A Property of Quasi-diagonal Forms

A. Schinzel

The aim of this paper is to prove the following result.
Theorem. Let k be a positive integer and let $F_{i} \in \mathbb{Z}\left[\mathbf{x}_{i}\right]$ be a form of degree k, where $\mathbf{x}_{i}(i=1,2, \ldots)$ are disjoint vectors of variables. Assume that
$(*)$ either not all forms are semidefinite of the same sign, or all forms are nonsingular.

Then there exists a positive integer s_{0} such that, for all s, every integer represented by $\sum_{i=1}^{s} F_{i}\left(\mathbf{x}_{i}\right)$ over \mathbb{Z} is represented by $\sum_{i=1}^{s_{0}} F_{i}\left(\mathbf{x}_{i}\right)$ over \mathbb{Z}.

If $k=2$, then the condition $(*)$ can be omitted. J. Szejko has conjectured that the condition (*) is superfluous.

Corollary. Let k_{i} be a bounded infinite sequence of positive integers, and let $F_{i}\left[\mathbf{x}_{i}\right]$ be an infinite sequence of nonsingular forms of degree k_{i} with the \mathbf{x}_{i} disjoint. Then there exists a positive integer s_{0} such that, for all s, every integer represented by $\sum_{i=1}^{s} F_{i}\left(\mathbf{x}_{i}\right)$ over \mathbb{Z} is also represented by $\sum_{i=1}^{s_{0}} F_{i}\left(\mathbf{x}_{i}\right)$ over \mathbb{Z}.

Remark 1. The assertion is false when $k_{i}=2^{i}$ and $F_{i}=x_{i}^{k_{i}}(i=1,2, \ldots)$. It may be enough to assume that $\sum_{i=1}^{\infty} \frac{1}{k_{i}}=\infty$.

Notation. For a given field K and a form $F \in K\left[x_{1}, \ldots, x_{r}\right]$, we use $D(F)$ to denote the Netto discriminant of F-that is, the resultant of $\frac{\partial F}{\partial x_{i}}(i=1,2, \ldots, r)$; note that $D(F)$ differs from the true discriminant of F by a constant factor (see [6, p. 434]). Also, $h(F, K)$ is the least h such that $F=\sum_{i=1}^{h} G_{i} H_{i}$, where $G_{i}, H_{i} \in$ $K\left[x_{1}, \ldots, x_{r}\right]$ are forms of positive degree and $h(F)=h(F, \mathbb{Q})$.

For $a \in \mathbb{Z} \backslash\{0\}$ and p a prime, $\operatorname{ord}_{p} a$ is the highest exponent e such that $p^{e} \mid a\left(\right.$ i.e., $\left.p^{e} \| a\right) ; \operatorname{ord}_{p} 0=\infty$. For $\mathbf{x}=\left[x_{1}, \ldots, x_{r}\right] \in \mathbb{Z}^{r}$, we have $\operatorname{ord}_{p} \mathbf{x}=$ $\min _{1 \leq i \leq r} \operatorname{ord}_{p} x_{i}$. Finally, $e(x)=\exp \{2 \pi i x\}$.

Our proof of the theorem is based on the following series of seventeen lemmas.
Lemma 1. Let p be a prime, $F \in \mathbb{Z}[\mathbf{x}]$ a form of degree $k=p^{\tau} k_{0}$, and $k_{0} \in$ $\mathbb{Z} \backslash p \mathbb{Z}$. Let $\gamma=\tau+2$ if $p=2$ and $\tau>0$ and let $\gamma=\tau+1$ otherwise. If
$a \in \mathbb{Z}_{p} \backslash\{0\}, p^{\nu} \| a$, and the congruence $F(\mathbf{x}) \equiv a\left(\bmod p^{\gamma+\nu}\right)$ is solvable, then the equation $F(\mathbf{x})=a$ is solvable in \mathbb{Z}_{p}.

Proof. If $F\left(\mathbf{x}_{0}\right) \equiv a\left(\bmod p^{\gamma+\nu}\right)$, then $p^{\nu} \| F\left(\mathbf{x}_{0}\right)$ and $F\left(\mathbf{x}_{0}\right) p^{-\nu} \equiv a p^{-v}$ $\left(\bmod p^{\gamma}\right)$. Then, by [4, Lemma 9] (or its proof for the case $p=2, \tau=0$), the congruence $h^{k} F\left(\mathbf{x}_{0}\right) p^{-v} \equiv a p^{-v}\left(\bmod p^{n}\right)$ is solvable for every n. Thus, by compactness of \mathbb{Z}_{p}, the equation $h^{k} F\left(\mathbf{x}_{0}\right) p^{-v}=a p^{-v}$ is solvable in \mathbb{Z}_{p} and it suffices to take $\mathbf{x}=h \mathbf{x}_{0}$.

Lemma 2. Let $F \in \mathbb{Z}\left[x_{1}, \ldots, x_{r}\right]$ be a form of degree k, and let $c \in \mathbb{Z} \backslash\{0\}$. For p a prime, if a congruence $F(x) \cong c\left(\bmod p^{2 \operatorname{ord}_{p} k c+1}\right)$ is solvable then, for all n, the number $L\left(F, c, p^{n}\right)$ of solutions of the congruence

$$
\begin{equation*}
F(x) \cong c\left(\bmod p^{n}\right) \tag{1}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
L\left(F, c, p^{n}\right) \geq p^{\left(n-2 \operatorname{ord}_{p} k c-1\right)(r-1)} \tag{2}
\end{equation*}
$$

Proof. By Euler's theorem (see [8, Satz 27]),

$$
\begin{equation*}
\sum_{i=1}^{r} \frac{\partial F}{\partial x_{i}} x_{i}=k F \tag{3}
\end{equation*}
$$

For a certain $\boldsymbol{\xi} \in \mathbb{Z}^{r}$ we have

$$
\begin{equation*}
F(\boldsymbol{\xi}) \cong c\left(\bmod p^{2 \operatorname{ord}_{p} k c+1}\right) \tag{4}
\end{equation*}
$$

so it follows from (3) that, for a certain $h \leq r$,

$$
\delta=\operatorname{ord}_{p} \frac{\partial F}{x_{h}}(\boldsymbol{\xi}) \leq \operatorname{ord}_{p} k c
$$

now, by (4), we have

$$
F(\boldsymbol{\xi}) \equiv c\left(\bmod p^{2 \delta+1}\right)
$$

It follows from the proof of Theorem 3 in [1, Chap. I, Sec. 5] that, if

$$
x_{i} \equiv \xi_{i}\left(\bmod p^{2 \delta+1}\right) \quad \text { for } i \neq h,
$$

then there exists an x_{h} such that

$$
F(\mathbf{x}) \equiv c\left(\bmod p^{n}\right)
$$

Clearly, (2) holds.
Lemma 3. Let $F \in \mathbb{Z}\left[x_{1}, \ldots, x_{r}\right]$ be a form of degree k with $D(F) \neq 0$, and let p be a prime. If a congruence $F(\mathbf{x}) \equiv c\left(\bmod p^{2 \operatorname{ord}_{p} D(F)+1+k \nu}\right)$ is solvable with $\operatorname{ord}_{p} \mathbf{x}=v$ then, for all n, the number $L\left(F, c, p^{n}\right)$ of solutions of the congruence (1) satisfies

$$
\begin{equation*}
L\left(F, c, p^{n}\right) \geq p^{\left(n-2 \operatorname{ord}_{p} D(F)-1-v\right)(r-1)} . \tag{5}
\end{equation*}
$$

