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A Property of Quasi-diagonal Forms

A. Schinzel

The aim of this paper is to prove the following result.

Theorem. Let k be a positive integer and let Fi ∈ Z[x i] be a form of degree k,
where x i (i = 1, 2, . . . ) are disjoint vectors of variables. Assume that

(∗) either not all forms are semidefinite of the same sign, or all forms are non-
singular.

Then there exists a positive integer s0 such that, for all s, every integer represented
by

∑s
i=1 Fi(x i ) over Z is represented by

∑s0
i=1 Fi(x i ) over Z.

If k = 2, then the condition (∗) can be omitted. J. Szejko has conjectured that the
condition (∗) is superfluous.

Corollary. Let ki be a bounded infinite sequence of positive integers, and let
Fi[x i] be an infinite sequence of nonsingular forms of degree ki with the x i dis-
joint. Then there exists a positive integer s0 such that, for all s, every integer
represented by

∑s
i=1 Fi(x i ) over Z is also represented by

∑s0
i=1 Fi(x i ) over Z.

Remark 1. The assertion is false when ki = 2i and Fi = x
ki

i (i = 1, 2, . . . ). It
may be enough to assume that

∑∞
i=1

1
ki

= ∞.

Notation. For a given field K and a form F ∈ K[x1, . . . , xr ], we use D(F ) to
denote the Netto discriminant of F —that is, the resultant of ∂F

∂xi
(i = 1, 2, . . . , r);

note that D(F ) differs from the true discriminant of F by a constant factor (see [6,
p. 434]). Also, h(F, K) is the least h such that F = ∑h

i=1 GiHi, where Gi, Hi ∈
K[x1, . . . , xr ] are forms of positive degree and h(F ) = h(F, Q).

For a ∈ Z \ {0} and p a prime, ordp a is the highest exponent e such that
pe|a (i.e., pe‖a); ordp 0 = ∞. For x = [x1, . . . , xr ] ∈ Zr, we have ordp x =
min1≤i≤r ordp xi. Finally, e(x) = exp{2πix}.
Our proof of the theorem is based on the following series of seventeen lemmas.

Lemma 1. Let p be a prime, F ∈ Z[x] a form of degree k = pτk0, and k0 ∈
Z \ pZ. Let γ = τ + 2 if p = 2 and τ > 0 and let γ = τ + 1 otherwise. If
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a ∈ Zp \ {0}, pν‖a, and the congruence F(x) ≡ a (mod pγ +ν) is solvable, then
the equation F(x) = a is solvable in Zp.

Proof. If F(x0) ≡ a (mod pγ +ν), then pν‖F(x0) and F(x0)p−ν ≡ ap−ν

(mod pγ ). Then, by [4, Lemma 9] (or its proof for the case p = 2, τ = 0),
the congruence hkF(x0)p−ν ≡ ap−ν (mod pn) is solvable for every n. Thus, by
compactness of Zp, the equation hkF(x0)p−ν = ap−ν is solvable in Zp and it suf-
fices to take x = hx0.

Lemma 2. Let F ∈ Z[x1, . . . , xr ] be a form of degree k, and let c ∈ Z \ {0}. For
p a prime, if a congruence F(x) ∼= c (mod p2 ordp kc+1) is solvable then, for all n,
the number L(F, c, pn) of solutions of the congruence

F(x) ∼= c (mod pn) (1)

satisfies
L(F, c, pn) ≥ p(n−2 ordp kc−1)(r−1). (2)

Proof. By Euler’s theorem (see [8, Satz 27]),
r∑

i=1

∂F

∂xi

xi = kF. (3)

For a certain ξ ∈ Zr we have

F(ξ) ∼= c (mod p2 ordp kc+1), (4)

so it follows from (3) that, for a certain h ≤ r,

δ = ordp

∂F

xh

(ξ) ≤ ordp kc;
now, by (4), we have

F(ξ) ≡ c (mod p2δ+1).

It follows from the proof of Theorem 3 in [1, Chap. I, Sec. 5] that, if

xi ≡ ξi (mod p2δ+1) for i �= h,

then there exists an xh such that

F(x) ≡ c (mod pn).

Clearly, (2) holds.

