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A Schoenflies Extension Theorem for a Class
of Locally Bi-Lipschitz Homeomorphisms
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1. Introduction

1.1. Embeddings of Collars

In point-set topology, the Schoenflies theorem [W,Thm. III.5.9] is a stronger form
of the well-known Jordan curve theorem; it states that every simple closed curve
separates the sphere S

2 into two domains, each of which is homeomorphic to B
2,

the open unit disc. The same statement does not hold in higher dimensions, since
the Alexander horned sphere [A] provides a counterexample in R

3. Despite this,
Brown [B] proved that for each n ∈ N, every embedding of S

n−1 × (−ε, ε) into
R
n extends to an embedding of B

n into R
n.

Similar extension problems arise by varying the regularity of the embeddings.
Toward this end, we prove a Schoenflies-type theorem for a new class of home-
omorphisms. Their regularity is given in terms of Sobolev spaces and Lipschitz
continuity.

To begin, recall that a homeomorphism f : � → �′ is locally bi-Lipschitz if, for
each z∈�, there exist a neighborhood O of z and L ≥ 1 such that the inequality

L−1|x − y| ≤ |f(x)− f(y)| ≤ L|x − y| (1.1)

holds for all x, y ∈ O. Recall also that for p ≥ 1 and k ∈ N, the Sobolev space
W

k,p

loc (�;�′) consists of maps f : � → �′, where each component fi lies in
L
p

loc(�) and has weak derivatives of orders up to k in Lp

loc(�).

Definition 1.1. Let f : � → �′ be a locally bi-Lipschitz homeomorphism.
For p ∈ [1, ∞), we say that f is of class LWp

2 if f ∈ W
2,p

loc (�;�′) and f −1 ∈
W

2,p

loc (�
′;�). If K and K ′ are closed sets, then a homeomorphism f : K → K ′ is

of class LWp

2 when the restriction of f to the interior of K is of class LWp

2 .

Instead of product sets of the form S
n−1 × (−ε, ε), we will consider domains in

R
n of a similar topological type.

Definition 1.2. A bounded domain D in R
n∗ is Jordan if its boundary ∂D is ho-

meomorphic to S
n−1. A collared domain (or collar ) is a domain in R

n of the form
D2 \ D̄1, where D1 and D2 are Jordan domains with D̄1 ⊂ D2.
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We now state the extension theorem for homeomorphisms of class LWp

2 between
collared domains.

Theorem 1.3. Let D1 and D2 be Jordan domains in R
n such that D̄1 ⊂ D2, let

B1 and B2 be balls such that B̄1 ⊂ B2, and let p ∈ [1, n).
If f : D̄2\D1 → B̄2\B1 is a homeomorphism of classLWp

2 such that f(∂Di) =
∂Bi holds for i = 1, 2, then there exists a homeomorphism F : D̄2 → B̄2 of class
LW

p

2 and a neighborhood N of ∂D2 such that F |(N ∩ D̄2) = f |(N ∩ D̄2).

The proof is an adaptation of Gehring’s argument [Ge, Thm. 2′ ] from the class of
quasiconformal homeomorphisms to the class LWp

2 . For the locally bi-Lipschitz
class, the extension theorem was known to Sullivan [S] and later proved by Tukia
and Väisälä [TV, Thm. 5.10]. For more about quasiconformal homeomorphisms,
see [V].

As in Gehring’s case, Theorem 1.3 is not quantitative. His extension depends
on the distortion (resp. Lipschitz constants) of g as well as on the configurations
of the collars D2 \ D̄1 and B2 \ B̄1. In addition, our modification of his extension
also depends explicitly on the parameters p and n.

1.2. Motivations, Smoothness, and Sharpness

The motivation for Theorem 1.3 comes from the study of Lipschitz manifolds.
Specifically, Heinonen and Keith [HKe] showed that if an n-dimensional Lip-
schitz manifold (n �= 4) admits an atlas with coordinate charts in the Sobolev
class W 2,2

loc (R
n; R

n), then it admits a smooth structure.
On the other hand, there are10-dimensional Lipschitz manifolds without smooth

structures [K]. This leads to the following question.

Question 1.4. For n �= 4, does there exist a p ∈ [1, 2) such that every n-
dimensional Lipschitz manifold admits an atlas of charts inW 2,p

loc (R
n; R

n)?

Sullivan [S] showed that every n-dimensional topological manifold (n �= 4) ad-
mits a Lipschitz structure. A key step in the proof is to show that bi-Lipschitz
homeomorphisms satisfy a Schoenflies-type extension theorem. One may inquire
whether this direction of proof would also lead to the desired Sobolev regularity.
Theorem 1.3 would be a first step in this direction. For more about Lipschitz struc-
tures on manifolds, see [LV].

It is worth noting that Theorem1.3 is not generally true forp > n. Recall that for
any domain � in R

n, Morrey’s inequality [EG, Thm. 4.5.3.3] gives W 2,p(�) ↪→
C1,1−n/p(�), so homeomorphisms of class LWp

2 are necessarily C1-diffeomor-
phisms.

Indeed, every C∞-diffeomorphism ϕ : S
n−1 → S

n−1 admits a radial extension

ϕ̄(x) := |x|ϕ
(
x

|x|
)

,

that is, a C∞-diffeomorphism between round annuli. The validity of Theorem 1.3
forp > nwould therefore imply that every suchϕ extends to aC1-diffeomorphism
of B̄

n onto itself. However, for n = 7 this conclusion is impossible.
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Recall that every such ϕ also determines a C∞-smooth, n-dimensional mani-
fold Mn

ϕ that is homeomorphic to S
n [M, Construction (C)]. Indeed, Mn

ϕ is the
quotient of two copies of R

n under the relation x ∼ ϕ∗(x) on R
n \ {0}, where

ϕ∗(x) := 1

|x|ϕ
(
x

|x|
)
. (1.2)

If ϕ is the identity map on S
n−1, then ϕ∗ is the inversion map x �→ |x|−2x and Mn

ϕ

is precisely S
n. By using invariants from differential topology, Milnor proved the

following theorem about such manifolds.

