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Lefschetz Fibration Structures
on Knot Surgery 4-Manifolds

JoNGIL PARK & KIi-HEON YUN

1. Introduction

Since Seiberg—Witten theory was introduced in 1994, many techniques in 4-
dimensional topology have been developed to show that a large class of simply
connected smooth 4-manifolds admit infinitely many distinct smooth structures.
Among them, a knot surgery technique introduced by R. Fintushel and R. Stern
turned out to be one of the most powerful tools for changing the smooth structure
on a given 4-manifold [4]. The knot surgery construction is as follows. Suppose
that X is a simply connected smooth 4-manifold containing an embedded torus
T of square 0. Then, for any knot K C S3. one can construct a new 4-manifold,
called a knot surgery 4-manifold,

Xk = Xtir=r,(S' x Mg)

by taking a fiber sum along a torus 7 in X and 7,, = S' x m in S' x My, where
My is the 3-manifold obtained by doing O-framed surgery along K and m is the
meridian of K. Then Fintushel and Stern proved that, under a mild condition on
X and T, the knot surgery 4-manifold Xk is homeomorphic, but not diffeomor-
phic, to a given X [4]. Furthermore, if X is a simply connected elliptic surface
E(2), T is the elliptic fiber, and K is a fibered knot, then it is also known that the
knot surgery 4-manifold E(2)x admits not only a symplectic structure but also a
genus 2g(K) + 1 Lefschetz fibration structure [6; 23]. Note that there are only
two inequivalent genus 1 fibered knots, but there are infinitely many inequivalent
genus g fibered knots for g > 2. So one may dig out some interesting properties
of E(2)k by carefully investigating genus 2 fibered knots and related Lefschetz
fibration structures.

On the one hand, Fintushel and Stern [5] conjectured that the set of all knot
surgery 4-manifolds of the form E(2)g up to diffeomorphism is in one-to-one cor-
respondence with the set of all knots in S? up to knot equivalence. Some progress
related to the conjecture has been made by S. Akbulut [2] and M. Akaho [1]. How-
ever, a complete answer to the conjecture for prime knots up to mirror image is
not known yet. Furthermore, Fintushel and Stern [6] also questioned whether or
not any two in the following 4-manifolds,
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{Y(zs Kl» K2) = E(Z)Klﬁidi22g+1~>22g+|E(2)K2 |
K, K, are genus g fibered knots},

are mutually diffeomorphic. The second author obtained a partial result related to
this question under the constraint that one of K; (i = 1,2) be fixed [23].

In this paper we investigate Lefschetz fibration structures on the knot surgery
4-manifold E(2)g, where K ranges over a family of Kanenobu knots. Recall that
Kanenobu [13; 14] found an interesting family of inequivalent genus 2 fibered
prime knots

{Kpq | (p.@)€R} for R={(p.q)€Z* | peZ*, —p < q < p},

where no two of the knots are in mirror relation and all of them have the same
Alexander polynomials. In Section 3 we consider the following family of simply
connected symplectic 4-manifolds that have the same Seiberg—Witten invariants:

{Y(Z» Kp,q7 Kr,s) = E(2)Kl,yqﬁid:25—>Z5E(2)K,Yx | (P, Q)s (V,S) € R}

By investigating the monodromy factorization expression corresponding to the
Lefschetz fibration structure on Y(2; K, 4, K, 5), we answer the question raised
in [6].

4>

THEOREM 1.1.  Any two symplectic 4-manifolds in
{Y(Q'; Kp,q’ K[H—l,q) | p.q € Z}
are mutually diffeomorphic. Similarly, any two symplectic 4-manifolds in

{Y(za Kp,q, Kp,q+l) | p.q € Z}

are mutually diffeomorphic.

In Section 4 we also study nonisomorphic Lefschetz fibration structures on simply
connected symplectic 4-manifolds that share the same Seiberg—Witten invariants.

Let &, , be the monodromy factorization of a genus 5 Lefschetz fibration struc-
ture on E(2)k,, corresponding to the fixed generic fiber (as in Theorem 2.8) and
the specified monodromy @, =~ of the fibered knot K, ; (as in Section 3). Then,
by investigating the monodromy group Gr(&,,) of &, ,, we get the following
theorem.

THEOREM 1.2. &, , is not equivalent to &, ; if (p,q) # (r,s) (mod 2).

REMARK 1.3. For any (p,q) € Z2 K, , is equivalent to K, , and therefore
EQ2) Kpg is diffeomorphic to E(2) Kgp- Since K, ; and K, , are equivalent fibered
knots, their monodromy can be conjugated, which means that we can select a pair
of isomorphic Lefschetz fibration structures from E(2)g, , and E(2)k, ,- But this
does not imply that the Lefschetz fibration structure on EQ2)g,,, ~ EQ2)k, , is
unique (see Remark 2.9 for details). In fact, Theorem 1.2 implies that, if p & g
(mod 2), then we can select a pair of inequivalent special monodromy factoriza-
tions §, ; of E(2),, and §; , of EQ)g, ,.
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2. Preliminaries

In this section we briefly review some well-known facts about Lefschetz fibrations
on 4-manifolds and surface mapping class groups (refer to [8] for details).

