 and sometimes
to d > 4. In these degrees, the question of uniqueness has a positive answer.
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THEOREM 3.1 ([33, Thm. 3.7]). Let F be a concise form of degree d > 3. Then F
has a unique maximally fine direct sum decomposition.

In fact, [33, Thm. 3.7] holds in any characteristic and gives a description of the
subspaces appearing in the maximally fine direct sum decomposition. Moreover,
[50, Prop. 3.1] provides an analogous uniqueness decomposition for connected
sums of Gorenstein Artin algebras. However, the proof of Theorem requires
some preparation, which lies outside the scope of this paper.

Here we show a weaker statement: essentially that the direct sum decomposi-
tion is uniquely determined for forms in an open dense subset of DirSum. This
is sufficient for our purposes and does not require many tools other than those
already introduced.

It is easy for binary forms.

PrROPOSITION 3.2. Every direct sum in two variables of degree d > 3 has a
uniquely determined decomposition.

Proof. There is a unique (up to scalar) generator of the apolar ideal in degree 2
(and another in degree d). Writing F = x? — y¢, this quadratic apolar generator
is O = af, and the pair of subspaces (x), (y) over which F decomposes is deter-
mined as the pair of lines corresponding to the pair of points in projective space

{Ix]. Y} = V(D). O

To go further, we use the notion of compressed algebras; see Definition 3.11 and
Proposition 3.12 of [29]. We recall not the most general definition, but just the
definition in the case that A = A = T/F~ is a graded Gorenstein Artin alge-
bra of socle degree d. In this case, A is compressed if, for each i € {0, 1, ...,d},
we have dim A; = min(dim S?(A;), dim $9~/(A})). If we have chosen T and the
isomorphism A = Ar = T/F~ in such a way that F is concise, then A is com-
pressed if and only if dim A; = min(dim 7;, dim 7;_;). When F € $9V is general,
AF is compressed [29. Prop. 3.12]. (Recall that a general element of a variety is
any element of a suitable dense open subset of the variety.)

LEMMA 3.3. Letrd >4 and n =dimV > 2. For F € $9V general, F+ has no
quadratic generators, and F is not decomposable as a direct sum.

Proof. We have that A is compressed. This implies F has no generators in
degrees less than or equal to d/2 since dim(F1); =dim7; —dim A; =0 for 0 <
i <d/2. In particular, (F J-)2 =0, so that F' is not decomposable as a direct sum
(see Corollary ). O

Table | shows that a general cubic in n = 3 variables is not decomposable as
a direct sum. But a general binary cubic is decomposable as a direct sum: Let
F = F(x, y) be a binary cubic with distinct roots. By a linear substitution we may
move those roots to be the cubic roots of unity; in these coordinates, F = x3— y3.
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PrOPOSITION 3.4. For d > 4 and n > 2, there is a dense subset of DirSum (that
is, a union of a dense subset of each irreducible component of DirSum) such that
for F in this subset, F decomposes as a direct sum over a uniquely determined
pair of subspaces.

Proof. Let F € DirSum be arbitrary, and let F = G + H with G € N Vi, H €
SV, Vi @ Vo = V. Now, let G’ € S?Vy, H' € $?V; be general, and F' = G’ +
H'. As G’ - G and H' — H, we have F' — F. Clearly, F’ decomposes as a
direct sum over V| @ V,; we claim that this is the unique pair of subspaces over
which F’ decomposes. We have (F'*); = (G'*), N (H'*),; see Lemma

Since Ag and A g are compressed, G’ L and H'* have no quadratic generators
other than (G'1); = VV* and (H' Y, = V*V*. In particular, then (F'h, =
VIVEN VAV = VIVS, and Vi U V; is the zero locus V((F’L)z). Hence, V|
and V, are uniquely determined by F’, as claimed. This shows that there is a
dense subset of DirSum whose elements decompose as direct sums over uniquely
determined pairs of subspaces. U

On the other hand, there exists an open dense subset of cubic direct sums in
three variables for which the decomposition as a direct sum over two subspaces
is not unique. Indeed, a cubic direct sum in three variables can be written as
F = x>+ G(y, ). If G is a general cubic binary form, then (with another change
of coordinates) F = x3 + y3 + z3. However, we do see that F decomposes as a
direct sum over V = (x) @ (y) @ (z), and this finest decomposition is uniquely
determined by F, as {[x], [y], [z]} = V(aB, ay, By) = V((F1)2).

3.2. Dimension

For Vi @ V, = V let DirSum*(Vy, V») = S4(V}) & S¢(V,); note that this contains
degenerate sums involving 0 € S4(Vy)or0e S4V,). Fora+b=n,a<b,let
DirSum®(a, b) be the union of the DirSum*(Vy, V») for dim V| = a, dim V, = b.
Each DirSum*(a, b) is irreducible since it is the image of the natural projection

$4(C* x §4(CP) x GL,(C) — S%(v),
(G, H M)y Gmy,....,my)+ H@mgs1,...,Mmy),

where the m; are the columns of the matrix M. Of course, this is not injective.

For each a + b = n, let DirSum(a, b) C DirSum®*(a, b) be the subset of F
which are indeed decomposable as direct sums in which one term involves
a variables and the other involves b variables, that is, discarding those ele-
ments of DirSum*(a, b) in which one or both terms are identically zero. Fur-
ther, let DirSum®(a, b) C DirSum(a, b) be the subset of concise forms F. Then
DirSum®(a, b) is a Zariski open subset of DirSum*(a, b), since its complement is
defined by rank conditions on the catalecticant C }V

Now DirSum = { J,,,,,_, DirSum(a, b). We see that DirSum contains the dense
subset DirSum® = Ua Lb=n DirSum®(a, b), that is, a union of a dense open subset
of each DirSum(a, b).
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PROPOSITION 3.5. For d >4 and n > 3, dimDirSum*(a, b) = 2ab + (“1%7") +

a—1
(“¥P71) and dimDirSum = 2(n — 1) + 1 + (“1"37).

Proof. Let DirSum®®(a, b) C DirSum®(a, b) be the set of F = G + H such
that Ag and Ay are compressed. There is a map from DirSum®°(a,b) to
G(a, V) x G(b, V) whose general fiber has dimension (dzfjl) + (dﬁ Il) This
shows dimDirSum®(a, b) is as claimed. This dimension is maximized when
(a,b)=(1,n—1). O

A more refined dimension formula is found in [33, Thm. 3.47]. Moreover, an
analogous formula for connected sum Gorenstein algebras is in [51, Prop. 4.4].

4. Apolar Generators and Limits of Direct Sums

Let F € SV be a homogeneous polynomial of degree d. Recall that an equipotent
generator of F is a minimal generator of the ideal F of degree d. In this section,
we collect results that relate quadratic generators to direct sums and to equipotent
apolar generators. Then we relate equipotent apolar generators to limits of direct
sums.

4.1. Quadratic Generators

Forms with an equipotent apolar generator have similar characteristics to forms
which are direct sums. Perhaps the best illustration of this is the behavior of qua-
dratic apolar generators.

We make first the following easy observation:

ProPOSITION 4.1. If F is a concise direct sum in n variables, then F has at least
n — 1 quadratic apolar generators.

It was previously shown by Meyer and Smith [37, Lem. VI.2.1] that F has at least
one quadratic apolar generator, without assuming F' to be concise. Moreover, [
Thm. 3.35] provides a calculation of all graded Betti numbers of F=.

Proof of Proposition 4.1. Say F € SV is a direct sum over V = V| @ V> with
dimV; = v;, v; + v =dimV = n. Then by Corollary we have V"V C
(FL)Z, a subspace of dimension vivy > n — 1. By hypothesis there are no linear
forms in F1, so that everything in (F), is a minimal generator. (]

Conversely, if V.=V, @V and V"V C F-L, then F = F; + F, where F; € 9V,
e s4 V»; see Corollary . If, furthermore, F is concise, then F1, F> # 0, and
F is a direct sum.

More generally,if V=V ®--- @V, then F = F| +---+ F; where F; € sdy;
if and only if P, _; V* ViICF 1 as quadratic generators, where V;* = ot VJ.L.
(In coordinates, if each V; has a basis x; 1, ..., X;,;, then V* is spanned by the
dual basis elements «; 1, ..., ®; ,,.) If this holds, and furthermore F is concise,
then each F; # 0, and F is an s-fold direct sum.
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COROLLARY 4.2. If F is a concise form in n variables which is an s-fold direct
sum for s > 2 then F+ has at least (s — 1)(2n — 5) /2 quadratic generators.