Lemma 3. Let F ∈ Z[x1, . . . , xr ] be a form of degree k with D(F ) �= 0, and let
p be a prime. If a congruence F(x) ≡ c (mod p2 ordp D(F )+1+kν) is solvable with
ordp x = ν then, for all n, the number L(F, c, pn) of solutions of the congru-
ence (1) satisfies

L(F, c, pn) ≥ p(n−2 ordp D(F )−1−ν)(r−1). (5)

Proof. Consider first the case ν = 0. Since D(F ) is the resultant of ∂F/∂xi (i =
1, 2, . . . , r), we have (see [8, Satz 124]) that
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r∑
i=1

∂F

∂xi

φij(x1, . . . , xr) = D(F )x k r

j (6)

for all j ≤ r, where φij ∈ Z[x1, . . . , xr ]. Since

F(x) ≡ c (mod p2 ordp D(F )+1) (7)

has a solution ξ with ordp ξ = 0, we obtain from (6) that, for a certain h ≤ r,

δ = ordp

∂F

∂xh

(ξ) ≤ ordp D(F );
then, by (7),

F(ξ) ≡ c (mod p2δ+1).

It follows, as in the proof of Lemma 2, that

L(F, c, pn) ≥ p(n−2 ordp D(F )−1)(r−1).

Consider now the general case. Since

F(ξ) ≡ c (mod p2 ordp D(F )+1+νk ) and ordp(ξ) = ν,

we have
F(p−νξ) ≡ cp−νk (mod p2 ordp D(F )+1).

By the already proved case of the lemma, we have

L(F, cp−νk, pn−ν) ≥ p(n−2 ordp D(F )−1−ν)(r−1).

Every solution of the congruence

F(y) ≡ cp−νk (mod pn−ν)

gives rise to a solution of the congruence (1) by the substitution x = pν y, and solu-
tions that are distinct (mod pn−ν) give rise to solutions that are distinct (mod pn).

Thus (5) holds.

Lemma 4. Let l = 2k2(k, 2)2 − k(k, 2), s ≥ l + 1, p be a prime, and di (1 ≤
i ≤ s) be p-adic units. Then, for every integer c and all positive integers n, the
congruence

c ≡
s∑

i=1

di x
k
i (mod pn)

is solvable with at least one xi �≡ 0 (mod p), and the relevant equation is solvable
in Zp.

Proof. For n = γ the assertion is proved in [4, pp. 53–54]. Assume without loss
of generality that

c ≡
s∑

i=1

diξ
k
i (mod pγ ) and ξs �≡ 0 (mod p).

Applying Lemma 1 with F(x) = ds x k and a = c − ∑s−1
i=1 diξ

k
i allows us to infer

the existence of an η ∈ Z such that
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c ≡
s−1∑
i=1

diξ
k
i + dsη

k (mod pn);

clearly, ηk ≡ ξk
s (mod pn) and so η �≡ 0 (mod p). Solvability of the relevant equa-

tion in Zp follows from compactness of Zp.

Lemma 5. Let Fi(x i ) be a nonsingular form of degree k in ri variables (1 ≤ i ≤ s),
let p be a prime, and let pδpi be the highest power of p dividing Fi(ηi ) for all
ηi ∈ Zri. If s ≥ kl + 1 and if the equation

F(x) :=
s∑

i=1

Fi(x i ) = N (8)

is solvable in Zp, then for all n we have

L(F, N, pn) ≥ p(n−γp−δp)(R−1), (9)

where

γp = 2 ordp D(F ) + 1,

δp = max
1≤i≤s

δpi, and

R =
s∑

i=1

ri .

Proof. We note first that, by assumption, D(Fi) �= 0 (1 ≤ i ≤ s); hence D(F ) �=
0 by the Laplace formula (see [7, 5.10]). Let

N = pδd for d a p-adic unit,

and assume first that δ < δp. Then equation (8) gives

ordp x ≤
⌊

δ

k

⌋
< δp

and so, by Lemma 3, (9) holds.
Assume now that δ ≥ δp (or N = d = 0) and that Fi(ηi ) = pδpidi for di =

a p-adic unit. Because s ≥ kl + 1, there is a residue r (mod k) such that S =
{i ≤ s : δpi ≡ r (mod k)} satisfies |S| ≥ l + 1. Let δpm = maxi∈S δpi . Then by
Lemma 4 we have

pδ−δpmd ≡
∑
i∈S

diξ
k
i (mod pγp+δp ),

where not all the ξi are divisible by p. Suppose ξj �≡ 0 (mod p). Now put x i ≡ 0
(mod pγp+δp ) for i /∈ S and

x i ≡ p(δpm−δpi )/kηiξi (mod pγp+δp ) for i ∈ S \ {j}.
Since γp ≥ 2 ordp D(Fj ) + 1 by the Laplace formula, it follows that
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Fj(xj ) ≡ N −
s∑

i=1
i �=j

Fi(x i ) (mod p2 ordp D(Fj )+1+δp )

has a solution p(δpm−δpj )/kηj = η′
j with ordp η′

j = δpm−δpj

k
. Hence, by Lemma 3,

L(F, N, pn) ≥ p( ≥ p(n−γp−δp)(R−1),

where

( =
s∑

i=1
i �=j

(n − γp − δp)ri +
(

n − γp −
⌊

δp

k

⌋)
(rj − 1).

