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The Möbius Geometry of Hypersurfaces, II

Michael Bolt

1. Introduction

Let r be a defining function for a twice differentiable real hypersurface M 2n−1 ⊂
C
n near p ∈ M. It is a familiar fact in several complex variables that the Levi

determinant,

Lr,p = −det



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...
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


,

obeys a transformation law under biholomorphism. If r is normalized, this deter-
minant can be interpreted as the hermitian part of the Gaussian curvature of M.

As suggested in [5], there is a corresponding law for what might be interpreted as
the nonhermitian part of the Gaussian curvature,

Qr,p = −det



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· · · ∂r
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∂r

∂z1

∂ 2r

∂z1∂z1
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...

...
. . .

...
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∂zn
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· · · ∂ 2r
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


,

provided the biholomorphism is a Möbius transformation. Combining these rules,
the quotient Qr,p/Lr,p behaves like a Möbius invariant curvature function if we
assume that M is Levi nondegenerate.
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In this paper we prove the following.

Theorem 1. Let M 3 ⊂ C
2 be a non–Levi-flat, three times differentiable hyper-

surface, and suppose there is a constant ε ∈ C with |ε| �= 0,1 such that, for all
p ∈M,

Qr,p = εLr,p. (1)

Then M is contained in the image of

Mε
def= {(z1, z2) : (z1 + z̄1)+ |z2|2 + Re(εz2

2) = 0}
under an affine map of the form F(z) = Az + b, where 0 �= det A∈ R.

The converse of Theorem 1 is true, too, and is easily proved. It is important to note
that condition (1) does not depend on the choice of the defining function. In addi-
tion, Hammond has observed that the surfaces Mε are in fact homogeneous with
respect to the group of affine transformations described in Theorem 1. For more
on this and related questions, see [6].

Related to the determinants Lr,p and Qr,p are the quadratic forms defined for
s, t ∈ C

n by

Lr,p(s, t̄ ) =
n∑

j,k=1

∂ 2r

∂zj∂z̄k
(p)sj t̄k and Qr,p(s, t) =

n∑
j,k=1

∂ 2r

∂zj∂zk
(p)sj tk.

These, too, transform under biholomorphism and Möbius transformation, respec-
tively, when restricted to the complex tangent space. (Here Lr,p is the Levi form.)
Earlier, the author addressed the case ε = 0 and proved the following.

Theorem 2 [5]. Suppose that M 2n−1 ⊂ C
n is a non–Levi-flat, three times dif-

ferentiable hypersurface and that, for all p ∈M,

Qr,p(s, s) = 0 for s = (s1, . . . , sn) with
n∑

j=1

∂r

∂zj
(p)sj = 0. (2)

Then M is contained in a hermitian quadric surface in C
n.

In dimension 2, the determinants Lr,p and Qr,p coincide with the quantities
Lr,p(s, s̄ ) and Qr,p(s, s), where s is the special complex tangential direction
(−∂r/∂z2, ∂r/∂z1). This means that condition (1) can be rewritten as Qr,p(s, s) =
εLr,p(s, s̄ ), and this reduces to condition (2) when ε = 0. In this way, Theorem 1
generalizes Theorem 2 to nonzero ε for the case n = 2.

It would be an interesting problem to extend Theorem 1 further by consider-
ing dimensions higher than 2. For this, it would presumably be necessary to put
restrictions on the eigenvalues of some combination of the forms Qr,p and Lr,p,
rather than just work with the determinants Qr,p and Lr,p.

In [3] the author proved that the Leray transform is invariant under Möbius trans-
formation provided it is defined with respect to Fefferman measure. (For a convex
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surface, the Leray transform is the Cauchy–Fantappiè operator whose kernel is
constructed using supporting complex hyperplanes.) So another interesting prob-
lem would be to estimate the norm of this transform using quantities derived from
|Q/L|. In particular, for the surface Mε it would be good to know how the norm
of the Leray transform depends on |ε|. This also would extend to higher dimen-
sions the author’s result [4] that describes how the spectrum of the Kerzman–Stein
operator depends on the eccentricity of an ellipse.

In this direction, we point out Barrett and Lanzani’s work [2] on the Leray trans-
form for convex Reinhardt domains in C

2. They establish L2 regularity and com-
pute essential spectra for this transform taken with respect to a family of boundary
measures that includes surface measure. A special case is the set ofLp balls, which
also have constant |Q/L|, though here the absolute values are necessary. We also
mention Barrett’s work [1], which gives a careful description of Möbius-invariant
geometry in one and several variables especially as it pertains to the Cauchy and
Leray transforms.

The author thanks David Barrett and Chris Hammond for many helpful conver-
sations during the preparation of this paper.

2. Möbius Invariance of Qr,p in CCCn

In this section we establish transformation formulas for Lr,p and Qr,p, we show
how the proof of Theorem 1 can be reduced to the case ε ∈ R

+ \{1}, and we prove
that condition (1) is independent of the choice of defining function.

By way of definition, a Möbius transformation on C
n is a fractional linear trans-

formation. Specifically, a Möbius transformation is a function F = (f1, . . . , fn) :
C
n → C

n where fj = gj/gn+1,

gj(z) = aj,1z1 + · · · + aj,nzn + aj,n+1,

and det(aj,k)j,k=1,...,n+1 = 1. The condition det(aj,k) = 1 acts as a normalization
and has no effect on the transformation itself.

Algebraically, these transformations form a group that acts on C
n and is isomor-

phic to SLn+1(C). In particular, if C
n is embedded in CP

n in the usual way, then
they can be viewed as linear transformations in the homogeneous coordinates.

The affine transformations described in Theorem 1 are exactly the subgroup of
Möbius transformations for which detF ′ is real. For such maps it is necessary
(but not sufficient) that gn+1 be constant.

The following result is completely analogous to [5, Prop. 2], where the biholo-
morphic and Möbius invariance of the forms Lr,p and Qr,p was verified.