Proof. When F is adirect sumover V=V, @---@® V;, F contains @i</ v Vj?"
as quadratic generators; see Corollary . The fewest quadratic generators arise
when the summands V7, ..., V; have dimensions 1, ..., 1,n + 1 —s, yielding the
statement. O

Less obviously we have the following:

ProposITION 4.3. If F is a concise form in n variables and F has an equipotent
apolar generator, then F has at least n — 1 quadratic apolar generators.

Proof. Since F is concise, F* has no linear generators. Then the quadratic ele-
ments provided by Lemma 2.8 are minimal generators, and there are at least n — 1
independent ones, for example, the 2 x 2 minors given by the first and i th columns
of 3)for2 <i <n. O

Note that the Fermat hypersurface x{i +- 4 x,‘f has (g) quadratic apolar gener-
ators. This is the maximum number possible for smooth forms, as the following
easy observation shows.

PROPOSITION 4.4. If F defines a smooth hypersurface of degree d > 3 on "1,
then F* has at most (g) quadratic generators. More generally, if the set of points
in "~ at which F vanishes to order > a has dimension k, then dim(F1)g_,41 <
(Y —nt+k+ 1

Proof. Otherwise, PF j‘_a 1 C PT4—_q+1 necessarily has a (k + 1)-dimensional
intersection with the Veronese variety vy_,41(P71), since it has codimension
(Zfi:j) — n. For each [«?~%*1] in this intersection, F vanishes to order at least
a at [a] by Lemma 2.2. This gives a (k 4+ 1)-dimensional set along which F van-
ishes to order a. The first statement follows witha =d — 1 > 2 and k = —1 when

V (F) is smooth. U

Having the maximum number of quadratic apolar generators does not characterize
Fermat hypersurfaces, however; the concise plane cubics all have the maximum
number of quadratic apolar generators; see Table

4.2. Equipotent Apolar Generators and Limits of Direct Sums

Fix a degree d and number of variables n. Let V be a vector space withdim V =n.
In this section, we first prove that if F € SV has an equipotent apolar generator,
then F is a limit of direct sums. We next prove that if F is also concise, then the
converse holds. This assumption is needed by Example

THEOREM 4.5. If F has an equipotent apolar generator, then F is a limit of direct
sums. Moreover, either F is a direct sum, or it can be written in the following
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normal form, for some choice of basis X1, ..., Xk, Y1y +++s Vks 2y +-+»Zn—2k Of V:

oOH
Fx.y.2)=) x 8y(,-y) +G(, ).

HereGeSd(yl,...,yk,zl,...,zn_2k>andHeSd(yl,...,yk).

Proof. We immediately reduce to the case that F is concise: If F' is concise over
W C V, then we will write F as a limit of direct sums which are in SYW.

We assume that F-- has a generator in degree d = deg F. By Gorenstein sym-
metry (2), Bu—1..(F+) > 0. By Lemma there are linearly independent linear
forms £1, ..., ¢ for some O < k < n such that F¥ contains the 2 x 2 minors of

the matrix
al e ak ak+1 e an
0 o Uy 0 ... 0

Let L : Ty — T be the linear map given by L(«;) = ¢; for 1 <i <k, L(e;) =0
for i > k. That is, for all i, j, o; L(aj) — ajL(e;) € FL. By linearity, vL(w) —
wL(v) € Ft forall v,we Ty. Let L : /\2 T) — F be defined by L(v A w) =
vL(w) —wL(v) € FL.

Since 0 < k < n, L is not zero or a scalar multiple of the identity and has a
nontrivial kernel. We begin by changing basis in V* (and dually in V) to put L
into Jordan normal form. It turns out that if L has distinct eigenvalues, then F
decomposes as a direct sum over the generalized eigenspaces of L; otherwise, if
L is a nonzero nilpotent matrix, then F is a limit of direct sums.

Suppose first that A; # A; are distinct eigenvalues of L. Then there are
some positive integers v;, v; such that (L — A;)"o; = (L — Aj)"a; =0 but
(L —2)" Yo, (L — ;)" ~'aj # 0. We show that o;ar; € image(L) C F* by
induction on v; + v;. The induction begins with v; = v; = 1. Then Z((x,- ANaj) =
OliL(Olj) — Ole(Ol,') = ()‘j - ki)aiaj. If, say, v; > 1, sothat L(«;) = Ajoi + i1,
then I:(oe,- ANaj)=(Aj —A)ojaj +aj_jaj € F~+. Since Qaj—1aj € Ft by induc-
tion, o € F+.

This shows that, for the generalized eigenspace decomposition V* =, V),
we have (VA*)(@M;&A Vi) cC F for each eigenvalue A. Thus, F =), Fy, Fy €
SV, where V; = VH* = ﬂWﬂ(VJ)L by Corollary . Since F is concise,
each F, must be nonzero (in fact, concise with respect to V;). In this case, then,
F is a direct sum.

Now we see what happens when L has just one eigenvalue. Then L is nilpotent
since ker L # 0. We claim that image(ﬁ ) C F* forall v > 1. Indeed,

LVaAp)=a-L"(B)—B-L" (@)
=aL(L"7'8) — (L"'B)(La) + (La)(L""'B) — (L' ' La)
—L@AL'B)+ L~ (L(a) A B),

which is in F by induction. Now suppose L"*! =0 L"; we replace L with
L', so we can assume that L2 = 0 # L. Say k = rank L. Then the Jordan nor-
mal form of L yields a basis ay, ..., &, B1,---, Bks Y1 ---» Yn—2k Of V* such



Apolarity and Direct Sum Decomposability 697

that L(8;) = «; and L(«;) = L(y;) = 0. So L can be written in block form with
respect to this basis,

a By
0 I 0O\ «
L=<0 0 O) B. -
0 0 0/ y
WegiveVthedualbasisxl,...,xk,yl,...,yk,Z1,...,znfzk.NowI:(ai/\,Bj):

a;iaj € FL and L(y ABj) =viaj € F+. Since
(Oll,...,(xk)(oll,...,otk,yl,...,)/n_zk)CFJ‘,

we have F =Y x;H;(y) + G(y, z) where deg H; =d — 1, deg G = d. Further-

more, L(B; ABj)=a;Bi —a;B; € FL, so0 0H;/dy; = 0Hj/dy;. Thus, there ex-

ists H(y) such that H; = 0 H/dy;. This shows the normal form part of the state-
ment of the theorem. Finally, we write F as a limit of direct sums as follows:

o1
F= tlgr(l);(H(m +ix1, .. Yk +ixg) +1G(y, 2) — H(y)), 4)
which, for 7 # 0, is a direct sum over (y; +tx;) D (v, z). O

EXAMPLE 4.6. Let F = xy¢~!, so that F+ = («?, f¢). Then F' contains the
2 x 2 minors of the matrix
a p
(5 2)

In the notation of the above proof, L : T; — T is given by L(x) =0, L(B8) = «.
Then L is nilpotent, L? = 0. The next step in the proof provides a decomposition
F = xH;(y), where deg Hy =d — 1; so H{(y) = y*~'. We have H| = dH/dy
where H(y) = (1/d)y?. In the proof’s notation, G = 0. Of course then

1
F: d_lzl. — d— d'
xy lim —((y +£20)7 = ¥%)

EXAMPLE 4.7. Let F = x%y — y?z. We saw in Example that FL =
(2, ay,a® + By, B>, ap?), so F has two equipotent apolar generators. And F*
contains the 2 x 2 minors of the matrix

a By
-y a 0)°
In the notation of the proof of Theorem 4.5, the endomorphism corresponding to

this matrix is L : Ty — T, given by L(«) = —y, L(B) = «, L(y) = 0. Note that
L is nilpotent, L3 = 0. We replace L with L’ = L?, represented by the matrix

G 2% 0)
0 -y 0)°

Again L’ is nilpotent, L'> = 0. Although the labeling of variables is different
than in the proof, the proof’s next step yields F = zHi(y) + G(x,y), where
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Hi(y) = —y?; apparently, G(x, y) = x*>y. Then H(y) = —(1/3)y>. We get
1
F= hn(l) ?(H(y +1tz2) +tG(x,y) — H(y))
t—
1
= lim — (= (y +12)> + 1x%y + %),
t—0 3t
a limit of direct sums over the subspaces (y +tz) @ (x, y) for t # 0.