DErFINITION 2.1.  Let X be a compact, oriented smooth 4-manifold. A Lefschetz
fibration is a proper smooth map w: X — B, where B is a compact connected
oriented surface and 7 ~'(dB) = 9X such that:

(1) the set of critical points C = {py, p2,..., pn} of 7w is nonempty and lies in
int(X), and 7 is injective on C;
(2) for each p; and b; := m(p;), there are local complex coordinate charts

agreeing with the orientations of X and B such that & can be expressed as
7(z1,22) = 21 + 23-

Two Lefschetz fibrations fi: X; — Bjand f,: X, — B, are called isomorphic if
there are orientation-preserving diffeomorphisms H: X; — X, and h: By — B;
such that the following diagram commutes:

X]L)Xz

fll l b .1)

B —— B,.

Monodromy factorization of a Lefschetz fibration is an ordered sequence of right-
handed Dehn twists along simple closed curves on the fixed generic fiber F of the
Lefschetz fibration whose composition becomes the identity element in the map-
ping class group of F.

Two monodromy factorizations W, and W, are referred to as a Hurwitz equiv-
alence if W; can be changed to W, in finitely many steps of the following two
operations:

(1) Hurwitzmove: te, -« te, ~lep v tey ~bey oo te (te) tepy oo ey

(2) inverse Hurwitz move: te, -« te,, ~te -+ te) ~ e, + e - lc_,.l(lc,»H) st
Here t,(tp) = t;, ), and t,(tp) =t 0tp0 ta" as an element of mapping class group.
This relation comes from the choice of Hurwitz system, a set of mutually disjoint
arcs that connect by to b; but exclude the base point by.

A choice of generic fiber also gives another equivalence relation. Two mon-
odromy factorizations W and W, are called a simultaneous conjugation equiva-
lence if W, = f(W;) for some element f of the mapping class group of the chosen
generic fiber of the Lefschetz fibration W;.
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It is well known that monodromy factorizations of two isomorphic Lefschetz
fibrations are related by a finite sequence of Hurwitz equivalences and simultane-
ous conjugation equivalences [8; 15;18]. Therefore, in this paper we do not distin-
guish a monodromy factorization from the corresponding Lefschetz fibration up
to isomorphism.

TERMINOLOGY. In order to emphasize that a chosen generic fiber is fixed, we
sometimes use the term marked Lefschetz fibration to refer to a Lefschetz fibra-
tion whose chosen generic fiber is fixed. Two monodromy factorizations are also
called marked equivalent if they are equivalent under a chosen fixed generic fiber.

NortaTION. We write W| = W, if two monodromy factorizations W and W, give
the isomorphic Lefschetz fibration. When two manifolds X; and X, are diffeo-
morphic, we write this as X| & X;.

DEFINITION 2.2. Letw: X — S? be a Lefschetz fibration and let F be a fixed
generic fiber of the Lefschetz fibration. Let W = w,, - - - w, - w| be a monodromy
factorization of the Lefschetz fibration corresponding to F. Then the monodromy
group Gp(W) is a subgroup of the mapping class group My = mo(Diff *(F))
generated by wy, wa, ..., w,. We will simply write G (W) when the generic fiber F
is clear from the context. The element w,, o - - - o w, o w; in M is denoted by Ay .

LeEmMA 2.3.  If two monodromy factorizations Wy and W, give isomorphic Lef-
schetz fibrations over S* with respect to chosen generic fibers F; and F, (respec-
tively) that are homeomorphic to F, then the monodromy groups G, (W) and
Gr, (Wy) are isomorphic as a subgroup of the mapping class group M. Moreover,
if a generic fiber F = F| = F, is fixed then Gp (W) = Gp(W>).

REMARK 2.4. As mentioned previously, the role of simultaneous conjugation
equivalence is in the choice of a generic fiber. If we use the same fixed generic
fiber for W) and W, (i.e., if F} = F = F3), then the global conjugation cannot
occur. Therefore we get Gg (W) = Gr(W>).

A monodromy factorization of a Lefschetz fibration structure on E(n)x was stud-
ied by Fintushel and Stern [6]. We were able to find an explicit monodromy fac-
torization of E(n)g [23] with the help of factorizations of the identity element in
the mapping class group that were discovered by Y. Matsumoto [18], M. Kork-
maz [17], and Y. Gurtas [9].

DEFINITION 2.5. Let M(n,g) be the desingularization of the double cover of
¥, x §? branched over 2n({point} x $%) U2(E, x {point}).

LEmMMA 2.6 [17;22]. M (2, g) has a monodromy factorization 7712, o> Where

. 2 2
Mg =18y 1B "By 1By, " IByyyy - tbg+l ' tbéﬂ

and {Bj, bg11, by} are simple closed curves on X,y as in Figure 1.
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Figure 1 Vanishing cycles of M (2, g) with g =2

REMARK 2.7. In this paper we assume that we have already fixed a reference
generic fiber as in Figure 1 and read the monodromy factorization with respect to
the chosen generic fiber. From now on we use the monodromy factorization nlzy <
in Lemma 2.6 for M (2, g) as a genus 2g + 1 Lefschetz fibration with respect to
the given fixed generic fiber.