Therefore, (9) holds again.

Lemma 6. Let φ ∈ Z[x1, . . . , xr ] be a polynomial of degree k > 1, F the leading
form of φ, α ∈ R, and B a certain product of fixed intervals of length ≤ 1. Let :

S(α) =
∑

x∈PB∩Zr

e(αφ(x));

σ(2) = 1, σ(k + 1) =
k∑

u=2

(
k − 1
u − 2

)
σ(u) (k ≥ 2).

Then, for every positive . ≤ k − 1 and ε > 0 and for all sufficiently large P,
either

|S(α)| ≤ P
r−.

h(F )

(k−1)2k−1σ(k)
+ε

or there exists a positive integer q satisfying

q ≤ cP . and ‖αq‖ < P −k+., (10)

where c ≥ 1 depends only on φ − φ(0) and B.

Proof. The lemma follows from statements 4A and 7A of [9, Chap. III] and
roughly as in [9, p. 89], where we put d = k, s = r, t = .

h(F )

(k−1)2k−1σ(k)
− ε,

and η = .
k−1. The σ(k) that we have defined recursively coincides with the σ(k)

defined in [9, p. 117]. Indeed, it is easily proved by induction that σ(k) as de-
fined in this paper satisfies σ(k) ≥ 2k−2 − 1. Moreover, for every k > 1, we have
(k − 2)! (log 2)2−k ≥ σ(k) > 1

2 (k − 2)! (log 2)2k. Note also that |S(α)| depends
only on α and φ − φ(0).

Lemma 7. For integers a and q with q > 0 and (a, q) = 1, let

S(a, q) =
∑

z mod q

e

(
a

q
φ(z)

)
.

Then, for k ≥ 2 and ε > 0,

S(a, q) � q
r−(1−ε)

h(F )

(k−1)2k−1σ(k)
+ε

.



112 A. Schinzel

Proof. In Lemma 6 we take α = a/q, . = 1 − ε, P = q, and B = [0,1]r. We
obtain that either

|S(a, q)| ≤ q
r−(1−ε)

h(F )

(k−1)2k−1σ(k)
+ε

or there exists a positive integer q ′ ≤ cq1−ε with ‖αq ′‖ < q−k+1−ε. However, for
qε > c we have ‖αq ′‖ ≥ 1/q and so q−k+2−ε > 1, which is impossible for k ≥ 2.

For (a, q) = 1, let Ma,q be the set of α ∈ (0, 1) satisfying

q ≤ cP . and

∣∣∣∣α − a

q

∣∣∣∣ ≤ P −k+.,

and let m be the complement of the union of all Ma,q where q ≤ cP . and
(a, q) = 1.

Lemma 8. If h(F ) ≥ (k − 1)2kσ(k) + 1, then∫
m

|S(α)| dα � P r−k−./(k−1)2k−1σ(k).

Proof (following [5, Sec. 4]). Let E(.) be the set of those α ∈ [0, 1) for which
there exists a positive integer q satisfying (10). Plainly E(.) increases with ..

Since every α has a rational approximation satisfying 1 ≤ q ≤ P k/2 and ‖qα‖ <

P −k/2 and since these inequalities imply (10) with . = k/2, the whole interval
[0, 1) is contained in E(k/2). On the other hand, for P > P0(ε), the set m is
contained in the complement of E(. − ε). We choose numbers .0, .1, . . . , .g

such that
. − ε = .0 < .1 < · · · < .g = k/2.

Then m is contained in the union of the sets

E(.f) − E(.f −1), f = 1, . . . , g. (11)

By Lemma 6 with . = .f −1, we have

|S(α)| ≤ P
r− h(F )

(k−1)2k−1σ(k)
.f −1+ε

for all α in the set (11). Furthermore, the set (11) is a part of E(.f) and so, by
(10), the measure of E(.f) is

�
∑

q≤cP
.f

q∑
a=1

q−1P −k+.f � P −k+2.f .

Therefore, ∫
m

|S(α)| dα � P
r− h(F )

(k−1)2k−1σ(k)
.f −1+ε−k+2.f

� P
r−k− .f −1

(k−1)2k−1σ(k)
+2(.f −.f −1)+ε

.

Provided the numbers .0, . . . , .g are chosen sufficiently close together (but inde-
pendent of P ), the last exponent is less than

r − k − .

(k − 1)2k−1σ(k)
+ 2ε < r − k − .

