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Two Extension Theorems
of Hartogs–Chirka Type

Involving Continuous Multifunctions

Purvi Gupta

1. Introduction and Statement of Results

This paper is motivated (i) by a version of Hartogs’ lemma stating that, if � is
some neighborhood of the union of ∂D × D and a complex analytic subvariety
� ⊂ D̄× D that is finitely sheeted over D (such that � ∩ D2 is connected) and if
f ∈ O(�), then f continues holomorphically to D2 and (ii) by the Hartogs-type
extension theorem of Chirka. Chirka’s theorem reads as follows.

Result 1.1 (Chirka). Let φ : D̄ → C be a continuous function having
supz∈D̄|φ(z)| < 1 and let S be its graph. Let � be a connected open neigh-
borhood of S ∪ (∂D×D) contained in {(z,w)∈C2 : |w| < 1}. If f ∈ O(�), then
f extends holomorphically to D2.

(Here and in what follows, D denotes the open unit disc in C.) This motivates the
question of whether—given the “Weierstrass pseudopolynomial”

Pa(z,w) := wk +
k−1∑
j=0

aj(z)w
j, k ≥ 2 (1.1)

(where a0, . . . , ak−1 ∈ C(D̄) with P−1
a {0} ⊂ D̄ × D) and given a neighborhood �

of P−1
a {0} ∪ (∂D× D̄)—the aforementioned results hold in this new setting.

One possible approach to this question is to investigate a version of Result 1.1
with one copy of D replaced by a bordered Riemann surface determined by a :=
(a0, . . . , ak−1), over which the graph of the multifunction is transformed to a graph.
One is then reduced to solving a certain quasilinear ∂̄-problem analogous to the
one considered by Chirka in [4] (also see [5]). There is considerable literature on
this subject (see, e.g., [7]). However, for this approach to work, one needs con-
tinuous dependence of solutions on the parameters as well as sup-norm estimates
with small norm, neither of which seem to be known at this time. A second ap-
proach is suggested by the Kontinuitätssatz-based strategies of Bharali [2] and
Barrett-Bharali [1], provided one is willing to allow (a0, . . . , ak−1) in (1.1) to be-
long to some strict subclass of C(D̄;Ck ). To motivate the origins of the two main
theorems that follow, we state one of the results from [1] and [2].

Received February 10, 2010. Revision received September 13, 2010.
This work is supported by the UGC under DSA-SAP, Phase IV and by a scholarship from the IISc.

675



676 Purvi Gupta

Result 1.2 (Bharali [2]). Let � be the graph of the map (φ1, . . . ,φk) : D̄ → Ck,
where φj(z) := ψj(z, z̄) and

ψj ∈
{
ψ ∈ O(D2) : sup

(z,ζ)∈D2
|ψ(z, ζ)| < 1 and z �→ ψ(z, z̄) is continuous on D̄

}
(1.2)

for j = 1, . . . , k. If � is a connected neighborhood of S := � ∪ (∂D × Dk )

contained in {(z,w) ∈ C × Ck : w ∈ Dk} and if f ∈ O(�), then f extends holo-
morphically to Dk+1.

In the theorems in [1] and [2], the authors construct a continuous family of discs
{�t ∈ C(D̄;Ck ) : t ∈ [0,1]} such that �0 = (φ1, . . . ,φk) and each �t is holomor-
phic on larger and larger subregions of D so that, eventually, �1 ∈ O(D) ∩ C(D̄).
This construction suggests the following strategy.

Step 1. Setting (φ1, . . . ,φk) := (a0, . . . , ak−1), we can try to construct a contin-
uous family of discs {�t }t∈[0,1] with the properties mentioned before. We can
then treat each �t := (�t,0, . . . ,�t,k−1) as a k-tuple of the ordered coefficients
of a Weierstrass pseudopolynomial and thereby obtain a continuous family of
“pseudovarieties”

{
�t := {

(z,w)∈D×C : wk+∑k−1
j=0 �t,j(z)w

j = 0
}}

t∈[0,1]

such that �0 := {(z,w)∈ D̄×C : Pa(z,w) = 0}, where each �t is a finitely
sheeted complex analytic subvariety fibered over larger and larger subregions
of D and where �1 is the graph of an analytic multifunction (i.e., a multi-
graph) over D.