THEOREM 2.8 [6;23]. Let K C S be a fibered knot of genus g. Then EQ2)k, as
a genus 2g + 1 Lefschetz fibration, has a monodromy factorization of the form

@ (N1,5) - Px(M1,¢) * M1,g * Nigs
where r]127 ¢ 18 a monodromy factorization of M(2, g) and
O = @iIdDid: T H0X58E, — Z M %,

is a diffeomorphism obtained by using a (geometric) monodromy ¢k of K de-
fined by
S\ (K) = (I x Z)/((1,x) ~ (0, px(x))),

where Ei, is an oriented surface of genus g with one boundary component.

REMARK 2.9. If two fibered knots K; and K, are equivalent with fiber surface
Eél,, then there is a homeomorphism ¢ : X é — Eél, such that

SIA\NV(K) =T x B/ ~ge, X (I X B/ ~popr0p-1 =S\ v(K2).

So if we select a generic fiber F' &~ ¥, of M(2, g) such that <I>(171278) is a mon-
odromy factorization of M (2, g) as a genus 2g + 1 Lefschetz fibration, then

D(ni,) - P, (P (07 ) = P ,) - (P o Dk, 0 DTN (D@ (] )
=0, Pk, (11 ,) E i, - P, (07 );
this implies that we can select a pair of isomorphic Lefschetz fibration structures
from E(2)g, and E(2),.

On the other hand, for a given fibered knot K and its fiber surface >1 . we iden-
tify £} and £} = ¥, —int(D?) C E,1%,4%, by a fixed homeomorphism. Even
though we fix a generic fiber X,,,1 of M (2, g) and fix an identification between
L and Zél,, there is still some ambiguity regarding the choice of monodromy fac-

torization. For a given homeomorphism ¢: £y — 3, that fixes 9%, pointwise,
there is a fiber-preserving homeomorphism
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(I x Z)/~gx = (I X )/ ~gogopt -

[3, 5.B]. Hence we do not change the fixed generic fiber and corresponding mon-
odromy factorization ’712,g of M (2, g), but the gluing map is changed to ®o®x od !,
where @ is the extension of the homeomorphism ¢ to X,. We can interpret this
phenomenon as a change of chosen generic fiberin M (2, g) so that the monodromy
factorization becomes <D’1(nf g). But it does not mean that CDK(nlz’ g) . 1712’ ¢ is iso-
morphic to ($ o &k o CD’I)(ni g) . 1712’ gasa marked Lefschetz fibration. We will
consider this phenomenon in Section 4.

3. Isomorphic Lefschetz Fibrations

In this section we construct examples of simply connected isomorphic symplec-
tic Lefschetz fibrations with the same generic fiber but coming from a pair of
inequivalent fibered knots. In [6], Fintushel and Stern constructed families of sim-
ply connected symplectic 4-manifolds with the same Seiberg—Witten invariants.
Among them, they considered a set of the following symplectic 4-manifolds,

{Y(2; K1, K2) = EQ)k id: 55001550, EQ)k; |
K, K, are genus g fibered knots},
and they showed that
SWr@ ki Ky =t + 1!

because the only basic classes of Y(2; Kj, K,) are ==L, where L is the canoni-
cal class of Y(2; Ki, K»). In [23] we found examples such that Y (2; K, K;) and
Y(2; K, K») are diffeomorphic even though K is not equivalent to K,. In this
section we will generalize such a construction. That is, we will construct infi-
nitely many pairs (K, K') of inequivalent genus 2 fibered knots such that all the
Y(2; K, K') are mutually diffeomorphic.

A family of inequivalent knots with the same Alexander polynomials has been
constructed by several authors. Among them, Kinoshita and Terasaka [16] con-
structed a nontrivial knot with the trivial Alexander polynomial by using a knot
union operation. Thereafter, Kanenobu constructed infinitely many inequivalent
knots K, , (p,q € Z) with the same Alexander polynomials [13; 14]. These ex-
amples were constructed from the ribbon fibered knot 4,#(—47) by repeatedly
applying the Stallings’ twist [21] at two different locations where K* is the mirror
image of K.

The following lemma was cited by Kanenobu.

LemMmA 3.1 [13].  Let K, ; be a Kanenobu knot as in Figure 2. Then
(1) Koo =41#(—47), ,

(2) the Alexander matrix of K, 4 is (t _SH'I 1(2[:6114):1 ),

(3) Ag,, (1) =@ =341 )

4) K, 4 is a fibered ribbon knot,

(5) Ky g ~ K, s ifand only if (p,q) = (r,s5) or (s,7),

) K, , ~K_g_p,and

(7) K, 4 is a prime knot if (p,q) # (0,0).
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Figure 2 A Kanenobu knot K, ,

Itis not hard to see [10] that the monodromy map P, , of a Kanenobu knot K, , is
— 44 —1 -l
Ok, =ty 0tl otgy 0t ot oty

where {a;, b;, c;,d} are the simple closed curves shown in Figure 3. The reason
is that we first perform Hopf plumbings of right-handed Hopf bands along the
arc by and of left-handed Hopf bands along b, and then perform Hopf plumbings
of left-handed Hopf bands along arcs a; and of right-handed Hopf bands along
ay; see Figure 4. After that, we repeatedly perform Stallings’ twists along simple
closed curves ¢, and d as in Figure 4. The result is a monodromy of the fibered
knot K, ; corresponding to the fiber surface, as in the right-hand side of Figure 4.
We can naturally identify the simple closed curves ay, by, a», b,, ¢, and d in Fig-
ure 4 with the same lettered curves on the surface Xs in Figure 3. We will read
the monodromy factorization §, , of E(2)x, , as a genus 5 Lefschetz fibration by
using this identification.