(k − 1)2k−1σ(k) + 1
.
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Lemma 9. For α in Ma,q we have

S(α) = q−rS(a, q)I(β) + O(P r−1+2.), (12)

where β = α − a/q and

I(β) =
∫

PB

e(βφ(ξ)) dξ . (13)

Proof (following [5, Sec. 4]). In the sum

S(α) =
∑

x∈PB∩Zr

e(αφ(x1, . . . , xr)), (14)

put xi = qyi + zi for 0 ≤ zi < q. Then

S(α) =
∑

z

∑
y

e(αφ(qy + z)) =
∑

z

e

(
a

q
φ(z)

) ∑
y

e(β(qy + z)).

The inner sum is over all y such that qy + z is in the box PB. Thus the variables
y1, . . . , yr run over independent intervals whose lengths are much less than P/q,
since q is small compared with P. For any integer point y and any differentiable
function f(η), we have

f(y) =
∫

|η−y|<1/2
f(η) dη + O

(
max

∣∣∣∣ ∂f

∂ηj

∣∣∣∣
)

, (15)

where the maximum is taken over j and over η in the cube of integration.
When f(η) = exp{2πiβφ(qη + ζ )}, we have

max

∣∣∣∣ ∂f

∂ηj

∣∣∣∣ � q|β||qη + ζ |k−1 � q|β|P k−1.

Now applying (15) to each integer point y in the foregoing inner sum, we obtain an
integral extended over a union of unit cubes that differs from the box of summation
by at most 1 in each dimension. The discrepancy in the volume is � (P/q)r−1.

Hence ∑
y

e(βφ(qy + z)) =
∫

e(βφ(qη + ζ )) dη

+ O(q|β|P k−1(P/q)r ) + O((P/q)r−1),

where the integration is over those η for which qη + ζ lies in PB.

In this equation, if we change from the variable η to ξ = qη + ζ then the right-
hand side becomes

q−r

∫
PB

e(βφ(ξ)) dξ + O(P r+k−1q1−r |β|) + O(P r−1q1−r ).

Substituting in the double sum, we obtain

q−rS(a, q)I(β) + O(P r+k−1q|β|) + O(P r−1q)

and now (13) follows from the definition of Ma,q .

Lemma 10. Suppose that h(F ) ≥ (k − 1)2kσ(k) +1. Then the number N(P ) of
solutions of F(x) = N with x in PB ∩ Zr satisfies
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N(P ) = P r−kJ(P )(S + O(P −./(k−1)2k−1σ(k)+1) + O(P r−k−1+5.),

where

S =
∞∑

q=1

q∑
a=1

(a,q)=1

q−rS(a, q)

and

J(P ) =
∫ P .

−P .

dγ

∫
B

e(γP −k(F(P x) − N )) dx. (16)

Proof. The number of integer points x in PB with F(x) = N is equal to∫ 1

0
S(α) dα

by the definition of S(α) in (15) with φ(x) = F(x) − N. We split the interval of
integration into the various intervals Ma,q and the set m. By Lemma 8, the con-
tribution of m is O(P r−k−./(k−1)2k−1σ(k)+1). By Lemma 9, the contribution of the
intervals Ma,q is

∑
q≤cP .

q∑
a=1

(a,q)=1

∫
Ma,q

S(α) dα =
∑

q≤cP .

q∑
a=1

(a,q)=1

q−rS(a, q)

∫
|β|<P −k+.

I(β) dβ

+ O

( ∑
q∈cP .

qP r−1+2.P −k+.

)
.

The error term here is O(P r−k−1+5.). Once we put β = P −kγ, the integral with
respect to β becomes

P −k

∫
|γ |<P .

I(P −kγ ) dγ

and, by (14),

I(P −kγ ) =
∫

PB

e(P −kγφ(ξ)) dξ = P r

∫
B

e(P −kγ (F(x) − N )) dx.

Thus the integral with respect to β becomes P r−kJ(P ).

It remains to consider

∑
q≤cP .

q∑
a=1

(a,q)=1

q−rS(a, q).

When continued to infinity, this series is absolutely convergent by Lemma 7 (since
h(F ) ≥ (k −1)2kσ(k)+1) and has sum S. The preceding finite sum differs from
S by an amount

�
∑

q>cP .

q · q−r · qr−h(F )/(k−1)2k−1σ(k)+ε � P −./((k−1)2k−1σ(k)+1).

This proves Lemma 10.
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Lemma 11. If s ≥ 3 and not all forms Fi(x i ) (i ≤ s) are semidefinite and of
the same sign, then there exists a real nonsingular solution (ξ ∗

1 , . . . , ξ ∗
R) of F(x) =∑s

i=1 Fi(x i ) = 0.