Step 2. In the construction just described, our hypotheses on (a0, . . . , ak−1)must
also ensure that each �t over D, like the initial “pseudovariety”, lies within
the bidisc (i.e., �t ⊂ D̄×D for all t ∈ [0,1]) and that �t is attached to ∂D×D
along the border of �t for all t ∈ [0,1].

Step 3. Finally, we invoke a suitable version of the Kontinuitätssatz to achieve
analytic continuation along the family so constructed in order to reduce the
problem to the “finitely sheeted analytic variety” version of Hartogs’ lemma
mentioned in the beginning of this section.

It turns out that this second strategy is successful (with some refinement) if
the coefficients a0, . . . , ak−1 are drawn from the subclasses studied in [1] and [2].
Now, one may ask why Step 1 cannot be attempted for a0, . . . , ak−1 ∈ C(D̄). This
would amount to attempting to prove a vector-valued version of Chirka’s main re-
sult (Result 1.1) in [4]. However, Rosay’s counterexample in [9] establishes that
Chirka’s result cannot be generalized to higher dimensions in its entire generality—
in other words, when a0, . . . , ak−1 (k > 1) are merely continuous. The first the-
orem of this paper is stated for a0, . . . , ak−1 belonging to the subclass of C(D̄)
introduced by Barrett and Bharali in [1].

Theorem 1.3. Let a0, . . . , ak−1 ∈ C(D̄;C) be such that the set

�a :=
{
(z,w)∈ D̄× C : wk +

k−1∑
j=0

aj(z)w
j = 0

}
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lies entirely in D̄ × D. For 0 < r ≤ 1, let Aj
ν(r) represent the νth Fourier coeffi-

cient of aj(re i•), ν ∈ Z. Assume that Aj
ν ≡ 0 for all ν < 0 and j = 0, . . . , k − 1.

Let � be a connected neighborhood of S := �a ∪ (∂D× D̄) such that � ∩ D2 is
connected. Then, for every f ∈ O(�), there exists an F ∈ O(D2) such that

F |�∩D2 ≡ f |�∩D2 .

Our next theorem has its origins in Result 1.2, but see Remarks 1.5 and 1.6.

Theorem 1.4. Let aj := ψj(z, z̄), where

ψj ∈
{
ψ ∈ O(D2) : sup

(ζ,s)∈D×[0,1]
|ψ(ζ, sζ̄)| < 1 and

z �→ ψ(z, z̄) is continuous on D̄
}

(1.3)

for j = 0, . . . , k − 1, be such that the set

�a :=
{
(z,w)∈ D̄× C : wk +

k−1∑
j=0

aj(z)w
j = 0

}
lies entirely in D̄ × D(0; 2). Let � be a connected neighborhood of S :=
�a ∪ (∂D× D(0; 2)) such that � ∩ (D× D(0; 2)) is connected. Then, for every
f ∈ O(�), there exists an F ∈ O(D× D(0; 2)) such that

F |�∩(D×D(0;2)) ≡ f |�∩(D×D(0;2)).

Remark1.5. Let F1 and F2 be the classes of functions appearing in (1.2) and (1.3),
respectively. Although Theorem1.4 stems from Result1.2, it must be admitted that
the class F1 is quite restrictive. However, when adapting the approach outlined pre-
viously, we were able to construct the deformation {�t : t ∈ [0,1]} in a slightly dif-
ferent fashion from that suggested in [2], which allows us to work with a0, . . . , ak−1

belonging to a less restrictive class. Note that F2 � F1; simply observe that if
ψ(z,w) := (M+ε)−1 exp(z−w−2), whereM = sup(ζ,s)∈D̄×[0,1]|exp(ζ−sζ̄−2)|,
then M < 1 and for ε ∈ (M, 1) we have ψ ∈ F2 but ψ /∈ F1.