Proof. Consider first the case $v=0$. Since $D(F)$ is the resultant of $\partial F / \partial x_{i}(i=$ $1,2, \ldots, r$), we have (see [8, Satz 124]) that

$$
\begin{equation*}
\sum_{i=1}^{r} \frac{\partial F}{\partial x_{i}} \phi_{i j}\left(x_{1}, \ldots, x_{r}\right)=D(F) x_{j}^{k^{r}} \tag{6}
\end{equation*}
$$

for all $j \leq r$, where $\phi_{i j} \in \mathbb{Z}\left[x_{1}, \ldots, x_{r}\right]$. Since

$$
\begin{equation*}
F(\mathbf{x}) \equiv c\left(\bmod p^{2 \operatorname{ord}_{p} D(F)+1}\right) \tag{7}
\end{equation*}
$$

has a solution $\boldsymbol{\xi}$ with $\operatorname{ord}_{p} \boldsymbol{\xi}=0$, we obtain from (6) that, for a certain $h \leq r$,

$$
\delta=\operatorname{ord}_{p} \frac{\partial F}{\partial x_{h}}(\xi) \leq \operatorname{ord}_{p} D(F)
$$

then, by (7),

$$
F(\boldsymbol{\xi}) \equiv c\left(\bmod p^{2 \delta+1}\right)
$$

It follows, as in the proof of Lemma 2, that

$$
L\left(F, c, p^{n}\right) \geq p^{\left(n-2 \operatorname{ord}_{p} D(F)-1\right)(r-1)} .
$$

Consider now the general case. Since

$$
F(\boldsymbol{\xi}) \equiv c\left(\bmod p^{2 \operatorname{ord}_{p} D(F)+1+\nu k}\right) \quad \text { and } \quad \operatorname{ord}_{p}(\boldsymbol{\xi})=v
$$

we have

$$
F\left(p^{-\nu} \boldsymbol{\xi}\right) \equiv c p^{-\nu k}\left(\bmod p^{2 \operatorname{ord}_{p} D(F)+1}\right)
$$

By the already proved case of the lemma, we have

$$
L\left(F, c p^{-\nu k}, p^{n-v}\right) \geq p^{\left(n-2 \operatorname{ord}_{p} D(F)-1-\nu\right)(r-1)}
$$

Every solution of the congruence

$$
F(\mathbf{y}) \equiv c p^{-v k}\left(\bmod p^{n-v}\right)
$$

gives rise to a solution of the congruence (1) by the substitution $\mathbf{x}=p^{v} \mathbf{y}$, and solutions that are distinct $\left(\bmod p^{n-v}\right)$ give rise to solutions that are distinct $\left(\bmod p^{n}\right)$. Thus (5) holds.

Lemma 4. Let $l=2 k^{2}(k, 2)^{2}-k(k, 2), s \geq l+1, p$ be a prime, and $d_{i}(1 \leq$ $i \leq s)$ be p-adic units. Then, for every integer c and all positive integers n, the congruence

$$
c \equiv \sum_{i=1}^{s} d_{i} x_{i}^{k}\left(\bmod p^{n}\right)
$$

is solvable with at least one $x_{i} \not \equiv 0(\bmod p)$, and the relevant equation is solvable in \mathbb{Z}_{p}.

Proof. For $n=\gamma$ the assertion is proved in [4, pp. 53-54]. Assume without loss of generality that

$$
c \equiv \sum_{i=1}^{s} d_{i} \xi_{i}^{k}\left(\bmod p^{\gamma}\right) \quad \text { and } \quad \xi_{s} \not \equiv 0(\bmod p)
$$

Applying Lemma 1 with $F(x)=d_{s} x^{k}$ and $a=c-\sum_{i=1}^{s-1} d_{i} \xi_{i}^{k}$ allows us to infer the existence of an $\eta \in \mathbb{Z}$ such that

$$
c \equiv \sum_{i=1}^{s-1} d_{i} \xi_{i}^{k}+d_{s} \eta^{k}\left(\bmod p^{n}\right)
$$

clearly, $\eta^{k} \equiv \xi_{s}^{k}\left(\bmod p^{n}\right)$ and so $\eta \not \equiv 0(\bmod p)$. Solvability of the relevant equation in \mathbb{Z}_{p} follows from compactness of \mathbb{Z}_{p}.

Lemma 5. Let $F_{i}\left(\mathbf{x}_{i}\right)$ be a nonsingular form of degree k in r_{i} variables $(1 \leq i \leq s)$, let p be a prime, and let $p^{\delta_{p i}}$ be the highest power of p dividing $F_{i}\left(\boldsymbol{\eta}_{i}\right)$ for all $\boldsymbol{\eta}_{i} \in \mathbb{Z}^{r_{i}}$. If $s \geq k l+1$ and if the equation

$$
\begin{equation*}
F(\mathbf{x}):=\sum_{i=1}^{s} F_{i}\left(\mathbf{x}_{i}\right)=N \tag{8}
\end{equation*}
$$

is solvable in \mathbb{Z}_{p}, then for all n we have

$$
\begin{equation*}
L\left(F, N, p^{n}\right) \geq p^{\left(n-\gamma_{p}-\delta_{p}\right)(R-1)} \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
\gamma_{p} & =2 \operatorname{ord}_{p} D(F)+1, \\
\delta_{p} & =\max _{1 \leq i \leq s} \delta_{p i}, \quad \text { and } \\
R & =\sum_{i=1}^{s} r_{i} .
\end{aligned}
$$

Proof. We note first that, by assumption, $D\left(F_{i}\right) \neq 0(1 \leq i \leq s)$; hence $D(F) \neq$ 0 by the Laplace formula (see [7, 5.10]). Let

$$
N=p^{\delta} d \quad \text { for } d \text { a } p \text {-adic unit }
$$

and assume first that $\delta<\delta_{p}$. Then equation (8) gives

$$
\operatorname{ord}_{p} \mathbf{x} \leq\left\lfloor\frac{\delta}{k}\right\rfloor<\delta_{p}
$$

and so, by Lemma 3, (9) holds.
Assume now that $\delta \geq \delta_{p}($ or $N=d=0)$ and that $F_{i}\left(\boldsymbol{\eta}_{i}\right)=p^{\delta_{p i}} d_{i}$ for $d_{i}=$ a p-adic unit. Because $s \geq k l+1$, there is a residue $r(\bmod k)$ such that $S=$ $\left\{i \leq s: \delta_{p i} \equiv r(\bmod k)\right\}$ satisfies $|S| \geq l+1$. Let $\delta_{p m}=\max _{i \in S} \delta_{p i}$. Then by Lemma 4 we have

$$
p^{\delta-\delta_{p m}} d \equiv \sum_{i \in S} d_{i} \xi_{i}^{k}\left(\bmod p^{\gamma_{p}+\delta_{p}}\right)
$$

where not all the ξ_{i} are divisible by p. Suppose $\xi_{j} \not \equiv 0(\bmod p)$. Now put $\mathbf{x}_{i} \equiv 0$ $\left(\bmod p^{\gamma_{p}+\delta_{p}}\right)$ for $i \notin S$ and

$$
\mathbf{x}_{i} \equiv p^{\left(\delta_{p m}-\delta_{p i}\right) / k} \boldsymbol{\eta}_{i} \xi_{i}\left(\bmod p^{\gamma_{p}+\delta_{p}}\right) \quad \text { for } i \in S \backslash\{j\}
$$

Since $\gamma_{p} \geq 2 \operatorname{ord}_{p} D\left(F_{j}\right)+1$ by the Laplace formula, it follows that

$$
F_{j}\left(\mathbf{x}_{j}\right) \equiv N-\sum_{\substack{i=1 \\ i \neq j}}^{s} F_{i}\left(\mathbf{x}_{i}\right)\left(\bmod p^{2 \operatorname{ord}_{p} D\left(F_{j}\right)+1+\delta_{p}}\right)
$$

has a solution $p^{\left(\delta_{p m}-\delta_{p j}\right) / k} \boldsymbol{\eta}_{j}=\boldsymbol{\eta}_{j}^{\prime}$ with $\operatorname{ord}_{p} \boldsymbol{\eta}_{j}^{\prime}=\frac{\delta_{p m}-\delta_{p j}}{k}$. Hence, by Lemma 3,

$$
L\left(F, N, p^{n}\right) \geq p^{\Sigma} \geq p^{\left(n-\gamma_{p}-\delta_{p}\right)(R-1)}
$$

where

$$
\Sigma=\sum_{\substack{i=1 \\ i \neq j}}^{s}\left(n-\gamma_{p}-\delta_{p}\right) r_{i}+\left(n-\gamma_{p}-\left\lfloor\frac{\delta_{p}}{k}\right\rfloor\right)\left(r_{j}-1\right) .
$$