Figure 4 A fiber surface of K, ,
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Then we get that Y(2; K,, ,, K, 5) has a monodromy factorization of the form

P.q°

2 2 2
‘bK,,s(m,z) M- q’KM (77172) “MNi2-
LeEmMA 3.2. Forany p,q € Z and CI>KM = tg o tcp2 Oty, 0 tb_zl ) ta_l1 o tp,, we have

te, €Gr(ni 5 1e,(1,)), ta €Gr(ni, - ta(niy))
and

fey € GF( Pk, (07 5) - Pk, , (172))s 1a € Gr(Pk, ., (07 ,) - P, , (17 2)).
Proof. Since B, and ¢, meet at one point on X5, by the braid relation we get
te, 0tp, ote, =1p, 0l Olp,.
This implies that
e, =1p, 0teyOlpg,) 0 t;zl o tgzl =1, 0lc,(tp,) 0 t;zl.
Since tp,, 1., (tp,) € Gp(ni2 . t62(171272)), we get

fey € GE(N} 5+ 1o, (07 ).

Each of By, B;, B3, B4 meets at one point with the simple closed curve d. So by
the braid relation we get

tqgotp otg=tp otgotg, i=12,3,4,
which implies
ta=tp oty(tg) oty i=12734
Since 15, 14(t5,) € Gr(n} , - 1a(n ,)), We get
2 2
1 € GF(’71,2 : td(m,z))-

Observe that @k, ,(B3) meets with ¢, at one point and g, ,(B4) meets with d
at one point. Therefore,

Loy, o(Bs) © Tey © Lo, ((B3) = fey © Loy ((B3) © Leao
t‘DKo.n(BU © td © tq)Kl),()(B4) = td © I¢K1),t)(34) ° td'
This implies that
te, = tg o tcpz ofe, 0 t;zp o t;q
— p —1 -1 —p —-q
= 1g 0 1[0 (tag, ((B3) © Ley © Lag, ((By) © Iey © Loy, (By) Ole ©1a
q —1 —1
= td © t(,‘pz © (q)KO,O © tB} o (DK()Y()) © tCZ © (q)KO,O © [B3 ° cDK()y())
-1 —1 -1 —-p —q
oty o(Pgy,0tp, © cDKo,o) ot Fot,
q -1 - —q 1
=10 tc’; o (ko 0 18; © ®K00) o (., Pot, o HH— °© td) (Pkio© B3 © CDKOO)
—p—1 4= p 4
O(IL.2 otd otl ot 9 o (CIDKOOOI&oCIDKOO)otc2 otd
- - 1
=(@lo th o @k, ) o tpy 0 (@KOO ot oty o (ter ot] o ®k,,) otp,
p—1 —q P —q
(¢>Kooot ot; ") o (£ oz‘a_,oCIDKOO)Ol‘B3 O(CDK()O Pot,™)

c2 c2

=t ot oty
- ¢Kl),q(B3) (DKp+l.q(B3) (I)K/“,(BS).
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By the same method we also get

la =tog, (B © log, ., (By) © fé,i,,,t,(&o'
Since
Dk, (t5) Pr,,1, (18;) € Gr(Pk, ., (01 5) - P, , (07 5))
and
Dk, (t5,) Pk, .. (t5,) € GF( Pk, . (1] 2) - Pk, (7)),

we obtain the conclusion
te, € Gr(Pk,,,, (11 ,) - Pk, (11,)),  ta€ Gr(Pk, ., (11,) Pk, (n1,)). O

LEMMA 3.3 [23]. Let W; = wjp, -+ w; 2 - Wi be a sequence of right-handed
Dehn twists along a simple closed curves on X, such that Ly, := W p,0- - -ow; | =
id in Mp fori =1,2. Then

W1’W2"~'W2~W1.
Suppose f € G(W,); then

JW) - Wy ~ Wy - W,
THEOREM 3.4.  For each pair p,q € 7, we get diffeomorphisms

Y(Z, Kp,q, Kp-H,q) ~ Y(2, Kp+l,q’ Kp+2,q)

and
Y(27 Kp,(p Kp,q-H) ~ Y(2, Kp,q-H, Kp,q+2)~

Proof. Y(2; K, 4, Kp41,4) has a monodromy factorization of the form

2 2 2 2
CDKPHW(, (771,2) N2 q)KM (77172) "N

where Ok, =1 otl, ota, 01, ot oty
By Lemma 3.2, we have

tey € Gr(P,,,, (7 ,) - Pk, , (07 ,)).