Remark1.6. Černe and Flores [3] have independently used the three-step method
described previously in order to prove the following statement.

(∗) Let a0, . . . , ak−1 be continuous functions on D̄ and let

�a := {(z,w)∈ D̄× C : wk + ak−1(z)w
k−1 + · · · + a0(z) = 0}

be a continuous variety over D̄; then every function holomorphic in a con-
nected neighborhood of the set S = �a ∪ (∂D×C) extends holomorphically
to a neighborhood of D̄× C.

Note that C(D̄;D) is a subset of the uniform closure (on D̄) of the function space
obtained if we drop the bound “sup(z,ζ)∈D2 |ψ(z, ζ)| < 1” from F1. It is this fact,
coupled with their reliance on the three-step method outlined after Remark 1.5,
that compels Černe and Flores [3] to work with the unbounded cylinder D̄ × C.
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Theorem 1.4 represents an alternative setting in which to exploit the same method
with—in contrast to Černe and Flores—the following initial objectives.

• Use the ideas of Barrett and Bharali to demonstrate an analytic continuation
theorem stated for a compact Hartogs figure (S = �a ∪ (∂D× D(0; 2)) in our
case).

• Extend the applicability of Result 1.2 to a less restrictive class of graphs and
coefficients—namely, F2.

Because of considerations inherent to the three-step method that we intend to use
(see Remark 2.3(i)) we—just like Černe and Flores—cannot work with the Har-
togs configuration �a ∪ (∂D× D̄) either. However, we can state a result involving
�a ∪ (∂D× D(0; 2)).

Many of the mathematical details underlying Steps 2 and 3 are common to The-
orems1.3 and1.4. These technicalities have been collected in Section 2. The actual
proofs of Theorems 1.3 and 1.4 are presented in Sections 3 and 4, respectively.

2. Preliminary Lemmas

We will first isolate the technical elements of the two main proofs in the form of
a few preliminary results. The following notation will be used.

• D(a; r) will denote the open disc of radius r with center at a, and Ann(a; r,R)

will denote the open annulus with center at a ∈C and having inner radius r and
outer radius R.

• C∞(D̄;C) will denote the class of infinitely differentiable functions on the unit
disc, all of whose derivatives extend to functions in C(D̄).

• For α := (α0, . . . ,αk−1) ∈ C(Ḡ;Ck ), k ∈ N, G ⊂ C a bounded domain, and
E ⊂ Ḡ, we set

Pα(z,w) := wk +
k−1∑
j=0

αj(z)w
j,

�α,E :=
{
(z,w)∈E × C : wk +

k−1∑
j=0

αj(z)w
j = 0

}
.

For the sake of convenience, the subscript E will be omitted when E = D̄; for
example, �α,D̄ =: �α.

The first step of the three-step strategy outlined in Section 1 is not difficult, but
the details involved are theorem-specific. This is due in part to the requirements
described in Step 2. A crucial task is to determine sufficient yet not too strong
conditions on the coefficient k-tuple (a0, . . . , ak−1) that will enable us to establish
that each �t , t ∈ [0,1], is contained in the bidisc relevant to each theorem. The
following lemma—a maximum principle for varieties—will prove useful.

Lemma 2.1. Let G ⊂ C be a bounded domain and let a ∈ O(G;Ck )∩C(Ḡ;Ck ).

Define
M(z) := max{|w| : (z,w)∈�a,Ḡ}.

If M(z) ≤ K for all z∈ ∂G, then M(z) ≤ K for all z∈ Ḡ.
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Proof. We would be done if we could obtain the conclusion of this lemma when
�a,G is an irreducible subvariety. For �a,G irreducible, if we can show that M is
subharmonic then the result would follow from the maximum principle.

Recall that the zeros of monic degree-k polynomials over C, viewed as un-
ordered k-tuples of zeros repeated according to multiplicity, vary continuously
with the coefficients. Hence, since M is symmetric in the zeros of Pa , it follows
that M ∈ C(Ḡ).

