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Lattice Zariski k-ples of Plane Sextic Curves
and Z-Splitting Curves for Double Plane Sextics

Ichiro Shimada

1. Introduction

By virtue of the theory of period mapping, lattice theory has become a strong com-
putational tool in the study of complex K3 surfaces. In this paper, we apply this
tool to the classification of complex projective plane curves of degree 6 with only
simple singularities. In particular, we explain the phenomena of Zariski pairs from
a lattice-theoretic point of view.

A simple sextic is a reduced (possibly reducible) complex projective plane curve
of degree 6 with only simple singularities. For a simple sextic B ⊂ P2, we de-
note by µB the total Milnor number of B, by SingB the singular locus of B, by
RB the ADE-type of the singular points of B, and by degsB = [d1, . . . , dm] the
list of degrees di = degBi of the irreducible components B1, . . . ,Bm of B.

We have the following equivalence relations among simple sextics.

Definition 1.1. Let B and B ′ be simple sextics.
(1) We write B ∼eqs B

′ if B and B ′ are contained in the same connected com-
ponent of an equisingular family of simple sextics.

(2) We say that B and B ′ are of the same configuration type, and write B ∼cfg

B ′, if there exist tubular neighborhoods T ⊂ P2 of B and T ′ ⊂ P2 of B ′ and a ho-
meomorphism ϕ : (T,B) ∼−→ (T ′,B ′) such that (a) degϕ(Bi) = degBi holds for
each irreducible component Bi of B, (b) ϕ induces a bijection SingB ∼−→SingB ′,
and (c) ϕ is an analytic isomorphism of plane curve singularities locally around
each P ∈ SingB. Note thatRB and degsB are invariants of the configuration type.
(See [4, Rem. 3] for a combinatorial definition of ∼cfg.)

(3) We say that B and B ′ are of the same embedding type, and write B ∼emb B
′,

if there exists a homeomorphism ψ : (P2,B) ∼−→ (P2,B ′) such that ψ induces a
bijection SingB ∼−→SingB ′ and such that, locally around each P ∈ SingB, ψ is
an analytic isomorphism of plane curve singularities.

It is obvious that

B ∼eqs B
′ �⇒ B ∼emb B

′ �⇒ B ∼cfg B
′,

although the converses do not necessarily hold.
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Example 1.2. Zariski [34] showed that there exist irreducible simple sextics B1

and B2 with RB1 = RB2 = 6A2 such that π1(P
2 \ B1) ∼= Z/2Z × Z/3Z while

π1(P
2 \ B2) ∼= Z/2Z ∗ Z/3Z , where ∗ denotes the free product of groups (see

also Oka [18] and Shimada [22]). Therefore we have B1 ∼cfg B2, but B1 ∼emb B2

and hence B1 ∼eqs B2.

Artal Bartolo [3] revived the study of pairs of plane curves that are of the same
configuration type but are not connected by equisingular deformation. Since then,
many works have addressed the discrepancies between equisingular deformations
and configuration types—not only for simple sextics but also for curves of higher
degrees and with other types of singularities. (See the survey paper [4].) The
main theme of these works is to find pairs of plane curves (called Zariski pairs or
Zariski couples) that have the same configuration type but have different embed-
ding topologies.

As for simple sextics, there have been two important works about∼eqs and∼cfg.

One isYang [32], in which the configuration types of simple sextics are completely
classified; the other is Degtyarev [11], which presents an algorithm to calculate the
connected components of the equisingular family of simple sextics in a given con-
figuration type. The main tool used in these two works is the theory of period
mapping of complex K3 surfaces applied to double plane sextics.

In this paper, we introduce another equivalence relation ∼lat by means of the
structure of the Néron–Severi lattices of the K3 surfaces obtained as the double
covers of P2 branching along the simple sextics. This relation is coarser than∼eqs

but finer than ∼cfg , so it can play the same role as ∼emb. The definition of ∼ lat is,
however, purely algebraic and therefore computationally easier to deal with than
∼emb. In fact, Yang’s method [32] provides us with an algorithm to classify all the
equivalence classes of the relation ∼ lat , which are called the lattice types of sim-
ple sextics. Moreover we can sometimes conclude that B ∼emb B

′ by looking at
an invariant of the lattice types (Theorem 8.5).

We then define the notion of Z-splitting curves and investigate lattice types of
simple sextics by means of this notion. The notion of lattice Zariski couples (or,
more generally, lattice Zariski k-ples) is introduced for ∼lat in the same way as
the notion of classical Zariski couples was introduced for ∼emb in [3]. The no-
tion of Z-splitting curves provides us with a unifying tool to describe all lattice
Zariski k-ples. In fact, the members of any lattice Zariski k-ple are distinguished
by numbers of Z-splitting curves of degree ≤ 2 (Theorem 3.5).