Theorem has several parallels in [33]. The linear map L in its proof corre-
sponds to one of the matrices in [33, Def. 2.14]. The nilpotent case is covered by
[33, Thm. 4.5]. In the case of distinct eigenvalues, the projections onto the distinct
eigenspaces give the orthogonal idempotent matrices discussed in [33, Prop. 3.5].
An extended result in this case is given in [33. Thm. 3.7].

Now we prove the converse (cf. [33, Lem. 4.2]).

THEOREM 4.8. If F is a concise limit of s-fold direct sums, then F has at least
s — 1 equipotent apolar generators.

Proof. Suppose F = Fj is a concise limit of s-fold direct sums, Fy = lim F;.
Let J be the flat limit of the ideals F;/-. We have J C F* since differentiation
varies continuously as the F; varies regularly. Indeed, for ® € J, ® =1im ®; for
O, FtJ-, s0 ®; 4 F;, =0fort#0;hence, - F =1im®; - F, =0,s0 O € FL.
By Proposition 2.6, upper-semicontinuity of graded Betti numbers, f,_1 ,(J) >
s —1.

Now there is no general inequality between the graded Betti numbers of an
arbitrary homogeneous ideal / and those of a homogeneous subideal J C I;
Bi,j() > Bi j(J), Bi,j(I) < Bi,j(J),and B; j(I) = B;, j(J) all are possible. How-
ever, in this simple case, we do have the inequality we are looking for by
Lemma 2.9. That is, ,Bn_l,n(FJ-) > Bu—1.2(J) = s — 1, since F is concise, mean-
ing (F1); = 0. By Gorenstein symmetry (2) there are at least s — 1 minimal
generators of degree d in F*. U

This completes the proof of Theorem 1.7, which comprises Theorems 4.5 and

ExaMPLE 4.9. Let F be a concise plane curve (n = 3) of degree d having an
equipotent apolar generator. Either F is a direct sum, F = x¢ 4+ G(y, z), orelse F
is a limit of direct sums of the form F = xy?~! 4+ G(y, z) by the normal form part
of Theorem 4.5. Note that if G(y, z) includes terms ay?~'z + by?, then replacing
x with x + az + by gives us

F=xy""" +22Ga-2(y, 2),

where deg G4_» = d — 2. Conversely, if F is of this form, then F is a limit of
direct sums and has an equipotent apolar generator.

Thus, a concise plane curve F is a limit of direct sums and has an equipotent
apolar generator if and only if, after a linear change of coordinates, either F =
2+ Gy, 2) or F=xy™ +22Ga-2(y, 2).



Apolarity and Direct Sum Decomposability 699

4.3. Lower Bound for Degree of Apolar Generators

Here we prove Theorem 1.9, a lower bound for the maximum degree of the ap-
olar generators of a form F in terms of the degree d of F and the number n of
variables: we show that F- always has a minimal generator of degree at least
(d+n)/n.

LEMMA 4.10. Suppose that 1 C T is a homogeneous complete intersection ideal
of codimension n. Then I = G+ for some homogeneous G € S. If the minimal
generators of I are homogeneous of degrees 81, ..., 8, then degG =61 + --- +
6y —n.

Proof. The existence of G follows from [18, Thm. 21.6]. The degree of G is
equal to the socle degree of Ag = T/I, whichis )/ ,(8; — 1) by, for example,
Exercise 21.16 of [18]. O

We will deduce Theorem 1.9 from the following slightly stronger proposition.

PROPOSITION 4.11. Let F be a homogeneous form of degree d in n variables.
Suppose that FL has minimal generators Oy, ..., Og such that deg ®; = d; for
each i, and let dy < --- < d;. Let § be an integer such that the ideal (FJ‘)Sa is
m-primary. Assume that dy = 8§ < dxy1 or k = s and & = dy; necessarily, k > n.
Thend <dy +dx—1+ -+ + dk—n+1 — 1.

Here m is the graded maximal ideal in 7.

Proof of Proposition . Foreachi=k,k—1,....k—n+1,let; € (FL)dl.
be general. Since (F l)Sdk is m-primary, (F L)(,1,. is a basepoint-free linear series
on V(W,..., V1) for each i. Then by Bertini’s theorem [32, Thm. 1.6.3] and

downward induction on i, the ideal (Wy, Wi_1,..., V;) is a complete intersec-
tion for each i > k — n + 1. In particular, I = (W, ..., Yr_p,41) 1S a complete
intersection of codimension n. By Lemma , I = G+ for a form G of degree
dip 4+ -+ dr—py1 —n. By Lemma 2.1, F = ® 2 G for some ® € T, so that
deg F <degG. O
Proof of Theorem 1.9. Letd; <--- <d; be the degrees of the minimal generators
of F1 as in the previous proposition. Then, regardless of the value of k, we have
d<dy+- - +di—pt+1 —n<né—n. O

Suppose that F is a concise homogeneous polynomial in n variables for which
8 =2, that is, F* is generated by quadrics. Then Theorem implies d =
deg F < n. Moreover, the proof of the theorem shows that F = ® -4 G for some
©® €T and G € S such that degG = n and G is a complete intersection of n
quadrics. For example, let F' be a determinant of a generic k x k matrix,

X1 o X1k
F =det
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In this case, deg F = k, and the number of variables is k2. Then as G we may take
the monomial ]_[f =1 Xij -

However, it is not true that every homogeneous polynomial of the form ® - G
must have (® -4 G)1 generated by quadrics. For example, let G = x; - - - xg, let
O = ajono3 — a4as506, and let F = © 0 G = x4x5x6 — x1x2x3. Then G+ is a
complete intersection of quadrics, but £ has a minimal generator of degree 3 by
Theorem 1.1, namely, aac506 + 01 0203.

The problem of classification of all homogeneous polynomials F with F-
generated by quadrics appears to be difficult. We expect that the answer must
be complex: if F is the permanent of a generic symmetric matrix, then F* has
minimal generators of degree 3, whereas the apolar ideal of the determinant of
the same matrix has only quadratic generators; see [48, Thm. 3.23, Thm. 3.11].
However, this discussion shows that it might be helpful to first classify G with
d = deg G = n and G+ generated by quadrics.

Even the classification of G is difficult. For d =n = 2, any rank two quadric G
has G+ generated by quadrics. For d = n = 3, the plane cubic G has G gener-
ated by quadrics if and only if it is concise and has no degree 3 minimal generators
or, equivalently, G is not a limit of direct sums; see Table |. In particular, the gen-
eral plane cubic has its apolar ideal generated by quadrics. For d = n > 4, the
general form produces a compressed algebra (see the proof of Lemma 3.3) and
thus has no quadratic generators in the apolar ideal.

5. Variation in Families

If F, — F, then it does not necessarily follow that F;* — FL or Ap, — AF as
flat families. For example, x4+ tyd — x%ast— 0, but (x"l)l = (oe‘”‘ , B) is not
the flat limit of the ideals (x? + ry9)L = (ra? — B¢, aB). This can also occur if
all polynomials in the family are concise, for example, x? 4+ y? +1(x + y)? —
x4 ydast — 0.

When {F;} is a family of polynomials such that {F,L} is a flat family, we say
that {F;} is an apolar family and F; — Fy is an apolar limit. It is equivalent to
say that {AF,} is a flat family.

Since we only consider homogeneous polynomials, {F;} is an apolar family if
and only if the Hilbert functions of the Af, are locally constant [18, Exer. 20.14].
When this holds, in particular their sum, the length of Af,, is locally constant.
On the other hand, the values of the Hilbert function are lower semicontinuous
in ¢ since they are the ranks of catalecticants, which are linear maps depending
regularly on ¢. Thus, if length(Af,) is constant in ¢, then the Hilbert function
must also be constant. We emphasize that this implication is dramatically false
if we consider flat families of apolar algebras of nonhomogeneous polynomials;
see, for instance, [27] or [11].

REMARK 5.1. Families of homogeneous polynomials F; such that the algebras
AF, have fixed Hilbert function are intensively studied. If T is a finite sequence
of positive integers, then the set of all homogeneous polynomials of degree d with
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Hilbert function T is denoted in the literature by Gor(T); see, for instance, [29].
In particular, a family F; is an apolar family if and only if for some 7" we have
F; € Gor(T) for all ¢.