Now, let

R(z) := resultant of Pa(z, ·) and ∂wPa(z, ·), z∈G.

By the irreducibility of �a,G, we have R �≡ 0. Since R ∈ O(G), S := R−1{0} is
a discrete set in G. Now, for any z0 ∈G \S, �a,{z0} = {(z0,w0,1), . . . , (z0,w0,k)}
with w0,j �= w0,l for j �= l. Because ∂wPa(z0,w0,j ) �= 0 for each j = 1, . . . , k,
we may apply the implicit function theorem at each point of �a,{z0} to obtain a
common radius r(z0) > 0 such that the k sheets of �a,D(z0;r(z0)) are the graphs
of functions φz0

1 , . . . ,φz0
k ∈ O(

D(z0; r(z0))
)
. Clearly,

M(z) = max
j≤k

|φz0
j (z)| ∀z∈D(z0; r(z0)).

Thus, M|D(z0;r(z0)) is subharmonic. Since z0 was arbitrarily chosen from the open
set G \ S, we infer that M|G\S is a subharmonic function.

Because S is the zero set of a holomorphic function, it is a polar set. ButM|G\S
is a bounded subharmonic function, and M ∈ C(Ḡ). Therefore, M must be sub-
harmonic in G [8, p. 47].

Remark 2.2. We paraphrase Lemma 2.1 as follows for use in our situation.

Let G ⊂ C be a bounded domain and let a ∈ O(G;Ck ) ∩ C(Ḡ;Ck ).

Then
�a,∂G ⊂ ∂G × D(0;K) �⇒ �a,Ḡ ⊂ Ḡ × D(0;K).

Remark 2.3. We will also need the following algebraic facts.

(i) If α0, . . . ,αk−1 ∈D (k ∈N) and if w1, . . . ,wk are the zeros of the polynomial
wk + αk−1w

k−1 + · · · + α1w
1 + α0, then wj ∈ D(0; 2) for j = 1, . . . , k. For

an easy proof of this fact, one can apply Rouché’s theorem to f(w) := wk

and g(w) := wk + ∑k−1
j=0 αjw

j on ∂D(0; 2).
(ii) If (α0, . . . ,αk−1) ∈ Ck and if w1, . . . ,wk are the zeros of the polynomial

wk + αk−1w
k−1 + · · · + α1w + α0 then, for η ∈C, w1 + η, . . . ,wk + η are the

zeros of the polynomial

wk + α
(η)

k−1w
k−1 + · · · + α

(η)

1 w + α
(η)

0 ;
here, for each j,

α
(η)

j = αj +
k∑

l=j+1

(−1)l−j

(
l

l − j

)
αlη

l−j (2.1)

if we interpret αk := 1.
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Theorems of a similar flavor as Theorems 1.3 and 1.4 have relied upon the Kontinu-
itätssatz. However, the earliest (and partially correct) works do not specify which
form of the Kontinuitätssatz they rely upon. We wish to clarify here that the ver-
sion that works for us is the one of Chirka and Stout [6]. However, merely using
the Chirka–Stout Kontinuitätssatz yields a weaker conclusion than desired—that
is, on the envelope of holomorphy of the domain in question. The next lemma fol-
lows the approach of Barrett and Bharali [1] to argue that it is, in fact, possible to
obtain the strong conclusion of Chirka’s extension theorem (i.e., Result 1.1) [4] in
our situation.