Finally, we define lattice types ofZ-splitting curves and classify all lineages via
specialization of lattice types of Z-splitting curves of degree ≤ 3. It turns out that
these lineages are completely indexed by the class order of the Z-splitting curves
(Theorems 3.13, 3.19, and 3.23). These lineages yield many examples of simple
sextics with interesting geometry. For example, the Z-splitting conics with class
order 3 are the splitting conics of torus sextics, which have been studied inten-
sively by Oka and others (see e.g. [19]).

The notion of Z-splitting curves is important also because, for a simple sex-
tic B that is generic in an irreducible component of an equisingular family, the
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Néron–Severi lattice of the correspondingK3 surface is generated by the reduced
parts of the lifts of the irreducible components of B and the lifts of Z-splitting
curves of degree ≤ 3 (Theorem 3.21).

The plan of this paper is as follows. In Section 2, we define various notions
that are investigated in the paper. The relation ∼ lat is defined in Definition 2.8,
and the notion of Z-splitting curves is defined in Definition 2.13. The main results
are stated in Section 3. Most of these results are proved computationally with the
assistance of a computer. We present lattice-theoretic algorithms to prove them
in the following sections. In Section 4, we explain Yang’s method of making the
complete list of lattice types of simple sextics. In Section 5, we give an algorithm
to determine the configuration type and the classes of lifts of smooth Z-splitting
curves of degree ≤ 3 for a given lattice type of simple sextics. In Section 6, we
present an algorithm about specialization of lattice types ofZ-splitting curves; the
results in this section are the main theoretical ingredients for our classification of
the lineages ofZ-splitting curves. In Section 7, we demonstrate the algorithms for
a concrete example. We conclude this paper by presenting miscellaneous facts,
examples, and remarks in Section 8.

As we were finishing the first version of this paper, a preprint by Yang and
Xie [33] appeared on the e-print archive. In their paper, Yang and Xie also inves-
tigate the classical Zariski pairs of simple sextics by lattice theory and the result
in [27; 28]. See also Theorem 8.5 of this paper.

Acknowledgments. Part of this work was done during the author’s stay at Na-
tional University of Singapore in September 2008. Thanks are due to Professor
De-Qi Zhang for his warm hospitality. The author is also deeply grateful to the
referee for many valuable comments on the first version of this paper.

2. Definitions

A lattice is a free Z-module L of finite rank with a nondegenerate symmetric bi-
linear form (·, ·) : L × L → Z. We say that a lattice L is even if x 2 ∈ 2Z holds
for any x ∈L. We say that L is negative definite if x 2 < 0 holds for any nonzero
x ∈L.

We fix several conventions about lattices. Let L be a lattice, and let S be a sub-
set of L. We use 〈S 〉 to denote the sublattice of L generated by S and use 〈S 〉+ to
denote the monoid of vectors

∑
avv (v ∈ S) with av ∈ Z≥0. When S = {v}, we

write 〈v〉 for 〈{v}〉. We denote by S⊥ or (S ⊂ L)⊥ the orthogonal complement of
〈S 〉 in L.

Let L′ be another lattice. An embedding of L into L′ is a homomorphism of
Z-modules φ : L→ L′ that satisfies (x, y) = (φ(x),φ(y)) for any x, y ∈L. Note
that such a homomorphism is necessarily injective. An embedding φ is said to be
primitive if the cokernel of φ is torsion free. For an embedding φ, we use the same
letter φ to denote the induced linear homomorphism L⊗ C → L′ ⊗ C.

Definition 2.1. Let L be an even negative-definite lattice. A vector d ∈ L is
called a root if d 2 = −2. Let DL be the set of roots in L. A subset F of DL is
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called a fundamental system of roots in L if F is a basis of 〈DL〉 and every d ∈DL
can be written as a linear combination of elements of F with coefficients all non-
positive or all nonnegative. An even negative-definite lattice L is called a root
lattice if 〈DL〉 = L holds.

A fundamental system of roots exists for any even negative-definite lattice. The
isomorphism classes of fundamental systems of roots (and hence root lattices) are
classified by means of Dynkin diagrams. See for example Ebeling [14, Sec. 1.4]
or Bourbaki [7] for the proof of these facts.

We denote by L∨ the dual lattice {v ∈ L⊗ Q | (x, v) ∈ Z for any x ∈ L} of L,
which is a submodule of L⊗Q with finite rank containing L.

Definition 2.2. LetL be a lattice. A submoduleL′ ofL∨ is called an overlattice
of L if L′ contains L and the Q-valued symmetric bilinear form on L∨ extending
the symmetric bilinear form on L takes values in Z on L′.

Definition 2.3. Lattice data is a triple [E ,h, ], where E is a fundamental sys-
tem of roots in the negative-definite root lattice 〈E〉 generated by E , h is a vector
with h2 = 2 that generates a positive-definite lattice 〈h〉 of rank 1, and  is an
even overlattice of the orthogonal direct sum 〈h〉 ⊕ 〈E〉.

Extended lattice data is a quartet [E ,h, , S ], where [E ,h, ] is lattice data and
S is a subset of  with cardinality 2.