Proposition 1. Let M 2n−1 ⊂ C
n be a twice differentiable hypersurface near

p ∈M and let w = F(z) be biholomorphic in a neighborhood V of p. If r ∈
C2(V ) is a defining function for M near p, then M ′ = F(M ∩ V ) is twice differ-
entiable, M ′ has defining function r � F −1 near F(p), and

Lr,p = Lr�F −1,F(p) · |detF ′(p)|2. (3)
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Furthermore, if F is a Möbius transformation then

Qr,p = Qr�F −1,F(p) · (detF ′(p))2. (4)

Proof. Suppose that F = (f1, . . . , fn). Then using the chain rule expressed in ma-
trix form, we have


r
∂r

∂z̄k

∂r

∂zj

∂ 2r

∂zj∂z̄k


 =


 1 0

0
∂fl

∂zj







r � F −1 ∂(r � F −1)

∂w̄m

∂(r � F −1)

∂wl

∂ 2(r � F −1)

∂wl∂w̄m







1 0

0
∂fm

∂zk


,

where the partial derivatives are evaluated at p or F(p) as appropriate. After tak-
ing the determinant of both sides, identity (3) is proved.

It also follows from the chain rule, applied individually to the partial deriva-
tives, that


r
∂r

∂zk

∂r

∂zj

∂ 2r

∂zj∂zk




=




r � F −1
∑
m

∂(r � F −1)

∂wm

∂fm

∂zk

∑
l

∂(r �F −1)

∂wl

∂fl

∂zj

∑
l,m

∂ 2(r �F −1)

∂wl∂wm

∂fl

∂zj

∂fm

∂zk
+

∑
m

∂(r �F −1)

∂wm

∂ 2fm

∂zj∂zk


.

(5)

Here a straightforward calculation shows that, for a Möbius transformation,

∂ 2fm

∂zj∂zk
= −am,j

an+1,k

g2
n+1

− am,k

an+1,j

g2
n+1

+ 2gm
an+1,j an+1,k

g3
n+1

= −∂fm

∂zj

an+1,k

gn+1
− ∂fm

∂zk

an+1,j

gn+1
.

We can then perform row and column operations in order to simplify the ma-
trix on the right-hand side of (5). In particular, we multiply the first column by
an+1,k/gn+1 and add to the (k + 1)th column; we also multiply the first row by
an+1,j/gn+1 and add to the (j + 1)th row. After doing this for all j, k, the sum that
contains ∂ 2fm/∂zj∂zk has gone, so that taking the determinant of both sides of (5)
proves identity (4), just as for the previous situation.

From Proposition 1 it follows that, if M is Levi nondegenerate and F is a Möbius
transformation, then

Qr,p

Lr,p

= Qr�F −1,F(p)

Lr�F −1,F(p)

detF ′(p)
detF ′(p)

. (6)
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In particular, for a fixed constant ε, the condition Qr,p = εLr,p is preserved by
those F for which detF ′ is real. These are the affine maps described in Theorem 1.
Meanwhile, the condition Qr,p = εLr,p for some constant ε is preserved by those
F for which detF ′ is constant. These are the general affine maps of C

n.

From (6) it is also a simple matter to reduce the proof of Theorem 1 to the case
ε ∈ R

+ \{1}. In particular, if M 3 ⊂ C
2 satisfies Qr,p = εLr,p for ε ∈ C with |ε| �=

0,1, then the affine transformation F(z1, z2) = (z1, ei(arg ε)/2z2) results in a sur-
face F(M) for which Qr�F −1,F(p) = |ε|Lr�F −1,F(p). If Theorem 1 holds for ε ∈
R

+ \{1} then F(M) is contained in the image of M|ε| under an affine map G(w) =
Aw+b, where 0 �= det A∈ R. Applying F −1, it then follows that the original sur-
face M is contained in (F −1 �G)(M|ε|). Since M|ε| = F(Mε), it follows that M is
contained in the image of Mε under the affine map G̃ = F −1 �G � F. If G̃ is ex-
pressed as G̃(z) = Ãz+ b̃ then clearly det Ã = det A, so that 0 �= det Ã∈ R, and
the reduction is complete.

To conclude this section, we verify that condition (1) is independent of the
choice of defining function. We return to the general case M 2n−1 ⊂ C

n.

Proposition 2. Let r and r̃ be defining functions for a twice differentiable hyper-
surface M 2n−1 ⊂ C

n with r̃ = h · r for a twice differentiable function h > 0.
Then, on M, both Lr̃,p = hn+1Lr,p and Q r̃,p = hn+1Qr,p. In particular, the quo-
tient Qr,p/Lr,p is independent of the choice of defining function.

Proof. We establish Q r̃,p = hn+1Qr,p. First, notice that

∂(hr)

∂zj
= ∂h

∂zj
r + h

∂r

∂zj

and
∂ 2(hr)

∂zj∂zk
= ∂ 2h

∂zj∂zk
r + ∂h

∂zj

∂r

∂zk
+ ∂h

∂zk

∂r

∂zj
+ h

∂ 2r

∂zj∂zk
.

Then, using r(p) = 0 as well as row and column operations similar to those in the
second half of the proof of Proposition 1, we see that

Qh·r,p = −det




hr h
∂r

∂zk

h
∂r

∂zj
h

∂ 2r

∂zj∂zk


 = hn+1Qr,p.

The identity Lr̃,p = hn+1Lr,p is handled similarly.

3. Geometric Structure of the Quadratic Forms

The proof of Theorem 1 uses classical differential geometry. We use the following
notation, much of which can be found in Helgason [7] or Hicks [9]. For the time
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being, we continue to consider the case of general dimension. In the next section
we restrict to the case n = 2.

Coordinates (z1, . . . , zn)∈ C
n correspond with coordinates (x1, y1, . . . , xn, yn)∈

R
2n according to zj = xj + iyj . Under this identification, the real Euclidean space

inherits a complex structure J : T R
2n → T R

2n that corresponds to multiplication
by i = √−1 and is given by J(∂xj ) = ∂yj and J(∂yj ) = −∂xj . This structure pre-
serves the Euclidean inner product 〈·, ·〉 on T R

2n. In fact, J ∗ = −J and J 2 = −I.

For X ∈ T R
2n, we let d̄ = d̄X denote the standard (flat) connection on R

2n. The
complex structure and the connection commute with one another.

The real tangent space of M = M 2n−1 is denoted by TM. The complex tangent
space is the codimension-1 subspace HM = TM ∩ J(TM). If M has defining
function r then a vector X ∈ HpM can be represented in coordinates by s =
(s1, . . . , sn) ∈ C

n, where
∑

rj(p)sj = 0. The subscripts to r refer to holomorphic
partial derivatives.

