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Stabilization of Monomial Maps

Mattias Jonsson & Elizabeth Wulcan

Introduction

An important part of higher-dimensional complex dynamics concerns the con-
struction of currents and measures that are invariant under a given meromorphic
self-map f : X ��� X of a compact complex manifold X. In doing so, it is often
desirable that the action of f on the cohomology of X be compatible with itera-
tion; thus, following Sibony [Si] (see also [FoSi]) we call f (algebraically) stable.

If f is not stable, we can try to make a bimeromorphic change of coordinates
X ′ → X such that the induced self-map of X ′ becomes stable. Understanding
when this is possible seems to be a difficult problem. On the one hand, Favre [Fa]
showed that stability is not always achievable. On the other hand, it can be achieved
for bimeromorphic maps of surfaces [DiF] for a large class of monomial mappings
in dimension 2 [F] (more on this below) and for polynomial maps of C2 [FJ2].
Beyond these classes, very little seems to be known.

In this paper we study the stabilization problem for monomial (or equivariant)
maps of toric varieties, extending certain results of Favre to higher dimensions.
A toric variety X = X(�) is defined by a lattice N ∼= Zm and a fan � in N. A
monomial self-map f : X ��� X corresponds to a Z-linear map φ : N → N. See
Sections 1 and 2 for more details.

We work in codimension 1 and say that f is 1-stable if (f n)∗ = (f ∗)n, where
f ∗ denotes the action on the Picard group of X. Geometrically, this means that no
iterate of f sends a hypersurface into the indeterminacy set of f [FoSi; Si].

Theorem A. Let � be a fan in a lattice N ∼= Zm, and let f : X(�) ��� X(�)

be a monomial map. Assume that the eigenvalues of the associated linear map
φ : NR → NR are real and satisfy µ1 > µ2 > · · · > µm > 0. Then there exists
a complete simplicial refinement �′ of � such that X(�′) is projective and the in-
duced map f : X(�′) ��� X(�′) is 1-stable.

Here NR denotes the vector space N ⊗Z R. The variety X ′ = X(�′) will not be
smooth in general, but it will have at worst quotient singularities. We can pick X ′
smooth at the expense of replacing f with an iterate (but allowing more general
φ) as follows.
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Theorem A′. Let � be a fan in a lattice N of rank m, and let f : X(�) ���
X(�) be a monomial map. Suppose that the eigenvalues of the associated linear
map φ : NR → NR are real and satisfy |µ1| > |µ2| > · · · > |µm| > 0. Then
there exist a complete (regular ) refinement �′ of � and n0 ∈N such that X(�′) is
smooth and projective and the induced map f n : X(�′) ��� X(�′) is 1-stable for
all n ≥ n0.

If the fan we start with is trivial—that is, if the initial toric variety is the torus
(C∗)m—then we can relax the assumptions on the eigenvalues slightly and obtain
the following statement.

Theorem B. Let f : (C∗)m → (C∗)m be a monomial map. Suppose that the as-
sociated linear map φ : NR → NR is diagonalizable with real eigenvalues µ1 >

µ2 ≥ µ3 ≥ · · · ≥ µm > 0. Then there exists a complete simplicial fan � such
that X(�) is projective and f : X(�) ��� X(�) is 1-stable.

It is unclear whether X(�) can be chosen smooth in Theorem B even if we replace
f by an iterate; see Remark 5.1. Picking X(�′) smooth in Theorem A (without
passing to an iterate) also seems quite delicate. We address the latter problem only
in dimension 2 as follows.

Theorem C. Let � be a fan in a lattice N of rank m = 2, let f : X(�) ���
X(�) be a monomial map, and let µ1, µ2 be the eigenvalues of the associated lin-
ear map φ : NR → NR and labeled so that |µ1| ≥ |µ2|. Suppose that any of the
following conditions hold :

(a) |µ2| < 1;
(b) µ1, µ2 ∈Z and |µ1| > |µ2|;
(c) µ1, µ2 ∈R and µ1µ2 > 0.

Then there is a complete (regular ) refinement �′ of � such that X(�′) is smooth
(and projective) and f : X(�′) ��� X(�′) is 1-stable.

Example 3.12 shows that Theorem C may fail when |µ1| > |µ2| > 1, while
Example 3.14 and [F, Ex.2] show that it may fail when |µ1| = |µ2| and µ1/µ2 is
a root of unity different from 1.

Theorem C should be compared with the work of Favre [F], in which the fol-
lowing result is proved.

Theorem C ′. Let � be a fan in a lattice N of rank m = 2, let f : X(�) ���
X(�) be a monomial map, and let µ1, µ2 be the eigenvalues of the associated lin-
ear map φ : NR → NR. Then we are in precisely one of the following cases:

(i) µ1, µ2 are complex conjugate and µ1/µ2 is not a root of unity;
(ii) there exists a complete refinement �′ of � such that the induced map

f : X(�′) ��� X(�′) is 1-stable.

Here X(�′) is not necessarily smooth. The main result in [F] also asserts that we
can make f 1-stable on a smooth toric variety by allowing ramified covers, but
there is a gap in this argument; see Remark 3.1.
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Monomial maps are quite special, but they are interesting in their own right.
We refer to the paper by Hasselblatt and Propp [HaP] for more information and
to the paper by Bedford and Kim [BK2] for the problem—related to stability—of
characterizing monomial maps whose degree growth sequence satisfies a linear
recursion formula. For nonmonomial maps in higher dimensions, stability or de-
gree growth is understood only in special cases [BK1; N].

We note that many of the results in this paper have been obtained independently
by Jan-Li Lin. In particular, [L1, Thm. 5.7(a)] coincides with our Theorem B′ in
Section 5.

There is a conjectured relationship between the eigenvalues µj and the dynam-
ical degrees λj , 1 ≤ j ≤ m, of f (see [DSi; G; RS] for a definition of dynamical
degrees). Namely, the conjecture states that λj = |µ1| · · · |µj |. See [FW; L2] for
work in this direction. Given this formula, the condition |µ1| > · · · > |µm| is
equivalent to j 
→ log λj being strictly concave. Now the conjecture does hold
in dimension 2. This means that part (a) of Theorem C is equivalent to (a′) λ2 <

λ1 and that part (b) is equivalent to (b′) λ2 < λ2
1 and λ1 ∈ Z. Also observe that

part (c) is satisfied for f 2 as soon as λ2 < λ2
1.

To prove the preceding theorems, we translate them into statements about the
linear map φ : NR → NR. What we ultimately prove is that we can refine the orig-
inal fan � (by adding cones) so that the new fan �′ contains a finite collection
T of invariant cones (i.e., φ maps each cone into itself ) that together attract all
1-dimensional cones in �′. More precisely, for every 1-dimensional cone ρ ∈�′
there exists an n0 ≥ 0 such that φn(ρ) lies in a cone in T for n ≥ n0 and φn(ρ) is
a 1-dimensional cone in �′ for 0 ≤ n < n0; see Corollary 2.3.

Constructing such a collection of cones is also the strategy used by Favre [F] to
prove Theorem C ′. In fact, the proof of Theorem B is a straightforward adaptation
of arguments in [F]. Indeed, the dynamics of φ : NR → NR is easy to under-
stand: under iteration, a typical vector v tends to move toward the 1-dimensional
eigenspace associated to the largest eigenvalue µ1 of φ. We can therefore find a
simplicial cone σ of maximum dimension that is invariant under φ; it will contain
an eigenvector e1 corresponding to µ1 in its interior. Using this cone, we easily
construct a fan for which Theorem B holds.

On the other hand, Theorems A and A′ are much more delicate because we must
take into account the original fan �. For example, the simple argument for The-
orem B outlined previously will not work in general, since it is possible that the
1-dimensional cone R+e1 is rational and belongs to �. Moreover, there may be
1-dimensional rays in � that are not attracted to R+e1 under iteration. Thus we
must proceed more systematically, and this is where the argument becomes sig-
nificantly more involved in higher dimensions.

Our approach is to look at the set Tred(φ) of all invariant rational subspaces
V ⊆ NR. This means that φ(V ) = V and that V ∩ NQ is dense in V. It turns
out that Tred(φ) is a finite set that admits a natural tree structure determined by
the dynamics. Using this tree, we inductively construct a collection T of invariant
rational cones that together attract any lattice point in N. The construction is flex-
ible enough that the cones in T are “well positioned” with respect to the original
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fan �. In particular, each cone in T is contained in a unique minimal cone in �.

This allows us to refine � into a fan that contains all cones in T . Significant care
is called for, however, since the construction is done inductively over a tree and
since incorporating a new cone into a given fan will require many cones of the
original fan to be subdivided. The actual construction is therefore more technical
than may be expected.

In dimension 2, these difficulties are largely invisible. They are the reason why,
in Theorem A, we impose stronger conditions on the eigenvalues than did Favre
in [F]. It would be interesting to try to weaken the conditions in Theorem A.

The proof of Theorem C is of a quite different nature; it uses the original ideas
of Favre as well as some methods from classical number theory. Indeed, some of
the arguments are parallel to the analysis of the continued fractions expansion of
quadratic surds [HWr].

The paper is organized as follows. In Sections 1 and 2 we discuss toric va-
rieties and monomial mappings. Section 3 is concerned with the 2-dimensional
situation—namely, the proofs of Theorems C and C ′—and examples showing that
smooth stabilization is not always possible. Then in Sections 4 and 5 we return to
the higher-dimensional case and prove TheoremsA,A′, and B. Finally, in Section 6
we illustrate our proof of Theorem A in dimensions 2 and 3 and give a counter-
example to the statement in Theorem A when the eigenvalues have mixed signs.

Acknowledgments. We thankAlexander Barvinok, Stephen DeBacker, Charles
Favre, Jan-Li Lin, and Mircea Mustaţă for fruitful discussions. We are especially
grateful to Jan-Li Lin, who pointed out several mistakes in an earlier version of
this paper. Finally we thank the referee for several helpful suggestions—in par-
ticular, that the toric varieties in Theorems A and A′ could be made projective.

1. Toric Varieties

A toric variety is a (partial) compactification of the torus T ∼= (C∗)m that contains
T as a dense subset and admits an action of T that extends the natural action of T

on itself. We briefly recall some of the basic definitions, referring to [Fu1] and [O]
for details.

1.1. Fans and Toric Varieties

Let N be a lattice isomorphic to Zm and let M = Hom(N, Z) denote the dual lat-
tice. Set NQ := N ⊗Z Q, NR := N ⊗Z R , and NC := N ⊗Z C.

A cone σ in NR is a set that is closed under positive scaling. If σ is convex and
does not contain any line in NR then it is said to be strongly convex. If σ is of
the form σ = ∑

R+vi for some vi ∈ N, we say that σ is a convex rational cone
generated by the vectors vi. A face of σ is the intersection of σ and a supporting
hyperplane. The dimension of σ is the dimension of the linear space R ·σ spanned
by σ. One-dimensional cones are called rays. Given a ray σ, the associated primi-
tive vector is the first lattice point met along σ. A k-dimensional cone is simplicial
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if it can be generated by k vectors. A cone is regular if it is generated by part of a
basis for N. If σ is a rational cone, we denote by Int σ the relative interior of σ ;
that is, Int σ consists of the elements that are in σ but not in any proper face of σ.

If σ is generated by vi, then Int σ = ∑
R∗+vi. Write ∂σ := σ \ Int σ.

A fan � in N is a finite collection of rational strongly convex cones in NR such
that each face of a cone in � is also a cone in � and, moreover, the intersection of
two cones in � is a face of both of them. The last condition could be replaced by
requiring the relative interiors of the cones in � to be disjoint. Note that a fan is
determined by its maximal cones with respect to inclusion. Let �(k) denote the
set of k-dimensional faces of �. The support |�| of a fan � is the union of all
cones of �. In fact, given any collection of cones �, we use |�| to denote the
union of the cones in �. If |�| = NR, then the fan � is said to be complete. If all
cones in � are simplicial then � is said to be simplicial, and if all cones in � are
regular then � is said to be regular. A subfan of a fan � is a fan �̃ with �̃ ⊆ �.

A fan �′ is a refinement of � if each cone in � is a union of cones in �′. Every
fan admits a regular refinement.

A strongly convex rational cone σ in N determines an affine toric variety Uσ ,
and a fan � determines a toric variety X(�) obtained by gluing together the Uσ

for σ ∈�. The variety Uτ is dense in Uσ if τ is a face of σ. In particular, the torus
TN := U{0} = N ⊗Z C∗ ∼= (C∗)m is dense in X(�). The torus acts on X(�),
where the orbits are exactly the varieties Uσ , σ ∈�.

A toric variety X(�) is compact if and only if � is complete. Toric varieties are
normal and Cohen–Macaulay. If � is simplicial then X(�) has at worst quotient
singularities, and X(�) is nonsingular if and only if � is regular.