Remark 2.4. In the geometric application, S is the placeholder for the classes
of the lifts of a Z-splitting curve (see Definition 2.26).

Definition 2.5. An isomorphism from lattice data [E ,h, ] to lattice data
[E ′,h′, ′ ] is an isomorphism of lattices φ :  ∼−→ ′ that satisfies φ(E ) = E ′
and φ(h) = h′. If φ :  ∼−→ ′ is an isomorphism of lattice data, then φ induces
an isomorphism of fundamental systems of roots between E and E ′.
Definition 2.6. An isomorphism from extended lattice data [E ,h, , S ] to ex-
tended lattice data [E ′,h′, ′, S ′ ] is an isomorphism φ :  ∼−→ ′ of lattice data
from [E ,h, ] to [E ′,h′, ′ ] that induces a bijection from S to S ′.

Let B ⊂ P2 be a simple sextic. Consider the double covering πB : YB → P2

branching exactly along B. Then YB has only rational double points of type RB
as its singularities, and the minimal resolution ρB : XB → YB of YB yields a K3
surface XB. Let ρ̃B : XB → P2 denote the composite of ρB and πB.

We denote by NS(XB) ⊂ H 2(XB , Z) the Néron–Severi lattice of XB. Let EB
be the set of (−2)-curves on XB that are contracted by ρ̃B : XB → P2. We regard
EB as a subset of NS(XB) by E �→ [E ], where [E ] ∈ NS(XB) denotes the class
of the curve E ∈ EB. We consider the sublattice

%B := 〈hB〉 ⊕ 〈EB〉 ⊂ NS(XB)

of NS(XB) generated by the polarization class
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hB := [ρ̃∗B(OP2(1))]

and EB ⊂ NS(XB). Observe that EB is a fundamental system of roots in the root
lattice 〈EB〉 of type RB. We then denote by

 B := (%B ⊗Q) ∩H 2(XB , Z)

the primitive closure of %B in H 2(XB , Z), which is an even overlattice of %B.
Since NS(XB) is primitive in H 2(XB , Z),  B is the primitive closure of %B in
NS(XB). Finally, we define the finite abelian group GB by

GB :=  B/%B.
Definition 2.7. We denote by '(B) the lattice data [EB ,hB , B] and call it the
lattice data of B.

Definition 2.8. Let B and B ′ be simple sextics. We write B ∼lat B
′ if there

exists an isomorphism between the lattice data '(B) and '(B ′). An equivalence
class of the relation ∼lat is called a lattice type of simple sextics. The lattice type
containing a simple sextic B is denoted by λ(B).

By definition, an isomorphism of lattice data from '(B) to '(B ′) is an isomor-
phism of lattices  B ∼−→ B ′ that preserves the polarization class and the set of
classes of the exceptional (−2)-curves.

It is obvious that the isomorphism class of the finite abelian group GB is an
invariant of the lattice type λ(B).

Let B1, . . . ,Bm be the irreducible components of B. We denote by B̃i ⊂ XB the
reduced part of the strict transform of Bi and put

)B := %B + 〈[B̃1], . . . , [B̃m]〉 ⊂ NS(XB).

Then we have
%B ⊂ )B ⊂  B ⊂ NS(XB).

We see that the implications

B ∼eqs B
′ �⇒ B ∼lat B

′ �⇒ B ∼cfg B
′

hold, where the second implication was proved by Yang [32] (see also Corol-
lary 5.26). Hence the isomorphism class of the finite abelian group

FB :=  B/)B
is also an invariant of the lattice type λ(B).

In fact, Yang [32] gave an algorithm to classify all lattice types and configu-
ration types of simple sextics using the idea of Urabe [30; 31]. The numbers of
these types are given in Table 2.1. (Yang did not present the complete table in his
paper, so in [26] we reproduced the classification table along with the complete
list of configurations of rational double points on normal K3 surfaces.) Table 2.1
shows that, for µB > 11, there exist many lattice Zariski k-ples (k > 1) defined
as follows.
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Table 2.1 Numbers of Configuration Types and Lattice Types

µB 0 1 2 3 4 5 6 7 8 9 10 11

∼cfg 1 1 2 3 6 10 18 30 53 89 148 246
∼lat 1 1 2 3 6 10 18 30 53 89 148 246

µB 12 13 14 15 16 17 18 19 Total

∼cfg 415 684 1090 1623 2139 2283 1695 623 11159
∼ lat 416 686 1096 1639 2171 2330 1734 629 11308

Definition 2.9. A configuration type γ of simple sextics is called a lattice
Zariski k-ple if γ contains exactly k lattice types.

Example 2.10. The configuration type of irreducible simple sexticsB withRB =
6A2 is a lattice Zariski couple with µB = 12. Indeed, for B1 and B2 in Exam-
ple 1.2, we have GB1 = 0 and GB2

∼= Z/3Z.