Lemma 2.4. Let a = (a0, . . . , ak−1) ∈ C(D̄;Ck ) and let �a ⊂ D̄ × D(0; r),
r > 0. Let � be a connected open neighborhood of S := �a ∪ (∂D×D(0; r)) and
let f ∈ O(�). Let V := Ann(0;1 − ε, 1 + ε), ε > 0, be such that V × D(0; r) ⊂
�, and let D � � be an open subset containing S. For any α ∈ C(D̄;Ck ) and
any η ∈ C, let α(η) ∈ C(D̄;Ck ) denote the perturbation that is given by (2.1) so
that �α(η) = �α + (0, η). Suppose there exist (a) a continuous function A :=
(A0, . . . ,Ak−1) on D̄ × [0,1] such that A(·, 0) = a(·) and (b) a δ > 0 so small
that, defining �

η
t := �A(η)(·,t), we have:

(1) for each η ∈D(0; δ), �η
t ⊂ D̄× D(0; r) for all t ∈ [0,1]; and

(2) for each η ∈D(0; δ), �η
t ∩ (D×D(0; r))\ D̄ is a complex analytic subvariety

of D× D(0; r) \ D̄.

Then there exist a connected neighborhood �1 of S1 := �0
1 ∪ (∂D × D(0; r))

and an f1 ∈ O(�1) such that

f1|�1∩(V×D(0;r)) ≡ f |�1∩(V×D(0;r)).

Proof. Let
T :=

⋃
η∈D(0;δ)

�0
1 + (0, η).

By the Chirka–Stout Kontinuitätssatz [6] we have T ⊂ π(�̃), where (�̃,π) de-
notes the envelope of holomorphy of �.

There is a canonical holomorphic imbedding of� into �̃. We denote this imbed-
ding by j : � ↪→ �̃. Corresponding to each f ∈ O(�) there is a holomorphic
function E(f )∈ O(�̃) such that E(f )�j = f. By [6] (and analogously to the situ-
ation in [1]), there exists a holomorphic mapping (note that �η

1 varies analytically
in η) H : T → �̃ such that

π � H(�
η

1 ∩ ({z} × Cw)) = �
η

1 ∩ ({z} × Cw) for all η ∈D(0; δ) and z∈ D̄.
Now, for each p := (z1,w1)∈ T ∩ (V × D(0; r)) there exist

• an η0 ∈D(0; δ) and
• a point q ∈�

η0
0 ∩ {z1} × Cw

such that the continuous family {�η0
t }t∈[0,1] determines a path γqp : [0,1] →

{z1} × Cw with γqp(0) = q and γqp(1) = p. Let S� := the sheaf of O(�)-
germs over C2 (refer to [8, Chap. 6] for the definition of an O(�)-germ), and let
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γ̃qp := the lift of γqp to S� starting at the germ [g : g ∈ O(�)]q .

Examining the Kontinuitätssatz, we find H(p) = γ̃qp(1).
We know that if [sg : g ∈ O(�)]z is an O(�)-germ in �̃ then

E(f )([sg : g ∈ O(�)]z) = sf (z).

By the monodromy theorem, γ̃qp(1) = [g : g ∈ O(�)]p and so

E(f ) � H(p) = E(f )(γ̃qp(1)) = f(p).

Since this expression holds for any arbitrary p ∈ T ∩(V × D(0; r)), it follows that

E(f ) � H = f on T ∩ (V × D(0; r)).
Finally, let �1 := T ∪ (V × D(0; r)) and

f1(z,w) :=
{ E(f ) � H(z,w) if (z,w)∈ T ,

f(z,w) if (z,w)∈V × D(0; r).
Then f1 ∈ O(�1) and

f1|�1∩(V×D(0;r)) ≡ f |�1∩(V×D(0;r)).

3. Proof of Theorem 1.3

By [1, Lemma 5] and the continuous dependence of the zeros of a polynomial on
its coefficients, we know that it is enough to prove Theorem 1.3 for a0, . . . , ak−1 ∈
G1, where G1 � C(D̄;C) is the following set:{

g ∈ C∞(D̄;C) : ∃N ∈N, Gn ∈ C∞([0,1];C) such that

g(re iθ ) =
N∑

n=0

Gn(r)e
inθ, r ∈ (0,1]

}
.

Thus, we replace a = (a0, . . . , ak−1) in Theorem 1.3 by b := (b0, . . . , bk−1) ∈ Gk
1.

This is because we can find a �b so close to �a that �b is a subset of � and is
attached to ∂D× D̄.