PROPOSITION 5.2. Every concise limit of cubic forms is an apolar limit.

Proof. The Hilbert function of the apolar algebra of any concise cubic form in n
variables is 1, n, n, 1, so every concise cubic form has apolar length 2n 4 2, and
every family of concise cubic forms is automatically an apolar family. O

Proposition 5.2 shows that when d = 3, ApoLim N Con = ApoEqu N Con. We will
show that for some n and sufficiently large d, ApoLim N Con g ApoEqun Con.
Then we will show that for n = 3, once again ApoLim N Con = ApoEqun Con.
First, we introduce cactus rank and use it to examine some cases in which we can
show that a form F has numerous equipotent apolar generators.

5.1. Cactus Rank and Number of Equipotent Apolar Generators

In this section, we examine some cases in which we can show that a form F not
only has a equipotent apolar generator, but in fact has several such generators.
Throughout this section, we assume that n =dim V > 2.

PROPOSITION 5.3. Suppose that F is concise and that the Waring rank r (F) = n.
Then F is an n-fold direct sum, and F has at least n — 1 equipotent apolar gen-
erators. Furthermore, if d > 2, then F has exactly n — 1 equipotent apolar gen-
erators.

Proof. Up to a choice of coordinates, F is the equation of the Fermat hypersur-
face. U

PROPOSITION 5.4. Suppose that F is concise and that the border rank br (F) = n.
Then F is a limit of n-fold direct sums, and F has at least n — 1 equipotent apolar
generators.

Proof. F 1is a limit of polynomials as in Proposition 5.3. The second statement
follows by Theorem 4.8. O

There is another notion of rank of polynomials, namely the cactus rank [43]. It
is also called the scheme length in [29, Def. 5.1]. The cactus rank of F € sdy
is the minimal length of a zero-dimensional subscheme R C PV such that [F] €
(vg(R)), or equivalently /(R) C F L Prop. 3.4(vi)]. We prove an analogue of
Propositions 5.3 and 5.4 for cactus rank.

THEOREM 35.5. Suppose that F is concise and that the cactus rank cr(F) = n.
Then F is a limit of direct sums, and F has at least n — 1 equipotent apolar
generators.

Unlike in Propositions and 5.4, we do not claim that F is a limit of n-fold
direct sums.
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This theorem is proven in three steps. The first step (Lemma 5.6) is the same
statement but with an extra assumption that d > n + 1. In the second step, we
use the first step to prove a property about syzygies of zero-dimensional schemes
embedded in a concisely independent way, which might be of interest on its own.
In the final step, we use the syzygies of schemes to prove the theorem.

To obtain a number of minimal generators in some degree, we compare two
idealsJCICT (eg., I = Fl), where J is generated by /<5. Then we compare
the Hilbert functions of T//1 and T/J. The smallest integer d where hr/;(d) #
ht,5(d) is a degree in which there must be a minimal generator of /; in fact, there
are at least 7,y (d) — hr/;(d) minimal generators of degree d.

LEMMA 5.6. With F as in Theorem 5.5, if in addition d > n + 1, then ha,, the
Hilbert function of Ar, is (1,n,n,...,n,1,0,...), and FL has exactly n — 1
minimal generators in degree d.

Proof. Consider an ideal I C T defining the scheme realizing the cactus rank
of F. That is, I is a saturated homogeneous ideal, / C F-, and B =T/I is a
graded algebra with constant Hilbert polynomial equal to cr (F) =n.Let I’ = I,
be the ideal generated by the forms in I of degree less than or equal to n, and let
B =T/I'.

First, note that we have the following inequality of Hilbert functions: 4, <
hpg <n. Since F is concise, n = h,(1) =ha,(d —1). Thus, hp(1) =n, and
since h p is nondecreasing [38, Rem. 2.8], we must have hp(i) =n for all i > 1.
In particular, kg (n) = hp(n) =nsince I} = I, and hg(n+1) > hg(n+1) =n.
On the other hand, by Macaulay’s growth theorem [25, Thm. 3.3] or [8, Cor. 5.1]
we have hp/(n + 1) < hp/(n). Thus, B’ realizes the maximal possible growth of
a Hilbert function from A g/ (n) = hg (n + 1) onwards, and hence by Gotzmann’s
persistence theorem [25, Thm. 3.8] or [8, Cor. 5.3] we have hp (i) =n = hp(i)
for all i > n. Thus, Il.’ = [; for all i > n. This shows that the ideal I is generated
by I<,.

By Macaulay’s growth theorem we have n = ha,(d — 1) < ha.(d —2) <
-+« <hpp(n) <n.In particular, I and the ideal generated by I, = (F Y agree
indegreesn,n+1,...,d — 1. However, h,,(d) = 1, whereas hp(d) = n. Thus,
F+ needs exactly n — 1 minimal generators in degree d. Moreover, I is saturated,
and Fi-n is a saturation of (F+),, = I,,; hence,

FL =((FH)t =) cr=1c Ft.

Therefore, F- and I agree up to degree d — 1, and the Hilbert function of A is
(I,n,n,...,n,1). O

We will consider R C PV, a zero-dimensional locally Gorenstein subscheme.
Such schemes arise naturally when considering cactus rank. Namely, it follows
from [8, Lemma 2.3] that if cr(F) = n, then there exists a zero-dimensional lo-
cally Gorenstein subscheme R such that length R =n and F € (v;y(R)). Here we
will study such R that are embedded into PV in a concisely independent way, that
is, length R = dim V, and R is not contained in any hyperplane. Note that every
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finite scheme can be embedded in a concisely independent way: By, for example,
[9. Lemma 2.3], if R C PV is a finite scheme of length r, then the Veronese reem-
bedding v._1(R) C P(S™1v) spans an (r — 1)-dimensional projective subspace
in which R is embedded concisely independently.

EXAMPLE 5.7. Three points on a line P! are not concisely independent. Three
points on a plane P? in a general position are embedded in a concisely independent
way. Three points in space P? are not concisely independent.

ExAMPLE 5.8. Suppose R = Spec C[e]/(€¢"). Then a concisely independent em-
bedding of R in P"~! is given by the ideal generated by 2 x 2 minors of the
matrix

23] ay - Oy Qf
oy o3 - o 0
M =
Or—1 Op - 0 0
o o - 0 0
Here oy, ..., «, are homogeneous coordinates on pr-1.

EXAMPLE 5.9. Suppose R = Spec C[a, 81/ (e?, B2). Then a concisely indepen-
dent embedding of R in P3 is given by the ideal (a2, B2, ¥, ay, By, af — y8).
Here «, 8, y, § are homogeneous coordinates on P3.

We remark that a concisely independent embedding of a finite scheme is unique
up to linear change of variables: it is the embedding of R = Spec A into P(A),
where the algebra A is treated as a complex vector space. It is also maximal in
the following sense: any other map R — PP* can be obtained as a composition
R < P(A) --» P*, where R — P(A) is the concisely independent embedding,
and P(A) --» P¥ is a rational linear map (a projection followed by an inclusion).

The following example is tailor made for our purposes, as a preparation to
Example

ExaMPLE 5.10. Suppose that G is a concise cubic in six variables xi, ..., X¢.
Let R = Spec Ag be the zero-dimensional Gorenstein scheme of length 14 de-
termined by G. We will now describe in some detail a concisely independent
embedding of R into P13 =PV, where V = (X1, .+.,%6, Y15s---5 Y6, 2, W), and
T =Clay,...,a6, B1,---,B6, ¥, 8] is the coordinate ring. This embedding will
play a role in Example , our explicit example of a homogeneous form which
is a limit of direct sums but not an apolar limit of direct sums.
Consider the ideal I generated by all of the following:

(i) The apolar ideal of G in Cl«y, ..., ag]. This provides 15 quadric minimal
generators and perhaps some cubics.
(i1) 30 quadrics ;B fori # j, i, j € {l,...,6}.
(iii) 13 quadrics oy, Biy, y> fori e {l,...,6}.
(iv) 21 quadrics ;B fori, j € {1,...,6}.
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(v) 6 quadrics o; 8; — yé fori € {l,...,6}.

(vi) 6 quadrics obtained in the following way: For i € {1,...,6}, let ®; €
Clay, . .., ag] be a quadric such that ®; 2 G = x; (these quadrics exist since
G is concise with respect to (xy, ..., x¢)). Then include in / the quadrics
©; — Bid.