1.2. Incorporation of Cones

To prove Theorems A, A′, and C, we will refine fans by adding certain cones. The
following lemma is probably well known; we learned it from A. Barvinok. The
techniques in the proof will not be used elsewhere in the paper.

Lemma 1.1. Let � be a simplicial fan and let σ0 ∈�. Assume that σ1 ⊆ σ0 is a
simplicial cone such that ∂σ1 ∩ ∂σ0 is a face of both σ1 and σ0. Then there exists
a simplicial refinement �′ of � such that σ1 ∈ �′, and if σ ∈ � satisfies σ �⊇ σ0

then σ ∈�′. Moreover, all rays in �′(1) \�(1) are 1-dimensional faces of σ1.

For examples of cones σ1 ⊆ σ0, see Figure 1.

Figure 1 Examples of cones σ1 ⊆ σ0 in Lemma 1.1 (the cone σ0 is 3-dimensional;
the figure shows the intersection with an affine plane, and the dashed lines indicate
the fan �0 in the proof of Lemma 1.1)
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Proof of Lemma 1.1. Following [Z, pp. 129ff ], we construct a fan �0 that contains
σ1 and whose support is σ0. Embed NR in NR ⊕R as the hyperplane {xm+1 = 0},
let τ0 be the image of σ0, and let π : NR ⊕ R → NR be the projection. For each
ray R+v of σ1 that is not in ∂σ0, choose tv ∈ R+ and let T be the convex hull in
NR ⊕R of τ0 and the rays R+(v, tv). Observe that, for a generic choice of tv , the
faces of T are simplicial cones. Let �0 be the collection of images of faces of T

excepting σ0 itself. Note that π maps ∂T \ Int τ0 one-to-one onto σ0. It follows
that �0 is a simplicial fan with support equal to σ0 and that σ1 is one of the cones
in �0. If σ ∈�0, then either σ is a face of σ0 or Int σ ⊆ Int σ0. Also, note that all
rays in �0 \� are 1-dimensional faces of σ1.

We will now construct a fan �′ that refines � and contains �0 as a subfan. Let
�′

1 be the collection of cones in � that do not contain σ0. In addition, let �′
2 be

the collection of cones of the form σ + τ, where σ ∈ �0 and τ ∈ � is a face of
a cone τ̃ ∈ � such that τ̃ ⊇ σ0 but τ ∩ σ0 = {0}. Finally, let �′ be the union of
�′

1 and �′
2. Note that this union is not disjoint. Observe that all cones in �′ are

simplicial. We claim that �′ is a simplicial fan.
To prove the claim, first note that if σ ∈ � does not contain σ0 then clearly

the faces of σ do not contain σ0. In other words, a face of a cone in �′
1 is in �′

1.

Moreover, a face of a simplicial cone σ + τ ∈�′
2 is of the form σ ′ + τ ′, where σ ′

is a face of σ and τ ′ is a face of τ. Since �0 is a fan, σ ′ ∈ �0, and since � is a
fan, τ ′ ∈�. Furthermore, {0} ⊆ τ ′ ∩ σ0 ⊆ τ ∩ σ0 = {0} and so σ ′ + τ ′ ∈�′

2. To
conclude, a face of a cone in �′ is in �′.

It remains to prove that if ρ and ρ ′ are two distinct cones in �′ then Int ρ∩ Int ρ ′ =
∅. We have three cases to consider. In the first case, ρ, ρ ′ ∈ �′

1 ⊆ �. Then
Int ρ ∩ Int ρ ′ = ∅ because � is a fan and ρ �= ρ ′.

In the second case, ρ ∈ �′
2 \ �′

1 and ρ ′ ∈ �′
1. Then we can write ρ = σ + τ,

where Int σ ⊆ Int σ0. Indeed, if σ is a face of σ0 then ρ ∈ �′
1. It follows that

Int ρ ∩ Int ρ ′ ⊆ Int(σ0 + τ) ∩ Int ρ ′ = ∅. Observe that σ0 + τ is a cone in �

because � is simplicial and, by construction, ρ ′ �= σ0 + τ.

In the third case, ρ = σ + τ and ρ ′ = σ ′ + τ ′ are both in �′
2 \ �′

1. If τ �= τ ′,
then by construction σ0 + τ and σ0 + τ ′ are two distinct cones in �. Hence
Int ρ ∩ Int ρ ′ ⊆ Int(σ0 + τ) ∩ Int(σ0 + τ ′) = ∅. Next, assume that τ = τ ′. Then
σ0 ∩ τ = {0}, which implies that each element v ∈ σ0 + τ admits a unique repre-
sentation v = v0 + w, where v0 ∈ σ0 and w ∈ τ. Assume that v ∈ Int ρ ∩ Int ρ ′.
Then v0 ∈ Int σ ∩ Int σ ′, since Int ρ = Int σ + Int τ. Hence σ = σ ′, which implies
that ρ = ρ ′. To conclude, �′ is a simplicial fan.

Now let us show that �′ has the desired properties. First, observe that all cones
in �0 (and, in particular, σ1) are in �′. Indeed, if σ ∈�0 then σ = σ + 0 ∈�′

2.

Next, by definition of �′, each cone in � that does not contain σ0 is in �′
1 ⊆ �′.

Moreover, each ray in �′ \� is in �0 \� and hence is a 1-dimensional face of σ1.

It remains to show that �′ refines �. Consider ρ ∈�. If ρ does not contain σ0

then ρ is itself in �′, so assume that ρ ⊇ σ0. Since � is simplicial, this means that
ρ = σ0 + τ for some face τ of ρ for which σ0 ∩ τ = {0}. Thus ρ = σ0 + τ =(⋃

σ∈�0
σ
) + τ = ⋃

σ∈�0
(σ + τ), and each σ + τ ∈�′

2 ⊆ �′ by construction.
Hence �′ refines �.
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1.3. Invariant Divisors and Support Functions

Let Cl(X) and Pic(X) denote, respectively, the groups of Weil and Cartier divisors
on X modulo linear equivalence. For X = X(�), Cl(X) and Pic(X) are gener-
ated by divisors that are invariant under the action of the torus TN . Since X(�) is
normal, every Cartier divisor defines a Weil divisor.

Each ray ρ of � determines a prime Weil divisor D(ρ) that is invariant under
the action of TN , and these divisors generate Cl(X) and Pic(X). A TN -invariant
Weil divisor is of the form

∑
aiD(ρi), where ai ∈ Z and the sum runs over the

rays in �.

A TN -invariant Cartier divisor can be represented as a certain piecewise linear
function. We say that h : |�| → R is a (�-linear ) Q-support function if it is linear
on each cone of � and if h(|�|∩NQ) ⊆ Q. If the restriction of h to a cone is given
by some element of M (rather than MQ), then h is said to be a (�-linear ) support
function. There is a one-to-one correspondence between TN -invariant Q-Cartier
divisors and Q-support functions and between TN -invariant Cartier divisors and
support functions; see [M, Chap. 6, p. 6]. Moreover, a TN -invariant Q-Cartier di-
visor is a Weil divisor if and only if h(|�| ∩N ) ⊆ Z. Given support functions h1

and h2, the corresponding divisors are linearly equivalent if and only if h1− h2 is
linear.

Note that a �-linear support function is determined by its values on primitive
vectors of rays in �. In particular, if D is a Q-Cartier divisor of the form D =∑

aiD(ρi) then the corresponding Q-support function is determined by h(vi) =
ai, where vi is the primitive vector of ρi. Conversely, a support function h deter-
mines a Weil divisor

∑
h(vi)D(ρi).

A �-linear support function h is said to be strictly convex if it is convex and
defined by different elements ξσ ∈ M for each σ ∈ �(m). A compact toric va-
riety X(�) is projective if and only if there is a strictly convex �-linear support
function (see [O, Cor. 2.16]). We will then say that � is projective.

Lemma 1.2. Any fan � admits a regular (and hence simplicial) projective
refinement.

Proof. This result is well known, so we only sketch the proof. First, by the toric
Chow Lemma [O, Prop. 2.17], � admits a projective refinement. In general, this
refinement is not regular or even simplicial. However, one can check that the stan-
dard procedure for desingularizing a toric variety by refining the fan (see [Fu1,
Sec. 2.6]) preserves projectivity.

Lemma 1.3. If the fan � in Lemma 1.1 is projective, then the refinement �′ in that
lemma can also be chosen projective.

Proof. Assume that � is projective and let h be a strictly convex �-linear support
function. We will show that we can modify h to a strictly convex �′-linear func-
tion h′, where �′ is the fan constructed in the proof of Lemma 1.1. We will use the
notation from that proof.
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The construction of the fan �0 in the proof of Lemma 1.1 implies that there
is a strictly convex �0-linear support function h0 that is zero on the boundary of
|�0| = σ0. Pick a norm on MR and choose 0 < ε � minσ,τ∈�(m),σ �=τ‖ξσ − ξτ‖
if h = ξσ ∈MQ on σ ∈�(m).

Consider τ ∈�(m). Either τ ∩ σ0 = {0} or τ ⊇ σ0. In the first case, τ ∈�′(m)

and we let h′ = h on τ.

Next, assume that τ ⊇ σ0. Since � is simplicial, there exists a unique maxi-
mal face τ ′ of τ such that τ ′ ∩ σ0 = {0}. It follows that an element in σ0 admits a
unique representation s + t with s ∈ σ0 and t ∈ τ ′. In �′, τ will be subdivided into
maximal cones of the form ρ = τ ′ + σ, where σ is a cone of maximal dimension
in �0. On each ρ let h′ be defined by h′(s + t) = εh0(s). Clearly h′ is piecewise
linear and strictly convex on the subfan of �′ that has support on τ. Moreover,
since h0 vanishes on the boundary of σ0, the choice of ε ensures that h′ is continu-
ous and convex on �′ and different on all σ ∈�′(n). In other words, h′ is �′-linear
and strictly convex and hence �′ is projective.

If all maximal cones of � are of dimension m, then H 2(X(�), Z) = Pic(X(�)).

If � is complete and regular, then H1,1(X(�)) = H 2(X(�), C). If � is simpli-
cial, then X(�) is Q-factorial; that is, a Weil-divisor is Q-Cartier.

2. Monomial Maps

Let � and �′ be fans in N ∼= Zm and N ′ ∼= Zm′
, respectively. Then any Z-linear

map φ : N → N ′ gives rise to a rational map f : X(�) ��� X(�′) that is equivari-
ant with respect to the actions of TN and TN ′ . Let e1, . . . , em and e ′1, . . . , e ′m′ be bases
of N and N ′, respectively, and let x1, . . . , xm and x ′1, . . . , x ′m′ be the corresponding
bases for the duals M and M ′. Then φ = ∑

1≤j≤m,1≤k≤m′ akj ej ⊗ x ′k , where akj ∈
Z. Let z1, . . . , zm and z ′1, . . . , z ′m′ be the induced coordinates on TN

∼= (C∗)m and
TN ′ ∼= (C∗)m′

, respectively. Then f : TN → TN ′ is given by the monomial map
f : (z1, . . . , zm) 
→ (z

a11
1 · · · za1m

m , . . . , z
am′1
1 · · · zam′m

m ). Conversely, any rational and
equivariant map f : X(�) ��� X(�′) comes from a Z-linear map φ : N → N ′;
see [O, p. 19].

The map f : X(�) ��� X(�′) is holomorphic precisely if the extension
φ : NR → N ′

R satisfies the condition that, for each σ ∈ �, there is a σ ′ ∈ �′
such that φ(σ) ⊆ σ ′. Let φ��′ : (N, �) → (N ′, �′) be the map that takes (v, σ) to
(φ(v), σ ′), where σ ′ is the smallest cone in �′ containing φ(σ). If f is holomor-
phic we say that φ��′ is regular. If f is not holomorphic then φ��′ is not defined
everywhere; we write φ��′ : (N, �) ��� (N ′, �′). Observe that there is a subfan
�̃ of � containing all rays of � such that φ��′ is well-defined on (N, �̃). Indeed,
the image of a ray in � under φ is always contained in a cone in �′.

A Z-linear map φ : N → N ′ induces a Z-linear map φ∗ : M ′ → M given by
φ∗ξ ′ = ξ ′ � φ.

2.1. Desingularization

By regularizing fans, we can desingularize not only toric varieties but also equivari-
ant maps between toric varieties. First, let �̃ be a regular refinement of � and let
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id�̃� : (N, �̃) → (N, �) be the map induced by id : N → N. Then the map
π : X(�̃) → X(�) induced by id�̃� is a resolution of singularities; see [Fu1,
Chap. 2.5].