Let N be a unit normal vector on M. Then the direction orthogonal to HM in
TM is JN. For X ∈ TM, let d = dX be the Riemannian connection that M inherits
as a submanifold of R

n. (It is exactly the restriction of d̄ = d̄X to M.) Like d̄, the
connection is symmetric and metric, so [X,Y ] = dXY − dYX for X,Y ∈ TM and
X〈Y,Z〉 = 〈dXY,Z〉 + 〈Y, dXZ〉 for X,Y,Z ∈ TM.

The Weingarten map is the operator S : TM → TM given by S(X) = d̄XN.

This operator is self-adjoint. Related to S is the second fundamental form. This is
the symmetric bilinear form b(X,Y ) = 〈S(X),Y 〉 = 〈d̄XN,Y 〉. The main struc-
tural equation for a hypersurface in Euclidean space is the Codazzi equation. It
says that if X,Y ∈ TM then

dXS(Y )− dY S(X)− S([X,Y ]) = 0.

This vector equation describes the compatibility conditions between the induced
metric and the second fundamental form for a hypersurface in Euclidean space.

The following proposition describes the geometric structure of the forms Lr,p

and Qr,p. The expression for the Levi form was proved by Hermann [8].

Proposition 3. Let M 2n−1 ⊂ C
n be a twice differentiable hypersurface, and

let r be a defining function for M normalized so that |∇r| ≡ 2 on M. Let s =
(s1, . . . , sn)∈ C

n be coordinates for X ∈HpM. Then

Lr,p(s, s̄ ) = 1

2
(b(X,X)+ b(JX, JX)),

Qr,p(s, s) = 1

2
(b(X,X)− b(JX, JX))− i

2
(b(X, JX)+ b(JX,X)).

Proof. The defining function has been normalized so that, in coordinates, N =
(r 1̄, . . . , rn̄). The subscripts refer to antiholomorphic partial derivatives; the factor
of 2 compensates for the factor of 1/2 in ∂z̄j = (1/2)(∂xj + i∂yj ).

If X = (s1, . . . , sn) ∈HpM then JX = (is1, . . . , isn); using the dot to represent
the complex dot product, we find that
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b(X,X) = Re[d̄XN · X̄]

= Re

( n∑
j=1

(sj∂zj + s̄j∂z̄j )(r 1̄, . . . , rn̄) · (s̄1, . . . , s̄n)

)

= Re

( n∑
j,k=1

rj k̄ sj s̄k + rj̄ k̄ s̄j s̄k

)
= Lr,p(s, s̄ )+ ReQr,p(s, s),

b(JX, JX) = Re[d̄JXN · JX]

= Re

( n∑
j=1

(isj∂zj − is̄j∂z̄j )(r 1̄, . . . , rn̄) · (−is̄1, . . . , −is̄n)

)

= Re

( n∑
j,k=1

rj k̄ sj s̄k − rj̄ k̄ s̄j s̄k

)
= Lr,p(s, s̄ )− ReQr,p(s, s),

b(X, JX) = b(JX,X) = Re[d̄XN · JX]

= Re

( n∑
j=1

(sj∂zj + s̄j∂z̄j )(r 1̄, . . . , rn̄) · (−is̄1, . . . , −is̄n)

)

= Re

( n∑
j,k=1

−irj k̄ sj s̄k − irj̄ k̄ s̄j s̄k

)
= −ImQr,p(s, s).

The expressions for Lr,p(s, s̄ ) and Qr,p(s, s) follow directly from these calcu-
lations.

4. Proof of Theorem 1

The proof of Theorem 1 is similar to the proof of Theorem 2. It makes exten-
sive use of the structural equations for a hypersurface. The strategy is to identify
a vanishing quantity on M and then use it to identify constant directions in C

2 as
observed from M. Following a suitable affine transformation, the cross sections
of M are ellipses or hyperbolas. With this extra restriction on M and after a fur-
ther normalization, it is shown that condition (1) requires that M be contained in
a surface Mε.

We restrict to the case n = 2. Let r be a defining function that is normalized so
that |∇r| ≡ 2. Then condition (1) can be rewritten as

Qr,p((−r2, r1), (−r2, r1)) = εLr,p((−r2, r1), (−r2̄ , r 1̄)). (7)

Using the remark that follows Proposition 1, we assume that ε ∈ R
+ \ {1}. From

now on we also use the preferred orthonormal system,

N = (r 1̄, r2̄), JN = (ir 1̄, ir2̄), X = (−r2, r1), JX = (−ir2, ir1). (8)

By Proposition 3 it follows that b(X, JX) = b(JX,X) = 0 and

b(X,X)− b(JX, JX) = ε(b(X,X)+ b(JX, JX)).

In particular, b(X,X) = λ(1 + ε) and b(JX, JX) = λ(1 − ε), where λ is real and
λ �≡ 0.
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In fact, it will be enough to prove Theorem 1 under the stronger hypothesis that
λ �= 0 on M. Indeed, if λ �≡ 0 then there is an open connected subset of M on
which λ �= 0. If Theorem 1 holds under the stronger hypothesis then this subset
must be contained in the image of Mε under an affine map F(z) = Az+ b, where
0 �= det A ∈ R. But Mε is Levi nondegenerate and Levi nondegeneracy is pre-
served by affine maps, so it must be that λ �= 0 on the boundary of the subset of
M. It follows that λ = 0 on a set that is both open and closed. Since λ �≡ 0, it
follows that λ �= 0 on M.

The second fundamental form for M 3 ⊂ C
2 can then be represented by the

3×3 matrix of real functions
 α β γ

β λ(1 + ε) 0
γ 0 λ(1 − ε)


.

The rows and columns of the matrix correspond with the tangent vectors JN, X,
and JX (respectively) as defined in (8). The Weingarten map can be read from the
second fundamental form:

S(JN ) = αJN + βX + γJX,

S(X) = βJN + λ(1 + ε)X,

S(JX) = γJN + λ(1 − ε)JX.

Our first step shows how the system (8) is useful for computing the connection
along M.