Theorem 1.5 [M, Thm. 3]. There exist C∞-smooth manifolds of the form M 7
ϕ

that are homeomorphic, but not C∞-diffeomorphic, to S
7.

Such manifolds are better known as exotic spheres. The next lemma, an analogue
of [Hi, Thm. 8.2.1], relates exotic spheres to extension theorems.

Lemma1.6. Let ϕ : S
n−1 → S

n−1 be aC∞-diffeomorphism and let ϕ̄ : B̄
n\{0} →

B̄
n\{0} be its radial (diffeomorphic) extension. If there exists aC1-diffeomorphism

� : B̄
n → B̄

n that agrees with ϕ̄ on a neighborhood of S
n−1 in B̄

n, then Mn
ϕ is

C1-diffeomorphic to S
n.

Proof. Let ϕ∗ be the diffeomorphism defined in (1.2). By construction, there is an
atlas of charts {Mi}2

i=1 for Mn
ϕ with homeomorphisms ψi : Mi → R

n that satisfy
ψ1 � ψ−1

2 = ϕ∗.
Let π1,π2 : R

n → S
n be stereographic projections relative to the “north” and

“south” poles on S
n, respectively, so π−1

2 � π1 = id∗ = (id∗)−1. Observe that

((id∗)−1 � ϕ∗)(x) = ϕ∗(x)
|ϕ∗(x)|2 = |x|ϕ

(
x

|x|
)

= ϕ̄(x)

holds for all x ∈ R
n \ {0}. It follows that

x �→
{
(π−1

1 � ψ1)(x) if x ∈M1,

(π−1
2 �� � ψ2)(x) if x ∈M2

is a C1-diffeomorphism of Mn
ϕ onto S

n.

By [Hi, Thm. 2.2.10], if twoC∞-smooth manifolds areC1-diffeomorphic then they
are C∞-diffeomorphic. It follows that there exist C1-diffeomorphisms of collars
in R

7 that do not admit diffeomorphic extensions of class LWp

2 for any p > 7.
The next result follows from the inclusion W 2,p

loc (�;�′) ⊆ W
2,q

loc (�;�′) for
q ≤ p.

Corollary 1.7. Let n = 7. For p > n, there exist collars �,�′ in R
n and

homeomorphisms ϕ : � → �′ of class LWp

2 that admit homeomorphic extensions
of class LW q

2 (1 ≤ q < n) but not of class LWp

2 .

Since the preceding discussion relies crucially on Sobolev embedding theorems,
it leaves open the borderline case p = n.
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Question 1.8. Is Theorem 1.3 true for the case p = n?

For p > n, the main obstruction to an extension theorem is the existence of exotic
n-spheres. It is known that no exotic spheres exist for n = 1, 2, 3, 5, 6 [KM], and
the case n = 1 can be done by hand. It would be interesting to determine whether
other geometric obstructions arise.

Question 1.9. For n = 2, 3, 5, 6, is Theorem 1.3 true for all p ≥ 1?

The outline of the paper is as follows. In Section 2 we review basic facts about
Lipschitz mappings, Sobolev spaces, and the classLWp

2 . In Section 3 we prove ex-
tension theorems in the setting of doubly punctured domains. Section 4 addresses
the case of homeomorphisms between collars by employing suitable generaliza-
tions of inversion maps and reducing to previous cases.

Acknowledgments. The author is especially indebted to his late advisor and
teacher, Juha Heinonen, for numerous insightful discussions and for directing him
in this area of research. He thanks Piotr Hajłasz for many helpful conversations,
which led to key improvements in this work. He also thanks Leonid Kovalev, Jani
Onninen, Pekka Pankka, Mikko Parviainen, and Axel Straschnoy for their helpful
comments and suggestions on a preliminary version of this work.

The author acknowledges the kind hospitality of the University of Michigan and
the Universitat Autònoma de Barcelona, where parts of this paper were written.

2. Notation and Basic Facts

For A ⊂ R
n, we write Ac for the complement of A in R

n. The open unit ball in R
n

is denoted B
n; if the dimension is understood, we will write B for B

n.

We write A � B for inequalities of the form A ≤ kB, where k is a fixed dimen-
sional constant and does not depend on A or B.

For domains� and�′ in R
n, recall that a map f : � → �′ is Lipschitz whenever

L(f ) := sup

{ |f(x)− f(y)|
|x − y| : x, y ∈�, x �= y

}
< ∞.

The map f is locally Lipschitz if every point in � has a neighborhood on which
f is Lipschitz. A homeomorphism f : � → �′ is bi-Lipschitz (resp. locally
bi-Lipschitz) if f and f −1 are both Lipschitz (resp. locally Lipschitz); compare
inequality (1.1).

The following lemmas about bi-Lipschitz maps are used in Section 2. The first
is a special case of [TV, Lemma 2.17]; the second one is elementary, so we omit
the proof.

Lemma 2.1 (Tukia–Väisälä). LetO andO ′ be open connected sets in R
n and let

K be a compact subset of O. If f : O → O ′ is locally bi-Lipschitz then f |K is
bi-Lipschitz , where L((f |K)−1) depends only on O, K, and L(f ).