Second, let N and N ′be lattices of the same rank, let � and �′be fans in N and N ′
(respectively), and let φ : N → N ′ be a Z-linear map of maximal rank. We claim
that there is a regular refinement �̃ of � such that the map φ�̃�′ : (N, �̃) ���
(N ′, �′) induced by φ : N → N ′ is regular. We obtain the left-hand diagram
of (2.1)

(N, �̃)

id
�̃�

��

φ
�̃�′

�����������

(N, �)
φ��′

����� (N ′, �′)

X(�̃)

π

��

f̃

����
��

��
��

�

X(�)
f

����� X(�′)

(2.1)

inducing the right-hand diagram, where π : X(�̃) → X(�) and f̃ : X(�̃) →
X(�′) are holomorphic.

To prove the claim, let φ−1(�′) be the collection of cones φ−1(σ ′) for σ ′ ∈�′.
Since φ is of maximal rank, the cones in φ−1(�′) are strongly convex and thus
φ−1(�′) is a fan. Now, any regular fan �̃ that refines both � and φ−1(�′) has the
desired properties, and recall from Section 1.1 that such a fan always exists.

2.2. Pullback and Pushforward under Holomorphic Maps

Let N and N ′ be lattices of the same rank, let � and �′ be fans in N and N ′ (re-
spectively), and let φ : N → N ′ be a Z-linear map of maximal rank such that
φ��′ is regular. Let f : X(�) → X(�′) be the corresponding holomorphic map
on toric varieties.

Let D be a TN ′ -invariant Q-Cartier divisor on X(�′), and let hD be the corre-
sponding Q-support function. Then the pullback f ∗D is a well-defined Q-Cartier
divisor (see [Fu2, Chap. 2.2]) and hf ∗D = φ∗hD (see e.g. [M, Chap. 6, Exer. 8]).
If D is Cartier, then f ∗D is Cartier. To see this, assume that h is a support func-
tion on �′. Pick σ ∈ � and assume that φ(σ) ⊆ σ ′. On σ ′ ∈ �′, h is defined by
h = ξ ′ for some ξ ′ ∈M ′. It follows that, on σ, φ∗h = φ∗ξ ′ ∈M.

Next, let D = ∑
aiD(ρi) be a TN -invariant Weil divisor on X(�). Then f∗D

is a well-defined TN ′ -invariant Weil divisor on X(�′) (see e.g. [Fu2, Chap. 1.4])
and f∗D = ∑

ai niD(φ(ρi)), where the sum is over all i such that φ(ρi)∈�′ and
where ni ∈ N∗. Note that the pushforward of a Cartier divisor is in general only
Q-Cartier. Both pullback and pushforward respect linear equivalence.

2.3. Pullback under Rational Maps

Let N and N ′ be lattices of the same rank, let � and �′ be fans in N and N ′ (re-
spectively), and let φ : N → N ′ be a Z-linear map of maximal rank. Let D be
a TN ′ -invariant Cartier divisor on X(�′). In terms of the right-hand diagram of
(2.1), we can define the pullback of D under f as f ∗D := π∗f̃ ∗D. In fact, this
definition does not depend on the particular choice of �̃. Observe that f ∗D is the
TN -invariant Weil divisor

∑−hD(φ(vi))D(ρi), where the sum is over the rays
ρi ∈�(1).
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Assume that � is simplicial, and let h be a �′-linear Q-support function. Let
φ∗��′h be the �-linear support function defined by (φ∗��′h)(v) = h(φ(v)) if v is
a primitive vector of a ray in �. In other words, φ∗��′h is obtained from φ∗h by
using �-linear interpolation. If D is a TN ′ -invariant Q-Cartier divisor on X(�′)
and if hD is the corresponding Q-support function, then f ∗D is determined by the
Q-support function φ∗��′hD.

Let σ ∈ � and let h be a �′-linear Q-support function. Assume that φ(σ) is
contained in a cone σ ′ ∈ �′. Then h is linear on φ(σ), which implies that φ∗h is
linear on σ and

φ∗��′h|σ = φ∗h|σ . (2.2)

In particular, if φ��′ is regular then φ∗��′h = φ∗h for all �′-linear Q-support func-
tions. This is not the case in general if φ��′ is not regular. Assume that there are
cones σ ∈� and σ ′

1, σ ′
2 ∈�′ such that (Int φ(σ))∩σ ′

j �= ∅ for j = 1, 2, and assume
also that h|σ ′1 and h|σ ′2 are not defined by the same element in M ′. Then φ∗��′h �=
φ∗h; indeed, φ∗��′h is linear on σ whereas h is not linear on φ(σ).

2.4. Criteria for Stability

We can express the stability of f : X(�) ��� X(�) in terms of φ : N → N.

Lemma 2.1. Assume that N, N ′, and N ′′ are lattices of the same rank, that �, �′,
and �′′ are complete simplicial fans in N, N ′, and N ′′ (respectively), and that

N
φ−→ N ′ φ ′−→ N ′′

are Z-linear maps of maximal rank and with corresponding rational equivari-
ant maps

X(�)
f��� X(�′)

f ′
��� X(�′′).

Moreover, let f ∗ and f ′∗ be the corresponding pullback maps

Pic(X(�′′))
f ′∗−→ Pic(X(�′))

f ∗−→ Pic(X(�)).

For ρ ∈�(1), let σ ′
ρ be the (unique) cone in �′ such that Int φ(ρ) ⊆ Int σ ′

ρ. Then
(f ′ � f )∗ = f ∗f ′∗ if φ ′(σ ′

ρ ) is contained in a cone in �′′ for all ρ ∈ �(1). The
converse holds when � is a projective fan.

Proof. Note that f ∗f ′∗ = (f ′�f )∗on Pic(X(�′′)) if and only if, for every �′′-linear
support function h, the function φ∗��′φ

∗
�′�′′h− (φ ′ � φ)∗��′′h on NQ is linear—that

is, belongs to MQ. However, when � is projective, this is equivalent (as pointed
out to us by Jan-Li Lin) to the stronger condition φ∗��′φ

∗
�′�′′h = (φ ′ � φ)∗��′′h for

every �′′-linear support function h; see [Li1, Prop. 5.5]. Furthermore, the latter
condition can be written as φ∗��′φ

∗
�′�′′h(v) = φ∗φ ′∗h(v) for all primitive vectors

of rays of �.

Let ρ be a ray of � with corresponding primitive vector v, and let σ ′
ρ ∈�′ be the

(unique) cone for which φ(v) ∈ Int σ ′
ρ. First assume there is a cone σ ′′ ∈�′′ such

that φ ′(σ ′
ρ ) ⊆ σ ′′, and let h be a �′′-linear support function. Then
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φ∗��′φ
′∗
�′�′′h(v) = φ∗(φ ′∗

�′�′′h)|σ ′ρ (v) = φ∗(φ ′∗h)|σ ′ρ (v) = φ∗φ ′∗h(v);
here we have used that v is a primitive vector of ρ for the first equality and (2.2)
for the second equality. Hence the “if” direction of the lemma follows.

Now assume φ ′(σ ′
ρ ) is not contained in any cone in �′′. It follows that there exist

cones σ ′′
1 , σ ′′

2 ∈ �′′ such that dim(φ ′(σ ′
ρ ) ∩ σ ′′

j ) = dim σ ′
ρ for j = 1, 2. Note that

then σ ′′
1 �⊆ σ ′′

2 . Pick ρ ′′
1 ∈�′′(1) such that ρ ′′

1 is a face of σ ′′
1 but not of σ ′′

2, and let
v ′′1 be the corresponding primitive vector. Let h be the �′′-linear Q-support func-
tion that is determined by h(v ′′1 ) = 1, but h(v ′′i ) = 0 for all other primitive vectors
of rays in �′′. Then h �≡ 0 on σ ′′

2 but h ≡ 0 on σ ′′
1 , which implies that φ ′∗

�′�′′h is lin-
ear on σ ′

ρ whereas φ ′∗h is not. In particular, φ ′∗
��′h(φ(v)) > φ ′∗h(φ(v)) because

φ(v)∈ Int σ ′
ρ. Hence φ∗��′φ

′∗
�′�′′h(v) �= φ∗φ ′∗h(v), proving the “only if” direction

of the lemma (when � is projective).

The following results are immediate consequences of Lemma 2.1.

Corollary 2.2. Assume that � is a complete simplicial fan in N and that
φ : N → N is a Z-linear map with corresponding rational equivariant map
f : X(�) ��� X(�). Then f is 1-stable if all cones σ in � for which there is
a ray ρ ∈ �(1) such that Int φn(ρ) ⊆ Int σ for some n satisfy the condition that
φn′(σ) is contained in a cone in � for all n′ ∈ N. The converse holds when � is
projective.

When φ : N → N satisfies the assumption in Corollary 2.2, we say that it is tori-
cally stable on �.

Corollary 2.3. Assume that � is a complete simplicial fan and that φ : N →
N is a Z-linear map. Assume there is a collection S ⊆ � such that φ(σ) ⊆ σ

for σ ∈ S and such that each ray in � is either mapped onto another ray in � or
mapped into one of the cones in S. Then f : X(�) ��� X(�) is 1-stable.

Remark 2.4. In Corollary 2.3, it suffices to require that φ maps every cone in S
into some other cone in S.

In Theorems A and B we require that the eigenvalues of φ be positive. The reason
is that, when some eigenvalues are negative, it may be impossible to find invariant
cones.

Proposition 2.5. Let φ : N → N be a Z-linear map, where N ∼= Zm. If σ is a
simplicial cone of dimension m such that φ(σ) ⊆ σ, then the trace of φ (i.e., the
sum of the eigenvalues) must be nonnegative.

This result is presumably known, but we include a proof for completeness.

Proof. Let v1, . . . , vm be a basis for NR such that σ = ∑m
j=1 R+vj . We may as-

sume det(v1, . . . , vm) = 1. Since φ(σ) ⊆ σ, we must have

det(v1, . . . , vj−1, φ(vj ), vj+1, . . . , vm) ≥ 0 for 1≤ j ≤ m. (2.3)
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The left-hand side of (2.3) equals the j th diagonal element in the matrix of φ in
the chosen basis, so the lemma follows by summing (2.3) over j.

3. Smooth Stabilization in Dimension 2

We now look at 2-dimensional monomial mappings so that N � Z2. In this case,
any fan in N is simplicial and projective. Recall that a Z-linear map φ : N → N

is said to be torically stable on a fan � if it satisfies the condition in Corollary 2.2.
Note that both eigenvalues µ1, µ2 are either real or complex conjugates of each

other. When they are real, they are either both integers or both irrational.
In [Fa], Favre gave a complete characterization of when we can make φ tori-

cally stable on a possibly irregular fan; see Theorem C ′ in the introduction. For
the rest of this section we analyze whether we can make φ torically stable on a reg-
ular fan. We will prove Theorem C and give several examples showing that this
result is essentially sharp. We also recover Theorem C ′. The main new ideas are
contained in Section 3.2.2.

Remark 3.1. The statement in [Fa, Théorème Principal] does deal with smooth
toric varieties, but there is a gap in the proof. Suppose µ2/µ1 is not of the form
eiπθ with θ ∈R \Q. What Favre proves is that we can find a (not necessarily reg-
ular) refinement �′ of � on which φ is torically stable. He then asserts that �′
becomes a regular fan by passing to a sublattice N ′ ⊆ N. However, this last step
does not work in general, see [Fu1, Sec. 2.2, p. 36].

3.1. Basic Facts on Fans in Dimension 2

We need a few basic results about refinements of fans in dimension 2. Let us call
a fan � symmetric if −σ ∈� for every cone σ ∈�.

First, as described in [Fu1, Sec. 2.6], there exists a canonical procedure for mak-
ing an irregular fan regular. In fact, we have the following statement.

Lemma 3.2. Every fan � admits a regular refinement �′ such that :

(i) any regular cone in � is also a cone in �′;
(ii) if � is symmetric, then so is �′.

Both the lemma and its proof are valid in any dimension.

Sketch of Proof. The construction of �′ proceeds inductively as follows. Pick an
irregular 2-dimensional cone τ in �, let σ1, σ2 be its 1-dimensional faces, and let
vj ∈ σj ∩ N be the associated primitive vectors. Since τ is irregular, there exist
ti ∈ (0,1) ∩ Q, i = 1, 2, such that v := t1v1 + t2v2 ∈ N. Let σ = R+v, and let
τi (i = 1, 2) be the 2-dimensional cones whose 1-dimensional faces are σi and σ.

Applying this procedure finitely many times yields a regular fan �′. If � is sym-
metric, then we may simultaneously subdivide τ and−τ into τ1, τ2 and−τ1,−τ2,
respectively. In this way, �′ will remain symmetric.
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Second, we need to refine fans that may already be regular. Let τ be a regular
2-dimensional cone, and let σ1, σ2 be its 1-dimensional faces with corresponding
primitive vectors v1, v2. Then v1, v2 generate N. Let σ = R+(v1 + v2) and let
τi, i = 1, 2, be the 2-dimensional cones whose 1-dimensional faces are σi and σ.