Remark 2.11. See Section 7 for an example of lattice Zariski triples. Looking at
the classification table, we see that there exist no lattice Zariski k-ples with k > 3.

Next we define the notion of Z-splitting curves, where Z stands for Zariski. Let
B be a simple sextic. We denote by

ιB : XB ∼−→XB

the involution of XB over P2, and we use the same letter ιB to denote the induced
involution on the lattice H 2(XB , Z). Note that ιB preserves the sublattices %B ,
 B , )B , and NS(XB).

Definition 2.12. A reduced irreducible projective plane curve - ⊂ P2 is said
to be splitting for B if the strict transform of - by ρ̃B : XB → P2 splits into two
(possibly equal) irreducible components -̃+ and -̃− = ιB(-̃+). We call -̃+ and
-̃− the lifts of the splitting curve -.

We have -̃+ = -̃− if and only if - is an irreducible component of B.

Definition 2.13. A splitting curve - is said to be pre-Z-splitting if the class
[-̃+ ] of a lift -̃+ ⊂ XB of - is contained in B. (Note that [-̃+ ]∈ B if and only
if [-̃− ]∈ B because we have [-̃+ ]+ [-̃− ]∈%B.)
Definition 2.14. A pre-Z-splitting curve- is said to beZ-splitting if the classes
[-̃+ ] and [-̃− ] = ιB([-̃+ ]) are distinct.

Remark 2.15. Since ιB acts on the orthogonal complement of B inH 2(XB , Z)
as the multiplication by −1, it follows that, if a splitting curve - is not pre-Z-
splitting, then we have [-̃+ ] = [-̃− ]. See Table 2.2.
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Table 2.2 Three Notions of Splittingness

[-̃+ ]∈ B [-̃+ ] /∈ B Splitting : I + II + III
[-̃+ ] = [-̃− ] I ∅ Pre-Z-splitting : I + II
[-̃+ ] = [-̃− ] II III Z-splitting : II

We have an easy numerical criterion of pre-Z-splittingness (see Proposition 8.2).
We also have the following result.

Proposition 2.16. Let - be a pre-Z-splitting curve for a simple sextic B. Let
B ′ be a general member of the connected component F of the equisingular family
containing B, and let φ : H 2(XB , Z) ∼−→H 2(XB ′ , Z) be an isomorphism of lat-
tices induced by an equisingular deformation from B to B ′. Then there exists a
pre-Z-splitting curve- ′ forB ′ such that the class of a lift of - ′ is equal toφ([-̃+ ]).
If - is Z-splitting, then so is - ′.

Proof. Since φ is induced by an equisingular deformation, we see that φ induces
an isomorphism  B

∼−→ B ′ . The second assertion follows from the first asser-
tion because φ commutes with the involutions ιB and ιB ′ . Since - is irreducible
by definition, the lift -̃+ is also irreducible and hence we haveH1(XB , O(-̃+)) =
0 by [21, Lemma 3.5]. Since B ′ is general in F, we see that -̃+ is deformed to an
effective divisor -̃ ′+ on XB ′ (see Lemmas 6.8 and 6.9) and that -̃ ′+ is irreducible
and mapped birationally to a curve - ′ on P2. Hence φ([-̃+ ]) is the class of a lift
-̃ ′+ of a splitting curve - ′ forB ′. Since φ([-̃ ′+ ])∈ B ′ , - ′ is pre-Z-splitting.

Example 2.17. Letf(x0, x1, x2) andg(x0, x1, x2) be general homogeneous poly-
nomials of degree 5 and 3, respectively. Then B = {x0f + g2 = 0} is smooth,
and the triple tangent line - = {x0 = 0} is splitting for B but not pre-Z-splitting
because a general sextic has no triple tangents.

Example 2.18. Every irreducible component of B is pre-Z-splitting but not Z-
splitting.

Example 2.19. Suppose that B is a union of cubic curves E0 and E∞. Then the
general member Et of the pencil in |OP2(3)| spanned by E0 and E∞ is pre-Z-
splitting. The lifts Ẽ+t and Ẽ−t of Et are, however, contained in the same elliptic
pencil on XB , so Et is not Z-splitting.

If a pre-Z-splitting curve - is of degree ≤ 2 and not contained in B, then its lifts
-̃+ and -̃− are distinct (−2)-curves on XB and hence - is Z-splitting.

Example 2.20. Let f(x0, x1, x2) and g(x0, x1, x2) be general homogeneous
polynomials of degree 2 and 3, respectively. Then the torus sextic Btrs :=
{f 3+ g2 = 0} is a simple sextic, with RBtrs = 6A2, and the conic - = {f = 0} is
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Z-splitting, as can be seen by the numerical criterion Proposition 8.2 (see Exam-
ple 8.3). In fact, this torus sextic Btrs is the simple sextic B2 in Examples 1.2 and
2.10, and the class [-̃+ ] generates the cyclic group GB2 = GBtrs of order 3.