Lemma 1. Let M 3 ⊂ C
2 be twice differentiable and have second fundamental

form as described previously. If Y ∈ TM then 〈d̄YX, JX〉 = −〈JN, d̄YN 〉. In
particular,

〈d̄JNX, JX〉 = −α,

〈d̄XX, JX〉 = −β,

〈d̄JXX, JX〉 = −γ.

Proof. Using the dot to represent the complex dot product, we find that

〈d̄YX, JX〉 = Re[Y(X) · JX] = Re[Y(−r2, r1) · (ir2̄ , −ir 1̄)]

= −Re[Y(r2, r1) · (ir2̄ , ir 1̄)]

= −Re[Y(r1, r2) · (ir 1̄, ir2̄)]

= −Re[(ir 1̄, ir2̄) · Y(r1, r2)]

= −Re[JN · Y(N )]

= −〈JN, d̄YN 〉.
The remaining claims are special cases of this fact.

The connection along M is described nicely using entries from the second funda-
mental form.



The Möbius Geometry of Hypersurfaces, II 703

Lemma 2. Let M 3 ⊂ C
2 be twice differentiable and have second fundamental

form as described before. Then the connection on C
2 along M is given by

d̄JNN = +αJN + βX + γJX, (9)

d̄JNJN = −αN − γX + βJX, (10)

d̄JNX = −βN + γJN − αJX, (11)

d̄JNJX = −γN − βJN + αX, (12)

d̄XN = +βJN + λ(1 + ε)X, (13)

d̄XJN = −βN + λ(1 + ε)JX, (14)

d̄XX = −λ(1 + ε)N − βJX, (15)

d̄XJX = −λ(1 + ε)JN + βX, (16)

d̄JXN = +γJN + λ(1 − ε)JX, (17)

d̄JXJN = −γN − λ(1 − ε)X, (18)

d̄JXX = +λ(1 − ε)JN − γJX, (19)

d̄JXJX = −λ(1 − ε)N + γX. (20)

Proof. Identities (9), (13), and (17) can be read directly from the second funda-
mental form because if Y ∈ TM then 〈d̄YN,N 〉 = (1/2)Y(〈N,N 〉) = 0. We also
give proofs for (10) and (11). First,

〈d̄JNJN,N 〉 = −〈JN, d̄JNN 〉 = −α,

〈d̄JNJN, JN 〉 = (1/2)JN(〈JN, JN 〉) = 0,

〈d̄JNJN,X〉 = 〈Jd̄JNN,X〉 = −〈d̄JNN, JX〉 = −γ,

〈d̄JNJN, JX〉 = 〈Jd̄JNN, JX〉 = 〈d̄JNN,X〉 = β.

Together, these computations prove that d̄JNJN = −αN − γX+βJX. Similarly,

〈d̄JNX,N 〉 = −〈X, d̄JNN 〉 = −β,

〈d̄JNX, JN 〉 = −〈X, d̄JNJN 〉 = −〈X, Jd̄JNN 〉 = 〈JX, d̄JNN 〉 = γ,

〈d̄JNX,X〉 = (1/2)JN(〈X,X〉) = 0,

〈d̄JNX, JX〉 = −α.

(The last identity uses Lemma 1.) Together, these prove that d̄JNX = −βN +
γJN − αJX. The remaining identities use similar reasoning.

It is now a simple matter to describe the connection that M inherits as a submani-
fold of C

2.

Lemma 3. Let M 3 ⊂ C
2 be twice differentiable and have second fundamental

form as described previously. Then the connection on M is given by
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dJNJN = −γX + βJX, (21)

dJNX = +γJN − αJX, (22)

dJNJX = −βJN + αX, (23)

dXJN = +λ(1 + ε)JX, (24)

dXX = −βJX, (25)

dXJX = −λ(1 + ε)JN + βX, (26)

dJXJN = −λ(1 − ε)X, (27)

dJXX = +λ(1 − ε)JN − γJX, (28)

dJXJX = +γX. (29)

Proof. These identities follow immediately from Lemma 2. One ignores the nor-
mal components and retains the tangential components.

The Codazzi equation reveals several restrictions on the second fundamental form.

Lemma 4. Suppose M 3 ⊂ C
2 is three times differentiable and has second fun-

damental form as described before. If λ �= 0, then

JX(λ) = +3βλ
1 − ε

1 + ε
, (30)

X(λ) = −3γλ
1 + ε

1 − ε
, (31)

JX(α) = JN(γ )− 3βλ(1 − ε), (32)

X(α) = JN(β)+ 3γλ(1 + ε), (33)

JX(β) = −2γ 2 + β2 − λ2(1 − ε2)+ αλ(1 − 3ε), (34)

X(β) = (1 + ε)JN(λ)− 3βγ, (35)

JX(γ ) = (1 − ε)JN(λ)+ 3βγ, (36)

X(γ ) = +2β2 − γ 2 + λ2(1 − ε2)− αλ(1 + 3ε). (37)

Proof. We simply apply the Codazzi equation to the different pairs of tangent
vectors.

(i) Applying the equation to X and JX yields

0 = dXS(JX)− dJXS(X)− S(dXJX − dJXX)

= dX(γJN + λ(1 − ε)JX)− dJX(βJN + λ(1 + ε)X)

+ S(2λJN − βX − γJX)

= X(γ )JN + γdXJN +X(λ)(1 − ε)JX + λ(1 − ε)dXJX

− JX(β)JN − βdJXJN − JX(λ)(1 + ε)X − λ(1 + ε)dJXX

+ 2λ(αJN + βX + γJX)− β(βJN + λ(1 + ε)X)

− γ (γJN + λ(1 − ε)JX)

= a1JN + a2X + a3JX,
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where

a1 = X(γ )− JX(β)− 2λ2(1 − ε2)+ 2αλ− β2 − γ 2,

a2 = −JX(λ)(1 + ε)+ 3βλ(1 − ε),

a3 = X(λ)(1 − ε)+ 3γλ(1 + ε).

Equations (30) and (31) follow from the requirement that a2 = 0 and a3 = 0. (The
vanishing of a1 is reflected by (34) and (37); these are proved in what follows.)