Then the barycentric subdivision of τ consists of replacing τ with τ1 and τ2.

Remark 3.3. Both the barycentric subdivision and the closely related procedure
in the proof of Lemma 3.2 are special cases of Lemma 1.1.

Lemma 3.4. Let (τn)n≥0 be a sequence of regular 2-dimensional cones such that
τn+1 is one of the two cones obtained by barycentric subdivision of τn, n ≥ 0.

Then
⋂

n≥0 τn = R+w for some w ∈NR.

Proof. Since τ0 is regular it follows that τ0 = R+v +R+v ′, where v, v ′ generate
N. Write τn = R+vn + R+v ′n, where vn, v ′n generate N. We can assume vn+1 =
vn + v ′n and v ′n+1 ∈ {vn, v ′n}. Inductively, we see that vn = pnv + qnv ′ and v ′n =
p ′

nv+ q ′nv ′, where pn, qn, p ′
n, q ′n ≥ 0 and |pnq ′n−p ′

nqn| = 1. The lemma follows
because max{pn, qn} → ∞ or max{p ′

n, q ′n} → ∞ as n →∞.

Lemma 3.5. Consider regular 2-dimensional cones τ, τ0 ⊆ NR such that τ � τ0.

Then τ is obtained from τ0 by performing finitely many barycentric subdivisions.

Proof. By Lemma 3.4 and induction it suffices to show that τ is contained in one
of the 2-dimensional cones obtained by barycentric subdivision of τ0.

Write τ0 = R+v1 + R+v2 and τ = R+w1 + R+w2, where v1, v2 and w1, w2

are generators of N. Since τ is regular and τ ⊆ τ0, we may assume that wi =
piv1 + qiv2, where pi, qi ≥ 0 (i = 1, 2), p1q2 − p2q1 = 1, p1 > p2, and thus
q2 > q1.

It suffices to prove that v1 + v2 /∈ Int τ unless τ = τ0. Assume that v1 + v2 ∈
Int τ. Then p1 > q1 and p2 < q2, which implies that p1q2 − p2q1 ≥ q1+ p2 +1.

It follows that q1 = p2 = 0 and hence τ = τ0.

Corollary 3.6. Let τn, n ≥ 0, be regular 2-dimensional cones such that τn+1 �

τn for all n. Then
⋂

n≥0 τn = R+w for some w ∈NR.

3.2. The Case |µ1| > |µ2|
We consider first the case when |µ1| > |µ2|. Then the µi are real and the corre-
sponding eigenspaces Ei ⊆ NR are 1-dimensional. Either µ1, µ2 ∈Z or µ1, µ2 /∈
Q. Since n →∞, we have φn(v) → E1 for any v ∈NR \ E2 and φ−n(v) → E2

for any v ∈NR \ E1.

We will use the following criterion for making φ torically stable.

Lemma 3.7. Suppose that � is a regular fan and define Ui ⊆ NR as the union
of all cones in � that intersect Ei \ {0} for i = 1, 2. Assume that φ(U1) ⊆ U1

and φ−1(U2) ⊆ U2. Then there exists a regular refinement �′ of � on which φ is
torically stable. If � is symmetric, then we can choose �′ symmetric.
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Conversely, suppose that φ is torically stable with respect to a regular fan �

and define Ui as before. Then φ(U1) ⊆ U1 and φ−1(U2) ⊆ U2.

Proof. We may assume U1 ∪ U2 �= NR since otherwise f : X(�) ��� X(�) is
1-stable by Corollary 2.3. We define an integer J ≥ 1 and a sequence of (not nec-
essarily convex) cones

/0 = U2, /1, . . . , /J , /J+1 = U1

as follows. The set /1 := φ(/0)\(U1∪U2) is nonempty, and there exists a J ≥ 1
minimal such that φJ(/1) ⊆ U1. Set /j = φj−1(/1) \U1 for 1 < j ≤ J. Then
{/j \ {0}}J+1

j=0 defines a partition of NR \ {0}. Note that φ(/j ) ⊆ /j+1 ∪ U1 for
1≤ j ≤ J.

Let �1 be the fan obtained from � by adding all rays of the form φ(σ) ∈ /1,
where σ is a ray in � contained in U2. Let �′

1 be a regular refinement of �1 in
which the regular cones of �1 are kept, as described in Lemma 3.2. Note that this
refinement procedure does not subdivide any cone contained in U1 ∪ U2.

Inductively, for 1 < j ≤ J, let �j be the fan obtained from �′
j−1 by adding all

rays of the form φ(σ) ∈ /j , where σ is a ray in �′
j−1 contained in /j−1, and let

�′
j be the regular refinement of �j given by Lemma 3.2. This refinement proce-

dure does not modify any cone contained in U1∪U2 ∪/1∪ · · · ∪/j−1. Then we
can use �′ = �′

J . If � is symmetric, then so is �′.
For the second part of the lemma, note that if σ is a ray in � that is not con-

tained in E1 ∪ E2, then φn(Int σ) ⊆ Int U1 for n ! 1. Thus, for φ to be torically
stable on �, φ must map any cone contained in U1 into another cone contained in
U1. This implies φ(U1) ⊆ U1. A similar argument shows that φ−1(U2) ⊆ U2.

3.2.1. Integer Eigenvalues
The first subcase is when |µ1| > |µ2| and µ1, µ2 ∈ Z; thus the corresponding
eigenspaces E1, E2 are rational. We claim that φ can always be made torically sta-
ble on a regular fan in this case. To see this, we need only satisfy the hypotheses
of Lemma 3.7. After refining, we may assume that � is symmetric and regular
and that the eigenspaces Ei ⊆ NR are unions of cones in �.

For i = 1, 2, let Ui be the union of all cones in � intersecting Ei. If µ1, µ2 > 0,
then φ(U1) ⊆ U1 and φ−1(U2) ⊆ U2. Hence Lemma 3.7 applies. The same is true
also when µ1, µ2 < 0, since � is symmetric.

When µ1 and µ2 have opposite signs, we have to be more careful. For definite-
ness, let us assume µ1 > 0 > µ2. (The case µ1 < 0 < µ2 is handled the same way
as long as all fans we construct are symmetric.) Let σ1 and σ2 be 2-dimensional
cones in � sharing a common face τ contained in E1. Provided � is symmetric,
φ(U1) ⊆ U1 is equivalent to φ(σ1) ⊆ σ2 and φ(σ2) ⊆ σ1, which will happen only
if σ1 and σ2 are of roughly the same size. We claim that this can be arranged by
subdividing the cones σi. Pick generators v1, v2 for N such that v1∈ τ = σ1∩ σ2.

Then φ is given by the matrix
(

a b
0 −d

)
, where a = µ1 > 0 and 0 < d = |µ2| < a.

The 1-dimensional faces of σ1 (resp. σ2) are τ and a ray whose primitive vector is
of the form r1v1+ v2 (resp. r2v1− v2), where r1, r2 ∈Z. By making a barycentric
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subdivision of σi and replacing σi with the subcone containing τ, we replace ri with
ri + 1. Repeating this procedure finitely many times, we can achieve r1 = r2 =
r ! 0. After picking r > |b|/(a − d), it is straightforward to verify that φ(σ1) ⊆
σ2 and φ(σ2) ⊆ σ1. Making the construction symmetric, we obtain φ(U1) ⊆ U1.

A similar construction gives φ−1(U2) ⊆ U2. Thus Lemma 3.7 applies.

3.2.2. Irrational Eigenvalues
The second subcase is when |µ1| > |µ2| and µ1, µ2 are both real irrational. Then
the corresponding eigenspaces Ei ⊆ NR, i = 1, 2, contain no nonzero lattice
points.

Proposition 3.8. If µ1, µ2 are of the same sign, then any fan � admits a regu-
lar refinement �′ on which φ is torically stable.

Proof. We may assume � is symmetric. The assumption that µ1 and µ2 have the
same sign implies that any symmetric cone Ui (i = 1, 2) for which Ei \ {0} ⊆
Int Ui must satisfy φ(U1) ⊆ U1 and φ−1(U2) ⊆ U2. Hence the proposition follows
from Lemma 3.7.

Now assume µ1 and µ2 have different signs. This case is quite delicate. Let us
assume for now that µ1 > 0 > µ2.

Our starting point is a regular 2-dimensional cone σ1 containing an eigenvec-
tor associated to µ1 but not containing any eigenvector associated to µ2. Such a
cone exists and can be constructed using repeated barycentric subdivisions and in-
voking Lemma 3.4. Write σ1 = R+v1+R+v2, where v1, v2 are generators for N.

Then φ admits eigenvectors of the form v1+ ziv2 associated to µi, i = 1, 2, where
z2 < 0 < z1. After exchanging v1 and v2 if necessary, we may and will assume
that max{|z1|, |z2|} > 1.

We now inductively define a sequence (v1,n, v2,n)n∈Z of generators for N. They
will have the property that φ admits an eigenvector of the form v1,n + zi,nv2,n as-
sociated to µi, i = 1, 2, where z2,n < 0 < z1,n and max{|z1,n|, |z2,n|} > 1. Set
vi,0 := vi and zi,0 = zi, i = 1, 2.

First suppose n > 0. If z1,n−1 > 1 set (v1,n, v2,n) := (v1,n−1 + v2,n−1, v2,n−1),
and if 0 < z1,n−1 < 1 set (v1,n, v2,n) := (v2,n−1, v1,n−1). This leads to

(z1,n, z2,n) =
{

(z1,n−1 − 1, z2,n−1 − 1) if z1,n−1 > 1,

(z−1
1,n−1, z−1

2,n−1) if 0 < z1,n−1 < 1.
(3.1)

Now suppose n < 0. If z2,n+1 < −1 set (v1,n, v2,n) := (v1,n+1 − v2,n+1, v2,n+1),
and if −1 < z2,n+1 < 0 set (v1,n, v2,n) := (−v2,n+1,−v1,n+1). We obtain

(z1,n, z2,n) =
{

(z1,n+1 + 1, z2,n+1 + 1) if z2,n+1 < −1,

(z−1
1,n+1, z−1

2,n+1) if − 1 < z2,n+1 < 0.
(3.2)

Notice that (3.1) and (3.2) actually hold for all n ∈ Z, which follows because
max{|z1,n|, |z2,n|} > 1. For example, suppose that n ≤ 0 and z1,n−1 > 1. To ver-
ify (3.1) we must show that (z1,n, z2,n) = (z1,n−1 − 1, z2,n−1 − 1). This follows
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from (3.2) applied to n−1 if we know that z2,n < −1. But if−1 < z2,n < 0, then
z1,n > 1 and so (3.2) would give z1,n−1 = z−1

1,n < 1—a contradiction.
For any n ∈ Z, σ1,n := R+v1,n + R+v2,n and σ2,n := R+v1,n + R+(−v2,n)

are regular cones containing eigenvectors associated to µ1 and µ2 (respectively)
in their interiors. For n > 0, σ1,n is obtained by barycentric subdivision of σ1,n−1.

For n < 0, σ2,n is obtained by barycentric subdivision of σ2,n+1. This implies that
the sequences (σi,n)n∈Z, i = 1, 2 are largely independent of the initial choice of
cone σ1. Indeed, suppose we start with another cone σ ′

1 and obtain corresponding
sequences (σ ′

i,n)n∈Z. By Lemma 3.5 there exist li ∈ Z, i = 1, 2, such that σ ′
1,n =

σ1,n+l1 and σ ′
2,n = σ2,n+l2 for n ! 0 and n � 0, respectively.

Let An = (
an bn

cn dn

)
be the matrix of φ in the basis (v1,n, v2,n). We are inter-

ested in whether An has nonnegative entries. A direct computation shows bn =
(µ1 − µ2)/(z1,n − z2,n) > 0 and cn = (µ1 − µ2)/(z−1

1,n − z−1
2,n) > 0 for all n.

As for the diagonal entries, note that an + dn = µ1 + µ2 =: γ > 0 is indepen-
dent of n. Set δn = an − dn. We see that An has nonnegative entries if and only
if |δn| ≤ γ.

Lemma 3.9. The sequence (An)n∈Z is periodic. Furthermore, the following con-
ditions are equivalent :

(i) there exists an n such that an, bn, cn, dn ≥ 0;
(ii) there exist infinitely many n ≥ 0 such that an, bn, cn, dn ≥ 0;

(iii) any fan � admits a regular refinement �′ on which φ is torically stable.