ey € Gr(te, (07 2) - 01 0)-

Therefore,
Dk, .1, (17 2)  Mia - Pr,, (075) 17, 3.1)
~ 7712,2 Pk, (7712,2) - g, , (7712,2) . 7712,2 (3.2)
~ 1,07 5) - Py, (012) - P, , (17 2) - M1 (3.3)
~ @k, (0715) - P, (115) 1, (17 5) - 1y (3.4)
~ @k, (17,) Pk, ., (112) 1, (17 2) 1 3.5)
~te,(n7,) - P, (175) - P,y , (17 2) - 1o (3.6)
~ iy @k, (1) - Pk, (11y) 0, 3.7)

~ @, (175) nia Pr,y, (172) N1, (3.8)
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In particular:

* since )»,m = id, we get (3.1) to (3.2), (3.3) to (3.4), (3.5) to (3.6), and (3.7)
to (3.8); 7

e Lemma 3.2 and Lemma 3.3 together imply (3.2) to (3.3), (3.4) to (3.5), and (3.6)
to (3.7).

This implies that, for each fixed ¢, Y (2; K, 4, Kj41,4) and Y(2; K,_1 4, K, ;) have
isomorphic Lefschetz fibration structure; hence they are diffeomorphic.
Similarly, by using

ta € Gr(Px, ., (17 ,) - Pk, , (07 ,))
ta € Gp(ta(ni ) 7 ,)
in Lemma 3.2 we obtain

Y(2, KP,tI’ Kp,q+1) ~ Y(2, K[,7q+], Kp,q+2)- O

4. Nonisomorphic Lefschetz Fibrations

In this section we investigate some algebraic and graph-theoretic properties of
£p.q = Px,,(n7,) - 0, and its monodromy group Gy, (&, 4) corresponding to
the fixed generic fiber 5. In [11], Humphries showed that the minimal number of
Dehn twist generators of the mapping class group M, or /\/li, is 2g + 1; he did
this by using symplectic transvection and the Euler number (mod 2) of a graph.

DerFINITION 4.1 [11].  Let {y1,y2,...,¥2¢} be a set of simple closed curves on
X, that generate H{(Xg; Z3). Let I'(y1, v2, ..., Y2¢) be a graph defined by:

* avertex for each homology class [ y;] of simple closed curves y;,i = 1,2,...,2g;

* an edge between y; and y; if i2(y;, ;) = 1, where i,(y;, ¥;) is the modulo 2
algebraic intersection between [y;] and [y;]; and

* no intersections between any two edges.

Let y be a simple closed curve on X, such that[y] = Zfﬁl glyil(eg =0or1)as
an element of H{(Xg; Z,). We define y := Us,:l ¥i, where ¥; is the union of all
closures of half-edges with one end vertex y;. We define xr(y) := x(¥) (mod 2),
where x(3) is the Euler number of the graph .

LEmMMA 4.2 [11]. Let I'(yi,...,Y2) be the graph of simple closed curves
{¥1,..., ¥2¢) that generate the Z, vector space H\(Zy; Z2). Let Gr,g be the sub-
group of Mg that is generated by

{t« | o is a nonseparating simple closed curve on ¥, such that xr(a) = 1}.

Then Gr,, is a nontrivial proper subgroup of M,g. Moreover, if B is a nonsepa-
rating simple closed curve on X, with xr(B) =0, then tg ¢ Gr .

Proof. Let us prove that Gr, is a nontrivial proper subgroup of M,.
The mapping class group M, acts transitively on H{(X,; Z,) \ {0}. The action
is defined by
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te: Hi(3g; Zo) — H\(3g: Z2),  1c(x) = iz(c, x)[c] +x,

where c is a simple closed curve on X, x € H|(X,; Z>), and i(c, x) is the mod-
ulo 2 algebraic intersection number between [c] and x.

If ¢ is a nonseparating simple closed curve on X, such that xr(c) = 1, then in
H\(Xg; Zy) we have

[v] if ir(c,y) =0,

]+ [y] if ia(c,y) =1

For the i5(c, y) = O case, it is clear that xr(z.(y)) = xr(y). Forthe i;(c,y) =1
case, if [c] = Y°7% eci[yi] and [y] = Y°7%, &), [i] in Hy(Sy; Zo), then

W=

c,itey,i=1

A= > Inl

ec,i=l,8y,i=1

B= Y [nl

ec,i=l,8y,i=0

C= > vl

807,':0,8}/7,':1

te(lyD = {

Let

Then
x(@ = x(AU B) = x(A) + x(B) + i2(A, B) (mod?2),
x(7) = x(AU C) = x(A) + x(C) +i2(A,C) (mod?2),

x(t(y)) = x(BUC) = x(B) + x(C) + i»(B,C) (mod2),
andi>(c,y) = i2(A+ B,A+C) = is(A, A) +i2(A, B) +i2(A,C) +i(B,C) =
i2(A,B) +i,(A,C) 4+ i(B,C) (mod?2) because i, (A, A) = 0. Therefore,

xr(te(¥) = x(te(y)) = x(©@ + x(¥) + i2(c,y) = x(¥) = xr(y) (mod2).