Lemma 2.2. For i = 1, 2, let hi : �i → R
n be locally bi-Lipschitz embeddings

such that h1(�1 \ �2) ∩ h2(�2 \ �1) = ∅. If h1 = h2 holds on all of �1 ∩ �2,
then
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h(x) =
{
h1(x) if x ∈�1,

h2(x) if x ∈�2 \�1

is also a locally bi-Lipschitz embedding.

For f ∈W 2,p(�;�′), we will use the Hilbert–Schmidt norm for the weak deriva-
tives Df(x) := [∂jfi(x)]ni,1=1 and D2f(x) := [∂k∂jfi(x)]ni,j,k=1. That is,

|Df(x)| :=
[ n∑
i,j=1

|∂jfi(x)|2
]1/2

, |D2f(x)| :=
[ n∑
i,j,k=1

|∂k∂jfi(x)|2
]1/2

.

In what follows, we will use basic facts about Sobolev spaces, such as the change
of variables formula [Z, Thm. 2.2.2] and that Lipschitz functions on� are charac-
terized by the classW 1,∞(�) [EG, Thm. 4.2.3.5]. Our next lemma gives a gluing
procedure for Sobolev functions.

Lemma 2.3. For i = 1, 2, let Oi be a domain in R
n and let fi ∈ W

1,p
loc (Oi). If

f1 = f2 holds a.e. on O1 ∩O2, then χO1f1 + χO2\O1f2 ∈W 1,p
loc (O1 ∪O2).

Proof. LetO be a bounded domain in R
n such that Ō ⊂ O1∪O2. For each x ∈O,

there exists an r > 0 such that B(x, r) lies entirely in O1 or in O2. Since Ō is
compact, there exist an N ∈ N and a collection of balls {B(xi, ri)}Ni=1 whose union
covers O.

Let {ϕi}Ni=1 be a smooth partition of unity that is subordinate to the cover
{B(xi, ri)}Ni=1. For each i = 1, 2, . . . ,N, one of f1ϕi or f2ϕi is well-defined and lies
inW 1,p(O); call it ψi. We now observe that ψ := ∑N

i=1ψi also lies inW 1,p(O),
and by construction it agrees with χO1f1 + χO2\O1f2.

It is a fact that the class LWp

2 is preserved under composition. We now state this
as a lemma that follows directly from the product rule [EG, Thm. 4.2.2.4] and the
change of variables formula [Z, Thm. 2.2.2].

Lemma 2.4. Let p ≥ 1. If f : � → �′ and g : �′ → �′′ are homeomorphisms
of class LWp

2 , then so is h := g � f. In addition, for a.e. x ∈� and for all i, j, k ∈
{1, . . . , n}, the weak derivatives satisfy

∂j hi(x) =
n∑
l=1

∂lgi(f(x))∂jfl(x)

∂ 2
kj hi(x) =

n∑
l=1

[
∂lgi(f(x))∂

2
kjfl(x)+

n∑
m=1

∂ 2
mlgi(f(x))∂kfm(x)∂jfl(x)

]
.

(2.1)

Remark 2.5. Linear maps (homeomorphisms) such as dilation and translation
are clearly of class LWp

2 . So if g : � → �′ is any homeomorphism of class LWp

2 ,
then by Lemma 2.4 its composition with such linear maps is also of class LWp

2 .

In what follows, we will implicitly use this fact to obtain convenient geometrical
configurations.
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3. Extensions for Homeomorphisms of Class LW
p
2

between Doubly Punctured Domains

First we formulate the extension theorem in a different geometric configuration.

Theorem 3.1. Let p ≥ 1, let E1 and E2 be Jordan domains such that E1 ∩E2 =
∅, and let B1 and B2 be balls so that B1 ∩ B2 = ∅.

If g : (E2 ∪ E1)
c → (B1 ∪ B2)

c is a homeomorphism of class LWp

2 such that
g(∂Ei) = ∂Bi holds for i = 1, 2, then there exist a homeomorphism G : Ec

2 → Bc
2

of classLWp

2 and a neighborhoodN of ∂E2 such that g|(N ∩Ec
2) = G|(N ∩Ec

2).

Following the outline of [Ge, Sec. 3], we begin with a special case.

Lemma 3.2. Theorem 3.1 holds under the additional assumption that

g|Bc = id|Bc, (3.1)

where B is an open ball that contains E1 and E2.

Proof.

Step 1. By composing with linear maps, we may assume that B = B and that
there exist a, b ∈ R such that a < b, B̄1 ⊂ {xn < a}, and B̄2 ⊂ {xn > b}.

Put c = (b − a)/2. Define an odd, C1,1-smooth function s0 : R → [−1,1] by

s0(t) :=
{

1 − (t − c)2/c2 if 0 ≤ t ≤ c,

1 if t > c.

Using the auxiliary function s : R → [0, 3] given by

s(t) := 3

2

(
s0

(
t − a + b

2

)
+ 1

)
,

we define a bi-Lipschitz homeomorphism S : R
n → R

n by

S(x) = x − s(xn)e1 (3.2)

(see Figure 1). It is clear that S is of class LWp and satisfies the a.e. estimate

|D2S| ≤ 2c−2. (3.3)

Figure 1 For R
2, level curves for the map S

Step 2. For k ∈ Z , put τk(x) = x + 3ke1 and consider the sets

� :=
( ∞⋃

k=0

τk(E1) ∪ τk(E2)

)c

and �′ :=
( ∞⋃

k=0

τk(B1) ∪ τk(B2)

)c

.
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We now modify g into a new homeomorphism g∗ : � → �′ as follows:

g∗(x) :=
{
(τk � g � τ−k)(x) if x ∈� ∩ τk(B) for some k ≥ 0,

x if x ∈� \ ⋃∞
k=0 τk(B).