Proof. Note that zi,n, i = 1, 2, are the roots of bnz2 + δnz − cn = 0. It follows
from (3.1) that

(bn+1, δn+1, cn+1) =
{

(bn, δn + 2bn, cn − bn − δn) if cn > bn + δn,

(cn,−δn, bn) if cn < bn + δn.
(3.3)

We see that the quantity D := Dn = δ2
n + 4bncn is independent of n; in fact,

D is the discriminant of bnz2 + δnz − bn. Since bn, cn, δn are integers and since
bn, cn > 0, it follows that the sequence (bn, δn, cn)n∈Z, and therefore also the se-
quence (An)n∈Z, must be periodic. This immediately shows that (i) and (ii) are
equivalent.

Before showing that (i) and (ii) are equivalent to (iii), we recall that the data con-
structed so far are essentially independent of the initial choice of regular cone σ1.

In particular, the sequence (An)n∈Z is independent of this choice, up to an index
shift, and so the validity of (ii) is independent of σ1.

To show that (ii) implies (iii), suppose An has nonnegative entries. Then the
regular cone σ1,n := R+v1,n +R+v2,n is invariant: φ(σ1,n) ⊆ σ1,n. Similarly, the
regular cone σ2,n := R+v1,n + R+(−v2,n) satisfies φ−1(σ2,n) ⊆ σ2,n.

Pick n1 ! 0 and n2 � 0 such that Ani
has nonnegative entries for i = 1, 2.

We may assume that σ1,n1 and σ2,n2 are arbitrarily small regular cones containing
eigenvectors associated to µ1 and µ2, respectively. By Lemma 3.5 we may, after
replacing � by a suitable symmetric regular refinement, assume that ±σ1,n1 and
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±σ2,n2 are cones in �. We may then apply Lemma 3.7 to Ui = σi,ni
∪ (−σi,ni

)

and conclude that (iii) holds.
Finally, to show that (iii) implies (i), assume that φ is torically stable on a reg-

ular refinement �′ of �. We can then use as our initial cone σ1 a cone in �′ con-
taining an eigenvector associated to µ1. Indeed, it follows from Lemma 3.7 that
φ(σ1) ⊆ σ1 and that σ1 cannot contain any eigenvector associated to µ2. Because
φ(σ1) ⊆ σ1, A0 must have nonnegative entries.

Remark 3.10. The sequence (z1,n)n≥0 encodes the continued fractions expan-
sion of z1, and the proof that (An)n≥0 is periodic corresponds to the classical proof
of the (pre)periodicity of the continued fractions expansion of a quadratic surd
(a result due to Lagrange; see [HWr, Thm. 177, p. 185]).

Proposition 3.11. When |µ2| < 1, any fan � admits a regular refinement �′ on
which φ is torically stable.

Proof. Note that µ1 and µ2 must be real irrational and that |µ1| > 1 > |µ2|. By
Proposition 3.8 we may assume they have different signs. First suppose µ1 > 0 >

µ2. The condition−1 < µ2 < 0 easily translates into
√

D−2 < γ <
√

D, where
γ = µ1+µ2 and D is as in the proof of Lemma 3.9; indeed, µj =

(
γ ±√

D
)
/2.

As noted previously, bn, cn > 0 for all n and by Lemma 3.9 we need only find an
n∈N such that |δn| ≤ γ , where δn = an − dn.

First suppose there exists an n such that cn = 1 and |δn| = bn. Then D =
δ2

n + 4bncn = (bn + 2)2 − 4, so Z $ γ >
√

D − 2 implies γ > bn + 2 − 2 =
bn = |δn| and we are done.

In general, it suffices to find n with |δn| ≤
√

D − 2, a condition equivalent to
|δn| < bncn. There exists an n0 ≥ 0 such that δn0 < 0; otherwise, we would be
able to apply the first transformation in (3.3) infinitely many times in a row, which
is clearly not possible. Indeed, the second transformation changes the sign of δn.

Successively applying (3.3) yields n ≥ n0 with −bn ≤ δn < bn. Then |δn| <

bncn unless δn = −bn and cn = 1, a case we have already addressed.
Finally, consider the case µ1 < 0 < µ2. By the foregoing, we can find a sym-

metric regular refinement �′ of � on which the map −φ : N → N is torically
stable. Then φ is also torically stable on �′.

The following example shows that Theorem C fails in general when |µ1| >

|µ2| > 1.

Example 3.12. It follows from Lemma 3.9 that the linear map φ : N → N given
by the matrix A = Aφ =

(−1 3
3 2

)
cannot be made torically stable for any complete

regular fan. Indeed, we have A0 = A, A1 =
(

2 3
3 −1

)
, and An = An−2. Here µj =(

1± 3
√

5
)
/2.

We record the following consequence of our analysis in Section 3.2.2.

Corollary 3.13. Assume that the eigenvalues of φ : N → N satisfy µ1 >

−µ2 > 0 and µi /∈ Z for i = 1, 2. Moreover, assume N has generators v1, v2
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such that φ is given by a matrix with nonnegative coefficients in the associated
basis for NR. Then φ admits an eigenvector e1 = v1 + z1v2 in the first quadrant
σ0 = R+v1+R+v2 and there exists a sequence (σj )j≥0 of regular cones such that
R+e1 ⊆ σj+1 ⊆ σj ,

⋂∞
j=0 σj = R+e1, and φ(σj ) ⊆ σj for j ≥ 0.

We thus obtain an independent proof of [FJ1, Lemma 7]; see also [FJ2].

3.3. The Case |µ1| = |µ2|
Write λ = |µ1| = |µ2|. There are two subcases.

3.3.1. The Diagonalizable Case
First consider the case when φ : NC → NC is diagonalizable. When µ1/µ2 is not
a root of unity, Favre [F] observed that f cannot be made torically stable even on
an irregular fan. Indeed, the orbit

⋃
n≥0 φn(ρ) of any ray ρ is dense in NR, so

stability is impossible in view of Lemma 2.2.
Now suppose µ1/µ2 is a root of unity. Then φn = λn Id for some n > 0, where

λ = |µ1| = |µ2|. This implies that when f is stable, φ must map any ray to
another ray in the fan. We can achieve this only in special cases, such as when
µ1 = µ2. Indeed, then φ = ±λ Id and any symmetric fan is invariant.

The following example illustrates the problems that may arise when µ1/µ2 is a
root of unity different from 1. See also [F, Ex. 2].

Example 3.14. Let φ : N → N be given by the matrix A = Aφ = (−1 −1
3 −1

)
.

Then µj = 2e2πij/3, j = 1, 2. In particular, φ3 = 8 Id. We claim that no com-
plete regular fan � can be invariant by φ. To see this, consider any ray in � and
let v ∈N be the corresponding primitive vector. Then φ(v) = lv ′, where v ′ is an-
other primitive vector and l = l(v) ∈ N. If v1 and v2 are the primitive vectors of
two adjacent rays in �, then l(v1)l(v2) = |det φ| = 4, since � is regular. Thus
there are two cases: either l(v) = 2 for all v; or {l(v1), l(v2)} = {1, 4} for any two
adjacent primitive vectors v1, v2. The first case is not possible because all entries
in φ would have to be even. The second case cannot occur because φ3 = 8 Id.

3.3.2. The Nondiagonalizable Case
Finally, assume that φ : NC → NC is not diagonalizable. Then µ1 = µ2 = ±λ,
where λ ∈ N. There exists a primitive lattice point v ∈ N such that Rv is the
eigenspace for φ : NR → NR. After subdividing, we may assume that � is regu-
lar and symmetric and that σ := R+v and −σ are cones in �. Pick w ∈N such
that (v, w) are generators for N and such that R+w and −R+w are cones in �.

The matrix of φ is given by A = Aφ =
(

a b
0 a

)
, where a = ±λ and b ∈ Z, b �= 0.

Replacing w with −w if necessary, we have b > 0.

First assume a = λ. Let τ ∈�(2) be the unique cone contained in R+v+R+w

and having σ as one of its faces. Then φ(τ) � τ and φ(−τ) � −τ. We can now
proceed as in the proof of Lemma 3.7 and refine � into a symmetric regular fan �′
such that ±τ ∈ �′ and such that, for all rays σ ′ ∈ �(1) and all n ≥ 0, we have
either φn(σ ′) ∈�(1) or φn(σ ′) ⊆ ±τ. Then φ is torically stable on �′. The case
when a = −λ is handled in the same way, keeping all fans symmetric.
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3.4. Proof of Theorems C and C ′

We now have all ingredients necessary to complete the proof of Theorem C. In
case (a), where |µ2| < 1, we are done by Proposition 3.11. In case (b), where
|µ1| > |µ2| and µ1, µ2 ∈Z, the result follows as explained in Section 3.2.1.

Finally, consider case (c); that is, µ1, µ2 ∈ R and µ1µ2 > 0. If µ1 and µ2

are irrational then we are done by Proposition 3.8 and so, having treated cases (a)
and (b), we may assume µ1 = µ2 ∈ Z. Then either φ = µ1 Id, in which case the
theorem is trivial, or φ is not diagonalizable over C, in which case the theorem
follows from the discussion in Section 3.3.2.

In fact, we have also proved Theorem C ′ except for the case where µ1, µ2 are
real, irrational, and of different sign. We can then refine the original fan � so that it
contains (possibly irregular) cones σ1, σ2 for which φ(σ1) ⊆ ±σ1 and φ−1(σ2) ⊆
±σ2. The proof of Lemma 3.7 now goes through and produces a refinement �′ of
� on which φ is torically stable. In fact, the only irregular cones in �′ are ±σ1

and ±σ2.

4. Stabilization: Proof of Theorems A and A′

Throughout this section we assume that φ : N → N has distinct and positive eigen-
values. To prove Theorems A and A′, we will use the criterion in Corollary 2.3.

The mapping φ : NR → NR induces a mapping φ∗ : MR → MR defined by
〈φ∗ξ, v〉 := 〈ξ, φ(v)〉 and with the same eigenvalues as φ. Given a 1-dimensional
eigenspace E ⊆ NR of φ, let Ẽ ⊆ MR denote the corresponding eigenspace of φ∗
and let E⊥ := {v ∈ NR | 〈ξ, v〉 = 0 ∀ξ ∈ Ẽ} ⊆ NR. Note that, since the eigen-
values of φ are distinct, E⊥ is spanned by the eigenvectors that are not in E.

4.1. Real Dynamics

We say that a set Z ⊆ NR is invariant (under φ) if φ(Z) ⊆ Z.

The following result is well known; see, for example, [La, Exer. 13, p. 552].

Lemma 4.1. Any invariant subspace V ⊆ NR is spanned by eigenvectors of φ.

Given an invariant subspace V ⊆ NR, let E1, . . . , EdimV be the invariant eigen-
spaces of φ corresponding to the eigenvectors with eigenvalues ν1 > · · · >

νdimV > 0 that span V. For 1≤ j ≤ dimV, let Vj := Ej ⊕ · · · ⊕ EdimV . Then we
have a filtration V = V1 � V2 � · · · � VdimV+1 := {0}, and if v ∈ Vj \Vj+1 then
φn(v) → Ej when n →∞.

4.2. Invariant Rational Subspaces

We say that a subspace V ⊆ NR is rational if V ∩NQ = V. This is equivalent to
the lattice N ∩ V having rank equal to dimV. A subspace V ⊆ NR is rational if
and only if its annihilator V o := {ξ ∈MR | ξ|V ≡ 0} ⊆ MR is rational. Note that
(V o)o = V.
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Assume that V and W are rational subspaces. Then V +W is rational and hence
so is V ∩W = (V o +W o)o. Given V ⊆ NR, there is a minimal rational subspace
of NR that contains V and a maximal rational subspace contained in V.

Lemma 4.2. Assume that V ⊆ NR is invariant under φ. Then the minimal ratio-
nal subspace that contains V and the maximal rational subspace contained in V

are both invariant.

Proof. Let W be the minimal rational subspace that contains V. Then V ⊆
W ∩ φ(W ) = W, since W is minimal. To conclude, φ(W ) = W. The second
statement follows from the first by using annihilators.

The mapping φ induces a binary tree T(φ) of rational invariant subspaces of NR,
which should be compared to the real filtration in Section 4.1. The nodes of T(φ)

are of the form (V,W ), whereV andW are rational invariant subspaces of NR such
that V ⊆W. The root of T(φ) is ({0}, NR), and (V,W ) is a leaf if V =W. Assume
that V �= W. Among all 1-dimensional eigenspaces E of φ such that E ⊆W but
E �⊆ V, let E(V,W ) be the one with the largest eigenvalue. Let V ′ be the smallest
rational subspace that containsV +E(V,W ), and letW ′ be the largest rational sub-
space contained in W ∩ E(V,W )⊥. Then the two children of (V,W ) are (V ′,W )

and (V,W ′). Note that V ′ ⊆W since V and E(V,W ) are contained in W and since
W is rational, and note that V ⊆ W ′ since W and E(V,W )⊥ contain V and since
V is rational. Observe, in light of Lemma 4.2, that V ′ and W ′ are invariant.