Altogether, we obtain 91 quadrics and perhaps some cubics (depending on G).

The radical of the homogeneous ideal [ is generated by

ﬁ:(051,...,056,,31,..-,}367)/>

since oz;t e I by (i), ,Biz € I by (iv), and y? € I by (iii). Thus, the projective scheme
defined by I is supported at the single point [w] € PV, which is contained in the
open subset § # 0. Evaluating the generators of I at § = 1, the reader can easily
check that the scheme supported at [w] is isomorphic to R and also that there are
no linear forms in 7 that contain this scheme.

Also, it is not difficult to see that the Hilbert function of T/ is (1, 14, 14, 14,
...). We combine this information with the fact that the Hilbert function of a sat-
urated ideal is nondecreasing; see [38, Rem. 2.8]. We conclude that [ is the sat-
urated ideal defining R C PV, and the embedding of R is concisely independent
because /1 =0 and length R =dim V = 14.

Finally, we remark that for general G € S 39, the scheme R is a shortest non-
smoothable Gorenstein scheme. See [ Lemma 6.21], where it is shown that
R is nonsmoothable, and [14; 11], where it is shown that all shorter Gorenstein
schemes are smoothable.

ProrosITION 5.11. Suppose that R is a finite locally Gorenstein scheme,
length R = n, and R C PV is concisely independent. Let J C T be the saturated
homogeneous ideal of R. Then B,—1,(J) >n — 1.

Proof. Consider a general F' € (vg(R)) for some d > 2n. It follows from [
Lemma 2.3] that F is not contained in (vy(Q)) for any Q ; R. Tt further follows
from [9, Cor. 2.7] that R is determined by F. Namely, R is the unique subscheme
of PV of length n such that F' € (vg(R)). Also, cr(F) = n. By [8, Thm. 1.6],
J= (FL)E,,. In particular, h s, (1) = h7,5(1) =n, that is, F is concise.

By Lemma and Gorenstein symmetry (2) we have B,_1 ,(F L) >n—1.
The syzygies involve only quadratic generators of F, so they also exist in
(FY<p=J,and B,_1.,(J) = n — 1, as claimed. O

Proof of Theorem 5.5. Let R C PV be a locally Gorenstein scheme of length n
such that F € (vy(R)), whose existence is guaranteed by the definition of cactus
rank and [8, Lemma 2.3]. Let J C T be the homogeneous saturated ideal defin-
ing R. We have J C F, and thus

Butn(FY) = Buoin(J)=n—1

by Lemma and Proposition . By Gorenstein symmetry (2) the ideal F*
must have at least n — 1 minimal generators of degree d, as claimed. ]
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5.2. Cleavable and Uncleavable Schemes

In this section, we give examples of limits of direct sums that cannot be obtained
as apolar limits of direct sums; these are points in ApoEqu that are not in ApoLim.

For a field k, let ng i be the minimal length of a nonsmoothable locally Goren-
stein scheme defined over k. Recall that we are working over the field C, in par-
ticular, in characteristic 0. As we will see, for our purposes, we do not need to
know the value of ng , just that there is such a value. For simplicity, we write ng
for ng c.

Although the value of ny does not matter for us, it turns out that in char-
acteristic O this value has been determined very recently. It is well known that
12 < ng < 14 (see [8, Sect. 6, Sect. 8.1] for an overview and references and the
recent work [14] proving ng # 11). Even more recently, Casnati, Jelisiejew, and
Notari [ |, Thms. A and B] have shown that ny = 14. That is, they prove that all
Gorenstein schemes of length at most 13 are smoothable. This had been predicted
by A. Iarrobino (private communication). See also [3 1] for a related partial result.

For the remainder of this section, we work in characteristic 0, so the reader
may take n to be 14.

PROPOSITION 5.12. Let n =dim 'V > ng, and d > 2n — 1. Then there exist concise
polynomials F € SV with cr(F) = n but br(F) > n.

Proof. Let R be any nonsmoothable Gorenstein scheme of length n. Embed R C
PV in a concisely independent way. Let F' € (vs(R)) be a general element. Then
F is not contained in (vy(R’)) for any R’ g R by [9, Lemma 3.5(iii)]. By [

Cor. 2.7] we cannot have F € (vg(Q)) for any scheme Q C PV of length less
than n, so c¢r (F) = n. For the same reason, since R is not smoothable, there exists
no smoothable scheme Q C PV of length at most n with F' € (vy(Q)). Were
br(F) < n, then there would have to be such a Q; see, for example, [3, Prop. 11],
[9. Lem. 2.6], or [8. Prop. 2.5]. Thus, br(F) > n. O

REMARK 5.13. We have seen that if F' has an equipotent apolar generator, then
F is a limit of direct sums. Also, we have seen that if F is a concise form in n
variables and F is a limit of direct sums of n terms, then F has n — 1 equipotent
apolar generators. Now, a form F as in Proposition has n — 1 equipotent
apolar generators by Theorem 5.5, so it is a limit of direct sums, but it is not
necessarily a limit of direct sums of # terms.

Thus, the closure of the locus of Fermat polynomials is contained in the locus
of forms with n — 1 equipotent apolar generators, but this containment can be
strict.

PROPOSITION 5.14. Let n < ng. Then every homogeneous concise polynomial F €
SV with cr(F) = n has br(F) = n.

Proof. By [8, Thm. 1.4(i)] we have br(F) < n. Since F is concise, we also have
br(F) >n. O

We introduce some terminology about zero-dimensional schemes.
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DEFINITION 5.15. Suppose that R — B is a flat family of zero-dimensional
schemes, b € B is a closed point, and R = R, is the special fiber over b. We
say that R — B is a cleaving of R if the base B is irreducible, the special fiber
R is supported at a single point, and the general fiber is not supported at a single
point. If R admits a cleaving, then we say that R is cleavable. Otherwise, that is,
if R is a finite scheme supported at a single point that does not admit any cleaving,
then we say that R is uncleavable.

We remark that in [1 1] cleavable schemes are called limit-reducible, and uncleav-
able schemes are called strongly nonsmoothable. In [28], a component of the
Hilbert scheme containing uncleavable schemes is called an elementary compo-
nent. Note however that not every scheme that belongs to an elementary compo-
nent is uncleavable since this component intersects also other components of the
Hilbert scheme.

LEMMA 5.16. The following are elementary properties of cleavings and
(un-)cleavable schemes.

(i) A single reduced point is uncleavable. All other smoothable schemes are
cleavable.

(i) A general fiber of any cleaving of a zero-dimensional Gorenstein scheme
supported at a single point is a Gorenstein scheme. (More generally, every
deformation of a finite Gorenstein scheme is Gorenstein.)

(iii) Every nonsmoothable Gorenstein scheme of length ng = 14 is local (that is,
supported at a single point) and uncleavable.

(iv) Every Gorenstein scheme of length less than nq is cleavable, unless it is a
single reduced point.

Proof. The first property is clear. To be Gorenstein is an open condition on the
Hilbert scheme, thus the second property follows.

Also the third property is straightforward—if there exists a cleaving of a
Gorenstein scheme of length ng, then R is a flat limit of a disjoint union of two
shorter Gorenstein schemes. By the definition of n¢g both shorter schemes must be
smoothable. Thus, R is smoothable.

The final property is clear since all smoothable schemes are flat limits of dis-
joint points, and hence they admit a cleaving. O

Note that not every nonsmoothable Gorenstein scheme is uncleavable. Potentially,
it could happen that every nonsmoothable Gorenstein scheme of some fixed length
admits a cleaving to a disjoint union of two shorter schemes, at least one of which
is nonsmoothable. Thus, whereas every n > ng is clearly the length of a nons-
moothable Gorenstein scheme, it could potentially happen that some n > ng is
not the length of any uncleavable Gorenstein scheme.

Let us briefly remark that there exist uncleavable schemes of any (sufficiently
high) finite length if we drop the assumption of Gorenstein [46, Thm. 2]. For
the Gorenstein case, see [ Lem. 6.21], in which it is shown that for r €
{6, 8,9, 10, 11, 12}, general Gorenstein schemes with Hilbert function (1, r,r, 1)
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are uncleavable (these have lengths n € {14, 18, 20, 22, 24, 26}). It is expected
that the statement holds for every r > 8. (Gorenstein schemes with Hilbert func-
tion (1, 7,7, 1) are smoothable [4].)