(3.4)

By our hypotheses, there exists an r ∈ (0, 1) such that E1 ∪ E2 ⊂ B(0, r) and
g|B \ B(0, r) = id. If we put �1 := τk(B) ∩� and �2 := � \ ⋃∞

l=0 τk(B(0, r))
for each k ∈ N, then Lemma 2.2 implies that g∗ is locally bi-Lipschitz.

Similarly, for any bounded domainO in� that meets τk(∂B), putO1 := O ∩�
andO2 := O\τk(B(0, r)). For f1 := D(τk �g�τ−k) and f2 := D(id), Lemma 2.3
implies that g∗ ∈ W 2,p(O) and therefore g∗ ∈ W

2,p

loc (�;�′). By symmetry, the
same is true of g−1∗ and so g∗ is of class LWp

2 .

Step 3. Consider the bi-Lipschitz homeomorphism given by

G∗ := τ1 � g−1
∗ � S � g∗ (3.5)

(see Figure 2). By Lemma 2.4, it is also of class LWp

2 . We now define G : Ec
2 →

Bc
2 as

G(x) :=



G∗(x) if x ∈�,

τ1(x) if x ∈ ⋃∞
k=0 τk(E1),

x if x ∈ ⋃∞
k=1 τk(E2).

(3.6)

Figure 2 A schematic of the mapping G∗
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By the same argument as [Ge, pp. 153–154], the map G is a homeomorphism. We
also note that G is “periodic” in the sense that, for eack k ∈ N,

(τk �G � τ−k)|τk(B̄ \ E2) = G|τk(B̄ \ E2). (3.7)

To see thatG extends g, consider the set σab := g−1∗ ({a ≤ xn ≤ b}). Its comple-
ment R

n \ σab consists of two (connected) components. Let σb be the component
containing the vector en, let σa be the component containing −en, and consider
the open set N := B ∩ σb. By assumption, B̄2 lies in B ∩ {xn > b}, so Ē2 lies in
N. From before, we have g∗ = g on B and S = τ−1 on {xn > b}, which imply that

(S � g∗)(N ) = (τ−1 � g)(N ) = τ−1(B ∩ {xn > b}) ⊂ τ−1(B).

By hypothesis we have g−1∗ = id on τ−1(B) and hence on (S � g)(N ). It follows
that

G|N = G∗|N = (τ1 � g−1
∗ � S � g∗)|N = (τ1 � id � τ−1 � g)|N = g|N.

As a result, G agrees with g on N ∩ Ec
2.

Finally, G = id holds on σb \ E2 and G = τ1 holds on σa. Using these do-
mains for �1 and R

n \ ⋃∞
k=0 τk(B̄) for �2, Lemma 2.2 implies that G is locally

bi-Lipschitz. With the same choice of domains, Lemma 2.3 implies that also G∈
W

2,p

loc (E
c
2;Bc

2). For the case of G−1, note that the inverse is given by

G−1(x) =



G−1∗ (x) if x ∈� \ τ−1(B2),

τ−1(x) if x ∈ ⋃∞
k=0 τk(E1),

x if x ∈ ⋃∞
k=1 τk(E2).

(3.8)

Arguing similarly with g∗(N ) for N, it follows that G−1 ∈W 2,p

loc (B
c
2;Ec

2), which
proves the lemma.

We now observe that Lemma 3.2 holds even when B1 and B2 are not balls. In the
preceding proof it is enough that, up to rotation, there is a slab {c1 < xn < c2}
that separates B1 from B2. This result, which we state as Lemma 3.3, is used in
Section 4.

Lemma 3.3. Let p ≥ 1 and let E1, E2, C1, and C2 be Jordan domains such that
E1 ∩E2 = ∅ and C1 ∩C2 = ∅. Suppose g : (E1 ∪E2)

c → (C1 ∪C2)
c is a homeo-

morphism of class LWp

2 such that

(1) g(∂Ei) = ∂Bi holds for i = 1, 2,
(2) there exists a ball B containing E1 and E2 such that g|Bc = id|Bc, and
(3) there exist a rotation 5 : R

n → R
n and numbers c1, c2 ∈ R (c1 < c2) such

that 5(C1) ⊂ {xn < c1} and 5(C2) ⊂ {xn > c2}.
Then there exist a homeomorphism G : Ec

2 → Cc
2 of class LWp

2 and a neighbor-
hood N of ∂E2 such that g|(N ∩ Ec

2) = G|(N ∩ Ec
2).

Although the regularity of the extension G is local in nature, it nonetheless enjoys
certain uniform properties. We summarize them in the next lemma.
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Lemma 3.4. Let E1, E2, C1, C2, B, and g be as in Lemma 3.3. If G is the exten-
sion of g as defined in (3.6), then:

(1) DG∈L∞(Ec
2) and DG−1 ∈L∞(Cc

2 ); and
(2) the restriction G|Bc is a bi-Lipschitz homeomorphism.

Proof. From Lemma 3.3, the map G is already locally bi-Lipschitz. To prove
part (1), we give a uniform bound for L(G|K) over all compact subsets K of Bc.

Let B = B and let S and g∗ be as defined in the proof of Lemma 3.2.
Again, let σab := g−1∗ ({a ≤ xn ≤ b}) and let σb and σa be the (connected) com-

ponents of R
n \ σab containing the vectors en and −en, respectively. By equation

(3.2), we have S|{xn < a} = id and S|{xn > b} = τ−1, which imply (respectively)
the bounds L(G|Bc ∩ σa) ≤ 1 and L(G|Bc ∩ σb) ≤ 1.

It remains to estimateL(G|Bc∩σab). For each k ∈ N, the set σ k
ab := σab∩τk(B̄)

is compact and so, by Lemma 2.1, the restriction G|σ k
ab is bi-Lipschitz. Equa-

tion (3.7) then implies that L(G|σ k
ab) = L(G|σ 1

ab) holds for eack k ∈ N.