Lemma 4.3. Let (V,W ) be a node in T(φ) and let U be a rational invariant sub-
space such that V ⊆ U ⊆W. Then either E(V,W ) ⊆ U or U ⊆ E(V,W )⊥.

Proof. Pick x ∈ MR such that E⊥ = {x = 0}, where E := E(V,W ). Assume
U �⊆ E⊥, and pick v ∈ U such that x(v) �= 0. Then v /∈ E⊥ ⊇ V. Let W̃ =
W/V, let φ̃ : W̃ → W̃ be the map induced by φ, and let Ẽ, Ũ, and ṽ be (respec-
tively) the images of E, U, and v under the quotient map W → W̃. Then Ẽ is an
eigenspace for φ̃ with eigenvalue ν dominating all other eigenvalues of φ̃. Thus
ν−nφ̃ n(ṽ) converges to a nonzero element of Ẽ. This implies that Ẽ ⊆ Ũ, since
ṽ ∈ Ũ and Ũ is invariant under φ̃. It follows that E ⊆ U.

Let us create a new tree from T(φ). Replace each node (V,W ) in T(φ) by V and
thereafter remove all loops joining a node V with itself. We will refer to the tree
so obtained as the reduced tree induced by φ and denote it by Tred(φ). Observe
that the nodes in Tred(φ) are in one-to-one correspondence with the leaves in T(φ).

Given a node V in Tred(φ) with parent V ′, among all 1-dimensional eigenspaces of
φ in V \V ′ let E(V ) be the one corresponding to the largest eigenvalue. Then, by
construction, V is the smallest (invariant) rational subspace of NR that contains
V ′ + E(V ).

We claim that all rational invariant subspaces of NR are in Tred(φ). To see this,
given a rational invariant subspace U, let S(U) = {(V,W )∈ T(φ) | V ⊆ U ⊆W }.
Note that S(U) is nonempty because ({0}, NR) ∈ S(U). Pick (V,W ) ∈ S(U). By
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Lemma 4.3, either E := E(V,W ) ⊆ U or U ⊆ E⊥. In the first case, V ′ ⊆ U forV ′
the smallest rational invariant subspace of NR that contains V +E. In the second
case, U ⊆W ′ for W ′ the largest rational invariant subspace contained in W ∩E⊥.

Thus, exactly one of the children of (V,W ) is in S(U). It follows that S(U) is a
maximal chain in T(φ). In particular, S(U) contains a leaf of T(φ) that must be of
the form (U, U). Hence U is a node in Tred(φ). However, it is not true in general
that (V,W ) is a node in T(φ) as soon asV ⊆W and V,W are rational and invariant.

4.3. Invariant Chambers

To each node (V,W ) in T(φ) we associate a chamber C(V,W ). The chamber
C(V,W ) is an invariant open dense subset of W and is defined recursively as fol-
lows. First let C({0}, NR) = NR. Then, if C(V,W ) is defined and if (V ′,W ) and
(V,W ′) are the children of (V,W ), let C(V ′,W ) := C(V,W ) \ E(V,W )⊥ and
C(V,W ′) := C(V,W ) ∩ W ′. Note that C(V,W ) ∩ NQ is the disjoint union of
C(V ′,W ) ∩ NQ and C(V,W ′) ∩ NQ. In particular, the chambers associated with
the leaves of T(φ) induce invariant partitions of NQ and N (but not of NR, in
general).

To the node V in Tred(φ) we associate the chamber C(V ) := C(V,V ). Then the
chambers C(V ) provide partitions of NQ and N. More precisely, given a node V ′
in Tred(φ), the chambers C(V )—where V ranges over ancestors of V ′ in Tred(φ)—
give partitions of V ′∩NQ and V ′∩N. Assume that the genealogy of V is the chain
of nodes in Tred(φ):

{0} = V0 � V1 � · · · � Vs = V. (4.1)

For 1≤ k ≤ s, pick xk ∈MR such that E(Vk)⊥ = {xk = 0}. Then

C(V ) = V
∖ s⋃

k=1

E(Vk)⊥ = V ∩
s⋂

k=1

{xk �= 0}.

Observe that V is the smallest rational subspace of NR that contains the subspaces
{E(Vk)}1≤k≤s .

Lemma 4.4. Let V be a node in Tred(φ) and let v ∈ C(V ). Then there is no ra-
tional invariant proper subspace U � V containing v.

Proof. Let (4.1) be the genealogy of V in Tred(φ), with corresponding xk ∈MR,
and let U be the smallest rational invariant subspace of V containing v. Pick r max-
imal such that Vr ⊆ U. Assume r < s. Since v ∈C(V ), we have xr+1(v) �= 0. By
arguments as in the proof of Lemma 4.3, one can show that E(Vr+1) ⊆ U. Since
Vr+1 is the smallest rational invariant subspace of V that contains Vr + E(Vr+1),
it follows that Vr+1 ⊆ U, which contradicts the maximality of r. Hence U = V,
proving the lemma.

The chamber C(V ) admits a further decomposition into 2s connected compo-
nents. Given x1, . . . , xs ∈ MR and η = (η1, . . . , ηs) ∈ {±1}s, let C(V, η) :=
V ∩ ⋂s

j=1{ηj xj > 0}; we will refer to η as a sign vector. Then the C(V, η) are
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clearly disjoint and C(V ) = ⋃
η∈{±1}s C(V, η). Hence the chamber components

C(V, η), where V ranges over the nodes in Tred(φ) and η ranges over possible
sign vectors, establish partitions of N and NQ. Moreover, if the eigenvalues of φ

are positive, then each C(V, η) is invariant under φ. If V ′ is an ancestor of V—
say, V ′ = Vs ′—then we will refer to η ′ := (η1, . . . , ηs ′) as the truncation of η =
(η1, . . . , ηs ′ , ηs ′+1, . . . , ηs).

For each (V, η), let E(V, η) := E(V ) ∩ C(V, η) and let e(V, η) ∈NR be a gen-
erator for the ray E(V, η).

4.4. Adapted Systems of Cones

We define an adapted system of cones to be a collection of simplicial cones σ(V, η),
where V runs over the vertices in Tred(φ) and η ranges over possible sign vectors,
that satisfies the following conditions.

(A1) Int σ(V, η) ⊆ C(V, η) and σ(V, η) spans V.

(A2) If V ′ ⊆ V is the parent of V in Tred(φ) and if π : V → V/V ′ is the natu-
ral projection, then σ(V, η)∩V ′ = σ(V ′, η ′), where η ′ is the truncation of η

and π(e(V, η))∈ Int π(σ(V, η)).

We say that the system is rational if all cones σ(V, η) are rational and invariant
(under φ) if each cone is invariant (under φ).

Lemma 4.5. Let S = {σ(V, η)} be an adapted system of cones, and let v ∈ N.

Then there exists an n0 = n0(v) ∈ N such that, for n ≥ n0, φn(v) ∈ σ(V, η) for
some σ(V, η)∈ S. More precisely, if v ∈C(V, η) then φn(v)∈ σ(V, η) for n ≥ n0.

Proof. From Section 4.3 we know that v is contained in a unique chamber C(V, η).

Let σ = σ(V, η) be the corresponding cone in S. Assume that (4.1) is the ge-
nealogy of V in Tred(φ). Write ek := e(Vk , ηk) and σk := σ(Vk , ηk), where ηk

is the truncation of η. Then for 1 ≤ k ≤ s the cone σk ∈ S is of the form
σk = σk−1 + ∑mk

j=1 R+vk,j , where σ0 = {0}, mk := dimVk − dimVk−1, and
vk,j ∈ C(Vk , ηk), so that σ = σs = ∑s

k=1

∑mk

j=1 R+vk,j . Moreover, πk(ek) ∈
Int πk

(∑mk

j=1 R+vk,j

)
, where πk : Vk → Vk/Vk−1 is the natural projection.

For 1 ≤ k ≤ s, choose xk ∈V ∗ such that 〈xk , ej〉 = δkj . We identify (V/Vk−1)
∗

with {ξ ∈ V ∗ | ξ|Vk−1 = 0}. Then φ∗ induces a self-mapping on (V/Vk−1)
∗, and if

〈ξ, ek〉 > 0 then φ∗nξ → R+xk when n → ∞. Indeed, the subspace R+xk ⊆
(V/Vk−1)

∗ is the one with the largest eigenvalue.
The dual cone σ ∗ of σ is of the form σ ∗ = ∑s

k=1

∑mk

j=1 R+ξk,j , where ξk,j ∈
ker(V ∗ → V ∗

k−1)
∼= (V/Vk−1)

∗ and 〈ξk,j , ek〉 > 0; in particular, φ∗nξk,j → R+xk.

Since v ∈ C(V, η), we have 〈xk , v〉 > 0 for 1 ≤ k ≤ s. By continuity, there is
an n0 = n0(v) ∈N such that 〈ξk,j , φn(v)〉 = 〈φ∗nξk,j , v〉 > 0 for 1 ≤ k ≤ s, 1 ≤
j ≤ mk , and n ≥ n0. Thus φn(v)∈ Int σ for n ≥ n0.

Remark 4.6. As can be seen from the proof, the first part of Lemma 4.5 remains
valid if some of the eigenvalues (µi)

m
i=1 of φ are negative provided that |µ1| >

· · · > |µm| > 0. In general, if v ∈ C(V ) then, for n ≥ n0, φn(v) ∈ σ(V, η) for
some sign vector η.
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Lemma 4.7. Let S = {σ(V, η)} be an adapted system of cones. Then there exists
an n0 ∈N such that S is invariant under φn for n ≥ n0.

Proof. To each node V in Tred(φ) we will associate an n0(V ) ∈ N such that
φn(σ(V, η)) ⊆ σ(V, η) for all sign vectors η and n ≥ n0(V ); this is done by in-
duction over Tred(φ).

Set n0({0}) = 0. Let V be a node in Tred(φ) such that n0(V ′) is defined, where
V ′ is the parent of V. Pick a sign vector η and let η ′ be the truncation. Then
σ(V, η) is of the form σ(V, η) = σ(V ′, η ′) + ∑m′

j=1 R+vj for some vj ∈ C(V, η)

and m′ = dimV − dimV ′. From Lemma 4.5 we know that, for 1≤ j ≤ m′, there
is an n0(vj ) ∈ N such that φn(vj ) ∈ Int σ(V, η) for n ≥ n0(vj ). Let n0(V, η) :=
max1≤j≤m′ n0(vj ), and let n0(V ) := max(n0(V ′), maxη n0(V, η)).

Finally, set n0 := maxV∈Tred(φ)n0(V ). Then n0 has the desired properties.

Remark 4.8. Following the proof of Lemma 4.7, one can show that if the eigen-
values of φ satisfy |µ1| > · · · > |µm| > 0 then there exists an n0 ∈ N such that,
for n ≥ n0, φn maps each σ(V, η) into σ(V, η ′) for some sign vector η ′.

The idea of the proofs of Theorems A and A′ is to refine � so that it contains an in-
variant (under φ and φn, respectively) adapted system of rational cones. Then the
results follow by applying Corollary 2.3. First we need a few preliminary results
on adapted systems of cones.

Lemma 4.9. Let � be a fan in N and write V = NR. Given σ ′ ∈ �, let V ′ =
span σ ′ and let π : V → V/V ′ be the natural projection. Then, for each v ∈V/V ′,
there exists at most one σ such that σ ⊇ σ ′ and v ∈ Int π(σ). If � is complete,
there is a unique such σ.

Proof. Let Star(σ ′) := {σ ∈ � | σ ⊇ σ ′ }. Then �σ ′ := {π(σ) | σ ∈ Star(σ ′)}
is a fan in N/N ′, where N ′ is the sublattice of N generated by σ ′ ∩ N; see [Fu1,
Sec. 3.1]. If � is complete, then so is �σ ′ . Moreover, there is a one-to-one corre-
spondence between the cones in Star(σ ′) and the cones in �σ ′. In particular, there
is at most one cone in Star(σ ′) such that π(σ) contains v, and if � is complete
then there exists such a σ.

Lemma 4.10. Any fan � admits at most one rational adapted system of cones.

Proof. Let V be a node in Tred(φ) and let η be a sign vector. Note that the col-
lection of cones in � that are contained in V form a fan. Suppose that σ ′ ∈ �

spans V ′ ⊆ V. Then, by Lemma 4.9, there is at most one cone σ ∈ � such that
σ ′ ⊆ σ ⊆ V and Int π(σ) $ π(e(V, η)), where π is the projection π : V → V/V ′.
Hence there is at most one cone σ(V, η) satisfying conditions (A1) and (A2).