Fix a j ∈ {0, . . . , k − 1}. Let

bj(re
iθ ) =

n(j)∑
n=0

Bj
n(r)e

inθ, θ ∈ [0, 2π),

where n(j)∈N and B
j
n ∈ C∞([0,1];C). Using Lemma 3 from [1], where Barrett

and Bharali constructed an explicit family of analytic discs in D̄×C with bound-
aries in {(z, b0(z), . . . , bk−1(z)) : z ∈ D}, we define a family of continuous discs
{Bt = (Bt,0, . . . , Bt,k−1)}t∈[0,1] as follows:

Bt,j(ζ) :=
{ ∑n(j)

n=0B
j
n(t)

( ζ

t

)n
if ζ ∈D(0; t),

bj(ζ) if ζ ∈Ann(0; t, 1).
(3.1)
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Note that B0 = b. Also, by [1, Lemma 4], {Bt }t∈[0,1] is a continuous family and
B1 ∈ O(D;Ck ) ∩ C(D̄;Ck ).

Let δ > 0 be so small that η ∈ D(0; δ) implies �b + (0, η) ⊂ � ∩ (D̄ × D).

Let b(η) = (b
(η)

1 , . . . , b(η)k−1) be defined pointwise by (2.1). By Remark 2.3(ii), each

b
(η)

j , as a linear combination of bj , . . . , bk−1, is in G1. Thus, we can define con-

tinuous discs {B(η)
t = (B

(η)

t,0 , . . . , B(η)

t,k−1)}t∈[0,1] using the Fourier coefficients of

b
(η)

j (re i•), r ∈ (0,1], just as in (3.1). It is a simple observation that the same discs

can be obtained by defining, on D̄,

B
(η)

t,j := Bt,j +
k−1∑

l=j+1

(−1)l−j

(
l

l − j

)
Bt,lη

l−j + (−1)k−j

(
k

k − j

)
ηk−j. (3.2)

It is important to note that B
(0)
t ≡ Bt for all t ∈ [0,1].

Fix a domain D � � such that S ⊂ D. We claim that the continuous family
{B(η)

t }t∈[0,1] satisfies the following properties.

(a) B
(η)

0 = b(η) for all η ∈D(0; δ);
(b) for a fixed t, B

(η)
t depends analytically on η;

(c) for each B
(η)
t , �B(η)

t
\ D̄ is an analytic subvariety of D̄× C \ D̄; and

(d) for each t, �B(η)
t

⊂ D̄× D for all η ∈D(0; δ).
Properties (a) and (b) follow from construction. For (c), it is enough to ob-

serve that
�B(η)

t
= (�

b(η),Ann(0;t,1)) ∪ (�B(η)
t ,D(0;t))

and that B
(η)
t |D(0;t) ∈ O(D(0; t);Ck ). For property (d), it is enough to show that

�B(η)
t ,D(0;t) ⊂ D̄× D.

But this follows from Lemma 2.1 applied to �B(η)
t ,D(0;t), with D(0; t) acting as G,

since
�B(η)

t ,∂D(0;t) ≡ �b(η),∂D(0;t) ⊂ ∂D(0; t) × D.
From this expression we can conclude that the mapping A : D̄× [0,1] → Ck with
A(z, t) := Bt(z) satisfies the hypotheses of Lemma 2.4. Hence there exist a con-
nected open neighborhood �1 of S1 := �B(0)

1
∪ (∂D × D) and an f1 ∈ O(�1)

such that
f1|�1∩(V×D) ≡ f |�1∩(V×D),

where V := Ann(0;1 − ε,1 + ε), ε > 0, chosen so that V × D ⊂ �.

However, B
(0)
1 is holomorphic by construction. So in view of the ideas pre-

sented in Remark 2.3, we can argue as follows.

1. Let {U s}s∈[0,1] be defined as

U s = (U s,0, . . . , U s,k−1) := (s kB
(0)
1,0, . . . , s k−jB

(0)
1,j , . . . , sB(0)

1,k−1).