For any f € Gr, f is of the form #% o 18l o. o 12 o 121, where each c; is
a nonseparating simple closed curve with xr(c;) = 1 and ¢; € {£1}. This implies
that xr(f(y)) = xr(y) (mod?2). Therefore, if Gr,, = M, then, for any nonsep-
arating simple closed curves y on X,, we must have xr(y) = l—which is clearly
impossible. Hence Gr, is a nontrivial proper subgroup of M.

Let B be a nonseparating simple closed curve with xr(8) = 0. Then, for a sim-
ple closed curve y on Xg withi> (B8, y) = 1, we have xr(t3(y)) # xr(y) (mod2).
Therefore, 13 ¢ Gr . ]

REMARK 4.3. By Lemma 4.2, we know that:
¢ if xr(c) = 1 then, for any y,
xr(te(y)) = xr(¥);
¢ if xp(c) = 0 then, for any y,
xr(te(y)) = xr(y) +i2(c, y).
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LEMMA 4.4.  For each pair of integers (p, q) there is a basis B; for H|(Xs; Z»)
(depending only on (p, q) modulo 2) with the property that

Gr(,,4) < Gr 5
but with xr,(c2) = xr,(d) = 0, where I; is the corresponding graph to a basis B;.
Proof. We will prove this in four cases.
Case I: p and q are even integers. Let us consider a basis
By = {c1,a1,a2,b2,a3,b3,a4,as, By, B4}

of Hi(Xs; Z»), where {a;, b;, c;,d;, B;} are simple closed curves on X5 as in Fig-
ure 1 and Figure 3. Then the graph of By,

' =T{c1,a1,a2,b2,a3,b3,a4,as, By, Ba}),

is as given in Figure 5.

Figure 5 Graph I}

We can easily obtain the following relations in H{(Xs; Z»):
By =a)+ax +as + a4+ as,
By = B, + a1 + as,
B3 = By +as + ay,
Bs = a3 = @k, ,(Bs);
Dk o(Bs) = By + as,
Dk, (B3) = By +ay +as+ by,
Pk, (B2) = B+ a1+ by +ay,
Dk o(B1) = B+ a1 +ax +as+cy+ by,
@k, (Bo) = a3 +as+as+ci+by.
Hence the graph yields
xry(ai) = xr (Bi) = x1, (Pgo o (B)) =1 for i =0,1,2,3,4,5
and xr, (c1) = xr,(ce) = 1. So we have
{tB,.,(DKO,O(IBIV),taj,tb3,thg,tm,tc6 |i=0,1,2,3,4,5, j =1,2,3,4,5}
C Gry,5,
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and each generator of the group Gr (P, , (nfz) : ’712,2) is an element of Gr, 5. This
implies that G (P, , (17 ,) - 17 2) < Gry,s.

But we have

xr () = xr,(d) =0
for j = 2,3,4,5 and therefore
tczs tC39 tC4’ tC5’ ld ¢ GF],S'

This implies that 7c,,tq & Gr(Pk, (17 ,) - 17 2)-

Since the Z,-homology class of @, , (B;) and P, ,(B;) are the same for any

p.q €7, we get
XTIy (CDsz,zq (Bl)) = X1 (CDK(),()(BI'))

for i = 0,1,2,3,4,5. This implies that Gr(®x,,,, (1},) - 1},) < Gry,s, 50 we
have t.,, 14 & Gr(Pk,,,, (17 2) * 17 2)-

Case 2: p is an odd integer and q is an even integer. Let us consider a basis
Bz = {a3, b3, B], BQ, B3, B4,d1,d2,d3,d4} of Zz-VeCtOI' Space H](Es; Zz) and
its graph

[, = I'({as, b3, By, B2, B3, By, dy, da, d3,d4});

here {a;, b;, ¢;, d;, B;} are simple closed curves on X5 as in Figure 1, Figure 3, and
Figure 6. Then the graph I'; is as in Figure 7.

d, d
O[O !O\
' /

Figure 7 Graph I',
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Since @k, , = tczot@ot;zlota‘l'otbl,we get the following relations in H{(Xs; Z»):
By = B1 + By + B3 + B4 + as;
Oy, ,(Bo) = By + By + By + bs +dy + dy + ds,
&k, (B1) = Bi+ B3 + By +az +da,
Oy, ,(B2) = By + By + By + by + dy + da + ds,
@k, (B3) = B3 + b3 +ds,
Oy, ,(Bs) = Bs + By + b3 + da + da,
@k, ((Bs) = Bs = as;
2 =az+b3+ds+ By,
d = B3+ By +d; + d».
A computation of xr, shows that
X (Bi) = xry (Pk, o (Bi)) = xr,(b3) = xr,(b3) = xr,(az) =1 4.1
foreachi =0,1,2,3,4,5 and that
xr,(c1) = xry(c2) = xry(ar) = xr(a2) = xr,(b2) = xr,(d) = 0. (4.2)

Hence GF(GDKLO(n]z’z) . 7712,2) < Gr,,5 and, since t.,,tq ¢ Gr,, 5, we get

feyi1a & Gr(Pr, o (7 ,) - 01 5).