Therefore, (9) holds again.
Lemma 6. Let $\phi \in \mathbb{Z}\left[x_{1}, \ldots, x_{r}\right]$ be a polynomial of degree $k>1, F$ the leading form of $\phi, \alpha \in \mathbb{R}$, and B a certain product of fixed intervals of length ≤ 1. Let:

$$
\begin{gathered}
S(\alpha)=\sum_{\mathbf{x} \in P B \cap \mathbb{Z}^{r}} e(\alpha \phi(\mathbf{x})) ; \\
\sigma(2)=1, \quad \sigma(k+1)=\sum_{u=2}^{k}\binom{k-1}{u-2} \sigma(u) \quad(k \geq 2) .
\end{gathered}
$$

Then, for every positive $\Delta \leq k-1$ and $\varepsilon>0$ and for all sufficiently large P, either

$$
|S(\alpha)| \leq P^{r-\Delta \frac{h(F)}{(k-1)^{k-1} \sigma(k)}+\varepsilon}
$$

or there exists a positive integer q satisfying

$$
\begin{equation*}
q \leq c P^{\Delta} \quad \text { and } \quad\|\alpha q\|<P^{-k+\Delta} \tag{10}
\end{equation*}
$$

where $c \geq 1$ depends only on $\phi-\phi(\mathbf{0})$ and B.
Proof. The lemma follows from statements 4A and 7A of [9, Chap. III] and roughly as in [9, p. 89], where we put $d=k, s=r, t=\Delta \frac{h(F)}{(k-1) 2^{k-1} \sigma(k)}-\varepsilon$, and $\eta=\frac{\Delta}{k-1}$. The $\sigma(k)$ that we have defined recursively coincides with the $\sigma(k)$ defined in [9, p. 117]. Indeed, it is easily proved by induction that $\sigma(k)$ as defined in this paper satisfies $\sigma(k) \geq 2^{k-2}-1$. Moreover, for every $k>1$, we have $(k-2)!(\log 2)^{2-k} \geq \sigma(k)>\frac{1}{2}(k-2)!(\log 2)^{2 k}$. Note also that $|S(\alpha)|$ depends only on α and $\phi-\phi(\mathbf{0})$.

Lemma 7. For integers a and q with $q>0$ and $(a, q)=1$, let

$$
S(a, q)=\sum_{\mathbf{z} \bmod q} e\left(\frac{a}{q} \phi(\mathbf{z})\right)
$$

Then, for $k \geq 2$ and $\varepsilon>0$,

$$
S(a, q) \ll q^{r-(1-\varepsilon) \frac{h(F)}{(k-1)^{k-1} \sigma(k)}+\varepsilon} .
$$

Proof. In Lemma 6 we take $\alpha=a / q, \Delta=1-\varepsilon, P=q$, and $B=[0,1]^{r}$. We obtain that either

$$
|S(a, q)| \leq q^{r-(1-\varepsilon) \frac{h(F)}{(k-1)^{k-1} \sigma(k)}+\varepsilon}
$$

or there exists a positive integer $q^{\prime} \leq c q^{1-\varepsilon}$ with $\left\|\alpha q^{\prime}\right\|<q^{-k+1-\varepsilon}$. However, for $q^{\varepsilon}>c$ we have $\left\|\alpha q^{\prime}\right\| \geq 1 / q$ and so $q^{-k+2-\varepsilon}>1$, which is impossible for $k \geq 2$.

For $(a, q)=1$, let $\mathfrak{M}_{a, q}$ be the set of $\alpha \in(0,1)$ satisfying

$$
q \leq c P^{\Delta} \quad \text { and } \quad\left|\alpha-\frac{a}{q}\right| \leq P^{-k+\Delta}
$$

and let \mathfrak{m} be the complement of the union of all $\mathfrak{M}_{a, q}$ where $q \leq c P^{\Delta}$ and $(a, q)=1$.

Lemma 8. If $h(F) \geq(k-1) 2^{k} \sigma(k)+1$, then

$$
\int_{\mathfrak{m}}|S(\alpha)| d \alpha \ll P^{r-k-\Delta /(k-1) 2^{k-1} \sigma(k)}
$$

Proof (following [5, Sec. 4]). Let $\mathcal{E}(\Delta)$ be the set of those $\alpha \in[0,1)$ for which there exists a positive integer q satisfying (10). Plainly $\mathcal{E}(\Delta)$ increases with Δ. Since every α has a rational approximation satisfying $1 \leq q \leq P^{k / 2}$ and $\|q \alpha\|<$ $P^{-k / 2}$ and since these inequalities imply (10) with $\Delta=k / 2$, the whole interval $[0,1)$ is contained in $\mathcal{E}(k / 2)$. On the other hand, for $P>P_{0}(\varepsilon)$, the set \mathfrak{m} is contained in the complement of $\mathcal{E}(\Delta-\varepsilon)$. We choose numbers $\Delta_{0}, \Delta_{1}, \ldots, \Delta_{g}$ such that

$$
\Delta-\varepsilon=\Delta_{0}<\Delta_{1}<\cdots<\Delta_{g}=k / 2
$$

Then \mathfrak{m} is contained in the union of the sets

$$
\begin{equation*}
\mathcal{E}\left(\Delta_{f}\right)-\mathcal{E}\left(\Delta_{f-1}\right), \quad f=1, \ldots, g \tag{11}
\end{equation*}
$$

By Lemma 6 with $\Delta=\Delta_{f-1}$, we have

$$
|S(\alpha)| \leq P^{r-\frac{h(F)}{(k-1)^{k-1} \sigma(k)}} \Delta_{f-1}+\varepsilon
$$

for all α in the set (11). Furthermore, the set (11) is a part of $\mathcal{E}\left(\Delta_{f}\right)$ and so, by (10), the measure of $\mathcal{E}\left(\Delta_{f}\right)$ is

$$
\ll \sum_{q \leq c P^{\Delta_{f}}} \sum_{a=1}^{q} q^{-1} P^{-k+\Delta_{f}} \ll P^{-k+2 \Delta_{f}} .
$$

Therefore,

$$
\begin{aligned}
\int_{\mathfrak{m}}|S(\alpha)| d \alpha & \ll P^{r-\frac{h(F)}{(k-1) 2^{k-1} \sigma(k)} \Delta_{f-1}+\varepsilon-k+2 \Delta_{f}} \\
& \ll P^{r-k-\frac{\Delta_{f-1}}{(k-1)^{k-1} \sigma(k)}+2\left(\Delta_{f}-\Delta_{f-1}\right)+\varepsilon} .
\end{aligned}
$$

Provided the numbers $\Delta_{0}, \ldots, \Delta_{g}$ are chosen sufficiently close together (but independent of P), the last exponent is less than

$$
r-k-\frac{\Delta}{(k-1) 2^{k-1} \sigma(k)}+2 \varepsilon<r-k-\frac{\Delta}{(k-1) 2^{k-1} \sigma(k)+1} .
$$

Lemma 9. For α in $\mathfrak{M}_{a, q}$ we have

$$
\begin{equation*}
S(\alpha)=q^{-r} S(a, q) I(\beta)+O\left(P^{r-1+2 \Delta}\right) \tag{12}
\end{equation*}
$$

where $\beta=\alpha-a / q$ and

$$
\begin{equation*}
I(\beta)=\int_{P B} e(\beta \phi(\xi)) d \xi \tag{13}
\end{equation*}
$$