(ii) Applying the equation to JX and JN yields

0 = dJXS(JN )− dJNS(JX)− S(dJXJN − dJNJX)

= dJX(αJN + βX + γJX)− dJN(γJN + λ(1 − ε)JX)

− S(βJN − (α + λ(1 − ε))X)

= JX(α)JN + αdJXJN + JX(β)X + βdJXX + JX(γ )JX + γdJXJX

− JN(γ )JN − γdJNJN − JN(λ)(1 − ε)JX − λ(1 − ε)dJNJX

− β(αJN + βX + γJX)+ (α + λ(1 − ε))(βJN + λ(1 + ε)X)

= a1JN + a2X + a3JX,

where

a1 = JX(α)− JN(γ )+ 3βλ(1 − ε),

a2 = JX(β)+ 2γ 2 − β2 + λ2(1 − ε2)− αλ(1 − 3ε),

a3 = JX(γ )− (1 − ε)JN(λ)− 3βγ.

Equations (32), (34), and (36) follow from the requirement that a1 = 0, a2 = 0,
and a3 = 0.

(iii) Applying the equation to X and JN, we have

0 = dXS(JN )− dJNS(X)− S(dXJN − dJNX)

= dX(αJN + βX + γJX)− dJN(βJN + λ(1 + ε)X)

+ S(γJN − (α + λ(1 + ε))JX)

= X(α)JN + αdXJN +X(β)X + βdXX +X(γ )JX + γdXJX

− JN(β)JN − βdJNJN − JN(λ)(1 + ε)X − λ(1 + ε)dJNX

+ γ (αJN + βX + γJX)− (α + λ(1 + ε))(γJN + λ(1 − ε)JX)

= a1JN + a2X + a3JX,

where

a1 = X(α)− JN(β)− 3γλ(1 + ε),

a2 = X(β)− (1 + ε)JN(λ)+ 3βγ,

a3 = X(γ )− 2β2 + γ 2 − λ2(1 − ε2)+ αλ(1 + 3ε).

Equations (33), (35), and (37) follow from the requirement that a1 = 0, a2 = 0,
and a3 = 0.
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The symmetry of the connection leads to further restrictions.

Lemma 5. Let M 3 ⊂ C
2 be as described previously. If λ �= 0, then

JN(λ) = −6βγ
ε

1 − ε2
, (38)

X(β) = −3βγ
1 + ε

1 − ε
, (39)

JX(γ ) = +3βγ
1 − ε

1 + ε
, (40)

JN(β) = γ 3

λ

4ε

(1 − ε)2
− αγ

1 + 5ε

1 − ε
− γλ(1 + ε), (41)

JN(γ ) = β3

λ

4ε

(1 + ε)2
+ αβ

1 − 5ε

1 + ε
+ βλ(1 − ε), (42)

X(α) = γ 3

λ

4ε

(1 − ε)2
− αγ

1 + 5ε

1 − ε
+ 2γλ(1 + ε), (43)

JX(α) = β3

λ

4ε

(1 + ε)2
+ αβ

1 − 5ε

1 + ε
− 2βλ(1 − ε). (44)

Proof. We apply the identity [X, JX] = dXJX − dJXX to each of λ, β, and γ.

Using Lemma 3, this identity can be rewritten as [X, JX] = −2λJN+βX+γJX.

We also make frequent use of the identities proved in Lemma 4.
(i) Using (30) and (31) and then (35) and (36), we find that

[X, JX](λ) = X

(
3βλ

1 − ε

1 + ε

)
− JX

(
−3γλ

1 + ε

1 − ε

)

= 3((1 + ε)JN(λ)− 3βγ )λ
1 − ε

1 + ε
+ 3βX(λ)

1 − ε

1 + ε

+ 3((1 − ε)JN(λ)+ 3βγ )λ
1 + ε

1 − ε
+ 3γJX(λ)

1 + ε

1 − ε
.

So the identity [X, JX](λ) = (−2λJN + βX + γJX)(λ) can be rewritten as

8λJN(λ)= βX(λ)

(
1−3

1− ε

1+ ε

)
+γJX(λ)

(
1−3

1+ ε

1− ε

)
+9βγλ

(
1− ε

1+ ε
− 1+ ε

1− ε

)
.

Using (30) and (31) and then simplifying proves (38), since λ �= 0. Again using
(35) and (36) proves (39) and (40).

(ii) Using (34) and (39) and then (33), we find that

[X, JX](β) = X(−2γ 2 + β2 − λ2(1 − ε2)+ αλ(1 − 3ε))− JX

(
−3βγ

1 + ε

1 − ε

)

= −4γX(γ )+ 2βX(β)− 2λ(1 − ε2)X(λ)

+ (JN(β)+ 3γλ(1 + ε))λ(1 − 3ε)+ αX(λ)(1 − 3ε)

+ 3γJX(β)
1 + ε

1 − ε
+ 3βJX(γ )

1 + ε

1 − ε
.
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So the identity [X, JX](β) = (−2λJN + βX + γJX)(β) can be rewritten as

3λJN(β)(1 − ε)

= 4γX(γ )− βX(β)+ 2λ(1 − ε2)X(λ)− 3γλ2(1 + ε)(1 − 3ε)

− αX(λ)(1 − 3ε)+ γJX(β)

(
1 − 3

1 + ε

1 − ε

)
− 3βJX(γ )

1 + ε

1 − ε
.

Using (31), (34), (37), (39), and (40) and then simplifying proves (41), since λ �= 0
and ε �= 1. Again using (33) proves (43).

(iii) Using (37) and (40) and then (32), we find that

[X, JX](γ ) = X

(
3βγ

1 − ε

1 + ε

)
− JX(2β2 − γ 2 + λ2(1 − ε2)− αλ(1 + 3ε))

= 3γX(β)
1 − ε

1 + ε
+ 3βX(γ )

1 − ε

1 + ε

− 4βJX(β)+ 2γJX(γ )− 2λ(1 − ε2)JX(λ)

+ (JN(γ )− 3βλ(1 − ε))λ(1 + 3ε)+ αJX(λ)(1 + 3ε).

So the identity [X, JX](γ ) = (−2λJN + βX + γJX)(γ ) can be rewritten as

3λJN(γ )(1 + ε) = −3γX(β)
1 − ε

1 + ε
+ βX(γ )

(
1 − 3

1 − ε

1 + ε

)

+ 4βJX(β)− γJX(γ )+ 2λ(1 − ε2)JX(λ)

+ 3βλ2(1 − ε)(1 + 3ε)− αJX(λ)(1 + 3ε).