Furthermore, since ®x,,,,,, (B;) and @k, ,(B;) represent the same element in
H(%,; Z,), we get sz((b,(zp“yzq (B))) = xr, (®g, ,(B;)) = 1; this implies that

feysta & Gr(Proy i, (172) 1 5)
for any p, q € Z because Gr(Px,,,,,, (17 2) - 11,) < Gry 5.
Case 3: p is an even integer and q is an odd integer. We want to find a graph

I3 =Ty, v2, ..., Y10}
satisfying
xrs(Bi) = xry(Pky, (Bi)) = xr3(b3) = xr;(b5) = xrs(az) =1 4.3)

fori =0,1,2,3,4,5 and
xrs(c2) = xry(d) = 0. 4.4

Note that we observe the following relations in H{(Xs; Z»).

Gk, (Bi) Ok, (B;)
By Byo+ai+b +a+b, By +a;+by+a+ b,
Bl Bl+b1+b2+02 Bl+b1+a2+b2+d (45)
B, By +a +by+a By +a +by+a ’
B; B; + b, B; + b,
B4 B4+a2 B4+a2+d

Bs Bs Bs
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From equation (4.3), we may assume that B; (i = 1,2,3,4), b3, and a3 are in
the generating set, which we will extend to a basis of H(Xs; Z;). For each
i = 0,1,2,3,4,5, B; and @k, (B;) are elements of Gr, 5 at the same time.
Since i(Pk,,(Bo),d) = 0, we get xr;(Px,,(Bo)) = xr3(Pry,(Bo)). We also
know that

i2(Bo,by) = ir(ty,(Bo),a1) = ia (1, (15, (Bo)). b2)
= iy(t,, (1, (15,(By))), az) = 1.

So by Lemma 4.2 and Remark 4.3 it follows that

x5 (Pry 0 (Bo)) = xr3(Bo) + a1, b1,a2,b2} — Gry 5| = xr;(Bo).

Therefore, if By and @k, (By) are elements of Gr; 5 at the same time, then an even
number of elements in {ai, b1, a», b,} must have xr, = 0. By the same method,
we derive the following statements:

* an even number of elements in {by, by, a»,d} must have xr, = 0 because
xr3(Pky, (B1)) = xr3(B1);
* an even number of elements in {a;, b,, a;} must have xr, = 0 because

xr3(Pky, (B2)) = xry(B2);
* an even number of elements in {b,} must have xr, = 0 because

XF},(q)K(),] (B3)) = XF3(B3);
* an even number of elements in {a;, d} must have xr, = 0 because

xr3(Pky, (Ba)) = xr3(B4).

When combined with these constraints, equation (4.4) yields
xrs(a1) = xry(a2) =0,
xr;(b1) = xr3(b2) = 1.

Hence {B, B, B3, B4, b1, b2, b3, a3} might be a subset of Gr; 5, and we will
extend it to a basis of H,(Xs; Z,) by adding two simple closed curves dy, d; as in
Figure 6. Let

I's =T'({By, By, B3, B4,b1,b5,b3,a3,d;,d,});

then I'; is the graph in Figure 8 and satisfies equations (4.3) and (4.4).

Figure 8 Graph I';
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Therefore, G (P, (17 ,) - 17 ,) < Gry s and, since 7., 4 ¢ Gr,s5, we get

tezsta & GF(Pky, (17 2) 17 2)
and
ey ta & GF(Pksy g (172) * M1 2)
for any p,q € Z.

Case 4: p and q are odd integers. We want to find a graph

F4 == F({Vl, Y2seees 7/10})
satisfying

xru(Bi) = xry(®k,  (Bi)) = xr,(b3) = xr, (b3) = xry(az) =1 (4.6)
fori =0,1,2,3,4,5 and
xry(c2) = xr,(d) = 0. 4.7)

We may assume that each element of {B, B, B3, B4, a3, b3} is in the generating

set, and we will extend it to a basis of H;(Xs; Z»).
Note that we observe the following relations in H(Xs; Z;).

CDK[)yu(Bl') (DKI,I(Bi)
By Bo+ai+bi+ay+bs Bo+a +b +ay+b,
B Bi+bi+by+a; Bi+b+a,+by+cr+d
B, By+ai+by+as By+ai+by+ay+c;
Bs B3 + b, B3 +by+c
B, By+as Biy+ay+c,+d
Bs Bs Bs

Hence, by Lemma 4.2 and (4.6)—(4.8), we have the following statements:

* an even number of elements in {a;, by, az, b»} must have xr, = 0 because

X3Pk, (Bo)) = xr3(Bo);
* an even number of elements in {ay, b1, b2, ¢z, d} must have xr, = 0 because

X3Pk, (B1)) = xr;(B1);
* an even number of elements in {a;, a,, b, ¢} must have xr, = 0 because

XF3(CDK],] (BZ)) = XF;(BZ)a
* an even number of elements in {b,, co} must have xr, = 0 because

xr3(@k, (B3)) = xr;(B3);
* an even number of elements in {a,, ¢3, d} must have xr, = 0 because

x5 (Pk, , (Bs)) = xry(Ba).
This implies that
xrs(ar) = xrs(az) =1,
xr3(b1) = xr3(b2) =0,

(4.8)
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so {Bi, B2, B3, Bs,ay,a3, b3, az} might be a subset of G, 5. We will extend this
subset to a basis of H{(Xs; Z,) by adding two simple closed curves d3,d4 as in
Figure 6. Let

Iy = I'({By, B2, B3, Bs,a1,a2,a3,b3,d3,d4});
then I'y is graphed as in Figure 9 and satisfies equations (4.6) and (4.7).