Definition 2.21. A simple sexticB is said to be lattice-generic if B = NS(XB)
holds or, equivalently, if the Picard number of XB is equal to µB + 1.

Remark 2.22. It is easy to see that lattice-generic simple sextics are dense in any
equisingular family (see Corollary 4.14). In particular, every lattice type contains
a lattice-generic member.

Corollary 2.23. A splitting curve - for a simple sextic B is pre-Z-splitting if
and only if - is stable under general equisingular deformation of B.

Proof. The “only if” part follows from Proposition 2.16. The “if” part follows
from Remark 2.22.

The requirement that B ′ be a general member of F in Proposition 2.16 is indis-
pensable, as the next example shows.

Example 2.24. Let f1, f2, and g be general homogeneous polynomials with
deg f1 = deg f2 = 1 and deg g = 3. We put B0 := {f 3

1 f
3
2 + g2 = 0}. Then

we have Btrs ∼eqs B0. The Z-splitting conic - = {f = 0} for Btrs degenerates
into the union of two lines {f1 = 0} and {f2 = 0}. Both of them are splitting
but not pre-Z-splitting for B0. Note that Btrs is lattice-generic whereas B0 is not
lattice-generic.

Definition 2.25. We call a pair (B,-) of a simple sextic B and a Z-splitting
curve - for B a Z-splitting pair. If B is lattice-generic, we say that (B,-) is
lattice-generic.

Definition 2.26. The lattice data 'P(B,-) of a Z-splitting pair (B,-) is the
extended lattice data

'P(B,-) := [EB ,hB , B , {[-̃+ ], [-̃− ]}].
We write (B,-) ∼lat (B

′,- ′) if there exists an isomorphism of extended lattice
data between 'P(B,-) and 'P(B ′,- ′). The equivalence class of ∼ lat is called a
lattice type, and the lattice type containing a Z-splitting pair (B,-) is denoted by
λP(B,-).

By definition, an isomorphism of lattice data from 'P(B,-) to 'P(B ′,- ′) is an iso-
morphism of lattices  B ∼−→ B ′ that preserves the polarization class, the set of
exceptional (−2)-curves, and maps the classes of the lifts -̃± of - to the classes
of the lifts -̃ ′± of - ′.

Remark 2.27. By Proposition 2.16 and Remark 2.22, every lattice type λP of
Z-splitting pairs contains a lattice-generic member.
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3. Main Results

3.1. Classes of Lifts of Z-Splitting Curves

Let B be a simple sextic. For n = 1, 2, 3, we define

Zn(B){[-̃+ ], [-̃− ] | - is a smooth Z-splitting curve of degree n} ⊂  B.
Remark 3.1. In this definition, the condition that- should be smooth is of course
redundant when n < 3. For n = 3, there may be a Z-splitting nodal cubic curve
- such that -̃+ and -̃− are (−2)-curves on XB , but we do not consider such Z-
splitting curves.

The main reason why we treat only smooth Z-splitting curves of degree ≤ 3 will
be revealed in Theorem 3.21.

Our first main result is as follows.

Theorem 3.2. Let B and B ′ be lattice-generic simple sextics such that B ∼ lat

B ′. If φ :  B ∼−→ B ′ is an isomorphism of lattice data from '(B) to '(B ′), then
φ induces a bijection between Zn(B) and Zn(B ′) for n = 1, 2, 3.

More precisely, we will give in Section 5 an algorithm to calculate the sets Z1(B),
Z2(B), and Z3(B) for a lattice-generic simple sextic B from the lattice data '(B).

When n < 3, each element of Zn(B) is the class of a unique (−2)-curve,
which is a lift of a Z-splitting curve of degree n. Hence the cardinality of Z1(B)

(resp. Z2(B)) is twice the number of Z-splitting lines (resp. Z-splitting conics).
By Theorem 3.2, we can make the following definition.

Definition 3.3. For a lattice type λ = λ(B) of simple sextics, we define z1(λ)

and z2(λ) to be the numbers of Z-splitting lines and of Z-splitting conics, respec-
tively, for a lattice-generic member B of λ.

In Definition 3.3, the condition that B should be lattice-generic is indispensable.

Example 3.4. The non–lattice-generic member B0 of the lattice type λ(Btrs) =
λ(B0) in Example 2.24 has no Z-splitting conics, whereas z2(λ(Btrs)) = 1.

The usefulness of the notion of Z-splitting curves in the study of lattice Zariski
k-ples comes from the following theorem.

Theorem 3.5. Let λ and λ′ be lattice types of simple sextics in the same con-
figuration type. If z1(λ) = z1(λ

′) and z2(λ) = z2(λ
′), then λ = λ′. Namely, the

lattice types in any lattice Zariski k-ple are distinguished by the numbers z1(λ)

and z2(λ).