The remaining set σab \ ⋃∞
k=0 τk(B) consists of infinitely many components, of

which one is an unbounded subset U of {x1 < 0} and the others are translates of
a compact subset K0 of σab ∩ B(0, 3). Since g|U = id, it follows that

G|σ = (τ1 � g−1
∗ � S � g∗)|σ = (τ1 � S)|σ,

from which we derive that L(G|σ) ≤ L(S). By the “periodicity” of G (equa-
tion (3.7)), for all k ∈ N we also have L(G|τk(K0) = L(G|K0). Part (1) of the
lemma now follows from [EG, Thm. 4.2.3.5] and the preceding estimates, where

‖DG‖L∞(Ec
2 )

≤ max{1,L(G|K0),L(G|σ 1
ab),L(S)}.

Using the explicit formula in (3.8), the case of G−1 follows similarly.
To prove part (2) of the lemma, let 7 be any line segment that does not intersect

B. The restriction G|7 is bi-Lipschitz with L(G|7) ≤ C. Since ∂B is compact, it
follows from Lemma 2.1 that the restriction G|∂B is bi-Lipschitz.

Let x1 and x2 be arbitrary points in B
c and let 7 be the line segment in R

n that
joins x1 to x2. If 7 crosses through B then let y1 and y2 be points on 7∩ ∂B, where
|x1 − y1| < |x1 − y2|. Since 7 is a geodesic, we have the identity

|x1 − x2| = |x1 − y1| + |y1 − y2| + |y2 − x2|.
The triangle inequality then implies that

|G(x1)−G(x2)| ≤ |G(x1)−G(y1)| + |G(y1)−G(y2)| + |G(y2)−G(x2)|
≤ C(|x1 − y1| + |y2 − x2|)+ L(G|∂B)|y1 − y2|
≤ (C + L(G|∂B))(|x1 − y1| + |y1 − y2| + |y2 − x2|)
= (C + L(G|∂B))|x1 − x2|.

Again the argument is symmetric for G−1, so this proves the lemma.

Theorem 3.1 now follows easily from Lemma 3.2, and a more general version of
the theorem follows from Lemma 3.3. As in [Ge, Lemma 2], one takes composi-
tions with the extension, its inverse, and a radial stretch map.
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Proof of Theorem 3.1. By composing g with linear maps, we may assume that E1,
E2,B1, andB2 are subsets of B, that 0 ∈E2, and that B

c ⊂ g(Bc). Choose r1, r2 ∈
(0, 1) such that B(0, r1) ⊂ E2 and E1 ∪ E2 ⊂ B(0, r2).

Let ρ : [0, ∞) → [0, ∞) be a smooth increasing function such that ρ([0, r1]) =
[0, r2 ] and ρ([1, ∞)) = [1, ∞). Define a homemorphism R : R

n → R
n by

R(x) :=
{
ρ(|x|) · |x|−1x if x �= 0,

0 if x = 0.
(3.9)

Clearly, R is of class LWp

2 , is bi-Lipschitz, and maps B(0, r1) onto B(0, r2).

Putting E ′
1 := (g � R)(E1) and E ′

2 := ((g � R)(Ec
2))

c, Lemma 2.4 implies that

h := g � R � g−1 : (E ′
1 ∪ E ′

2)
c → (B1 ∪ B2)

c

is also a homeomorphism of class LWp

2 . Since R|Bc = id|Bc, we further obtain

h|Bc = (g � R � g−1)|Bc = id|Bc. (3.10)

So with E ′
1 and E ′

2 in place of E1 and E2, respectively, h satisfies equation (3.1)
and the other hypotheses of Lemma 3.2. As a result, there exist a homeomorphism
H : (E ′

2)
c → Bc

2 of class LWp

2 and a neighborhood N ′ of ∂E ′
2 such that

h|(N ′ ∩ (E ′
2)

c) = H |(N ′ ∩ (E ′
2)

c).

Let G := H � g � R−1. The open set

N := (R � g−1)(N ′ \ (B̄1 ∪ B̄2))

contains ∂E2 and, by Lemma 2.4, the map G is of class LWp

2 . Moreover, for each
x ∈N \ E2, there is a y ∈N ′ \D ′

2 such that x = (R � g−1)(y) and therefore

G(x) = (H � g � R−1)((R � g−1)(y)) = H(y)

= h(y) = (g � R � g−1)((g � R−1)(x)) = g(x).

Thus we obtain g = G on N ∩ Ec
2 , as desired.

4. Extensions of Homeomorphisms of Class LW
p
2

between Collars

4.1. Generalized Inversions

To pass to the configurations of domains in Theorem 1.3, we will use general-
ized inversions. For fixed a, r > 0, these are homeomorphisms Ia,r : R

n \ {0} →
R
n \ {0} of the form

Ia,r (x) := r a+1|x|−(a+1)x.

Indeed, the inverse map satisfies (Ia,r )−1 = I1/a, r as well as the estimate

|x|a+1 = (r1/a+1|Ia,r (x)|−1/a)a+1 ≈ |Ia,r (x)|−(1/a+1). (4.1)

For derivatives of Ia,r , an elementary computation gives
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|DkIa,r (x)| � r a+1|x|−(a+k); (4.2)

similarly, for the Jacobian determinant JIa,r := |det(DIa,r )| we have

JIa,r (x) ≤ nr n(a+1)|x|−n(a+1) ≈ |Ia,r (x)|n(a+1)/a. (4.3)

If a = 1 then I1,r is conformal and maps spheres to spheres. In general, the map
Ia,r possesses weaker properties that are sufficient for our purposes. For instance,
it preserves radial rays: sets of the form {λx : λ > 0} for some x ∈ R

n \ {0}.
Another property, stated as Lemma 4.1, is used in the proof of Theorem1.3 under

the following hypotheses. To begin, writeB1 = B(t, r1) andB2 = B(z, r2), where
B̄1 ⊂ B2. By composing with linear maps, we may assume that the following state-
ments hold.