Proof (following [5, Sec. 4]). In the sum

$$
\begin{equation*}
S(\alpha)=\sum_{\mathbf{x} \in P B \cap \mathbb{Z}^{r}} e\left(\alpha \phi\left(x_{1}, \ldots, x_{r}\right)\right) \tag{14}
\end{equation*}
$$

put $x_{i}=q y_{i}+z_{i}$ for $0 \leq z_{i}<q$. Then

$$
S(\alpha)=\sum_{\mathbf{z}} \sum_{\mathbf{y}} e(\alpha \phi(q \mathbf{y}+\mathbf{z}))=\sum_{\mathbf{z}} e\left(\frac{a}{q} \phi(\mathbf{z})\right) \sum_{\mathbf{y}} e(\beta(q \mathbf{y}+\mathbf{z}))
$$

The inner sum is over all \mathbf{y} such that $q \mathbf{y}+\mathbf{z}$ is in the box $P B$. Thus the variables y_{1}, \ldots, y_{r} run over independent intervals whose lengths are much less than P / q, since q is small compared with P. For any integer point \mathbf{y} and any differentiable function $f(\eta)$, we have

$$
\begin{equation*}
f(\mathbf{y})=\int_{|\boldsymbol{\eta}-\mathbf{y}|<1 / 2} f(\boldsymbol{\eta}) d \boldsymbol{\eta}+O\left(\max \left|\frac{\partial f}{\partial \eta_{j}}\right|\right) \tag{15}
\end{equation*}
$$

where the maximum is taken over j and over η in the cube of integration.
When $f(\eta)=\exp \{2 \pi i \beta \phi(q \eta+\zeta)\}$, we have

$$
\max \left|\frac{\partial f}{\partial \eta_{j}}\right| \ll q|\beta||q \eta+\zeta|^{k-1} \ll q|\beta| P^{k-1}
$$

Now applying (15) to each integer point \mathbf{y} in the foregoing inner sum, we obtain an integral extended over a union of unit cubes that differs from the box of summation by at most 1 in each dimension. The discrepancy in the volume is $\ll(P / q)^{r-1}$. Hence

$$
\begin{aligned}
\sum_{\mathbf{y}} e(\beta \phi(q \mathbf{y}+\mathbf{z}))= & \int e(\beta \phi(q \boldsymbol{\eta}+\zeta)) d \boldsymbol{\eta} \\
& +O\left(q|\beta| P^{k-1}(P / q)^{r}\right)+O\left((P / q)^{r-1}\right)
\end{aligned}
$$

where the integration is over those η for which $q \boldsymbol{\eta}+\zeta$ lies in $P B$.
In this equation, if we change from the variable $\boldsymbol{\eta}$ to $\xi=q \boldsymbol{\eta}+\zeta$ then the righthand side becomes

$$
q^{-r} \int_{P B} e(\beta \phi(\xi)) d \xi+O\left(P^{r+k-1} q^{1-r}|\beta|\right)+O\left(P^{r-1} q^{1-r}\right)
$$

Substituting in the double sum, we obtain

$$
q^{-r} S(a, q) I(\beta)+O\left(P^{r+k-1} q|\beta|\right)+O\left(P^{r-1} q\right)
$$

and now (13) follows from the definition of $\mathfrak{M}_{a, q}$.
Lemma 10. Suppose that $h(F) \geq(k-1) 2^{k} \sigma(k)+1$. Then the number $\mathcal{N}(P)$ of solutions of $F(\mathbf{x})=N$ with \mathbf{x} in $P B \cap \mathbb{Z}^{r}$ satisfies

$$
\mathcal{N}(P)=P^{r-k} J(P)\left(\mathfrak{S}+O\left(P^{-\Delta /(k-1) 2^{k-1} \sigma(k)+1}\right)+O\left(P^{r-k-1+5 \Delta}\right)\right.
$$

where

$$
\mathfrak{S}=\sum_{q=1}^{\infty} \sum_{\substack{a=1 \\(a, q)=1}}^{q} q^{-r} S(a, q)
$$

and

$$
\begin{equation*}
J(P)=\int_{-P^{\Delta}}^{P^{\Delta}} d \gamma \int_{B} e\left(\gamma P^{-k}(F(P \mathbf{x})-N)\right) d \mathbf{x} \tag{16}
\end{equation*}
$$

Proof. The number of integer points \mathbf{x} in $P B$ with $F(\mathbf{x})=N$ is equal to

$$
\int_{0}^{1} S(\alpha) d \alpha
$$

by the definition of $S(\alpha)$ in (15) with $\phi(\mathbf{x})=F(\mathbf{x})-N$. We split the interval of integration into the various intervals $\mathfrak{M}_{a, q}$ and the set \mathfrak{m}. By Lemma 8, the contribution of \mathfrak{m} is $O\left(P^{r-k-\Delta /(k-1) 2^{k-1} \sigma(k)+1}\right)$. By Lemma 9, the contribution of the intervals $\mathfrak{M}_{a, q}$ is

$$
\begin{aligned}
\sum_{q \leq c P^{\Delta}} \sum_{\substack{a=1 \\
(a, q)=1}}^{q} \int_{\mathfrak{M}_{a, q}} S(\alpha) d \alpha= & \sum_{q \leq c P^{\Delta}} \sum_{\substack{a=1 \\
(a, q)=1}}^{q} q^{-r} S(a, q) \int_{|\beta|<P^{-k+\Delta}} I(\beta) d \beta \\
& +O\left(\sum_{q \in c P^{\Delta}} q P^{r-1+2 \Delta} P^{-k+\Delta}\right) .
\end{aligned}
$$

The error term here is $O\left(P^{r-k-1+5 \Delta}\right)$. Once we put $\beta=P^{-k} \gamma$, the integral with respect to β becomes

$$
P^{-k} \int_{|\gamma|<P^{\Delta}} I\left(P^{-k} \gamma\right) d \gamma
$$

and, by (14),

$$
I\left(P^{-k} \gamma\right)=\int_{P B} e\left(P^{-k} \gamma \phi(\xi)\right) d \xi=P^{r} \int_{B} e\left(P^{-k} \gamma(F(\mathbf{x})-N)\right) d \mathbf{x} .
$$

Thus the integral with respect to β becomes $P^{r-k} J(P)$.
It remains to consider

$$
\sum_{q \leq c P^{\Delta}} \sum_{\substack{a=1 \\(a, q)=1}}^{q} q^{-r} S(a, q)
$$

When continued to infinity, this series is absolutely convergent by Lemma 7 (since $\left.h(F) \geq(k-1) 2^{k} \sigma(k)+1\right)$ and has sum \mathfrak{S}. The preceding finite sum differs from \mathfrak{S} by an amount

$$
\ll \sum_{q>c P^{\Delta}} q \cdot q^{-r} \cdot q^{r-h(F) /(k-1) 2^{k-1} \sigma(k)+\varepsilon} \ll P^{-\Delta /\left((k-1) 2^{k-1} \sigma(k)+1\right)} .
$$

This proves Lemma 10.

Lemma 11. If $s \geq 3$ and not all forms $F_{i}\left(\mathbf{x}_{i}\right)(i \leq s)$ are semidefinite and of the same sign, then there exists a real nonsingular solution $\left(\xi_{1}^{*}, \ldots, \xi_{R}^{*}\right)$ of $F(\mathbf{x})=$ $\sum_{i=1}^{s} F_{i}\left(\mathbf{x}_{i}\right)=0$.