Proof. Since not all forms Fi(x i ) are semidefinite and of the same sign, there exist
i, j ≤ s and ηi, ξj such that Fi(ηi ) > 0 and Fj(ξj ) < 0 (i = j is not excluded).
Because s ≥ 3, there exists an h ≤ s with h �= i, j. We may assume without loss
of generality that ∂Fh

∂xh1
�= 0, and we let a0(xh2, . . . , xhrh

)xd
h1 be the leading term of

Fh with respect to xh1. There exists a ξ ′
h = [ξh2, . . . , ξhrh

] such that a0(ξ ′
h) �= 0.

In view of the symmetry between i and j, we may assume that a0(ξ ′
h) > 0.

Let Dh be the discriminant with respect to xh1 of F(x). Note that Dh contains
the term (−1)d(d−1)/2dda0(x ′

h)d−1F(x1, . . . , xh−1, 0, x ′
h, xh+1, . . . , xs)

d−1, which is
the leading term of Dh with respect to F(x1, . . . , xh−1, 0, x ′

h, xh+1, . . . , xs). Thus,
in particular, for fixed ξ1, . . . , ξh−1, ξh+1, . . . , ξs and sufficiently large ζ we have
Dh(ξ1, . . . , ξh−1, ξ ′

h, ξh+1, . . . , ξj−1, ζξj , ξj+1, . . . , ξs) �= 0. For sufficiently large ζ

we have F(ξ1, . . . , ξh−1, 0, ξ ′
h, . . . , ξj−1, ζξj , ξj+1, . . . , ξs) < 0 and

lim
xh1→∞ F(ξ1, . . . , ξh−1, xh1, ξ

′
h, ξh+1, . . . , ξj−1, ζξj , ξj+1, . . . , ξs) = ∞,

and there is a ξh1 such that F(ξ1, . . . , ξj−1, ζξj , ξj+1, . . . , ξs) = 0. But then

∂F

∂xh1
(ξ1, . . . , ξj−1, ζξj , ξj+1, . . . , ξs) �= 0,

proving the lemma.

Remark 2. In [5] it is stipulated that, in a real nonsingular solution of F(x) = 0,
all coordinates must be nonzero. In [4], however, the only coordinate that must be
nonzero is the one with respect to which the partial derivative is nonzero.

Lemma 12. If B is a cube
|ξj − ξ ∗

j | < ;,

where ξ ∗
j is a nonsingular solution of the equation F(x) = 0 and ; is sufficiently

small, then
lim

P→∞ J(P ) = J0 > 0.

Proof (following [3, Sec. 6]). For x in a fixed cube B, we have

e(γP −k(F(P x) − N )) = e(γF(x)) + O(P −k+.)

if |γ | < P .. Hence, by (16),

J(P ) =
∫ P .

−P .

dγ

∫
B

e(γF(x)) dx + O(P −k+2.).

Put µ = P .. Then

J0(µ) :=
∫ µ

−µ

(∫
B

e(γF(ξ)) dξ

)
dγ =

∫
B

sin 2πµF(ξ)

πF(ξ)
dξ

=
∫ ;

−;

· · ·
∫ ;

−;

sin 2πµF(ξ ∗ + η)

πF(ξ ∗ + η)
dη, (17)

where ξ = ξ ∗ + η.
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For any η, we have

F(ξ ∗ + η) =
s∑

i=1

ri∑
j=1

cij ηij +
k∑

κ=2

Pκ(η), (18)

where the Pκ(η) are forms of degree κ in η. We have

cij = ∂F

∂xij

(ξ ∗),

and we may suppose without loss of generality that c11 = 1.

For |η| < ; we have
|F(ξ ∗ + η)| < σ,

where σ = σ(;) is small when ; is small. Put F(ξ ∗ + η) = ζ. Now, if ; is suf-
ficiently small, then we can invert the relation (18) and express η11 in terms of ζ

and ηij (j > 1 for i = 1) by means of power series. This expression will be of
the form

η11 = ζ −
r∑

j=2

c1j η1j −
s∑

i=2

ri∑
j=1

cij ηij + P(ζ, ηij ),

where P is a multiple power series beginning with terms of degree ≥ 2. Hence

∂η11

∂ζ
= 1 + P1(ζ, ηij )

and, by taking ; sufficiently small, we can ensure that |P1| < 1
2 for |ηij | < ;

(j > 1 for i = 1) and |ζ| < σ.

A change of variables from η11 to ζ in (17) yields

J0(µ) =
∫ σ

−σ

sin 2πµζ

πζ
V(ζ) dζ, (19)

where

V(ζ) =
∫

B ′
(1 + P1(ζ, ηij )) dη12 · · · dηsrs

;

here B ′ denotes the part of the (R − 1)-dimensional box

|η12| < ;, . . . , |ηsrs
| < ;

in which |η11| < ;—that is, in which∣∣∣∣ζ −
r1∑

j=2

c1j η1j −
s∑

i=2

ri∑
j=1

cij ηij + P(ζ, ηij )

∣∣∣∣ < ;.