(H1) The xn-coordinate axis crosses through the points t and z with tn ≤ zn ≤ 0,
so the “south poles” τ := t − r1�en on B̄1 and ζ := z − r2 �en on B̄2 satisfy
ζn < τn and |ζ − τ | = dist(B̄1,Bc

2).

(H2) There exists an r ∈ (0, r2) such that the sphere ∂B(0, r) is tangent to both
∂B1 and ∂B2 with B(0, r) ⊂ B2 \ B1. In particular, this gives r1 < |tn|.

See Figure 3.

Figure 3 A possible configuration for B1, B2, and B(0, r)

Lemma 4.1. Let a ∈ (0, 1). If B1 and B2 are balls in R
n with B̄1 ⊂ B2 and that

satisfy hypotheses (H1) and (H2), then there exist real numbers c1 < c2 such that
Ia,r (B1) ⊂ {xn < c1} and Ia,r (Bc

2) ⊂ {xn > c2}.
The proof is a computation, and the basic idea is simple. Although the bounded
domains Ia,r (B1) and Ia,r (Bc

2) may not be balls, the distance between them is still
attained by the images of the “north” and “south” poles ofB1 andB2, respectively.

Proof of Lemma 4.1. Once again, let τ and ζ be the “south poles” of B1 and B2,
respectively. From (H1) and (H2) we have

ζn = −|ζ| < −|τ | = τn.

Therefore, if we put I := Ia,r then the image points τ ′ := I(τ ) and ζ ′ := I(ζ)

satisfy
τ ′
n = −|τ ′| < −|ζ ′| = ζ ′

n. (4.4)



518 Jasun Gong

Claim 4.2. For all y ′ ∈ I(B1), we have y ′
n < τ ′

n.

Supposing otherwise, there exists a y ∈ ∂B1 with y �= τ such that y ′ has the same
nth coordinate as τ ′. Let θ be the angle between the xn-axis and the line crossing
through y ′ and 0. By our hypotheses, we have tn ≤ 0 and 0 < θ < π/2; hence
0 < cos θ < 1. From |τ | = r1 − tn we obtain

|y ′| = |τ ′|
cos θ

= r a+1|τ |−a
cos θ

= r a+1

(r1 − tn)a cos θ
,

so from this and |y ′| = r a+1|y|−a we further obtain

|y| = r(a+1)/a

[
r a+1

(r1 − tn)a cos θ

]−1/a

= (cos θ)1/a(r1 − tn). (4.5)

On the other hand, I preserves radial rays and hence angles between radial rays.
As a result, y ∈ ∂B1 (and the law of cosines) implies that

r 2
1 = |y|2 + t 2

n − 2|y|tn cos θ

and so
|y| = −tn cos θ +

√
r 2

1 − t 2
n sin2 θ.

From hypothesis (H2) once again, we obtain r1 < |τn| and hence

|y| < −tn cos θ +
√
r 2

1 − r 2
1 sin2 θ = (r1 − tn) cos θ.

This is in contradiction with Equation (4.5), since the inequality cos θ ≤ (cos θ)1/a

is a consequence of a ≥ 1. The claim follows.

Claim 4.3. For all w ′ ∈ I(Bc
2), we have ζ ′

n < w ′
n.

Suppose there exists a w ∈ ∂B2 such that w �= ζ and w ′
n = ζ ′

n. If α is the angle
between w and the xn-axis, then a computation similar to before gives

(2r2 − r) cos1/a α = |w| = (r2 − r) cosα +
√
r 2

2 − (r2 − r)2 sin2 θ.

Computing further yields ψ(a) = r 2
2 , where ψ : (0, ∞) → (0, ∞) is given by

ψ(a) := ((2r2 − r) cos1/a α − (r2 − r) cosα)2 + (r2 − r)2 sin2 α.

Clearly, ψ is smooth, and an elementary computation shows that it attains a min-
imum at a unique point in (0, 1). We observe that

ψ(1) = r 2
2 cos2 α + (r2 − r)2 sin2 α < r 2

2 .

Since 0 < cosα < 1, we see that cos1/a α → 0 as a → 0. It follows that

lim
a→0

ψ(a) = (0 + (r2 − r) cosα)2 + (r2 − r)2 sin2 α = (r2 − r)2 < r 2
2

and therefore ψ(a) < r 2
2 holds for all (0, 1). This is a contradiction, which proves

Claim 4.3. When we combine both claims and (4.4), the lemma follows.
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4.2. From Doubly Punctured Domains to Collars

We now prove Theorem 1.3. The argument requires several lemmas.

Lemma 4.4. Let a > 0 and letD1,D2,B1,B2, and f be as given in Theorem 1.3.
If there exists an r > 0 such that B̄(0, r) ⊂ D2 \D1 and B̄(0, r) ⊂ B2 \ B1 and if
f(0) = 0, then Ia,r � f � I−1

a,r is a homeomorphism of class LWp

2 .

Proof. Because� := Ia,r (D2\(D̄1∪{0})) and Ia,r (B2\(B̄1∪{0})) lie in R
n\B(0, ε)

for some ε > 0, the restricted maps I−1
a,r |� and Ia,r |�′ are diffeomorphisms. By

Lemma 2.4, it follows that g := Ia,r � f � I−1
a,r : � → �′ is of class LWp

2 .