The set Z3(B) is in two-to-one correspondence with a set of 1-dimensional fami-
lies of Z-splitting cubic curves.
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Table 3.1 Numbers of Lattice Types with Z-Splitting Lines or Conics

µB 12 13 14 15 16 17 18 19 Total

Lines 0 0 0 1 2 7 13 18 41
Conics 1 2 7 18 47 86 108 55 324

Proposition 3.6. Let Ẽ be an effective divisor on XB. We have [Ẽ ] ∈Z3(B) if
and only if |Ẽ| is an elliptic pencil on XB whose general member is a lift of a Z-
splitting cubic curve.

Proof. Let Ẽ be a lift of a smooth Z-splitting cubic curve E. Then Ẽ is smooth
of genus 1 and hence |Ẽ| is an elliptic pencil. Conversely, if |Ẽ| is an elliptic pen-
cil onXB whose general member Ẽ is a lift of a Z-splitting cubic curve E, then E
must be smooth because E is birational to Ẽ and hence of genus 1.

3.2. Classification of Z-Splitting Curves of Degree ≤ 2

Next we give a classification of lattice types of Z-splitting pairs (B,-) with
deg- ≤ 2. The numbers of lattice types λ of simple sextics with z1(λ) > 0 or
z2(λ) > 0 are given in Table 3.1. If µB < 12, then B has no Z-splitting curves
of degree ≤ 2. (Note that there are lattice types λ for which both z1(λ) > 0 and
z2(λ) > 0 hold; such lattice types are counted twice in Table 3.1.)

The entire classification table is too huge to be presented in a paper. In order to
state our classification in a concise way, we introduce the notion of specialization
of lattice types.

Definition 3.7. Let λ0 and λ be lattice types of simple sextics. We say that λ0

is a specialization of λ if there exists an analytic family f : B → 4 of simple sex-
tics f −1(t) = Bt parameterized by a unit disc 4 ⊂ C, where B is a surface in
P2×4 and f is a projection, such that the central fiber B0 is a member of λ0 and
the other fibers Bt (t = 0) are members of λ.

Definition 3.8. Let λP0 and λP be lattice types of Z-splitting pairs. We say that
λP0 is a specialization of λP if there exists an analytic family f : P → 4 of Z-
splitting pairs f −1(t) = (Bt ,-t) such that the central fiber f −1(0) is a member of
λP0 and the other fibers f −1(t) (t = 0) are members of λP.

We give the list of lattice types of Z-splitting pairs that generate all other lattice
types by specialization. It turns out that the lineages of lattice types via special-
ization are classified by the class order as defined next.

Definition 3.9. The class order of a Z-splitting pair (B,-) (or of a lattice type
λP(B,-) of Z-splitting pairs) is the order of [-̃+ ] in GB =  B/%B.
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Table 3.2 Lattice Types λα,τ in γα for α ∈ {A, B, C, D}

α RB degs τ z1 z2 GB FB

A 3A5 [3, 3] l 1 0 Z/6Z Z/3Z

n 0 0 Z/2Z 0

B A3 + 2A7 [2, 4] l 1 0 Z/8Z Z/4Z

c 0 1 Z/4Z Z/2Z

n 0 0 Z/2Z 0

C 2A4 + A9 [1, 5] l 1 0 Z/10Z Z/5Z

n 0 0 Z/2Z 0

D A3 + A5 + A11 [2, 4] l 1 1 Z/12Z Z/6Z

In what follows, the index τ in lattice types λα,τ takes symbolic values n, l, or c,
which stand (respectively) for “none”, “line”, and “conic”.

The classification of Z-splitting lines is as follows.

Definition 3.10. For α ∈ {A , B, C , D}, let γα be the configuration type given in
the following table.

α RB degs

A 3A5 [3, 3] (the cubics are smooth)
B A3 + 2A7 [2, 4] (the quartic has A3)

C 2A4 + A9 [1, 5] (the quintic has 2A4)

D A3 + A5 + A11 [2, 4] (the quartic has A5)

Proposition 3.11. Let α be one of A , B, C , D.
(1) The lattice types λα,τ in the configuration type γα are given in Table 3.2.

The invariants z1(λα,τ ), z2(λα,τ ),GB , and FB of these lattice types are also given
in this table.

(2) Let B be a lattice-generic member of λα,l such that there exists a unique
Z-splitting line - for B. Then - passes through the three singular points of B and
the cyclic group GB is generated by [-̃+ ].

Definition 3.12. Let B and - be as in Proposition 3.11(2). We put

λPlin,d := λP(B,-),

where “lin” denotes “line” and d is the order of GB; that is, d = 6, 8,10,12 ac-
cording as α = A , B, C , D.

These lattice types λPlin,d are the originators of the lineages of lattice types of Z-
splitting lines.

Theorem 3.13. Let (B,-) be a Z-splitting pair with deg- = 1. Then the class
order d of λP(B,-) is 6, 8, 10 or 12, and λP(B,-) is a specialization of the lattice
type λPlin,d .
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Figure 3.1 Dynkin diagram

The classification of Z-splitting conics is as follows.