But it is beyond the scope of this paper to determine all possible lengths of
uncleavable Gorenstein schemes. For the purpose of Theorem 1.8, it is enough
that there exists such a length, namely ng = 14.

So, let R be an uncleavable Gorenstein scheme of length n; > 1. In partic-
ular, by Lemma we have n1 > ng. For example, we may choose R such
that n1 = ng. In characteristic 0, another possible value of n; > 14 would be the
minimal length of a nonsmoothable Gorenstein scheme contained in PS (or, re-
spectively, in IE”4). It is known that such n| <42 (respectively, n1 < 140).

PROPOSITION 5.17. Suppose n =ny| and d > 2ny, with R C PV a concisely inde-
pendently embedded uncleavable Gorenstein scheme of length ny. Let F € SV
be a concise polynomial such that cr (F) =ny and F € (v4(R)). Then F is a limit
of direct sums, but it is not an apolar limit of direct sums.

For example, if n| = ng, then take F with cr(F) = ng and br(F) > ng. See Ex-
ample for an explicit example of such a polynomial F.

Proof of Proposition . Suppose on the contrary that F' is an apolar limit of
direct sums F; = G, + H;. The Hilbert function of Ag is (1,n,n,...,n,1,0,...)
by Lemma 5.6. Consider the two Hilbert functions h4, and hya, . We must
have hag, (k) +hay, (k) =n forall 1 <k <d — 1. In particular, since h4 (k),
hay (k) > 1, we have hag (k),ha, (k) <n —1 for all 1 <k <d — 1. By
[8, Lem. 5.2] we must have hAG, k)y=1,a,a,...,a,1,0,...) and hAH, (k) =
(1,b,b,...,b,1,0,...) for all ¢ close to O, where a + b = n.

By [8. Thm. 1.6], G, € (v4(Q})) and H; € (vy(Q})) for schemes Q) and Q)
of length a and b, respectively. Denote the flat limit Q = lim,—,o(Q}; U Q}). The
length of Q is a + b = n. Moreover, for each ¢ close but not equal to zero, Q; and

7/ are embedded (respectively) into disjoint linear subspaces P¢~! and P21
Thus, the defining ideal I (Q} L QF) of O L1 Q7 satisfies
1(Q;u Q) =1(Q) NI(Q)) = (G )<n N (H ) <p-
The last equality 7 (Q}) = (G;-)<, (and analogously for Q} and H,) follows from
[8. Thm. 1.6(iii)]. Since F; = G, + H; is a direct sum, by Lemma we have
(G,l)sn N (H,L)fn = (F,L)En. Since we are considering an apolar limit, we may
pass to the limit with ideals:

J=lim(1(Q}u Q) = lim(F) < = (F)=n.

The ideal J is a homogeneous ideal defining Q = lim,_,o(Q; U QY), though at
this point potentially J is not saturated. However, using J = (F i)Sn and by
[8. Thm. 1.6(ii1)] applied to F we have that the ideal J must be saturated and
F € (v4(Q)). By the uniqueness in [8, Thm. 1.6(ii)] we have R = Q, which is a
contradiction since Q is a limit of smaller disjoint schemes, that is, Q is cleavable,
whereas R is not.
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In the case where n; = ng and Q is smoothable of length ng, the previous
considerations imply that the border rank of F is (at most) n, a contradiction with
our assumption br(F) > n. [l

ExamPLE 5.18. Letd > 3, let G be a general homogeneous cubic in six variables
X1, ..., X¢, and let

F=(d-2z"7G + 2972 (x1y1 + x2y2 + x3y3 + X4 4 + X5Y5 + X66)

|
d—1°
Consider the concisely independent scheme R defined from G as in Exam-
ple . Then F is apolar to R, which can be verified by acting on F with the
generators (i)—(vi) of Example . Thus, F € (vg(R)). Moreover, since G is
general, in characteristic 0, R is a shortest nonsmoothable Gorenstein scheme; see
[11, Thm. A] and [29, Lem. 6.21]. In particular, R is uncleavable by Lemma
Thus, by Proposition , F is a limit of direct sums but not an apolar limit of
direct sums.

+ w.

5.3. Apolar Limits in the Plane

We show that in the plane, ApoLim = ApoEqu. Recall that when considering
forms in three variables, we write S = Cl[x, y, z] and T = C[«, B, v].

THEOREM 5.19. Let F be a concise form of degree d in n = 3 variables having
an equipotent apolar generator. Then F is an apolar limit of direct sums.

Note that, in contrast to the situation of Proposition 5.2, where every family of
direct sum cubic forms having as the limit a concise cubic form must be an apolar
family, we do not claim here that every family F; — F is necessarily an apolar
family. Rather, we claim only that there exists some apolar family of direct sums
F,— F.

As we will see in the proof of Theorem , “typically” (here we do not
want to specify precisely what does “typically” mean; see the proof below for an
explicit statement), the limit indicated in Example provides an apolar limit.

However, this limit does not work in all cases, as illustrated by the following
example.

ExampLE 5.20. Consider the following sextic in three variables:
F=xy’+y°2.

As indicated by Example 4.9, this is a limit of direct sums. Indeed,

1 1 ° 3.3 6
Fr=2{{y+gix) 1z -y

is a family of homogeneous polynomials (¢ is a parameter of the family) with
Fy = F, and F; for t # 0 after an easy coordinate change becomes

X0 41323 8.
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In particular, F; for ¢ # 0 is a direct sum and the Hilbert function of A, is 1, 3,
4,5,4,3, 1, whereas the Hilbert function of Ap = Af is 1, 3,4, 4,4, 3, 1. Thus,
the family F; is not an apolar family. However, another family

l y—}—ltx 6—y6+ty3z3— Lt216
t 6 400
presents F' as an apolar limit of direct sums.

Proof of Theorem . By Example 4.9, either F is a direct sum, in which case
the statement is trivial, or else after a change of coordinates, F = x yd_1 +G(y,2).
Write G(y, z) = ZZ:O (’;)aquzd_q.

Recall that T = Cla, 8, y] is the dual ring to S = Clx, y, z]. First, we find the
Hilbert function of Ar. In order to reduce subscripts, we write & for the Hilbert
function of Ar. We have hp(0) = hp(d) = 1. We claim that for 1 <k <d — 1,
he(k) =h,2Lgk—1) +2.

Recall that for a form H € S, of degree e and an integer i > 0, 7; - H is the
linear subspace T; - H ={®-H |® € T;} C S,_;.

First, hyz_,G(k — 1) =dim(Ty—;—1 )/2 —1G),and Ty_x—1 y2 - G is spanned by,
forO<i<d—-k-—1,

i+k—1
gyttt a6 = @ <k_ 1>aqy‘”zk+i‘1]

k=1t = \g—i
k—1
d! k-1 .
— oo k—j—1
_(k—l)!jz_o( j )a“’yz '

S0 hy2,gk — 1) = rank M where M;; = (*")ajyi for0<i<d —k—1,0<
j<k-—1.

Meanwhile, hp (k) =dimTy_;~F,and Ty_x— F is spanned by Ty_y_1y - F =
Ty—k—1y -G together with {o/ pA=*=7 JF |0 < j <d —k}. Note that >~ F = 0.
We have
d-1n

k!

- d—D! 4 -
k koFz( k—1 d—k ;.
.. o B G- + 8

apd*1 L F =

Here, 84K 2 F is linearly independent of the other spanning elements since it is
the only one with a monomial involving x. Also, Ty_x—1y - G is spanned by, for
0<i<d—-k-1,
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Thus, Ty—x—1y = G + CyF is spanned by y* together with, for0 <i <d —k — 1,
k—1

k S
Z(.)aj+iy’zk .
=0 ™
So dim(Ty_x—1y = G + Cy¥) = 1 + rank N where Nij = (];)Cljﬂ for0<i <
d—k—1,0<j <k —1.Note that N is obtained from M by rescaling columns,
so rank M = rank N. This proves that hp (k) = h,,LG (k — 1) + 2, as claimed.

Forany 1 <r < %, let 4" be the following function:

1, k=0,
k+2, 1<k<r-—1,

W) = r+2, r<k<d-r,
d—-k+2, d—r+1<k<d-1,
1, k=d,
0, k<Oork>d.

We have shown that A = h” where r = br(y* = G). Let
H ={F=xy"' +G(y,2) |br(y* 2 G) =r}.