It is clear that V(ζ) is a continuous function of ζ for |ζ| sufficiently small. It can
also be easily seen that V(ζ) is a function of bounded variation, since it has left and
right derivatives at every value of ζ and these are bounded. Hence, by Fourier’s
integral theorem (see [10, Sec. 9.4]) applied to (19), we have

lim
µ→∞ J0(µ) = V(0).
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Finally, V(0) is a positive number because the cube B ′ contains a sufficiently
small (R −1)-dimensional cube centered at the origin and in such a cube we have
1 + P1 > 1

2 . This proves the lemma.

Lemma 13. If s ≥ 2 and nonsingular Fi(x i ) (i ≤ s) are semidefinite forms of
the same sign and if N is also of the same sign for B the unit cube, then

lim|N |→∞ J(|N |1/k ) = J0 > 0.

Proof. The forms Fi are nonsingular. Hence if they are semidefinite then they are
definite, for otherwise the real points ξ �= 0 such that Fi(ξ) = 0 would be singu-
lar points. Assume without loss of generality that the Fi are positive definite and
that N > 0. Put P = N1/k. By Lemma 10, we have

J0 =
∫ ∞

−∞
dγ

∫
B

e(γ (F(ξ) − 1) dξ .

By [9, Chap. I, Lemma 7D],

J0 = lim
L→∞ L

∫
B

(1 − L|F(x) − 1|) dx,

|F(x) − 1| ≤ 1

L
.

Hereafter, the inclusions written below the integrals define the domain of inte-
gration.

Let x i = (xi1, . . . , xiri
) and perform the change of variables xsj = xsrs

yj

(1 ≤ j < rs) and

F1(x1) + · · · + Fs−1(xs−1) + x k
srs

Fs(y, 1) = 1 + L−1ξ.

We obtain

J0 = lim
L→∞

1

k

·
∫

x i∈[0,1]ri

∫
y∈[0,1]rs−1

∫ 1

−1
(1 − |ξ|) dx1 · · · dxs−1 dy dξ(

1+ L−1ξ −∑s−1
i=1 F(x i )

)1−rs/k
Fs(y, 1)rs/k

=
∫ l

−l

(1 − |ξ|) dξ lim
L→∞ K

(
ξ

L

)
,

where

K(η) =
∫

x i∈[0,1]ri

∫
y∈[0,1]rs−1

dx1 · · · dxs−1 dy(
1 + η − ∑s−1

i=1 Fi(x i )
)1−rs/k

Fs(y, 1)rs/k
,

1 + η − Fs(y, 1) ≤
s−1∑
i=1

Fi(x i ) ≤ 1 + η.

Next we perform the change of variables x i = (1 + η)1/k yi and obtain
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K(η) = (1 + η)R/k−1

·
∫

yi∈[0,(1+η)−1/k ]ri

∫
y∈[0,1]rs−1

dy1 · · · dys−1 dy(
1 − ∑s−1

i=1 Fi(yi )
)1−rs/k

Fs(y, 1)rs/k
,

1 − 1

1 + η
Fs(y, 1) ≤

s−1∑
i=1

Fi(yi ) ≤ 1.

When η tends to 0, the foregoing multiple integral tends to
∫

yi∈[0,1]ri

∫
y∈[0,1]rs−1

dy1 · · · dys−1 dy(
1 − ∑s−1

i=1 Fi(yi )
)1−rs/k

Fs(y, 1)rs/k
,

1 − Fs(y, 1) ≤
s−1∑
i=1

Fi(yi ) ≤ 1.

The integrand is positive in the interior of the domain of integration, so the integral
is positive provided the interior is nonempty. However, if a = F1(1, 0, . . . , 0) then

1 − Fs(0, 1) < F1

((
1/(1 + Fs(0, 1))

a

)1/k

, 0
)

< 1,

which proves the lemma.

Lemma 14. If F(x) = ∑s
i=1 Fi(x i ), where Fi ∈ C[x i] \ {0} are of degree k > 1

and the x i are disjoint (1 ≤ i ≤ s), then h(F, C) ≥ �s/2�.

Proof. Since Fi �= 0 there exist ξi ∈ Cri such that Fi(ξi xi) = x k
i . Therefore, it

suffices to prove that

2h := 2h

( s∑
i=1

x k
i , C

)
≥ s. (20)

If 2h < s and
s∑

i=1

x k
i =

h∑
i=1

GiHi,

where Gi and Hi are forms of positive degree, then there exists an η ∈ C s \ {0}
such that

Gi(η) = Hi(η) = 0 (1 ≤ i ≤ h).