Figure 9 Graph I'y

Therefore, GF(CDKH(n]zJ) . '712,2) < Gr, 5 and, since t.,,t; ¢ Gr, 5, we get

tey.ta & Gr(Px,, (17 2) 07 )
and
teysta & GF( Py 1200 (17 2) * M1 2)
forany p,q € Z. U

REMARK 4.5.  We can double-check the preceding statements by using the rep-
resentation of a mapping class group in a symplectic group (this approach was
suggested by S. Humphries [12]). There is a natural map
Un: Ms s Sp(10,2) 25 Sp(10, Z/nZ)
where, for each 1, € Ms,
Y(t,): Hi(Xs5,2) — Hi(25,Z)

is an integral matrix representation of the mapping class group action on the inte-
gral first homology group. We then reduce the coefficient of the symplectic group
to Z/nZ by taking a quotient map g, . It is easy to check that

Va(12,) = Idioxio = Y2(17),
which implies that
V2(Gr(&p,q)) = V2(Gr (&) if (p,q) = (r,s) (mod2).

An explicit group order computation (using a computer algebra system such as
GAP [7] or Sagemath [20]) shows that
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Order(y2(Gr (§p,4))) = 50030759116800,
Order((Y2(Gr(§),4) U {1, 1)) = 24815256521932800,
Order({(¥2(Gr(§p,q) U {ta}))) = 24815256521932800,
Order(y2(Ms)) = 24815256521932800,
and this implies that

tCz’td¢GF($P,q) forany p,qu
THEOREM 4.6. &, , is not marked equivalent to & ¢ if (p,q) # (r,s) (mod 2).

Proof. Let us consider the I'y case, in which

1, i=1,2,3,4, 1, i=14,

0, i=0; 0, i=0,2,3.
Then, by Lemma 4.2, it follows that xr (®x, ,(B;)) = 0 fori = 1,2,3,4,

xr (P, (B;)) = 0 fori = 1,4, and xr, (Pk,,(B;)) = 0 fori = 2,3; this gives
the result for I";. Other rows are obtained by the same method.

iz(q)K()7()(Bi)’C2) = { iZ(CDK(),()(Bi)’d) = {

Gr,,s does not contain

Uy tog ) (= 1,2,3,4), log, 81)» Tog, , (Ba)» Lox, , (B2)» Log,  (Bs)
Dy tog i (J=1,2,3,4), tog, (Ba)s Tog,, (Ba)s Loy, (B> Lo, (B
U3 tog, (81)s Tog, (B> Lok, (B2 Lok, ,(B3)» Loy, ,8) (J = 1,2,3,4)
La oy, 82> Tag, ,(B3)» Tog, o (B1)s Lok, ,(Ba)» Tog, 8 (J =1,2,3,4)

Itis clear that 7q, () is contained in G, s if and only if 7o, (5;) is contained
in Gr, 5, where ¢, &, € {0,1} such that p = ¢, and ¢ = ¢, modulo 2. The reason
is that xr, (®k, ,(B;)) = xr, (QKg,,,gq(Bj)), which implies that

‘i:p,q ?’\é é,-:r,s if (P,‘]) 7_é (r,s) (mod2).
For example, if (p,q) = (0,0) and (r,s) = (1,0) modulo 2, then
t(bK[Lq(Bj) ¢ Gr2,5 (] =1,2,3,4)

and Gr(§,,5) < Gr,,5. Hence to, (8, € Gr(§p,9), butte, (8, ¢ Gr(§s) for j =
1,2,3,4. This implies that G (&, q) # Gr (&.s) and &y, % &.. 0

CoroLLARY 4.7. If p # q modulo 2, then the knot surgery 4-manifold EQ2)k, ,
has at least two nonisomorphic genus 5 Lefschetz fibration structures.

Proof. This follows from Lemma 3.1. Since K, , is equivalent to K, ,, we get a
diffeomorphism E(n)k,, ~ E(n)k, ,. However, by Theorem 4.6 we know that

%-Px‘] % %-‘LP' U
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REMARK 4.8. We are interested in the question of whether the knot surgery 4-
manifold E(2)x admits infinitely many nonisomorphic Lefschetz fibrations over
S? with the same generic fiber. In Theorem 3.4 we constructed a family of simply
connected genus 5 Lefschetz fibrations over S, all of whose underlying spaces
are diffeomorphic, from a pair of inequivalent prime fibered knots. We expect
that these knots are strong candidates for admitting infinitely many nonisomor-
phic Lefschetz fibrations. We leave this problem for a future research project.
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