We claim that H' is irreducible. Write 6, (vg(P!)) for the affine cone over the
rth secant variety. The map taking F to y2 2 G is simply the pairing with 2
since y2 4 F = y? 4G for F € H". For convenience, we denote this map ¢, so
that o(F) = y2 2 F =y2 4G for F € H". Then ¢ maps H” onto &, (vg_2(P")) \
6r—1(vg—2(P")), the set of binary forms of border rank r, an irreducible variety.
Also the fibers of ¢ are irreducible, specifically, copies of AZ?, since the fiber
through F is ¢~ (¢(F)) = {F 4+ ay? + by?~'z}. Thus, H" is irreducible.

The claim of the theorem is that for all F € H", we can obtain F as a limit
of direct sums that have the Hilbert function 4”. In the following paragraph, we
are going to prove the claim under the additional assumption that F is a general
element of H". Then, in the final paragraph, we are going to use this “generic”
case and the irreducibility of H” to conclude the statement for all polynomials F
in question.

So suppose that F € H” is general. Then y> 4 G € 6,(vg—2(P)) is also a
general element, so )/2—' G= Zf_z 4+ 4 Kﬁl ~2 where the [¢;] € P! are in general
position. In this case, it is easy to integrate y> G (twice), and hence G = clﬁ‘li +
st c,ﬁf + ayd_lz + byd. Therefore, F = (x +az + by)y”l_1 + (012‘1’ 4+ 4
crtd). Let x' =x +az +by. Fort #0, let F/ = %(y + éx’)d + (1 + -+

crﬁf — %yd). Since the ¢; are general and r + 1 < %, we have for general ¢ # 0,

1 1
r<c1£‘f+--~+crﬁf— ?yd> :br(clﬁcf+~--+crﬂf— ;yd) =r—+1.

Since F] is a direct sum, F; =h" = hp (the first equality follows from Proposi-
tion ). Thus, F/ — F is an apolar limit.
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By the argument in the previous paragraph, the irreducible set H" is contained
in the Zariski closure of the locus of direct sums with Hilbert function 4”. So
every F € H” is a limit of direct sums with Hilbert function 4", that is, it is an
apolar limit of direct sums. This proves the claim of the theorem. (]

Note that the apolar ideal of a form in three variables is a height 3 Gorenstein ideal
and is therefore generated by the principal Pfaffians of a skew-symmetric matrix
[7]. Nevertheless, we have not used this information; instead, the key was infor-
mation about apolar ideals of forms in one less variable. It would be interesting to
investigate whether the structure described in [7] can lead to a generalization of
Theorem for forms in n = 4 variables; compare with [21].

It would also be interesting to study limits of direct sums of type (1,n — 1),
s-fold direct sums of type (1,1,...,1,n — s + 1), direct sums of type (1,..., 1,
2,...,2),and so on. Note however that for limits of direct sums of type (1,n — 1),
we cannot expect a similar result to Theorem . This is because for n = 14, the
polynomial F presented in Example is a limit of direct sums of type (1, 13)
but is not an apolar limit, as shown in Example

6. Generalizations and Further Questions
6.1. Linear Series

There are natural generalizations of some of our results to linear series. Let
W C SV be a linear series. A simultaneous power sum decomposition of W
is a collection of linear forms £1, ..., £, such that W is contained in the span of
E‘l’ e, Z,‘.l; equivalently, for each F € W, there are scalars cy, ..., ¢, such that
F = Zciﬂf . The simultaneous Waring rank of W, denoted r(W), is the least
length r of a simultaneous power sum decomposition.

Let S =C[V] =C[xy,...,x,], where x1,...,x, is a basis for V, and let
T =C[V*] =Claj,...,a,] act on S by letting «; act as the partial differen-
tiation operator 9/dx;. The apolar annihilating ideal W+ C T is Wt = {0 |
O F=0,YVF € W}. That is, wt = ﬂFGW FL. The apolar algebra Ay =
T/ W+ is alevel Artinian algebra with socle degree d and type equal to the dimen-
sion of W, meaning that its socle is entirely in degree d and has dimension equal
to dim W. In particular, Ay is Gorenstein if and only if W is one-dimensional,
that is, spanned by a single form.

There is an apolarity lemma just as in the case of a single form. This is well
known to experts; see, for example, [15, Thm. 2.3]. For the reader’s convenience,
we state it here.

LEMMA 6.1. With notation as before, £1, ..., L, is a simultaneous power sum de-
composition of W if and only if the ideal I = I ({[£1], ..., [£/]}) satisfies I C w.

Proof. The decomposition £1, ..., £, is a simultaneous power sum decomposition
of W if and only if W lies in the span of the Ef’, if and only if every F € W can be
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written as a linear combination of the Zfl ,if and only if I C F=* forevery F € W
(by the usual apolarity lemma), and if and only if 7 € (| F+ = W+. (]

Thus, r(W) > dim(Aw), for every 0 < a <d: indeed, if £, ..., ¢, is a simulta-
neous power sum decomposition of W with defining ideal 7, then r > codim /, >
codim(W1), = dim(Aw), for a > 0 (and it is trivial for a = 0).

There is a generalization of the Ranestad—Schreyer lower bound [43] for War-
ing rank for linear series, with essentially the same proof as for the case of a single
form. We briefly review the proof for completeness.

ProPOSITION 6.2. With notation as before, let length(Aw) be the length of Aw

and suppose that W+ is generated in degrees less than or equal to 8. Then r (W) >
length(Aw)/6.

Proof. Suppose that £1, ..., ¢, is a simultaneous power sum decomposition of W
with defining ideal /. The vanishing locus V ((W=)s) in affine space is just the
origin (i.e., a scheme supported at the origin). By Bertini’s theorem, the linear
series (W+); has no basepoints in projective space. Let G € (W1);s be a general
form. Then G does not vanish at any projective point [¢;], so the affine hypersur-
face V(G) does not contain any line that is an irreducible component of V (I).
Therefore, by Bezout’s theorem the intersection of V(G) and V (/) has degree
equal to 8. But this intersection contains the scheme V (W), which has length
equal to length(Aw). So ér > length(Aw). U

As in [47, Rem. 3.5], this holds in arbitrary characteristic.

A direct sum decomposition of W is an expression V = V| & V; and subspaces
Wi € SV, Wy C 89V, such that W € W; @ W, and the projections W — Wy,
W — W, are isomorphisms. Equivalently, for a basis F L ..., FK of W, each
Fi=F 1‘ + F2’ with F ]’ e Wy, Fé € W, and the F' 1’ are linearly independent, and
so are the in.

Now we can generalize some of our results to the case of linear series. Here is
a generalization of Theorem

ProPOSITION 6.3. If a linear series W of degree d forms admits a direct sum
decomposition, then W has at least s = dim W minimal generators of degree d.

Proof. Let W C Wy & Wy, be a direct sum decomposition where

Wy € (8M)a =Clx1, ..., xi1a, Wy € (8”4 =Cly1,...,yjla, and
Wi, Wy # 0.

We denote the dual rings 7% = Clay, ..., o], TP = ClBi,....Bj1, T=T®
TP,

We have Wj- N WyJ- CWL If0<k<dand© € (WJ-)k,then for every F €
W,say F =G — H where G € Wy, H € Wy, we have ® 2 (G — H) =0 =
O-1G-0-1H.S0o®-GeS; ,and ®-H e Sﬁ—k are equal, which implies
©-G=0-H=00rd—k=0.Thus, (W NW;") =W for0 <k <d.
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Let F!, ..., F¥ beabasis for W and for each i, and let F' = F{ — F}, F{ € Wy,
FyeW,. Forl=<j<s,leté, €T, besuchthaté, ;- Fy=1ifi=jand0if
i # j.Similarly, let 8, ; € Tdy be such that §y ; —'Fy" =1lifi=jand0if i # j.
There are such elements by the linear independence of the Fy and F). Let A; =
8y.j+8y . Then A ;2 Fi =0 foreachi,so Aj € WL but A;=F/ = A;2F] =1,
so Aj ¢ WXJ- N Wﬂ,-. Hence, each A; is a minimal generator of W+, The A j
are linearly indepeﬁdent since if > a;A; =0, thena; = (}_a;A;) = Fi =0 for
eachi. O

Next we give a generalization of Proposition

PROPOSITION 6.4. Let W C S¢V. Then W' has a minimal generator of de-
gree d + 1 if and only if there is a nonzero (d + 1)-form G € StV such that
T -GCW.