Taking partial derivatives at the point η, we obtain

kηk−1
j =

k∑
i=1

(
∂Gi

∂xj

(η)Hi(η) + Gi(η)
∂Hi

∂xj

(η)

)
= 0;

hence η = 0, a contradiction.

Remark 3. This lemma for s = 3 easily implies the Ehrenfeucht–Pełczyński
theorem about irreducibility over C of f(x) + g(y) + h(z), where f , g, h are non-
constant polynomials over C.
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Lemma 15. If k ≥ 2 and s ≥ (k + 1)2k+1σ(k) +1 and if F(x) = N �= 0 is solv-
able in Zp for all primes p, then S > 0. Moreover, if all Fi are nonsingular then
S ≥ S0 > 0, where S0 is independent of N.

Proof. If h(F ) ≥ (k − 1)2kσ(k) + 1 then ω(F ) > 2 by [9, Chap. III, Thm. 6A].
Therefore, by [9, Chap. I, Lemma 6D] we have

S =
∏

p prime

ν(p), (21)

where

ν(p) = 1 +
∞∑

n=1

pn∑
a=1

(a,p)=1

(pn)−RS(a, pn)

and

ν(p) = lim
n→∞

L(F, N, pn)

pn(R−1)
. (22)

It follows from Lemma 7 that

|S(a, pn)| � (pn)
R− h(F )

(k−1)2k−1σ(k)
+ε

,

and from this we deduce (since h(F ) ≥ (k − 1)2kσ(k) + 1) that

|ν(p) − 1| < p
− (k−1)2k−1σ(k)+1

(k−1)2k−1σ(k)
+ε

< p
− (k−1)2k−1σ(k)+2

(k−1)2k−1σ(k)+1 .

Hence there exists a p0 such that
∏

p>p0

ν(p) >
1

2
,

yet from Lemma 2 and (22) it follows that ν(p) > 0 and so, by (21), we have S >

0. Moreover, if k ≥ 5 then s ≥ (k + 1)2k+1σ(k) + 1 ≥ (k + 1)2k+1 · 13 + 1 ≥
8k3 + 1 > kl + 1; for k ≤ 4 we check the relevant inequality directly. Hence, by
Lemma 5 and (22),

ν(p) ≥ ν0(p) > 0 for all primes p,

where ν0(p) is independent of N. The second part of the lemma now follows
from (21).

Lemma 16. Under each set of assumptions in the Theorem there exists a posi-
tive integer s2 such that, for s ≥ s2, all but finitely many integers represented by
F(x) = ∑s

i=1 F(x i ) over R and over Zp for all primes p are represented by F

over Z.

Proof. For k = 1 the choice s2 = 1 is obvious. For k = 2 the choice s2 = 5
follows from classical theorems of the theory of quadratic forms (see [2, pp. 131,
235]). For k = 3 the choice s2 = 33 follows from Davenport and Lewis’s theorem
[5] and from Lemma 14 (h(F ) ≥ 17). So assume that k ≥ 4. If the Fi are non-
singular then we take s2 = (k + 1)2k+1σ(k) +1; if not all Fi are semidefinite and
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of the same sign and if j is the least index such that
∑j

i=1 Fi is indefinite, then we
take s2 = max{(k + 1)2k+1σ(k) + 1, j}. Indeed, by Lemma 14 we have h(F ) ≥
(k − 1)2kσ(k) + 1, and Lemmas 10, 12, 13, and 15 show that every integer suffi-
ciently large in absolute value that is represented by F(x) over R and over Zp for
all primes p is also represented by F over Z.

Lemma 17. With notation as in Lemma 4, let s ≥ 2kl + 1, let p be a prime, and
let x i be disjoint vectors of variables of length ri (i = 1, 2, . . . , s). Let Fi ∈ Z[x i]
be a form of degree k such that the greatest common divisor of Fi(ηi ) for all ηi ∈
Zri is divisible exactly by pδi, and let δ1 ≤ δ2 ≤ · · · ≤ δs. If the congruence

c ≡
s−1∑
i=1

Fi(x i ) (mod pδs ) (23)

is solvable, then the equation

c =
s∑

i=1

Fi(x i ) (24)

is solvable in Zp.

Remark 4. For k = 2, the number 2kl + 1 = 113 can be replaced by 4.