Using (30), (34), (37), (39), and (40) and then simplifying proves (42), since λ �= 0
and ε �= −1. Again using (32) proves (44).

Next, the symmetry of the connection can be used to identify a function that
vanishes.

Lemma 6. Let M 3 ⊂ C
2 be as described before. If λ �= 0, then

β2

1 + ε
+ γ 2

1 − ε
− αλ = 0.

Proof. In particular, we apply the identity [X, JN ] = dXJN − dJNX to β. By
Lemma 3, we have [X, JN ] = −γJN + (α + λ(1 + ε))JX.

Then using(39) and (41), it follows that

0 = [X, JN ](β)− (−γJN + (α + λ(1 + ε))JX)(β)

= X

(
γ 3

λ

4ε

(1 − ε)2
− αγ

1 + 5ε

1 − ε
− γλ(1 + ε)

)
− JN

(
−3βγ

1 + ε

1 − ε

)

+ γJN(β)− (α + λ(1 + ε))JX(β) =
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= X(γ )

(
3γ 2

λ

4ε

(1 − ε)2
− α

1 + 5ε

1 − ε
− λ(1 + ε)

)
−X(α)

(
γ

1 + 5ε

1 − ε

)

+X(λ)

(
−γ 3

λ2

4ε

(1 − ε)2
− γ (1 + ε)

)

+ JN(β)

(
3γ

1 + ε

1 − ε
+ γ

)
+ JN(γ )

(
3β

1 + ε

1 − ε

)
− JX(β)(α + λ(1 + ε))

= 12ε(1 + ε)

λ(1 − ε)

(
β2

1 + ε
+ γ 2

1 − ε
− αλ

)2

.

The last step uses (31), (34), (37), (41), (42), and (43) as well as a good deal of al-
gebra. (The lengthy details are omitted.) Since λ �= 0 and ε �= 0, ±1, the lemma
is proved.

Finally, it is possible to identify a set of constant ambient directions (in C
2).

Lemma 7. Defined on M, the vectors

Y
def= λ−2/3

(
λX + γ

1 − ε
N + β

1 + ε
JN

)
, (45)

JY = λ−2/3

(
λJX − β

1 + ε
N + γ

1 − ε
JN

)
, (46)

Z
def= λ−2/3

(
λN − γ

1 − ε
X + β

1 + ε
JX

)
, (47)

JZ = λ−2/3

(
λJN − β

1 + ε
X − γ

1 − ε
JX

)
(48)

are constant.

Proof. To prove that Y is constant, we use the previous lemmas and show that
each of the vectors d̄JNY, d̄XY, and d̄JXY is zero.

(i) Since

d̄JN

(
λX + γ

1 − ε
N + β

1 + ε
JN

)

= λ(−βN + γJN − αJX)+ JN(λ)X + γ

1 − ε
(αJN + βX + γJX)

+ JN(γ )

1 − ε
N + β

1 + ε
(−αN − γX + βJX)+ JN(β)

1 + ε
JN

and
λ2/3JN(λ−2/3) = −2

3

JN(λ)

λ
= βγ

λ

4ε

1 − ε2
,

it follows that

λ2/3d̄JNY = βγ

λ

4ε

1 − ε2

(
λX + γ

1 − ε
N + β

1 + ε
JN

)

+ d̄JN

(
λX + γ

1 − ε
N + β

1 + ε
JN

)

= a1X + a2JX + a3N + a4JN,
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where

a1 = 4βγ
ε

1 − ε2
+ JN(λ)+ βγ

1

1 − ε
− βγ

1

1 + ε
,

a2 = −αλ+ γ 2 1

1 − ε
+ β2 1

1 + ε
,

a3 = βγ 2

λ

4ε

(1 − ε2)(1 − ε)
− βλ+ JN(γ )

1 − ε
− αβ

1

1 + ε
,

a4 = β2γ

λ

4ε

(1 − ε2)(1 + ε)
+ γλ+ αγ

1

1 − ε
+ JN(β)

1 + ε
.

Each of the coefficients aj is zero, as follows from (38), (41), (42), and Lemma 6.
Since λ �= 0, it follows that d̄JNY = 0.

(ii) Since

d̄X

(
λX + γ

1 − ε
N + β

1 + ε
JN

)

= λ(−λ(1 + ε)N − βJX)+X(λ)X + γ

1 − ε
(βJN + λ(1 + ε)X)

+ X(γ )

1 − ε
N + β

1 + ε
(−βN + λ(1 + ε)JX)+ X(β)

1 + ε
JN

and

λ2/3X(λ−2/3) = −2

3

X(λ)

λ
= 2γ

1 + ε

1 − ε
,

it follows that

λ2/3d̄XY = 2γ
1 + ε

1 − ε

(
λX + γ

1 − ε
N + β

1 + ε
JN

)

+ d̄X

(
λX + γ

1 − ε
N + β

1 + ε
JN

)

= a1X + a2JX + a3N + a4JN,

where

a1 = 3γλ
1 + ε

1 − ε
+X(λ),

a2 = 0,

a3 = 2γ 2 1 + ε

(1 − ε)2
− λ2(1 + ε)+ X(γ )

1 − ε
− β2 1

1 + ε
,

a4 = 3βγ
1

1 − ε
+ X(β)

1 + ε
.

Each of the coefficients aj is zero, as follows from (31), (37), (39), and Lemma 6.
Since λ �= 0, it follows that d̄XY = 0.
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(iii) Since

d̄JX

(
λX + γ

1 − ε
N + β

1 + ε
JN

)

= λ(λ(1 − ε)JN − γJX)+ JX(λ)X + γ

1 − ε
(γJN + λ(1 − ε)JX)

+ JX(γ )

1 − ε
N + β

1 + ε
(−γN − λ(1 − ε)X)+ JX(β)

1 + ε
JN

and
λ2/3JX(λ−2/3) = −2

3

JX(λ)

λ
= −2β

1 − ε

1 + ε
,

it follows that

λ2/3d̄JXY = −2β
1 − ε

1 + ε

(
λX + γ

1 − ε
N + β

1 + ε
JN

)

+ d̄JX

(
λX + γ

1 − ε
N + β

1 + ε
JN

)

= a1X + a2JX + a3N + a4JN,

where

a1 = −3βλ
1 − ε

1 + ε
+ JX(λ),

a2 = 0,

a3 = −3βγ
1

1 + ε
+ JX(γ )

1 − ε
,

a4 = −2β2 1 − ε

(1 + ε)2
+ λ2(1 − ε)+ γ 2 1

1 − ε
+ JX(β)

1 + ε
.