Definition 3.14. For α ∈ {a, b, c, d, e, f}, let γα be the configuration type given
in the following table.

α RB degs

a 6A2 [6]
b 2A1+ 4A3 [2, 4] (the quartic has 2A1)

c 4A4 [6]
d 2A1+ 2A2 + 2A5 [2, 4] (the quartic has 2A2 )

e 3A6 [6]
f A1+ A3 + 2A7 [2, 4] (the quartic has A1+ A3)

Definition 3.15. Let P be a singular point of B, and let e1, . . . , er be the excep-
tional (−2)-curves onXB overP indexed in such a way that the dual graph is given
in Figure 3.1. Let -̃+ be a lift of a smooth splitting curve -. Suppose that P ∈ -.
Since - is smooth and splitting, there exists a unique ej among e1, . . . , er that in-
tersects -̃+ (see Lemma 5.4). We put τP (-̃+) := j. If P /∈ -, we put τP (-̃+) :=
0 and τP (-̃−) := 0.

Proposition 3.16. Let α be one of a, b, c, d, e, f.
(1) The lattice types λα,τ in the configuration type γα are given in Table 3.3,

together with the invariants z1(λα,τ ), z2(λα,τ ), GB , and FB.
(2) LetB be a lattice-generic member of λα,c. Then theZ-splitting conics - for

B are given in Table 3.4, where ord is the class order of (B,-), and τP (-̃+) is de-
scribed under an appropriate choice of numbering of the exceptional (−2)-curves
and the lift of -.

Definition 3.17. Let B be as in Proposition 3.16(2), and let - be a Z-splitting
conic for B such that [-̃+ ] generates GB. We put

λPcon,d := λP(B,-),

where “con” denotes “conic” and d is the order of GB.
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Table 3.3 Lattice Types λα,τ in γα for α ∈ {a, b, . . . , f}

α RB degs τ z1 z2 GB FB

a 6A2 [6] c 0 1 Z/3Z Z/3Z

n 0 0 0 0

b 2A1+ 4A3 [2, 4] c 0 1 Z/4Z Z/2Z

n 0 0 Z/2Z 0

c 4A4 [6] c 0 2 Z/5Z Z/5Z

n 0 0 0 0

d 2A1+ 2A2 + 2A5 [2, 4] c 0 2 Z/6Z Z/3Z

n 0 0 Z/2Z 0

e 3A6 [6] c 0 3 Z/7Z Z/7Z

n 0 0 0 0

f A1+ A3 + 2A7 [2, 4] c 0 3 Z/8Z Z/4Z

l 1 0 Z/8Z Z/4Z

n 0 0 Z/4Z Z/2Z

Table 3.4 Z-Splitting Conics of λα,c for α ∈ {a, b, . . . , f}

α - ord τP (-̃
+)

a A2 A2 A2 A2 A2 A2

- 3 1 1 1 1 1 1

b A1 A1 A3 A3 A3 A3

- 4 1 1 1 1 1 1

c A4 A4 A4 A4

-1 5 1 1 2 2
-2 5 2 2 4 4

d A1 A1 A2 A2 A5 A5

-1 6 1 1 2 2 1 1
-2 3 0 0 1 1 2 2

e A6 A6 A6

-1 7 1 2 3
-2 7 2 4 6
-3 7 3 6 2

f A1 A3 A7 A7

-1 8 1 1 1 5
-2 4 0 2 2 2
-3 8 1 3 3 7
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Remark 3.18. For d = 5, 7, 8, the lattice type λPcon,d = λP(B,-) does not depend
on the choice of - as long as [-̃+ ] generates GB.

These lattice types λPcon,d are the originators of the lineages of lattice types of Z-
splitting conics.

Theorem 3.19. Let (B,-) be a Z-splitting pair with deg- = 2. Then the class
order d of λP(B,-) is 3, 4, 5, 6, 7, or 8, and λP(B,-) is a specialization of the
lattice type λPcon,d .

Remark 3.20. The simple sextics in λPcon,3 are the classical torus sextics, which
have been studied in detail by many authors (see e.g. [19]). The simple sextics in
λPcon,5 are studied by Degtyarev in [10] and [12]. The simple sextics in λPcon,7 are
studied by Degtyarev in [10] and by Degtyarev and Oka in [13].

3.3. Generators of FB and Z-Splitting Cubic Curves

Theorem 3.21. Let B be a lattice-generic member of a lattice type λ = λ(B).
(1) The finite abelian group FB =  B/)B is generated by the classes of lifts of

smooth Z-splitting curves of degree ≤ 3; that is, we have

 B = )B + 〈Z1(B)〉 + 〈Z2(B)〉 + 〈Z3(B)〉. (3.1)

(2) If z1(λ) > 0 or z2(λ) > 0, then FB is nontrivial and is generated by the
classes of lifts of Z-splitting curves of degree ≤ 2.

The generators 〈Z3(B)〉 are indispensable in (3.1), as the following example λQC,n

shows.