Lemma 4.11. Let � be a fan in N that contains an adapted system of cones, and
let �′ be a refinement of �. Assume that, for every invariant rational subspace V

of NR, there is a subfan of �′ whose support equals V. Then �′ contains a unique
adapted system of cones.
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Proof. Uniqueness follows from Lemma 4.10. Assume that � and �′ satisfy the
assumptions of the lemma. Let S = {σ(V, η)} denote the adapted system of cones
in �.

We will inductively find cones τ(V, η) ∈ �′ that satisfy (A1) and (A2). Let
τ({0}, η) := {0}. Let V be a node in Tred(φ) with parent V ′, and let η be a sign
vector. Assume that we have found τ ′ = τ(V ′, η ′), where η ′ is the truncation of
η. Note that σ(V ′, η ′) is then the smallest cone in � that contains τ ′. Let π : V →
V/V ′ be the natural projection. Since there is a subfan of �′ with support V,
Lemma 4.9 asserts the existence of a unique cone τ ⊆ V that contains τ ′ and
satisfies the condition π(e(V, η)) ∈ Int π(τ). In particular, there is a v ∈ τ such
that π(v) = π(e(V, η)); that is, v = e(V, η) + v ′ for some v ′ ∈ V ′. Thus span τ

contains E(V ) and, since it also contains V ′ and is rational, it follows that span τ

contains V. Hence τ spans V.

It remains to show Int τ ⊆ C(V, η). Let � be the collection of cones in �′ that
are contained in σ(V, η) and that contain τ ′. Using notation as in the proof of
Lemma 4.9, note that {π(σ) | σ ∈ �} is a subfan of �τ ′ whose support equals
π(σ(V, η)). Arguing as in that proof, since π(e(V, η)) ∈ π(σ(V, η)) there is a
unique cone σ̃ in � such that π(e(V, η)) ∈ Int π(σ̃). On the other hand, by
Lemma 4.9, τ is the unique cone in �′ that satisfies π(e(V, η)) ∈ Int π(τ). Hence
τ = σ̃ ⊆ σ(V, η) and, since span τ = span σ(V, η), we have Int τ ⊆ Int σ(V, η) ⊆
C(V, η). To conclude, τ(σ,V ) := τ satisfies conditions (A1) and (A2).

Lemma 4.12. There exists a rational adapted system of cones.

Proof. We will construct rational cones σ(V, η) inductively. First let σ({0}, η) =
{0}. Now let V �= {0} be a node in Tred(φ) and let η be a sign vector. Assume that
σ(V ′, η ′) is constructed, where V ′ is the parent of V in Tred(φ) and η ′ is the trunca-
tion of η. Moreover, assume that the genealogy of V ′ = Vs is given by (4.1). Write
m′ := dimV − dimV ′ and V = V ′ + Ṽ, and pick x ∈ MR such that E(V )⊥ =
{x = 0} and x(e(V, η)) > 0. For 1 ≤ i ≤ m′, pick s̃i ∈ Ṽ such that e(V, η) ∈
Int

∑m′
i=1 R+ s̃i and x(s̃i) > 0. Next, let vi be a rational perturbation of

e(V1, η1)+ · · · + e(Vs−1, ηs−1)+ e(Vs , ηs )+ s̃i, (4.2)

where the ηk are truncations of η = ηs. Since V is rational, we can find arbitrarily
small such perturbations. Note that, provided the perturbation is small enough,
vi ∈C(V, η). Finally, let σ(V, η) := σ(V ′, η ′)+∑m′

i=1 R+vi. If the perturbations
vi of (4.2) are small enough, then σ(V, η) satisfies conditions (A1) and (A2).

4.5. Invariant Adapted Systems of Real Cones

In this section we will construct a real (not necessarily rational) invariant adapted
system of cones G = {?(V, η)}. Later, in Section 4.8, we will perturb the cones in
G into rational cones.

Let (4.1) be the genealogy of V in Tred(φ) and pick a sign vector η ∈ {±1}s.
For 1 ≤ k ≤ s, let ηk be the truncation of η, let ek := e(Vk , ηk) with correspond-
ing eigenvalue νk , and let mk := dimVk − dimVk−1. Moreover, choose nonzero



Stabilization of Monomial Maps 653

eigenvectors ek,i labeled so that νk,1 > · · · > νk,mk
and ek = ek,1. Then Vk =

Vk−1 ⊕ Ṽk , where Ṽk = ⊕mk

i=1 Rek,i .

Given parameters δ1, δ2, . . . , δs > 0 and ε2, . . . , εs > 0, let γ1 := 1 and γk :=
ε2 · · · εk for k ≥ 2. For 1≤ k ≤ s and 1≤ i ≤ mk , set

v1,i = e1 + δ1ṽ1,i and (4.3)

vk,i = e1 + 2−1γ2e2 + · · · + 22−kγk−1ek−1 + 22−kγk(ek + δkṽk,i )

if k > 1, (4.4)

where

ṽk,i =
{

ek,2 + · · · + ek,i − ek,i+1 if 1≤ i < mk ,

ek,2 + · · · + ek,mk
if i = mk.

Here ṽk,1 should be interpreted as being equal to −ek,2 if mk ≥ 2 and equal to 0
otherwise. Note that vk,i ∈ Vk and ṽk,i ∈ Ṽk. Also note that vk,i and ṽk,i depend
on the sign vector η because the ek do. Finally, note that

∑mk

i=1 R+(ek + δkṽk,i )

is a simplicial real cone in Ṽk , of dimension mk = dim Ṽk , that contains ek in its
interior.

Now let

?(Vk , ηk) :=
k∑

j=1

mj∑
i=1

R+vj,i = ?(Vk−1, ηk−1)+
mk∑
i=1

R+vk,i ⊆ Vk.

Observe that ?(Vk , ηk)∩Vk−1 = ?(Vk−1, ηk−1), since the coefficients of ek in vk,i

are positive for 1≤ i ≤ mk.

To show that ?(V, η) = ?(Vs , ηs ) satisfies conditions (A1) and (A2), we give
a dual description of ?(V, η) in V = Vs. Let {x@,j}1≤@≤s,1≤j≤m@

be the basis of
V ∗ dual to {ek,i}1≤k≤s,1≤i≤mk

, so that 〈x@,j , ek,i〉 = 1 if @ = k and j = i and
〈x@,j , ek,i〉 = 0 otherwise. Write x@ := x@,1.

For 1≤ @ < j ≤ s, let a@,j = ε−1
@+1 · · · ε−1

j and let

ξ@,j := δ−1
@ ξ̃@,j + x@ − (a@,@+1x@+1 + · · · + a@,s xs),

where

ξ̃@,j :=
{

x@,2 + 2x@,3 + · · · + 2j−2x@,j − 2j−1x@,j+1 if 1≤ j < m@,

x@,2 + 2x@,3 + · · · + 2m@−2x@,m@
if j = m@.

Here ξ̃@,1 should be interpreted as −x@,2 if m@ ≥ 2 and as 0 otherwise.
A computation yields that 〈ξ@,j , vk,i〉 > 0 if @ = k and i = j and that

〈ξ@,j , vk,i〉 = 0 otherwise, so the dual cone ?(V, η)∗ = ∑s
@=1

∑m@

j=1 R+ξ@,j(η).

We claim that φ maps the open rays R∗+vs,1, . . . , R∗+vs,ms
into Int ?(V, η). To

prove the claim, observe first that

〈ξs,j , φ(vs,i )〉 = 22−sγs(νs + 〈ξ̃s,j , φ(ṽs,i )〉); (4.5)

here

〈ξ̃s,j , φ(ṽs,i )〉 =




νs,2 + · · · + 2ms−2νs,ms
if i = j = ms ,

νs,2 + · · · + 2i−1νs,i+1 if i = j < ms ,

νs,2 + · · · + 2I−2νs,I − 2I−1νs,I+1 if i �= j,
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where I = min(i, j). The second of these displayed cases should be interpreted
as 0 if i = j = 1. Now the right-hand side of (4.5) is strictly positive because νs >

νs,2 > · · · > νs,ms
. Moreover, for @ < s we have

〈ξ@,j , φ(vs,i )〉 = 21−@γ@(ν@ − 2−1ν@+1 − · · · − 2@+1−sνs−1 − 2@+1−sνs),

which is strictly positive since ν1 > · · · > νs.

To conclude, 〈ξ@,j , φ(vs,i )〉 > 0 for 1 ≤ @ ≤ s and 1 ≤ j ≤ m@; hence we have
proved that φ(R∗+vs,i ) lies in the interior of ?(V, η). In particular, by induction,
?(V, η) is invariant under φ.

4.6. Preparation of the Fan

In order to prove Theorems A and A′, we first refine � so that, for each rational in-
variant subspace V (i.e., each node in Tred(φ)), there exists a subfan of � whose
support is V. In particular, � is complete. This is possible because the rational
rays are dense in V.

Next, we refine � so that it contains an adapted system of cones. This can be
done as follows. Let S be a rational adapted system of cones, whose existence is
guaranteed by Lemma 4.12. Let �S be the fan generated by the cones in S, and
let �′ be a fan that refines both � and �S . Then, by Lemma 4.11, �′ contains an
adapted system of cones.

Finally, by Lemma 1.2 we can refine �′ so that it becomes regular and projective.
The resulting fan will contain a unique adapted system of cones by Lemma 4.11.

4.7. Proof of Theorem A′

Let �′ be the refined fan in Section 4.6 and let S = {σ(V, η)} denote the unique
adapted system of cones. Consider ρ ∈ �′(1). According to Lemma 4.5 and Re-
mark 4.6, there is an n0(ρ) ∈ N such that, for n ≥ n0(ρ), we have Int φn(ρ) ⊆
Int σ(V, η) for some σ(V, η)∈ S. Let n0 := maxρ∈�′(1) n0(ρ).

According to Lemma 4.5 and Remark 4.8, for n ≥ n0 (with n0 possibly re-
placed by a larger number), V a node in Tred(φ), and η a sign vector, we have
φn(σ(V, η)) ⊆ σ(V, η ′) for some sign vector η ′. Now Corollary 2.3 and Re-
mark 2.4 assert that f n : X(�′) ��� X(�′) is 1-stable for n ≥ n0, which concludes
the proof of Theorem A′.

4.8. Incorporation of Cones

We will now prove Theorem A. Given a fan � in N, replace � by the refined
fan in Section 4.6 and let S = {σ(V, η)} be the (unique) adapted system of cones
in �. We will construct and incorporate into � a rational invariant adapted sys-
tem of cones T = {τ(V, η)}. This will be done inductively over the reduced tree
Tred(φ). In fact, the cones in T will be perturbations of the cones in the real in-
variant adapted system G constructed in Section 4.5.

Let V be a node in Tred(φ) with genealogy (4.1). We will construct and incorpo-
rate cones τ(V, η) for all possible sign vectors η by inductively constructing and
incorporating cones τk = τ(Vk , ηk) for 1≤ k ≤ s and all possible choices of sign



Stabilization of Monomial Maps 655

vectors ηk. Let us use the notation from Section 4.5 and write ?k := ?(Vk , ηk).

Moreover, let wk := e1 + 2−1γ2e2 + · · · + 22−kγk−1ek−1 + 22−kγk ek and uk :=
e1 + · · · + 22−kγk−1ek−1 + 21−kγk ek , so that wk = uk−1 + 22−kγk ek.

Write σ1 := σ(V1, η1). Note that w1 = e1∈ Int σ1. By continuity we can choose
δ1 such that v1,i = w1+δ1ṽ1,i ∈ Int σ1 for 1≤ i ≤ m1. Moreover, since the rational
rays are dense in V1, we can find rational perturbations t1,i of v1,i such that t1,i ∈
Int σ1 for 1≤ i ≤ m1. Write t̃1,i = t1,i − v1,i, and let τ1 = ∑m1

i=1 R+ t1,i . Then τ1 is
a perturbation of ?1 and, if the t̃1,i are small enough, then φ(Int τ1) ⊆ Int τ1 since
φ(Int ?1) ⊆ Int ?1. Also, τ1 satisfies conditions (A1) and (A2) and u1∈ Int τ1. By
Lemmas 1.1 and 1.3, we can find a simplicial and projective refinement �′ of �

such that τ1 ∈ �′ and all cones in � that do not contain σ1 are in �′. Replace �

by �′ and replace S by the unique adapted system of cones in �′. Such a system
exists by Lemma 4.11.

Write σ2 := σ(V2, η2), let π1 : NR → NR/V1 be the natural projection, and let
Star(τ1) := {σ ∈� | σ ⊇ τ1}. Since u1∈ Int τ1, it follows that |Star(τ1)| contains
a neighborhood of u1 in NR. In particular, w2 = u1 + γ2e2 is in the interior of
some cone in Star(τ1) if γ2 is small enough; since π1(e2)∈π1(σ2), this cone must
be σ2.