Then, for each s ∈ [0,1], U s is analytic and �Us
= {(z, sw) : (z w)∈�B(0)

1
}.
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2. Let δ̃ > 0 be so small that η ∈D(0; δ̃) implies �U1 + (0, η) ⊂ �1 ∩ (D̄× D).
Note that, by Remark 2.3(ii), each U

(η)
s depends analytically on η.

3. We are now in a position to apply Lemma 2.4 to the continuous mapping
U : D̄ × [0,1] → Ck with U(z, s) := U1−s(z). Thus, there exist a connected
open neighborhood �2 of S2 := �U0 ∪ (∂D×D) = (D̄× {0})∪ (∂D×D) and
an f2 ∈ O(�2) such that

f2|�2∩(V×D) ≡ f1|�2∩(V×D),

where V := Ann(0;1 − ε,1 + ε), ε > 0, chosen so that V × D ⊂ �.

By the classical theorem of Hartogs, there exists an F ∈ O(D2) such that

F |�2∩D2 ≡ f2|�2∩D2 .

Therefore, F and f must coincide in �2 ∩ �1 ∩ (V ×D) ∩D2. Since the latter is
an open subset of the connected set � ∩ D2, we conclude that

F |�∩D2 ≡ f |�∩D2 .

4. Proof of Theorem 1.4

The proof of this theorem is similar to that of Theorem 1.3. The main difference
lies in the specific method of constructing—starting from the given multigraph—a
continuous family of multigraphs along which we can achieve analytic continua-
tion by invoking the Kontinuitätssatz. Recall that, in Section 3, the form of each
coefficient function aj facilitated the construction of functions that were holomor-
phic on increasing concentric discs in D. In the present case, in order to perturb
the coefficients we will construct analytic annuli attached to the graphs of aj along
their inner boundaries and attached to ∂D × D along their outer boundaries. In
view of Remark 2.3(i), we are compelled to work with a polydisc longer than D2.

Let a(z) = ψ(z, z̄) := (ψ0(z, z̄), . . . ,ψk−1(z, z̄)). Set R := D̄ × [0,1]. Note
that, by hypothesis, we can find an ε > 0 such that Ann(0;1−ε,1+ε)×D(0; 2) ⊂
�. Hence, if we keep in mind the closing arguments in Section 3, it suffices to
work with �

a,D(0;1−ε/2) and the Hartogs configuration

Sε := �
a,D(0;1−ε/2) ∪ (∂D(0;1 − ε/2) × D(0; 2)).

This affords us the following useful property:

(ζ, s) �→ ψj(ζ, sζ̄) is continuous on D(0;1 − ε/2) × [0,1] ∀j = 0, . . . , k − 1.

Hence it actually suffices to prove Theorem 1.4 under the assumption that ψ0, . . . ,
ψk−1 ∈ G2, where

G2 :=
{
ψ ∈ O(D2) ∩ C(D̄2) : sup

(ζ,s)∈R
|ψ(ζ, sζ̄)| < 1

}
.

In order to avoid messy subscripted notation such as �
a,D(0;1−ε/2) and messy nor-

malizations, we shall hereafter assume that ψj ∈ G2 for j = 0, . . . , k − 1.
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We define a family of continuous discs {7t = (7t,0, . . . ,7t,k−1)}t∈[0,1) as
follows:

7t(ζ) :=
{

a(ζ) = ψ(ζ, ζ̄) if ζ ∈D(0;1 − t),

ψ
(
ζ, (1−t)2

ζ

)
if ζ ∈Ann(0;1 − t, 1).