Lemma 4.5. Let E1, E2, C1, C2, B, and g be as given in Lemma 3.3, and let G
be as given in (3.6). If 0 ∈ E2, if 0 ∈ C2, and if there exists an r > 0 such that
B = B(0, r), then for each a > 0 the map

F(x) :=
{
(I−1 �G � I )(x) if x �= 0,

0 if x = 0

is a locally bi-Lipschitz homeomorphism.

Proof. Without loss of generality, let r = 1 and put I = Ia,r and b = 1/a. By
(3.6), we have |G(x)| → ∞ as |x| → ∞ and so F is a well-defined homeomor-
phism. For each ε > 0, put Bε := B(0, ε). The restrictions I |Bc

ε and I−1|Bc
ε are

diffeomorphisms, so F |Bc
ε is already locally bi-Lipschitz for each ε > 0.

To show that F |Bε is bi-Lipschitz, recall that DG ∈ L∞(Ec
2) follows from

Lemma 3.4. So from (2.1), (4.1), and (4.2) it follows that, for a.e. x ∈ I−1(Ec
2),

|DF(x)| ≤ |DI−1((G � I )(x))||DG(I(x))||DI(x)|

�
‖DG‖∞

|(G � I )(x)|b+1|x|a+1
≈ ‖DG‖∞|I(x)|b+1

|(G � I )(x)|b+1
.

Now fix y0 ∈Ec
2. Putting L := L(G−1|Bc), for all x ∈Bε we have

|G(I(x))−G(y0)| ≥ L−1(|I(x)− y0|) ≥ L−1(|I(x)| − |y0|).
Applying the triangle inequality to the right-hand side, we obtain

|G(I(x))| ≥ L−1(|I(x)| − |y0|)− |G(y0)|;
taking reciprocals, we further obtain

|I(x)|
|(G � I )(x)| ≤ L|I(x)|

|I(x)| − |y0| − L|G(y0)|
= Lr a+1

r a+1 − |x|a|y0| − |x|aL|G(y0)| → L (4.6)

as x → 0. Combining the previous estimates, for sufficiently small ε > 0 we
have that
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|DF(x)| �
‖DG‖∞|I(x)|b+1

|(G � I )(x)|b+1
� (2L)b+1‖DG‖∞ < ∞

holds for a.e. x ∈Bε, and therefore |DF | ∈L∞
loc(I

−1(Ec
2)). By [EG, Thm. 4.2.3.5],

it follows that F is locally Lipschitz on B(0, ε). By symmetry, the same holds for
F −1 and so F is locally bi-Lipschitz on all of I−1(Ec

2).

In the remaining proofs, we will require explicit forms of the extensions from
Lemma 3.2 and Theorem 3.1.

Lemma 4.6. Let E1, E2, C1, C2, g, and B = B(0, r) be as given in Lemma 4.5,
let G be as given in (3.6), and let p ∈ [1, n). If a < n/p − 1, then the homeomor-
phism I−1

a,r �G � Ia,r is of class LWp

2 .

Proof. For convenience, we retain the notation from the proof of Lemma 4.5. As
before, I |Bc

ε and I−1|Bc
ε are diffeomorphisms, so by Lemma 2.4 the mapF |Bc

ε is of
classLWp

2 . It suffices to show that F ∈W 2,p

loc (Bε; R
n) and F −1 ∈W 2,p

loc (F(Bε);Bε)

for each ε > 0.
To estimate second derivatives, we use (2.1), (4.1), (4.2), and (4.6) once again.

For convenience, set y := I(x) and z := (G � I )(x). We then obtain

|D2F(x)| = |D2(I−1 �G � I )(x))|
≤ |D2I−1(z)||DG(y)|2|DI(x)|2

+ |DI−1(z)|(|D2G(y)||DI(x)|2 + |DG(y)||D2I(x)|)

�
‖DG‖2∞

|z|b+2|x|2(a+1)
+ 1

|z|b+1

( |D2G(y)|
|x|2(a+1)

+ ‖DG‖∞
|x|a+2

)

�
|I(x)|2(b+1)

|G(I(x))|b+2
+ |I(x)|2(b+1)|D2G(I(x))|

|G(I(x))|b+1
+ |I(x)|b+1

|G(I(x))|b+1|x|
� |I(x)|b + |I(x)|b+1|D2G(I(x))| + |x|−1 (4.7)

for a.e. x ∈Bε. Since p < n and b = 1/a, the function x �→ |I(x)|b = |x|−1 lies
in Lp(Bε). For the remaining term, (4.1) and (4.3) imply that

1 = JI−1(I(x))JI(x) � |I−1(I(x))|n(a+1)JI(x) = |I(x)|−n(b+1)JI(x);
therefore, by a change of variables [Z, Thm. 2.2.2] and (4.3), we have∫

Bε

|I(x)|p(b+1)|D2G(I(x))|p dx �
∫
Bε

|D2G(I(x))|pJI(x)
|I(x)|(n−p)(b+1)

dx

=
∫

Bc

|D2G(y)|p
|y|(n−p)(b+1)

dy. (4.8)

For each k ∈ N, (3.6) implies that G|τk(E2) = id and G|τk(E1) = τ1; hence
D2G|τk(E1 ∪E2) = 0. The rightmost integral in (4.8) can therefore be restricted
to the subset

� := B
c
∖ ∞⋃

k=1

τk(E1 ∪ E2).
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As defined in the proof of Lemma 3.2, the maps g∗ , G∗ , and G satisfy

|D2G(y)| � |D2g−1
∗ ((S � g∗)(y))| + |D2S(g∗(y))| + |D2g∗(y)| (4.9)

for a.e. y ∈ I−1(Ec
2), where � includes the constants L(g∗), L(g−1∗ ), L(S), and

L(τ1). Using the second-derivative bound for S (inequality (3.3)), we obtain∫
�

|D2S(g∗(y))|p
|y|(n−p)(b+1)

dy ≤
∫
�

2c2p

|y|(n−p)(b+1)
dy �

∫ ∞

1

ρn−1

ρ(n−p)(b+1)
dρ.