Proof. Since not all forms $F_{i}\left(\mathbf{x}_{i}\right)$ are semidefinite and of the same sign, there exist $i, j \leq s$ and $\boldsymbol{\eta}_{i}, \boldsymbol{\xi}_{j}$ such that $F_{i}\left(\boldsymbol{\eta}_{i}\right)>0$ and $F_{j}\left(\boldsymbol{\xi}_{j}\right)<0(i=j$ is not excluded $)$. Because $s \geq 3$, there exists an $h \leq s$ with $h \neq i, j$. We may assume without loss of generality that $\frac{\partial F_{h}}{\partial x_{h 1}} \neq 0$, and we let $a_{0}\left(x_{h 2}, \ldots, x_{h r_{h}}\right) x_{h 1}^{d}$ be the leading term of F_{h} with respect to $x_{h 1}$. There exists a $\boldsymbol{\xi}_{h}^{\prime}=\left[\xi_{h 2}, \ldots, \xi_{h r_{h}}\right]$ such that $a_{0}\left(\boldsymbol{\xi}_{h}^{\prime}\right) \neq 0$. In view of the symmetry between i and j, we may assume that $a_{0}\left(\xi_{h}^{\prime}\right)>0$. Let D_{h} be the discriminant with respect to $x_{h 1}$ of $F(\mathbf{x})$. Note that D_{h} contains the term $(-1)^{d(d-1) / 2} d^{d} a_{0}\left(\mathbf{x}_{h}^{\prime}\right)^{d-1} F\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{h-1}, 0, \mathbf{x}_{h}^{\prime}, \mathbf{x}_{h+1}, \ldots, \mathbf{x}_{s}\right)^{d-1}$, which is the leading term of D_{h} with respect to $F\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{h-1}, 0, \mathbf{x}_{h}^{\prime}, \mathbf{x}_{h+1}, \ldots, \mathbf{x}_{s}\right)$. Thus, in particular, for fixed $\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{h-1}, \boldsymbol{\xi}_{h+1}, \ldots, \boldsymbol{\xi}_{s}$ and sufficiently large ζ we have $D_{h}\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{h-1}, \boldsymbol{\xi}_{h}^{\prime}, \boldsymbol{\xi}_{h+1}, \ldots, \boldsymbol{\xi}_{j-1}, \zeta \boldsymbol{\xi}_{j}, \boldsymbol{\xi}_{j+1}, \ldots, \boldsymbol{\xi}_{s}\right) \neq 0$. For sufficiently large ζ we have $F\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{h-1}, 0, \boldsymbol{\xi}_{h}^{\prime}, \ldots, \boldsymbol{\xi}_{j-1}, \zeta \boldsymbol{\xi}_{j}, \boldsymbol{\xi}_{j+1}, \ldots, \boldsymbol{\xi}_{s}\right)<0$ and

$$
\lim _{x_{h 1} \rightarrow \infty} F\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{h-1}, x_{h 1}, \boldsymbol{\xi}_{h}^{\prime}, \boldsymbol{\xi}_{h+1}, \ldots, \boldsymbol{\xi}_{j-1}, \zeta \boldsymbol{\xi}_{j}, \boldsymbol{\xi}_{j+1}, \ldots, \boldsymbol{\xi}_{s}\right)=\infty
$$

and there is a $\xi_{h 1}$ such that $F\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{j-1}, \zeta \boldsymbol{\xi}_{j}, \boldsymbol{\xi}_{j+1}, \ldots, \boldsymbol{\xi}_{s}\right)=0$. But then

$$
\frac{\partial F}{\partial x_{h 1}}\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{j-1}, \zeta \boldsymbol{\xi}_{j}, \boldsymbol{\xi}_{j+1}, \ldots, \boldsymbol{\xi}_{s}\right) \neq 0
$$

proving the lemma.
Remark 2. In [5] it is stipulated that, in a real nonsingular solution of $F(\mathbf{x})=0$, all coordinates must be nonzero. In [4], however, the only coordinate that must be nonzero is the one with respect to which the partial derivative is nonzero.

Lemma 12. If B is a cube

$$
\left|\xi_{j}-\xi_{j}^{*}\right|<\varrho,
$$

where $\boldsymbol{\xi}_{j}^{*}$ is a nonsingular solution of the equation $F(\mathbf{x})=0$ and ϱ is sufficiently small, then

$$
\lim _{P \rightarrow \infty} J(P)=J_{0}>0
$$

Proof (following [3, Sec. 6]). For \mathbf{x} in a fixed cube B, we have

$$
e\left(\gamma P^{-k}(F(P \mathbf{x})-N)\right)=e(\gamma F(\mathbf{x}))+O\left(P^{-k+\Delta}\right)
$$

if $|\gamma|<P^{\Delta}$. Hence, by (16),

$$
J(P)=\int_{-P^{\Delta}}^{P^{\Delta}} d \gamma \int_{B} e(\gamma F(\mathbf{x})) d \mathbf{x}+O\left(P^{-k+2 \Delta}\right)
$$

Put $\mu=P^{\Delta}$. Then

$$
\begin{align*}
J_{0}(\mu) & :=\int_{-\mu}^{\mu}\left(\int_{B} e(\gamma F(\boldsymbol{\xi})) d \boldsymbol{\xi}\right) d \gamma=\int_{B} \frac{\sin 2 \pi \mu F(\boldsymbol{\xi})}{\pi F(\boldsymbol{\xi})} d \boldsymbol{\xi} \\
& =\int_{-\varrho}^{\varrho} \cdots \int_{-\varrho}^{\varrho} \frac{\sin 2 \pi \mu F\left(\boldsymbol{\xi}^{*}+\boldsymbol{\eta}\right)}{\pi F\left(\boldsymbol{\xi}^{*}+\boldsymbol{\eta}\right)} d \boldsymbol{\eta} \tag{17}
\end{align*}
$$

where $\boldsymbol{\xi}=\xi^{*}+\eta$.

For any $\boldsymbol{\eta}$, we have

$$
\begin{equation*}
F\left(\boldsymbol{\xi}^{*}+\boldsymbol{\eta}\right)=\sum_{i=1}^{s} \sum_{j=1}^{r_{i}} c_{i j} \eta_{i j}+\sum_{\kappa=2}^{k} P_{\kappa}(\boldsymbol{\eta}) \tag{18}
\end{equation*}
$$

where the $P_{\kappa}(\boldsymbol{\eta})$ are forms of degree κ in $\boldsymbol{\eta}$. We have

$$
c_{i j}=\frac{\partial F}{\partial x_{i j}}\left(\xi^{*}\right),
$$

and we may suppose without loss of generality that $c_{11}=1$.
For $|\eta|<\varrho$ we have

$$
\left|F\left(\xi^{*}+\eta\right)\right|<\sigma
$$

where $\sigma=\sigma(\varrho)$ is small when ϱ is small. Put $F\left(\boldsymbol{\xi}^{*}+\boldsymbol{\eta}\right)=\zeta$. Now, if ϱ is sufficiently small, then we can invert the relation (18) and express η_{11} in terms of ζ and $\eta_{i j}(j>1$ for $i=1)$ by means of power series. This expression will be of the form

$$
\eta_{11}=\zeta-\sum_{j=2}^{r} c_{1 j} \eta_{1 j}-\sum_{i=2}^{s} \sum_{j=1}^{r_{i}} c_{i j} \eta_{i j}+P\left(\zeta, \eta_{i j}\right)
$$

where P is a multiple power series beginning with terms of degree ≥ 2. Hence

$$
\frac{\partial \eta_{11}}{\partial \zeta}=1+P_{1}\left(\zeta, \eta_{i j}\right)
$$

and, by taking ϱ sufficiently small, we can ensure that $\left|P_{1}\right|<\frac{1}{2}$ for $\left|\eta_{i j}\right|<\varrho$ ($j>1$ for $i=1$) and $|\zeta|<\sigma$.