Proof of Lemma 17. Equation (24) is solvable for c = 0, so let c = pδd for d

a p-adic unit. We shall prove by induction on nonnegative κ < γ that if s ≥
kl + κl +1 and δ ≥ δs − κ then solvability of (23) implies solvability of (24). For
κ = 0 there is a residue r such that the set S = {i ≤ s : δi ≡ r (mod k)} satisfies
|S| ≥ l + 1. Let m = maxi∈S i. By the definition of δi there exist ηi ∈ Zri such
that Fi(ηi ) = pδidi, where di is a p-adic unit (i ∈ S). By Lemma 3 there exist
ξi ∈ Zp (i ∈ S) such that

pδ−δmd =
∑
i∈S

diξ
k
i ;

therefore,
c =

∑
i∈S

Fi(p(δm−δi )/kξiηi ).

Assume now that the implication holds for s ≥ kl + (κ − 1)l + 1 and for the
left-hand side of (23) and (24) divisible by pδs−κ+1 (κ ≥ 1). Let δ = δs − κ and
s ≥ kl + κl + 1. If δ > δs−l − κ then the implication holds by the inductive as-
sumption with s replaced by s − l. If δ = δs−l − κ, then δi = δs (s − l ≤ i ≤ s).

From the solvability of (23) we infer that, for certain ζi ∈ Zri,

c −
s−l−1∑

i=1

Fi(ζi ) = pδs t, t ∈ Zp.

By the definition of δi there exist ηi ∈ Zri such that Fi(ηi ) = pδidi, where di is a
p-adic unit (s − l ≤ i ≤ s). Now, by Lemma 3 there exist ξi ∈ Zp (s − l ≤ i ≤ s)

such that
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s∑
i=s−l

diξ
k
i = t.

It follows that (ζ1, . . . , ζs−l−1, ξs−lηs−l , . . . , ξsηs) is a solution of (24). The induc-
tive proof shows that the implication holds provided δ ≥ δs − (γ − 1) and s ≥
lk + l(γ − 1) +1. For δ ≤ δs − γ the implication holds, by Lemma 1, for every s.

Since γ − 1 ≤ τ + 1 ≤ k it follows that the implication holds for s ≥ 2kl + 1,
which was to be proved.

Proof of Theorem. For each prime p let the greatest common divisor of Fi(ηi ) for
ηi ∈ Zri be divisible exactly by pδpi. Put

mp = min
S⊂N

|S|=2kl+1

∑
i∈S

δpi

and let Sp be a unique set S such that |S| = 2kl + 1,
∑

i∈S δpi = mp, and
∑

i∈S i

is minimal. For all p such that δpi = 0 for all i ≤ 2kl + 1 (and thus for all but
finitely many p) we have Sp = {1, . . . , 2kl + 1}. Now take

S1 =
⋃

p prime

Sp,

s1 = max
{
s2, max

i∈S1
i
}
.

By Lemma 16 for s ≥ s1 ≥ s2 only finitely many integers N exist that are repre-
sented by

∑s
i=1 Fi(x i ) over R and over Zp for all primes p yet are not represented

by
∑s

i=1 Fi(x i ) over Z. Let s0 be the least integer s ≥ s1 for which the number
of exceptions is minimal. We show that s0 has the property asserted in the the-
orem. Suppose N is an integer represented by

∑s
i=1 Fi(x i ) over R and over Zp

for all primes p. By the choice of s2, N is represented by
∑s0

i=1 Fi(x i ) over R.

Since for i /∈ Sp we have δpi ≥ maxj∈Sp
δpj , it follows from Lemma 17 that N is

represented by
∑s0

i=1 Fi(x i ) over Zp for every prime p. If N is represented over
Z by

∑s
i=1 Fi(x i ) but not by

∑s0
i=1 Fi(x i ), then the number of exceptions for s is

smaller than the number of exceptions for s0, contrary to the choice of s0.

Proof of Corollary. Let Ik = {i ∈ N : ki = k}. Because the sequence ki is
bounded, almost all the Ik are empty. For each k such that Ik is infinite, the The-
orem implies there are sk such that every integer represented by

∑s
i=1, i∈Ik

Fi(x i )

over Z is represented by
∑sk

i=1, i∈Ik
Fi(x i ) over Z. For each k such that 0 < |Ik| <

∞, put sk = maxi∈Ik
i and take

s0 = max
Ik �=∅

sk.

Now s0 has the asserted property because if N = ∑s
i=1 Fi(yi ) then, for each k,∑s

i=1, i∈Ik
Fi(yi ) = ∑s0

i=1, i∈Ik
Fi(x i ); after summation over k, we have

N =
s0∑

i=1

Fi(x i ).
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Added in proof. Suitable modifications in the proofs of Lemmas 5, 13, and 16
show that the condition (∗) can be replaced by a weaker one: either not all forms
are semidefinite of the same sign, or at least kl + 1 forms are nonsingular.
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Śniadeckich 8
00-956 Warsaw
Poland

schinzel@impan.pl