Proof. First, suppose that W has a minimal generator of degree d + 1. Let I C
W+ be the ideal generated by elements of degree < d. Then I, 1 # Tyy. Let
G € $911V be a nonzero element annihilated by I441. Since G is annihilated
by Iz41, G is annihilated by I, so (W1); = I; € (G1)y. If F € T = G, then
GLCFL In particular, (WL)d C F1, so F € W. This shows that Th-GCW.
Conversely, suppose that G € ST1V is a nonzero (d + 1)-form such that T} —
G C W. As before, let I € W be the ideal generated by elements of degree < d.
In particular, I; € (WL)g € (T1 2 G)1)g. Then Iy € (G1) g4 1: indeed, if © =
> w6, each 6; € Iy, then ® 4G =Y 6; 2 (¢; * G) =0 since each o; G € W
and each 6; € I; € (W1)4. In particular, Iy, 1 # Typ1 = (Wo)g41. So W has a
minimal generator of degree d + 1. (]

Recall that the rth prolongation of W C S?V is the set of (d 4 r)-forms G such

that 7"~4 2 G € W [49, Def. 1.1]. Proposition shows that W+ has a minimal

generator of degree d + 1 if and only if the first prolongation of W is nonzero.
We give a generalization of Theorem 1.9. First, we generalize Lemma

LEMMA 6.5. Suppose that W C SV and U C SV are linear series such that
Utc Wt Thene>d and W € T,_;-U. That is, for every F € W, there are
GeUand ® € T,_; such that F =© 41 G.

Proof. This follows by the inclusion-reversing part of [18, Thm. 21.6]. U
Now here is a generalization of Theorem

PROPOSITION 6.6. Let W C SV be a linear series, and n = dim V. Suppose
that W+ has minimal generators Oy, ..., Q4 such that deg®; = d; for each
i, and dy < --- <ds. Let § be an integer such that the ideal (WL)S; is m-
primary. Assume that dy = § < diy+1 or k = s and & = ds; necessarily, k > n.
Thend <dy +dy—1 + -+ +dx—pny1 —n.
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The proof is similar to the proof of Proposition . As before, we immediately
deduce the following:

COROLLARY 6.7. Let W C SV be a linear series. Let n = dim V. Suppose that
W is generated in degrees less than or equal to 8. Then d < (8 — 1)n.

It would be interesting to see if our other results, such as Theorem 1.7, can be gen-
eralized to linear series. The proofs we have given have used Gorenstein duality,
which is not available since the ideals W+ are not Gorenstein.

6.2. Overlapping Sums

Let F =G| —Gy, Gj € §4V;, G; # 0fori =1, 2. Theorem shows that if V| N
V, = {0}, then F L has a minimal generator of degree d. Here we are interested
in allowing V| N V, to be nonzero, so that they form an “almost direct sum” or
“overlapping sum”. We give a statement for the case dim(V; N V,) = 1.

PROPOSITION 6.8. Let F = G| — Ga, G; € S4V;, with G; concise in V; for
i = 1,2, and suppose that Vi N V, is one-dimensional, spanned by x. Moreover,
suppose that V; # (x) and max(deg,(G1),deg,(G2)) < d/2. Let s = max{t |
x' € TGy NT 2Gy). Then F* has a minimal generator of degree d — s.

Proof. As in the proof of Theorem 1.1, GlL N G2L C FL. We claim that F ;- =
(Gt NGy for0<a<d—s.1fOeFl then®-1G;=0-2G, e S9%x),
thatis, ®2G| = ©®=G, = cx?~ for some scalar c. We have x* € TG NT 2G>,
x5t ¢ T-G1NT-Gy; more generally, x¥eToG NT2G,ifand onlyifk <s.
So we must have ¢ =0 or d — a < s, equivalently, © € GlL N G2L ora>d—s.
This proves the claim.

Note thatif x! e T 4Gy, thent < deg,(G1). Thus, s <deg,(G1) <d/2.

Now there exist 81, 8> € Ty_s such that §; 2 G; =x*,81 2G>, =8,-G =0.To
see this, let V7 have a basis {x, y1, ..., y;}, and let V; have a basis {x, z1, ..., zx}.
Let {a, B1,..., B} be the dual basis for Vl*, and {ao, y1, ..., yx} be the dual
basis for V. Let T8 = Cla, p1,...,8j1 and TV = Cla, y1, ..., vx]. We have
T =Cla,B1,....Bj,v1, ..., ¥]. There is a 8] € Ty_, such that §; 2 G| = x°.
Since every term of 5/1 that involves a y; annihilates G, we can delete those
terms to get an element 81 € Tff s such that §; 4G = x*. Every term of §; that
has a f; annihilates G,. If 8; has a term ca?™%, ¢ # 0, then by the hypothesis
deg,(G2) <d/2 <d — s we see that this term also annihilates G,. So §;1G, =0,
as desired. It is similar to produce &;.

Let A=68; + 6. Then A € FdL_X, but A ¢ GlL N GZL. Hence, A is a minimal
generator of F: it cannot be generated in lower degrees since all elements in
lower degrees lie in GlL N G2L. (]

COROLLARY 6.9. Let F = G| — Ga, G; € S2V;, G; concise in Vi fori =1,2,and
suppose that V1 NV, is one-dimensional, spanned by x. Moreover, suppose V; #
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(x) and t = max(deg,(G1), deg,(G2)) <d/2. Then F~+ has a minimal generator
of degree at least d — t, in particular, strictly greater than d /2.

It would also be interesting to investigate cases with larger overlap or with more
than two overlapping summands.

6.3. Other Base Fields

Most of our results, including results overlapping with [33], also hold over any
algebraically closed field k. The main difference is that we need to consider
S =Kk[x1,..., x,,]D P to be the divided power algebra, rather than the polynomial
ring, and the apolarity action of 7" on S is now as if the differentiation was very
naive: o; 2 x;@ = x; @D (no d coefficient); see [29, App. A], [18, Sect. A2.4].
All occurrences of powers of linear forms in S should now be replaced by the di-
vided powers, for instance, xd-1 y should be x@-D v, and so on. In particular, the
Veronese embedding vy : PV — P(SdV) is now vy ([x]) = [x], and the Waring
rank is computed with respect to the image of v, (and the border rank, cactus
rank, etc.).

In this setup, Theorems 1.1, 1.7, and and their proofs remain valid over any
algebraically closed base field k of any characteristic; in particular, direct sums
and their concise limits have equipotent apolar generators; any concise divided-
powers form with an equipotent apolar generator is a limit of direct sums; and
the bound d < (§ — 1)n relating the greatest degree 6 of apolar generators and the
degree d of the form is valid. Proposition 1.6 only requires the change of £¢ into
€@ 5o that forms of degree d with apolar generator in degree d + 1 essentially
depend on just one variable. Proposition is proved over any field in [51].

Theorem 1.8 consists of two parts. The first consists of Theorem (in three
variables, all limits of direct sums are apolar limits of direct sums) and Proposi-
tion (all limits of cubics are apolar limits), which are valid with no significant
change to the statements or proofs. In fact the proof of Theorem becomes
slightly simpler as all coefficients like 4 or (qli,-) are replaced with just 1 and in
the end the matrices M and N are just equal. The second part is Proposition
(there exists a limit of direct sums, which is not an apolar limit of direct sums).
To prove this statement, we used results from [8], which is written over C, so
Proposition is not proven over k. Similarly, the other results presented in
Sections and also depend on [8]. However, the first and second authors
believe that the results of [8] used in this article can be generalized to any charac-
teristic.

Section and Table | describe the behavior and classification of plane cu-
bics. In positive characteristics, these are different, particularly the cases of char-
acteristics 2 and 3. The numerous examples throughout the paper might be valid
only in some characteristics, whereas in the other characteristics, they need to be
appropriately adjusted. The exact value of the integer ng  (the least length of a
nonsmoothable Gorenstein scheme) might be different in positive characteristics,
particularly in characteristics 2 and 3. Similarly, the set of integers 71 (the lengths



716 W. BuczyNskA, J. BuczyKski, J. KLEPPE, & Z. TEITLER

of uncleavable Gorenstein schemes) may be different in positive characteristics,
particularly in characteristics 2 and 3. It is beyond the scope of this paper to pursue
these issues, but see the references mentioned in Section 5.2. No other changes
are needed to make this paper valid over any algebraically closed field.
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