A change of variables from η_{11} to ζ in (17) yields

$$
\begin{equation*}
J_{0}(\mu)=\int_{-\sigma}^{\sigma} \frac{\sin 2 \pi \mu \zeta}{\pi \zeta} V(\zeta) d \zeta \tag{19}
\end{equation*}
$$

where

$$
V(\zeta)=\int_{B^{\prime}}\left(1+P_{1}\left(\zeta, \eta_{i j}\right)\right) d \eta_{12} \cdots d \eta_{s r_{s}}
$$

here B^{\prime} denotes the part of the $(R-1)$-dimensional box

$$
\left|\eta_{12}\right|<\varrho, \ldots,\left|\eta_{s r_{s}}\right|<\varrho
$$

in which $\left|\eta_{11}\right|<\varrho$-that is, in which

$$
\left|\zeta-\sum_{j=2}^{r_{1}} c_{1 j} \eta_{1 j}-\sum_{i=2}^{s} \sum_{j=1}^{r_{i}} c_{i j} \eta_{i j}+P\left(\zeta, \eta_{i j}\right)\right|<\varrho .
$$

It is clear that $V(\zeta)$ is a continuous function of ζ for $|\zeta|$ sufficiently small. It can also be easily seen that $V(\zeta)$ is a function of bounded variation, since it has left and right derivatives at every value of ζ and these are bounded. Hence, by Fourier's integral theorem (see [10, Sec. 9.4]) applied to (19), we have

$$
\lim _{\mu \rightarrow \infty} J_{0}(\mu)=V(0)
$$

Finally, $V(0)$ is a positive number because the cube B^{\prime} contains a sufficiently small $(R-1)$-dimensional cube centered at the origin and in such a cube we have $1+P_{1}>\frac{1}{2}$. This proves the lemma.

Lemma 13. If $s \geq 2$ and nonsingular $F_{i}\left(\mathbf{x}_{i}\right)(i \leq s)$ are semidefinite forms of the same sign and if N is also of the same sign for B the unit cube, then

$$
\lim _{|N| \rightarrow \infty} J\left(|N|^{1 / k}\right)=J_{0}>0 .
$$

Proof. The forms F_{i} are nonsingular. Hence if they are semidefinite then they are definite, for otherwise the real points $\boldsymbol{\xi} \neq \mathbf{0}$ such that $F_{i}(\boldsymbol{\xi})=0$ would be singular points. Assume without loss of generality that the F_{i} are positive definite and that $N>0$. Put $P=N^{1 / k}$. By Lemma 10, we have

$$
J_{0}=\int_{-\infty}^{\infty} d \gamma \int_{B} e(\gamma(F(\boldsymbol{\xi})-1) d \boldsymbol{\xi}
$$

By [9, Chap. I, Lemma 7D],

$$
\begin{gathered}
J_{0}=\lim _{L \rightarrow \infty} L \int_{B}(1-L|F(\mathbf{x})-1|) d \mathbf{x} \\
|F(\mathbf{x})-1| \leq \frac{1}{L}
\end{gathered}
$$

Hereafter, the inclusions written below the integrals define the domain of integration.

Let $\mathbf{x}_{i}=\left(x_{i 1}, \ldots, x_{i r_{i}}\right)$ and perform the change of variables $x_{s j}=x_{s r_{s}} y_{j}$ ($1 \leq j<r_{s}$) and

$$
F_{1}\left(\mathbf{x}_{1}\right)+\cdots+F_{s-1}\left(x_{s-1}\right)+x_{s r_{s}}^{k} F_{s}(\mathbf{y}, 1)=1+L^{-1} \xi
$$

We obtain

$$
\begin{aligned}
J_{0}= & \lim _{L \rightarrow \infty} \frac{1}{k} \\
& \cdot \int_{\mathbf{x}_{i} \in[0,1]^{r_{i}}} \int_{\mathbf{y} \in[0,1]^{r_{s}-1}} \int_{-1}^{1}(1-|\xi|) \frac{d \mathbf{x}_{1} \cdots d \mathbf{x}_{s-1} d \mathbf{y} d \xi}{\left(1+L^{-1} \xi-\sum_{i=1}^{s-1} F\left(\mathbf{x}_{i}\right)\right)^{1-r_{s} / k} F_{s}(\mathbf{y}, 1)^{r_{s} / k}} \\
= & \int_{-l}^{l}(1-|\xi|) d \xi \lim _{L \rightarrow \infty} K\left(\frac{\xi}{L}\right)
\end{aligned}
$$

where

$$
\begin{gathered}
K(\eta)=\int_{\mathbf{x}_{i} \in[0,1]^{r_{i}}} \int_{\mathbf{y} \in[0,1]^{r_{s}-1}} \frac{d \mathbf{x}_{1} \cdots d \mathbf{x}_{s-1} d \mathbf{y}}{\left(1+\eta-\sum_{i=1}^{s-1} F_{i}\left(\mathbf{x}_{i}\right)\right)^{1-r_{s} / k} F_{s}(\mathbf{y}, 1)^{r_{s} / k}} \\
1+\eta-F_{s}(\mathbf{y}, 1) \leq \sum_{i=1}^{s-1} F_{i}\left(\mathbf{x}_{i}\right) \leq 1+\eta
\end{gathered}
$$

Next we perform the change of variables $\mathbf{x}_{i}=(1+\eta)^{1 / k} \mathbf{y}_{i}$ and obtain

$$
\begin{aligned}
K(\eta)= & (1+\eta)^{R / k-1} \\
& \cdot \int_{\mathbf{y}_{i} \in\left[0,(1+\eta)^{-1 / k}\right]^{r_{i}}} \int_{\mathbf{y} \in[0,1]^{r_{s}-1}} \frac{d \mathbf{y}_{1} \cdots d \mathbf{y}_{s-1} d \mathbf{y}}{\left(1-\sum_{i=1}^{s-1} F_{i}\left(\mathbf{y}_{i}\right)\right)^{1-r_{s} / k} F_{s}(\mathbf{y}, 1)^{r_{s} / k}} \\
& 1-\frac{1}{1+\eta} F_{s}(\mathbf{y}, 1) \leq \sum_{i=1}^{s-1} F_{i}\left(\mathbf{y}_{i}\right) \leq 1 .
\end{aligned}
$$

When η tends to 0 , the foregoing multiple integral tends to

$$
\begin{gathered}
\int_{\mathbf{y}_{i} \in[0,1]^{r_{i}}} \int_{\mathbf{y} \in[0,1]^{r_{s}-1}} \frac{d \mathbf{y}_{1} \cdots d \mathbf{y}_{s-1} d \mathbf{y}}{\left(1-\sum_{i=1}^{s-1} F_{i}\left(\mathbf{y}_{i}\right)\right)^{1-r_{s} / k} F_{s}(\mathbf{y}, 1)^{r_{s} / k}} \\
1-F_{s}(\mathbf{y}, 1) \leq \sum_{i=1}^{s-1} F_{i}\left(\mathbf{y}_{i}\right) \leq 1
\end{gathered}
$$

The integrand is positive in the interior of the domain of integration, so the integral is positive provided the interior is nonempty. However, if $a=F_{1}(1,0, \ldots, 0)$ then

$$
1-F_{s}(\mathbf{0}, 1)<F_{1}\left(\left(\frac{1 /\left(1+F_{s}(\mathbf{0}, 1)\right)}{a}\right)^{1 / k}, \mathbf{0}\right)<1
$$

which proves the lemma.
Lemma 14. If $F(\mathbf{x})=\sum_{i=1}^{s} F_{i}\left(\mathbf{x}_{i}\right)$, where $F_{i} \in \mathbb{C}\left[\mathbf{x}_{i}\right] \backslash\{0\}$ are of degree $k>1$ and the \mathbf{x}_{i} are disjoint $(1 \leq i \leq s)$, then $h(F, \mathbb{C}) \geq\lceil s / 2\rceil$.