The rightmost integral is finite, since a < n/p−1 implies that b > p/(n−p) and

(n− 1)− (n− p)(b + 1) < (n− 1)− (n− p)
( p

n− p
− 1

)
= −1.

For the other terms of (4.9), note that (3.4) implies D2g−1∗ (z) = 0 for a.e. z /∈⋃∞
k=1 τk(B). Since S � g∗ is locally bi-Lipschitz, we estimate

∫
�

|D2g−1∗ ((S � g∗)(y))|p
|y|(n−p)(b+1)

dy =
∞∑
k=1

∫
τk((S◦g∗)−1(B))∩�

|D2g−1∗ ((S � g∗)(y))|p
|y|(n−p)(b+1)

dy

≈
∞∑
k=1

∫
g−1∗ (�)∩τk(B)

|D2g−1∗ (z)|p
|(S � g∗)−1(z)|(n−p)(b+1)

dz.

Equation (3.2) implies that |S−1(y)| ≥ |y| holds for each y ∈ R
n and hence that

|(S � g∗)−1(z)| ≥ 3k − 1 > k

holds for each z ∈ τk(B) and k ∈ N. From the previous inequalities and another
change of variables, we further estimate∫

g−1∗ (�)∩τk(B)
|D2g−1∗ (z)|p

|(S � g∗)−1(z)|(n−p)(b+1)
dz �

∫
g−1∗ (�)∩τk(B)

|D2g−1∗ (z)|p
k(n−p)(b+1)

dz

≤
∫

B\(C1∪C2 )

|D2g−1(z)|p
k(n−p)(b+1)

dz

and so ∫
�

|D2g−1∗ ((S � g∗)(y))|p
|y|(n−p)(b+1)

dy �
∞∑
k=1

‖D2g−1‖Lp(B\(C1∪C2 ))

k(n−p)(b+1)
.

The summation is finite because (n− p)(b+ 1) > 1 follows from the hypothesis
that a < n/p − 1. A similar estimate gives |y|(p−n)(b+1)|D2g∗(y)| ∈ Lp(Bε) and
so, by (4.7)–(4.9), we obtain |D2F | ∈Lp(Bε) as desired.

The same argument, but with G−1 replacing G, shows that the map F −1 =
I−1 �G−1 � I also lies inW 2,p

loc (F(Bε);Bε). This proves the lemma.

Using the previous lemmas, we now prove the main theorem.

Proof of Theorem 1.3. Let a < n/p − 1 be given. By post-composing f with lin-
ear maps, we may assume that the balls B1 and B2 satisfy hypotheses (H1) and
(H2) from Section 4.1; so, in particular, we have B(0, r) ⊂ B2 \ B̄1. We further
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assume that B(0, r) ⊂ D2 \ D̄1 and f(0) = 0. By Lemma 4.1, there exist c1 < c2

such that B1 ⊂ {xn < c1} and B2 ⊂ {xn > c2}. For I := Ia,r and g := I �f � I−1,
Lemma 4.4 implies that g is of class LWp

2 .

Put E1 = I(D1), E2 := I(Dc
2)
c, C1 := I(B1), and C2 := I((B2)

c)c. By
Lemma 3.3 and the proof of Theorem 3.1, there exist a homeomorphismG : Ec

2 →
Cc

2 of class LWp

2 and a neighborhood N ′ of ∂E2 such that

g|(N ′ ∩ Ec
2) = G|(N ′ ∩ Ec

2).

As a result, the homeomorphism F (as defined in Lemma 4.5) and the open set
N := I−1(N ′), which is a neighborhood of ∂D2, satisfy the identity

f |(N ∩ D̄2) = F |(N ∩ D̄2).

Recalling the proof of Theorem 3.1, we have G = H � g � R−1, where:

(H3) R is a diffeomorphism that agrees with the identity map on B
c; and

(H4) H is a homeomorphism of class LWp

2 (as given by Lemma 3.3) that agrees
with h = g � R � g−1 on the open set (g � R)(N ′).

Putting H∗ := I−1 �H � I and R∗ := I−1 � R � I, we rewrite

F = I−1 � (H � g � R−1) � I = H∗ � f � R−1
∗ .

From (H3) and the properties of I and I−1, we see that R−1∗ is a diffeomorphism
from R

n\{0} onto itself. In particular, for each r > 0, the restrictionR−1∗ |B(0, r)c is
bi-Lipschitz. On the other hand, for sufficiently small r > 0 we have R−1 � I = I

on B(0, r). Letting Idn be the n× n identity matrix, we can write

DR−1
∗ |B(0, r) = D(I−1 � R−1 � I )|B(0, r) = D(I−1 � I )|B(0, r) = Idn,

D2R−1
∗ |B(0, r) = D2(I−1 � R−1 � I )|B(0, r) = D2(I−1 � I )|B(0, r) = 0.

This implies thatR−1∗ ∈W 2,p

loc (R
n; R

n) and, by Lemma 2.2, thatR−1∗ is bi-Lipschitz.
By symmetry the same holds for R∗ = I−1 � R � I, so R−1∗ is of class LWp

2 .

Now (H4) and Lemma 4.6 imply that H∗ is of class LWp

2 . By hypothesis, f is
of class LWp

2 and so, by Lemma 2.4, F is of class LWp

2 . The theorem follows.
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