Each of the coefficients aj is zero, as follows from (30), (34), (40), and Lemma 6.
Since λ �= 0, it follows that d̄JXY = 0.

We have therefore proved that Y is constant, and it follows that JY is constant
as well. The proof for Z and JZ can be done in a similar fashion. Alternatively,
after expressing all four vectors in terms of the defining function and using (8),
one can see that Y being constant implies that Z and JZ are constant, too.

Following Lemma 7, we apply a special unitary transformation (such a transfor-
mation is affine with real determinant) that orients the surface in C

2 so that Z is
parallel with ∂/∂x1. It then automatically follows that JZ is parallel to ∂/∂y1. In
fact, Y and JY then also are parallel to ∂/∂x2 and ∂/∂y2, respectively. This can be
seen by comparing the system of vectors in (8) with the definitions in Lemma 7.

Furthermore, since the four vectors in Lemma 7 are constant, their length, too,
must be constant. So the positive quantity

2 = 1

λ4/3

(
β2

(1 + ε)2
+ γ 2

(1 − ε)2
+ λ2

)

is constant. We now apply a dilation that is uniform in all directions (and is there-
fore affine with real determinant), so that 2 = 1. This is possible because the
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curvatures vary inversely with the dilation factor and 2 is homogeneous of de-
gree 2/3 with respect to the curvatures. So if 2 = k on the initial surface then,
after a dilation by k3/2, the new surface has 2 = 1. The normalization can also be
written as

β2

(1 + ε)2
+ γ 2

(1 − ε)2
= λ4/3 − λ2. (49)

Given that the constant vectors are now properly oriented and have unit length,
we can say definitively that Z = ∂/∂x1, JZ = ∂/∂y1, Y = ∂/∂x2, and JY =
∂/∂y2. We proceed to show that M is invariant under translations in the ∂/∂y1

direction.

Lemma 8. Let M 3 ⊂ C
2 be as described previously. If λ �= 0, then M is JZ in-

variant. In particular, M can foliated by lines (or line segments) that are parallel
to the y1 axis.

Proof. We show that all curvature information is unchanged by translations in
the JZ direction. In particular, we will verify that JZ(β) = 0, JZ(γ ) = 0,
and JZ(λ) = 0. To prove JZ(β) = 0 we use (34), (39), and (41) together with
Lemma 6; we find that

λ2/3JZ(β) = λJN(β)− β

1 + ε
X(β)− γ

1 − ε
JX(β)

= λ

[
γ 3

λ

4ε

(1 − ε)2
− γ

λ

(
β2

1 + ε
+ γ 2

1 − ε

)
1 + 5ε

1 − ε
− γλ(1 + ε)

]

− β

1 + ε
(−3βγ )

1 + ε

1 − ε

− γ

1 − ε

[
−2γ 2 + β2 − λ2(1 − ε2)+

(
β2

1 + ε
+ γ 2

1 − ε

)
(1 − 3ε)

]

= 0.

(The simplification in the last step is best done by isolating the terms containing
γ 3, β2γ, and γλ2.) To prove JZ(γ ) = 0 we use (37), (40), (42), and Lemma 6 to
show that

λ2/3JZ(γ ) = λJN(γ )− β

1 + ε
X(γ )− γ

1 − ε
JX(γ )

= λ

[
β3

λ

4ε

(1 + ε)2
+ β

λ

(
β2

1 + ε
+ γ 2

1 − ε

)
1 − 5ε

1 + ε
+ βλ(1 − ε)

]

− β

1 + ε

[
2β2 − γ 2 + λ2(1 − ε2)−

(
β2

1 + ε
+ γ 2

1 − ε

)
(1 + 3ε)

]

− γ

1 − ε
(3βγ )

1 − ε

1 + ε

= 0.

To prove JZ(λ) = 0 we use (30), (31), and (38); we find that
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λ2/3JZ(λ) = λJN(λ)− β

1 + ε
X(λ)− γ

1 − ε
JX(λ)

= λ(−6βγ )
ε

1 − ε2
− β

1 + ε
(−3γλ)

1 + ε

1 − ε
− γ

1 − ε
(3βλ)

1 − ε

1 + ε
= 0.

Since JZ(β) = 0, JZ(γ ) = 0, and JZ(λ) = 0, it follows from Lemma 6 that
JZ(α) = 0 as well.

We next define vectors

T
def= + β

1 + ε
X + γ

1 − ε
JX + (λ1/3 − λ)JN = 1

λ1/3

(
β

1 + ε
Y + γ

1 − ε
JY

)
,

R
def= − γ

1 − ε
X + β

1 + ε
JX

such that {T,R, JZ} is an orthogonal basis for the tangent space of M. (The sec-
ond expression for T uses (49).) We take a cross section M ′ = M ∩ {(z1, z2) :
y1 = b} for fixed b ∈ R and, using a translation in the ∂/∂y1 direction, we assume
b = 0. Lemma 8 says that M is contained in the union of translates of M ′ pro-
vided the translates are taken in the ∂/∂y1 direction. We view M ′ as a surface in
R

3 where ∂/∂x1 is the vertical direction and ∂/∂x2 and ∂/∂y2 are the horizontal di-
rections. Notice then that {T,R} is an orthogonal basis for the tangent space of M ′
and that T is horizontal.

The next lemma will permit us to see how M and M ′ are situated relative to the
remaining coordinate directions.

Lemma 9. Let M 3 ⊂ C
2 be as described before with λ �= 0. Consider the map

g : M → C
2 defined according to

g(p) = p − γ

λ

1

1 − ε2
Y + β

λ

1

1 − ε2
JY.

Then T(g) = 0 and R(g) is parallel to Z.