(4.1)

Therefore, 70 = a. We observe that {7t }t∈[0,1) is a continuous family in the
sense that, for a fixed ζ0 ∈ D̄, t �→ 7t(ζ0) is continuous in the interval [0, 1).
Furthermore, we may define

71(ζ) := lim
t→1− 7t(ζ) = ψ(ζ, 0). (4.2)

Thus, 71 ∈ O(D;Ck ). We also note that, for each t ∈ [0,1],

sup
ζ∈∂D

|7t,j(ζ)| = sup
ζ∈∂D

|ψj(ζ, (1 − t)2ζ̄)| < 1, j = 0, . . . , k − 1. (4.3)

Let δ > 0 be so small that

• η ∈D(0; δ) implies �a + (0, η) ⊂ � ∩ (D̄× D) and
• for all η ∈D(0; δ) and j = 0, . . . , k − 1,

sup
(ζ,s)∈R

|ψj(ζ, sζ̄)| +
k−1∑

l=j+1

(
l

l − j

)
sup

(ζ,s)∈R
|ψl(ζ, sζ̄)||η| l−j +

(
k

k − j

)
|η|k−j < 1.

(4.4)

Let ψ(η) = (ψ
(η)

1 , . . . ,ψ(η)

k−1) ∈ O(D2;Ck ) be defined pointwise on D̄2 by (2.1).
By (4.4), we have

sup
(ζ,s)∈R

|ψ(η)

j (ζ, sζ̄)| < 1 for all η ∈D(0; δ) and j = 0, . . . , k − 1.

Thus, each ψ
(η)

j ∈ G2.

Now, just as in the proof of Theorem 1.3, we use {7t }t∈[0,1] to construct continu-
ous families of continuous discs {7(η)

t = (7
(η)

t,0 , . . . ,7(η)

t,k−1)}t∈[0,1] on D̄ as follows:

7
(η)

t,j := 7t,j +
k−1∑

l=j+1

(−1)l−j

(
l

l − j

)
7t,lη

l−j + (−1)k−j

(
k

k − j

)
ηk−j. (4.5)

Observe that 7(0)
t = 7t and, by construction,

sup
ζ∈∂D

|7(η)
t (ζ)| = sup

ζ∈∂D

|ψ(η)
t (ζ, (1 − t)2ζ̄)| < 1. (4.6)

As before, we fix a domain D � � such that S ⊂ D and claim that the follow-
ing properties are satisfied:

(a∗) 7
(η)

0 = a(η) for all η ∈D(0; δ);
(b∗) for a fixed t, 7(η)

t depends analytically on η;
(c∗) for each 7

(η)
t , �7(η)

t
\ D̄ is an analytic subvariety of D̄× C \ D̄; and

(d∗) for each t, �7(η)
t

⊂ D̄× D(0; 2) for all η ∈D(0; δ).
Properties (a∗) and (b∗) pose no problem, and (c∗) can be argued in exactly the
same way as in Section 3. For (d∗) we write, in the notation established in Sec-
tion 2,

�7(η)
t ,∂ Ann(0;1−t,1) = �7(η)

t ,∂D(0;1−t) ∪ �7(η)
t ,∂D. (4.7)
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Note that �7(η)
t ,∂D(0;1−t) ⊂ ∂D(0;1 − t) × D(0; 2) whereas, by (4.6) and Re-

mark 2.3(i), we have�7(η)
t ,∂D ⊂ ∂D×D(0; 2). Thus, applying Lemma 2.1 (specif-

ically, its paraphrasing in Remark 2.2) to �7(η)
t ,Ann(0;1−t,1) shows that (d∗) holds.

We can now conclude that the mappingA : D̄×[0,1] → Ck defined asA(z, t) :=
7t(z) satisfies the hypotheses of Lemma 2.4. Hence there exist a connected open
neighborhood �1 of S1 := �7(0)

1
∪ (∂D× D(0; 2)) and an f1 ∈ O(�1) such that

f1|�1∩(V×D(0;2)) ≡ f |�1∩(V×D(0;2)),

whereV := Ann(0;1−ε,1+ε), ε > 0, chosen so thatV ×D(0; 2) ⊂ �. Because
7

(0)
1 is holomorphic by construction, we can repeat the argument presented in the

proof of Theorem 1.3 to conclude that there exists an F ∈ O(D2) such that

F |�∩D2 ≡ f |�∩D2 .
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