By continuity, we can choose δ2 small enough that v2,i = w2 + δ2γ2ṽ2,i ∈
Int σ2 for 1≤ i ≤ m2. Furthermore, we can replace v2,i by rational perturbations
t2,i ∈ Int σ2; write t̃2,i = v2,i − t2,i . Now let τ2 := τ1 +∑m2

i=1 R+ t2,i . Since the
rays v2,i are mapped into the interior of ?2, we have φ(t2,i )∈ Int τ2 if the t̃2,i are
small enough. Hence τ2 is invariant. If the t̃2,i are small enough, then τ2 satisfies
conditions (A1) and (A2) in Section 4.4 and u2 = e1 + 2−1γ2e2 ∈ Int τ2. Since
t2,i ∈ Int σ2 it follows that ∂σ2∩∂τ2 = τ1, which is a face of both σ2 and τ2. Thus,
according to Lemmas 1.1 and 1.3, we can find a simplicial and projective refine-
ment �′ of � such that τ2 ∈ �′ and such that the cones in � that do not contain
σ2 are in �′. Replace � by such a refinement and replace S by the new adapted
system.

Inductively assume that we have constructed and incorporated τk−1 so that
uk−1 = e1 + · · · + 23−kγk−2ek−2 + 22−kγk−1ek−1 ∈ Int τk−1; here ε2, . . . , εk−1,
and hence γ2, . . . , γk−1, are chosen along the way. By arguments as before we can
choose εk (and hence γk) such that wk = uk−1 + 22−kγk ek ∈ Int σk , where σk :=
σ(Vk , ηk). Moreover, we can choose δk and t̃k,i such that tk,i := vk,i + t̃k,i are ra-
tional and contained in σk. Now let τk := τk−1 + ∑mk

i=1 R+ tk,i . If t̃k,i are small
enough, then τk is invariant and satisfies conditions (A1) and (A2) as well as uk ∈
Int τk. Because ∂σk ∩ ∂τk = τk−1 is a face of both σk and τk , we can incorporate
τk into � according to Lemma 1.1; the resulting fan will have a unique adapted
system of cones. By Lemma 1.3 we can choose the resulting fan projective.

We need to show that, when incorporating a cone τ(V, η)∈ T into �, we do not
affect the cones in T already created and incorporated. So assume that τ̂ := τ(V̂, η̂)

is in �. We claim that τ̂ is not affected when we incorporate τ. By Lemma 1.1 it
suffices to show that τ̂ does not contain σ. If V̂ = V but η̂ = (η̂1, . . . , η̂s) �= η,
then τ̂ �⊇ σ because Int τ̂ ⊆ C(V, η̂) and Int σ ⊆ C(V, η) are contained in differ-
ent components of C(V ).
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Therefore, assume that V̂ �= V. Let {0} = V̂0 � V̂1 � · · · � V̂r = V̂ be
the genealogy of V̂. By assumption, we have constructed and incorporated cones
τ(V̂k , η̂ k ) for 1≤ k ≤ r and all possible sign vectors η̂ k. Thus V is not among the
V̂k. By construction, τ̂ is of the form τ̂ = ∑r

k=1

∑mk

i=1 R+ t̂k,i, where t̂k,i ∈C(V̂k).

From Lemma 4.4 we know that the smallest rational invariant subspace contain-
ing t̂j,i is V̂j . Hence the smallest rational invariant subspace of NR containing a
given face of τ̂ is among the V̂k. Since the smallest rational invariant subspace
containing σ is V, we conclude that σ is not a face of τ̂. Thus the claim is proved.

4.9. Incorporation of Rays

Let � be the fan in Section 4.8 and let T be the rational adapted systems of cones.
We claim that we can find a further refinement �′ of � such that, if ρ is a ray in �′
and if n ≥ 1, then either φn(ρ) ∈�′(1) or φn(ρ) is contained in a cone in T . By
Corollary 2.3, f : X(�′) ��� X(�′) is then 1-stable, which proves Theorem A.

It remains to prove the claim. Since (by Lemma 4.5) every ray in � is eventu-
ally mapped into one of the cones in T , it is enough to add to � the finitely many
rays of the form φn(ρ), where ρ ∈�(1) and φn(ρ) is not contained in any of the
cones in T .

Let ρ ′ = φn(ρ) be such a ray, and let σ ′ be the unique cone in � such that
Int ρ ′ ⊆ Int σ ′. By Lemma 1.1, we can find a refinement �′ of � such that ρ ′ ∈
�′(1) and (�′(1) \ ρ ′) ⊆ �(1) and such that, if σ ∈ � does not contain σ ′, then
σ ∈�′. Moreover, by Lemma 1.3, �′ can be chosen projective. By assumption, ρ ′
is not contained in any cone in T ; hence σ ′ cannot be a face of a cone in T . Thus,
all cones in T are in �′.

This proves the claim and thereby concludes the proof of Theorem A.

5. Proof of Theorem B

Let E ⊆ NR be the 1-dimensional eigenspace of φ associated with µ1, choose x ∈
MR such that E⊥ = {x = 0}, and let e be a generator of E such that x(e) > 0.

By techniques similar to those in Sections 4.5 and 4.8, we can choose v1, . . . ,
vm ∈N such that x(vj ) > 0 for 1 ≤ j ≤ m, e lies in the interior of the cone σ :=∑m

j=1 R+vj , and σ is invariant. Let � := {∑m
j=1 R+εjvj

}
εj∈{0,−1,+1}m. Then �

is a complete simplicial fan. The cones σ and
∑m

j=1 R+(−vj ) are invariant, and
all rays in � are mapped into one of these cones. Thus Corollary 2.3 asserts that
f : X(�) ��� X(�) is 1-stable. Also, � admits a strictly convex �-linear sup-
port function of the form maxj |v∗j |, so X(�) is projective; see Section 1.3. This
completes the proof of Theorem B.

We have the following partial analogue of Theorem A′.

Theorem B′. Let f : (C∗)m → (C∗)m be a monomial map. Suppose that the
associated eigenvalues satisfy |µ1| > |µ2| ≥ |µ3| ≥ · · · ≥ |µm| > 0. Then there
exist a complete simplicial fan �′ and an n0 ∈N such that X(�′) is projective and
f n : X(�′) ��� X(�′) is 1-stable for n ≥ n0.
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Proof. Let E, e, and x be as in the proof of Theorem B. Choose v1, . . . , vm ∈ N

such that x(vj ) > 0 and e ∈ Int
∑m

j=1 R+vj , and construct a fan � as in the proof of
Theorem B. Then there is an n0 ∈N such that, for n ≥ n0, the union of

∑m
j=1 R+vj

and
∑m

j=1 R+(−vj ) is invariant under φn; in particular, φn maps all rays in � into
one of these cones. Now Theorem B′ follows from Corollary 2.3.

Remark 5.1. If we could find a regular refinement of �′ not containing any rays
in E⊥, then we would get a smooth toric variety on which f n is 1-stable as in The-
orem B′. However, when regularizing �′ it seems difficult to control where the
new rays appear; compare Section 3.

By slightly modifying the proof of Theorem A, we could solve the problem of
making f : X(�) ��� X(�) 1-stable in more general situations than the one in
Theorem A. Let us mention a result in the same vein as Theorem B.

Proposition 5.2. Let � be a (complete) simplicial fan in a lattice N, and let
f : X(�) ��� X(�) be a monomial map. Assume that the associated eigenvalues
satisfy µ1 > µ2 ≥ · · · ≥ µm > 0.

Let E be the 1-dimensional eigenspace of φ associated with µ1, and let e be a
generator of E. Assume that there are cones σ+, σ− ∈�(m) such that E⊥∩σ± =
{0}, ±e ∈ Int σ±, and E⊥ contains no rays of �. Then there exists a simplicial
refinement �′ of � such that f : X(�′) ��� X(�′) is 1-stable. If � is projective,
then �′ can be chosen projective.

Proof. Following Sections 4.5 and 4.8, we can find rational invariant simplicial
cones τ+ and τ− of dimension m such that τ± ⊆ σ± and ±e ∈ Int τ±. By
Lemma 1.1 we can incorporate τ± into � without adding extra rays.

Since, by assumption, E⊥ contains no rays of �, it follows that all rays of �

are eventually mapped into τ+ or τ−. Following Section 4.9, we can incorporate
the rays φn(ρ)—where ρ ∈� and φn(ρ) is not contained in τ±—into �. More
precisely, we can find a simplicial refinement �′ of � such that τ± ∈�′ and such
that each ray in �′ is either mapped onto another ray in �′ or into τ+ or τ−. Now
f : X(�′) ��� X(�′) is 1-stable by Corollary 2.3.

By Lemma 1.3, X(�′) in Proposition 5.2 can be chosen projective provided that
� is projective (cf. Section 4).

Observe that, in light of this proof, the way of constructing the fan �′ in the proof
of Theorem A is far from optimal in the sense that, in general, we refine � more
than necessary. Indeed, if we followed the strategy in Section 4, we would typi-
cally start out by adding rays inside the hyperplane E⊥; see Section 4.6.

6. Examples

We now illustrate our method for proving Theorem A in dimensions 2 and 3. We
also give examples illustrating the difficulties when the eigenvalues have different
signs.
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Let µ be an eigenvalue of φ : N → N. Recall that either µ ∈ Z or µ /∈ Q.

Suppose that µ is a simple eigenvalue with corresponding 1-dimensional eigen-
space E. If µ ∈ Z then E and E⊥ are rational. On the other hand, if µ /∈Q then
E is not rational.

Example 6.1. Let N ∼= Z2 and let φ : N → N be a Z-linear map with eigenvec-
tors µ1 > µ2 > 0 and corresponding eigenspaces E1, E2. Then either µ1, µ2 ∈
Z or µ1, µ2 /∈Q. In the first case, E1 and E2 are both rational and thus T(φ) and
Tred(φ) are given by

(V∅,V12)

�������� V∅

��
��

��

(V1,V12)

���������
(V∅,V2)

�������� and V1 V2

(V12,V12) (V1,V1) (V2,V2) (V∅,V∅) V12

respectively. Here VI = ∑
i∈I Ei for I ⊆ {1, 2}; in particular, V∅ = {0} and

V12 = NR. In the second case, neither E1 nor E2 is rational and so the trees are
given by

(V∅,V12)

���������

�������� V∅

(V12,V12) (V∅,V∅)
and

V12

In the first case, the associated chambers are given by C(V∅) = {0}, C(Vj ) =
Vj \ {0}, and C(V12) = NR \ (V1 ∪ V2). In the second case, C(V∅) = {0} and
C(V12) = NR \V2. Note that N ∩ C(V12) = N \ {0}.
Example 6.2. Let N ∼= Z3 and let φ : N → N be a Z-linear map with eigen-
values µ1 > µ2 > µ3 > 0. Depending on whether or not the eigenvalues are
rational, there are five possibilities for Tred(φ), of which three are the following:

V∅

��
��

��
�

		
		

		
V∅












 V∅

V12 V1 V2 V3 V12 V3 V123

V123 V13 V23 V123

(6.1)

Here we have used the notation from Example 6.1. The first tree in (6.1) is ob-
tained when all eigenvalues are integers, the second tree when µ3 is the unique
integer eigenvalue, and the third tree when all eigenvalues are irrational. If µ1 or
µ2 is the unique integer eigenvalue, we get a tree of the same structure as the sec-
ond tree but with V12 replaced by V1 or V13 (respectively) and V3 replaced by V23

or V2 (respectively).
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If some of the eigenvalues of φ are negative then stabilization may not be possible,
as the following example shows.

Example 6.3. Let N ∼= Z3 and assume that φ : N → N is a Z-linear map with
real, irrational eigenvalues satisfying µ1 > −µ2 > −µ3 > 0 and µ1+µ2+µ3 <

0. Then there is no simplicial fan � on which φ is torically stable.
Indeed, let � be any complete simplicial fan and let σ1 ∈� be a cone contain-

ing a nonzero eigenvector associated to the eigenvalue µ1 in its interior. Assume
that φ is torically stable on �. It then follows from Corollary 2.2 that φ(σ1) ⊆ σ1.

Since the only invariant rational subspaces of NR are {0} and NR, it follows that
σ1 must have dimension 3. By Proposition 2.5, this contradicts the assumption
µ1 + µ2 + µ3 < 0.

A concrete example is given by φ associated to the matrix A = Aφ =
[ 3 1 0

1 −2 1
0 1 −2

]
.

Then µ1 ≈ 3.1997, µ2 ≈ −3.0855, and µ3 ≈ −1.1142.
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