Proof. We begin by giving simplified expressions for the partial derivatives of γ/λ
and β/λ. From Lemmas 4, 5, and 6 together with (49), it follows that

X

(
γ

λ

)
= +(1 − ε2)λ1/3,

X

(
β

λ

)
= 0,

JX

(
γ

λ

)
= 0,

JX

(
β

λ

)
= −(1 − ε2)λ1/3,

JN

(
γ

λ

)
= +(1 − ε)βλ−2/3,

JN

(
β

λ

)
= −(1 + ε)γλ−2/3.
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(The details are omitted.) Since Y and JY are constant, it then follows that

T(g) = 1

λ1/3

(
β

1 + ε
Y + γ

1 − ε
JY

)

− 1

1 − ε2

[
β

1 + ε
X

(
γ

λ

)
+ γ

1 − ε
JX

(
γ

λ

)
+ (λ1/3 − λ)JN

(
γ

λ

)]
Y

+ 1

1 − ε2

[
β

1 + ε
X

(
β

λ

)
+ γ

1 − ε
JX

(
β

λ

)
+ (λ1/3 − λ)JN

(
β

λ

)]
JY

= 0,

as is easily checked. In addition,

R(g) = − γ

1 − ε
X + β

1 + ε
JX − 1

1 − ε2

[
− γ

1 − ε
X

(
γ

λ

)
+ β

1 + ε
JX

(
γ

λ

)]
Y

+ 1

1 − ε2

[
− γ

1 − ε
X

(
β

λ

)
+ β

1 + ε
JX

(
β

λ

)]
JY

= − γ

1 − ε
X + β

1 + ε
JX + γ

1 − ε
λ−1/3

(
λX + γ

1 − ε
N + β

1 + ε
JN

)

− β

1 + ε
λ−1/3

(
λJX − β

1 + ε
N + γ

1 − ε
JN

)

= (1 − λ2/3)

(
λN − γ

1 − ε
X + β

1 + ε
JX

)

= (1 − λ2/3)λ2/3Z,

where the next-to-last step also uses (49).

Since TM ′ is spanned by T and R, we see from Lemma 9 that g(M ′) is one-
dimensional—in fact, it is a line segment parallel to Z. Moreover, g acts horizon-
tally and collapses orbits of the (horizontal) vector field T to points. Following
an additional translation in the horizontal directions, we may assume that g(M ′)
is contained in the x1 axis.

We next determine the precise shape of the horizontal slices of M ′. They are
ellipses or hyperbolas according as ε < 1 or ε > 1.

Lemma 10. Defined on M, the point and line

Fp = g(p)+
√
α

λ

√
2ε

1 − ε2
JY and

dp =
{
g(p)+

√
α

λ

1

(1 − ε)
√

2ε
JY + sY : s ∈ R

}

are constant with respect to T. In addition,

dist(p,Fp) = √
2ε/(1 + ε) · dist(p, dp).
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Proof. For the first claim it is enough to verify that T(α/λ) = 0, since Y and JY
are constant and since T(g) = 0 by Lemma 9. Using Lemma 6 together with the
computations from the beginning of the proof of Lemma 9, we find that

T

(
α

λ

)

= T

(
1

λ2

(
β2

1 + ε
+ γ 2

1 − ε

))

= 2β

λ

1

1 + ε
T

(
β

λ

)
+ 2γ

λ

1

1 − ε
T

(
γ

λ

)

= 2β

λ

1

1 + ε

(
β

1 + ε
· 0 − γ

1 − ε
(1 − ε2)λ1/3 − (λ1/3 − λ)(1 + ε)γλ−2/3

)

+ 2γ

λ

1

1 − ε

(
β

1 + ε
(1 − ε2)λ1/3 − γ

1 − ε
· 0 + (λ1/3 − λ)(1 − ε)βλ−2/3

)

= 0

after an easy simplification. For the remaining claim, we find that

dist(p,Fp)
2 = 1

λ2(1 − ε2)2

(
γ 2 + (

β + √
αλ

√
2ε

)2)

= 1

λ2(1 − ε2)2

(
(1 − ε)

(
αλ− β2

1 + ε

)
+ (

β + √
αλ

√
2ε

)2
)

= 1

λ2(1 − ε2)2

(
β
√

2ε/(1 + ε)+ √
αλ

√
1 + ε

)2
,

where we have again used Lemma 6, and

dist(p, dp)
2 = 1

λ2(1 − ε2)2

(
β + √

αλ(1 + ε)/
√

2ε
)2
.

From these computations it follows that dist(p,Fp) = √
2ε/(1 + ε) · dist(p, dp).

In either case, relative to the horizontal coordinate z2 = x2 + iy2 = (x2, y2),
the slice of M ′ has focus F = (

0, k
√

2ε/(1 − ε2)
)

and directrix d = {
y2 =

k/
(
(1 − ε)

√
2ε

)}
, where k = √

α/λ is constant in any slice. The ellipse or hyper-

bola has eccentricity e = √
2ε/(1 + ε). (The cases ε < 1 and ε > 1 are illustrated

in Figure 1.) Basic coordinate geometry can then be used to show that the slice of
M ′ must satisfy

|z2|2 + Re(εz2
2) = x 2

2 (1 + ε)+ y2
2(1 − ε) = k2

1 − ε2
.

Putting everything together: after the uniform dilation, the special unitary trans-
formation, and the translations, the original surface M 3 ⊂ C

2 can be defined by

r(z1, z2) = φ(z1 + z̄1)+ |z2|2 + Re(εz2
2)

for some real function φ that we can assume to be three times differentiable. For
this defining function we find that the condition Qr,p = εLr,p reduces to
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Figure 1 Horizontal cross sections of M ′ for ε = 1/2 and ε = 4

ε(φ ′)2 + (z̄2 + εz2)
2φ ′′ = ε((φ ′)2 + |z2 + εz̄2|2φ ′′),

and this ultimately requires that either z2 ≡ 0 or φ ′′ ≡ 0 on M. The case z2 ≡ 0
is excluded, for otherwise M would be two-dimensional. So we conclude that
φ ′′ ≡ 0. Then, after a further translation in the x1 variable and a dilation restricted
to the z1 variable (which also is affine with real determinant), we conclude that M
can be defined by r(z1, z2) = (z1 + z̄1)+ |z2|2 + Re(εz2

2). Theorem 1 is therefore
proved.
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