Proof. Since $F_{i} \neq 0$ there exist $\xi_{i} \in \mathbb{C}^{r_{i}}$ such that $F_{i}\left(\xi_{i} x_{i}\right)=x_{i}^{k}$. Therefore, it suffices to prove that

$$
\begin{equation*}
2 h:=2 h\left(\sum_{i=1}^{s} x_{i}^{k}, \mathbb{C}\right) \geq s . \tag{20}
\end{equation*}
$$

If $2 h<s$ and

$$
\sum_{i=1}^{s} x_{i}^{k}=\sum_{i=1}^{h} G_{i} H_{i}
$$

where G_{i} and H_{i} are forms of positive degree, then there exists an $\boldsymbol{\eta} \in \mathbb{C}^{s} \backslash\{\boldsymbol{0}\}$ such that

$$
G_{i}(\boldsymbol{\eta})=H_{i}(\boldsymbol{\eta})=0 \quad(1 \leq i \leq h)
$$

Taking partial derivatives at the point $\boldsymbol{\eta}$, we obtain

$$
k \eta_{j}^{k-1}=\sum_{i=1}^{k}\left(\frac{\partial G_{i}}{\partial x_{j}}(\boldsymbol{\eta}) H_{i}(\boldsymbol{\eta})+G_{i}(\boldsymbol{\eta}) \frac{\partial H_{i}}{\partial x_{j}}(\boldsymbol{\eta})\right)=0
$$

hence $\eta=\mathbf{0}$, a contradiction.
Remark 3. This lemma for $s=3$ easily implies the Ehrenfeucht-Pełczyński theorem about irreducibility over \mathbb{C} of $f(x)+g(y)+h(z)$, where f, g, h are nonconstant polynomials over \mathbb{C}.

Lemma 15. If $k \geq 2$ and $s \geq(k+1) 2^{k+1} \sigma(k)+1$ and if $F(\mathbf{x})=N \neq 0$ is solvable in \mathbb{Z}_{p} for all primes p, then $\mathfrak{S}>0$. Moreover, if all F_{i} are nonsingular then $\mathfrak{S} \geq \mathfrak{S}_{0}>0$, where \mathfrak{S}_{0} is independent of N.

Proof. If $h(F) \geq(k-1) 2^{k} \sigma(k)+1$ then $\omega(F)>2$ by [9, Chap. III, Thm. 6A]. Therefore, by [9, Chap. I, Lemma 6D] we have

$$
\begin{equation*}
\mathfrak{S}=\prod_{p \text { prime }} v(p), \tag{21}
\end{equation*}
$$

where

$$
v(p)=1+\sum_{n=1}^{\infty} \sum_{\substack{a=1 \\(a, p)=1}}^{p^{n}}\left(p^{n}\right)^{-R} S\left(a, p^{n}\right)
$$

and

$$
\begin{equation*}
v(p)=\lim _{n \rightarrow \infty} \frac{L\left(F, N, p^{n}\right)}{p^{n(R-1)}} . \tag{22}
\end{equation*}
$$

It follows from Lemma 7 that

$$
\left|S\left(a, p^{n}\right)\right| \ll\left(p^{n}\right)^{R-\frac{h(F)}{(k-1)^{k-1} \sigma(k)}+\varepsilon},
$$

and from this we deduce (since $\left.h(F) \geq(k-1) 2^{k} \sigma(k)+1\right)$ that

$$
|v(p)-1|<p^{-\frac{(k-1) 2^{k-1} \sigma(k)+1}{(k-1) 2^{k-1} \sigma(k)}+\varepsilon}<p^{-\frac{(k-1) 2^{k-1} \sigma(k)+2}{(k-1)^{k-1} \sigma(k)+1}} .
$$

Hence there exists a p_{0} such that

$$
\prod_{p>p_{0}} v(p)>\frac{1}{2}
$$

yet from Lemma 2 and (22) it follows that $v(p)>0$ and so, by (21), we have $\mathfrak{S}>$ 0 . Moreover, if $k \geq 5$ then $s \geq(k+1) 2^{k+1} \sigma(k)+1 \geq(k+1) 2^{k+1} \cdot 13+1 \geq$ $8 k^{3}+1>k l+1$; for $k \leq 4$ we check the relevant inequality directly. Hence, by Lemma 5 and (22),

$$
v(p) \geq v_{0}(p)>0 \quad \text { for all primes } p,
$$

where $v_{0}(p)$ is independent of N. The second part of the lemma now follows from (21).

Lemma 16. Under each set of assumptions in the Theorem there exists a positive integer s_{2} such that, for $s \geq s_{2}$, all but finitely many integers represented by $\left.F(\mathbf{x})=\sum_{i=1}^{s} F_{(} \mathbf{x}_{i}\right)$ over \mathbb{R} and over \mathbb{Z}_{p} for all primes p are represented by F over \mathbb{Z}.

Proof. For $k=1$ the choice $s_{2}=1$ is obvious. For $k=2$ the choice $s_{2}=5$ follows from classical theorems of the theory of quadratic forms (see [2, pp. 131, 235]). For $k=3$ the choice $s_{2}=33$ follows from Davenport and Lewis's theorem [5] and from Lemma $14(h(F) \geq 17)$. So assume that $k \geq 4$. If the F_{i} are nonsingular then we take $s_{2}=(k+1) 2^{k+1} \sigma(k)+1$; if not all F_{i} are semidefinite and
of the same sign and if j is the least index such that $\sum_{i=1}^{j} F_{i}$ is indefinite, then we take $s_{2}=\max \left\{(k+1) 2^{k+1} \sigma(k)+1, j\right\}$. Indeed, by Lemma 14 we have $h(F) \geq$ $(k-1) 2^{k} \sigma(k)+1$, and Lemmas $10,12,13$, and 15 show that every integer sufficiently large in absolute value that is represented by $F(\mathbf{x})$ over \mathbb{R} and over \mathbb{Z}_{p} for all primes p is also represented by F over \mathbb{Z}.

Lemma 17. With notation as in Lemma 4, let $s \geq 2 k l+1$, let p be a prime, and let \mathbf{x}_{i} be disjoint vectors of variables of length $r_{i}(i=1,2, \ldots, s)$. Let $F_{i} \in \mathbb{Z}\left[\mathbf{x}_{i}\right]$ be a form of degree k such that the greatest common divisor of $F_{i}\left(\boldsymbol{\eta}_{i}\right)$ for all $\boldsymbol{\eta}_{i} \in$ $\mathbb{Z}^{r_{i}}$ is divisible exactly by $p^{\delta_{i}}$, and let $\delta_{1} \leq \delta_{2} \leq \cdots \leq \delta_{s}$. If the congruence

$$
\begin{equation*}
c \equiv \sum_{i=1}^{s-1} F_{i}\left(\mathbf{x}_{i}\right)\left(\bmod p^{\delta_{s}}\right) \tag{23}
\end{equation*}
$$

is solvable, then the equation

$$
\begin{equation*}
c=\sum_{i=1}^{s} F_{i}\left(\mathbf{x}_{i}\right) \tag{24}
\end{equation*}
$$

is solvable in \mathbb{Z}_{p}.
Remark 4. For $k=2$, the number $2 k l+1=113$ can be replaced by 4 .
Proof of Lemma 17. Equation (24) is solvable for $c=0$, so let $c=p^{\delta} d$ for d a p-adic unit. We shall prove by induction on nonnegative $\kappa<\gamma$ that if $s \geq$ $k l+\kappa l+1$ and $\delta \geq \delta_{s}-\kappa$ then solvability of (23) implies solvability of (24). For $\kappa=0$ there is a residue r such that the set $S=\left\{i \leq s: \delta_{i} \equiv r(\bmod k)\right\}$ satisfies $|S| \geq l+1$. Let $m=\max _{i \in S} i$. By the definition of δ_{i} there exist $\boldsymbol{\eta}_{i} \in \mathbb{Z}^{r_{i}}$ such that $F_{i}\left(\boldsymbol{\eta}_{i}\right)=p^{\delta_{i}} d_{i}$, where d_{i} is a p-adic unit $(i \in S)$. By Lemma 3 there exist $\xi_{i} \in \mathbb{Z}_{p}(i \in S)$ such that

$$
p^{\delta-\delta_{m}} d=\sum_{i \in S} d_{i} \xi_{i}^{k}
$$

therefore,

$$
c=\sum_{i \in S} F_{i}\left(p^{\left(\delta_{m}-\delta_{i}\right) / k} \xi_{i} \boldsymbol{\eta}_{i}\right) .
$$

Assume now that the implication holds for $s \geq k l+(\kappa-1) l+1$ and for the left-hand side of (23) and (24) divisible by $p^{\delta_{s}-\kappa+1}(\kappa \geq 1)$. Let $\delta=\delta_{s}-\kappa$ and $s \geq k l+\kappa l+1$. If $\delta>\delta_{s-l}-\kappa$ then the implication holds by the inductive assumption with s replaced by $s-l$. If $\delta=\delta_{s-l}-\kappa$, then $\delta_{i}=\delta_{s}(s-l \leq i \leq s)$. From the solvability of (23) we infer that, for certain $\zeta_{i} \in \mathbb{Z}^{r_{i}}$,

$$
c-\sum_{i=1}^{s-l-1} F_{i}\left(\zeta_{i}\right)=p^{\delta_{s}} t, \quad t \in \mathbb{Z}_{p}
$$

By the definition of δ_{i} there exist $\boldsymbol{\eta}_{i} \in \mathbb{Z}^{r_{i}}$ such that $F_{i}\left(\boldsymbol{\eta}_{i}\right)=p^{\delta_{i}} d_{i}$, where d_{i} is a p-adic unit ($s-l \leq i \leq s$). Now, by Lemma 3 there exist $\xi_{i} \in \mathbb{Z}_{p}(s-l \leq i \leq s)$ such that

$$
\sum_{i=s-l}^{s} d_{i} \xi_{i}^{k}=t
$$

It follows that $\left(\zeta_{1}, \ldots, \boldsymbol{\zeta}_{s-l-1}, \xi_{s-l} \boldsymbol{\eta}_{s-l}, \ldots, \xi_{s} \boldsymbol{\eta}_{s}\right)$ is a solution of (24). The inductive proof shows that the implication holds provided $\delta \geq \delta_{s}-(\gamma-1)$ and $s \geq$ $l k+l(\gamma-1)+1$. For $\delta \leq \delta_{s}-\gamma$ the implication holds, by Lemma 1, for every s. Since $\gamma-1 \leq \tau+1 \leq k$ it follows that the implication holds for $s \geq 2 k l+1$, which was to be proved.

Proof of Theorem. For each prime p let the greatest common divisor of $F_{i}\left(\boldsymbol{\eta}_{i}\right)$ for $\eta_{i} \in \mathbb{Z}^{r_{i}}$ be divisible exactly by $p^{\delta_{p i}}$. Put

$$
m_{p}=\min _{\substack{S \subset \mathbb{N} \\|S|=2 k l+1}} \sum_{i \in S} \delta_{p i}
$$

and let S_{p} be a unique set S such that $|S|=2 k l+1, \sum_{i \in S} \delta_{p i}=m_{p}$, and $\sum_{i \in S} i$ is minimal. For all p such that $\delta_{p i}=0$ for all $i \leq 2 k l+1$ (and thus for all but finitely many p) we have $S_{p}=\{1, \ldots, 2 k l+1\}$. Now take

$$
\begin{aligned}
& S_{1}=\bigcup_{p \text { prime }} S_{p}, \\
& s_{1}=\max \left\{s_{2}, \max _{i \in S_{1}} i\right\} .
\end{aligned}
$$

By Lemma 16 for $s \geq s_{1} \geq s_{2}$ only finitely many integers N exist that are represented by $\sum_{i=1}^{s} F_{i}\left(\mathbf{x}_{i}\right)$ over \mathbb{R} and over \mathbb{Z}_{p} for all primes p yet are not represented by $\sum_{i=1}^{s} F_{i}\left(\mathbf{x}_{i}\right)$ over \mathbb{Z}. Let s_{0} be the least integer $s \geq s_{1}$ for which the number of exceptions is minimal. We show that s_{0} has the property asserted in the theorem. Suppose N is an integer represented by $\sum_{i=1}^{s} F_{i}\left(\mathbf{x}_{i}\right)$ over \mathbb{R} and over \mathbb{Z}_{p} for all primes p. By the choice of s_{2}, N is represented by $\sum_{i=1}^{s_{0}} F_{i}\left(\mathbf{x}_{i}\right)$ over \mathbb{R}. Since for $i \notin S_{p}$ we have $\delta_{p i} \geq \max _{j \in S_{p}} \delta_{p j}$, it follows from Lemma 17 that N is represented by $\sum_{i=1}^{s_{0}} F_{i}\left(\mathbf{x}_{i}\right)$ over \mathbb{Z}_{p} for every prime p. If N is represented over \mathbb{Z} by $\sum_{i=1}^{s} F_{i}\left(\mathbf{x}_{i}\right)$ but not by $\sum_{i=1}^{s_{0}} F_{i}\left(\mathbf{x}_{i}\right)$, then the number of exceptions for s is smaller than the number of exceptions for s_{0}, contrary to the choice of s_{0}.

Proof of Corollary. Let $I_{k}=\left\{i \in \mathbb{N}: k_{i}=k\right\}$. Because the sequence k_{i} is bounded, almost all the I_{k} are empty. For each k such that I_{k} is infinite, the Theorem implies there are s_{k} such that every integer represented by $\sum_{i=1, i \in I_{k}}^{s} F_{i}\left(\mathbf{x}_{i}\right)$ over \mathbb{Z} is represented by $\sum_{i=1, i \in I_{k}}^{s_{k}} F_{i}\left(\mathbf{x}_{i}\right)$ over \mathbb{Z}. For each k such that $0<\left|I_{k}\right|<$ ∞, put $s_{k}=\max _{i \in I_{k}} i$ and take

$$
s_{0}=\max _{I_{k} \neq \emptyset} s_{k}
$$

Now s_{0} has the asserted property because if $N=\sum_{i=1}^{s} F_{i}\left(\mathbf{y}_{i}\right)$ then, for each k, $\sum_{i=1, i \in I_{k}}^{s} F_{i}\left(\mathbf{y}_{i}\right)=\sum_{i=1, i \in I_{k}}^{s_{0}} F_{i}\left(\mathbf{x}_{i}\right)$; after summation over k, we have

$$
N=\sum_{i=1}^{s_{0}} F_{i}\left(\mathbf{x}_{i}\right)
$$

Added in proof. Suitable modifications in the proofs of Lemmas 5, 13, and 16 show that the condition $(*)$ can be replaced by a weaker one: either not all forms are semidefinite of the same sign, or at least $k l+1$ forms are nonsingular.

References

[1] Z. I. Borevič and I. R. Šafarevič, Number theory, Academic Press, New York, 1966.
[2] J. W. S. Cassels, Rational quadratic forms, London Math. Soc. Monogr. (N.S.), 13, Academic Press, New York, 1978.
[3] H. Davenport, Cubic forms in thirty-two variables, Philos. Trans. Royal Soc. London Ser. A 251 (1959), 193-232; reprinted in The collected works of Harold Davenport, vol. III, pp. 1149-1188, Academic Press, New York, 1977.
[4] -, Analytic methods for Diophantine equations and Diophantine inequalities, 2nd ed., Cambridge Univ. Press, Cambridge, 2005.
[5] H. Davenport and D. J. Lewis, Non-homogeneous cubic equations, J. London Math. Soc. 39 (1964), 657-671; reprinted in The collected works of Harold Davenport, vol. III, pp. 1245-1259, Academic Press, New York, 1977.
[6] I. M. Gelfand, M. M. Kapranov, and A.V. Zelevinsky, Discriminants, resultants and multidimensional determinants, Birkhäuser, Boston, 1994.
[7] J. P. Jouanolou, Le formalisme du résultant, Adv. Math. 90 (1991), 117-263.
[8] O. Perron, Algebra, I, 3rd ed., de Gruyter, Berlin, 1951.
[9] W. M. Schmidt, Analytische Methoden für Diophantische Gleichungen, Birkhäuser, Basel, 1984.
[10] E. T. Whittaker and G. N. Watson, A course in modern analysis, Cambridge Univ. Press, Cambridge, 1963.

Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8
00-956 Warsaw
Poland
schinzel@impan.pl