Proposition 3.22. Let γQC be the configuration type of simple sextics B =
Q + C with degsB = [2, 4], RB = 3A1+ 4A3, and the quartic curve Q having
3A1.

(1) The configuration type γQC contains exactly two lattice types, λQC,n and
λQC,c, which are distinguished as follows:

z1(λQC,c) = 0, z2(λQC,c) = 1, z1(λQC,n) = 0, z2(λQC,n) = 0.

These lattice types have isomorphic GB and FB; for a member B of γQC , GB is
cyclic of order 4 and FB is of order 2.

(2) Let B = Q + C be a lattice-generic member of λQC,c, and let - be the
unique Z-splitting conic for B. Then GB is generated by [-̃+ ].

(3) Let B ′ = Q′ +C ′ be a lattice-generic member of λQC,n such that Z1(B
′) =

Z2(B
′) = ∅. Then Z3(B

′) consists of two elements [Ẽ+ ] and [Ẽ− ], and GB ′ is
generated by [Ẽ+ ]. Let E be the image of a general member of the elliptic pen-
cil |Ẽ+|, which is a smooth Z-splitting cubic curve. Then E passes through every
point of SingB ′ and is tangent to each ofQ′ and C ′.

We need Z-splitting curves to generate FB ′ = 0. We put

λPQC,n := λP(B ′,E),
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where (B ′,E) is theZ-splitting pair in Proposition 3.22(3). The lattice type λPQC,n

is the ancestor of all lattice types for which we need Z-splitting cubic curves to
generate FB.

Theorem 3.23. Let λ0 be a lattice type of simple sextics with a lattice-generic
member B0. Suppose that z1(λ0) = 0 and z2(λ0) = 0 but FB0 = 0.

(1) The set Z3(B0) consists of two elements [Ẽ+0 ] and [Ẽ−0 ], andGB0 is cyclic
of order 4 and generated by [Ẽ+0 ].

(2) Let E0 be the image of a general member of the elliptic pencil |Ẽ+0 |. Then
the lattice type λP(B0,E0) is a specialization of the lattice type λPQC,n defined
previously.

4. Classification of Lattice Types of Simple Sextics

4.1. Fundamental System of Roots

Let L be an even negative-definite lattice, and let DL be the set of roots in L. We
denote by 0Hom(L, R) the space of all linear forms t : L→ R such that t(d ) = 0
holds for any d ∈DL. For t ∈ 0Hom(L, R), we put

(DL)
+
t := {d ∈DL | t(d ) > 0}.

An element d ∈ (DL)+t is said to be decomposable if there exist d1, d2 ∈ (DL)+t
such that d = d1+ d2; otherwise, we say that d is indecomposable. The proof of
the following well-known fact is found, for example, in Ebeling [14, Prop. 1.4].

Proposition 4.1. The set Ft of indecomposable elements in (DL)+t is a funda-
mental system of roots in L. Conversely, if F is a fundamental system of roots in
L, then there exists a linear form t ′ ∈ 0Hom(L, R) such that F is equal to the set
Ft ′ of indecomposable elements in (DL)

+
t ′ .

We call Ft the fundamental system of roots associated with t : L→ R.

Corollary 4.2. There exists a one-to-one correspondence between the set
of fundamental systems of roots in L and the set of connected components of
0Hom(L, R).

Remark 4.3. A fundamental system of roots F in L is associated with t ∈
0Hom(L, R) if and only if (t, d) > 0 holds for any d ∈F.

4.2. The Kähler Cone and Polarizations of a K3 Surface

Let X be a K3 surface, and let ωX be a basis of H 2,0(X). We put

HX := {x ∈H 2(X, R) | (x,ωX) = 0},
DX := {d ∈NS(X) | d 2 = −2},
-X := {x ∈HX | x 2 > 0},

0-X := {x ∈-X | (x, d) = 0 for all d ∈DX}.
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We haveHX = H 2(X, R)∩H1,1(X) and NS(X) = H 2(X, Z)∩HX.We also have

-X = -+X " (−-+X ) (disjoint),

where -+X is the connected component of -X that contains a Kähler class of X.

Definition 4.4. The Kähler cone KX of X is the set of vectors κ ∈HX satisfy-
ing (D, κ) > 0 for any effective divisor D on X.

Every Kähler class of X is contained in KX. Conversely, as a corollary of Theo-
rem 6.2 we see that every vector in KX is a Kähler class on X.

The following proposition is an immediate consequence of Definition 4.4.

Proposition 4.5. A vector v ∈NS(X) is numerically effective (nef ) if and only
if v is contained in the closure of the Kähler cone KX in HX.

We set
4X := {d ∈DX | d is effective}.

By the Riemann–Roch theorem, we see that DX is a disjoint union of 4X and
−4X. For d ∈DX, we put

d⊥ := {x ∈HX | (x, d) = 0}
and call d⊥ the wall associated with d ∈DX. The family of walls {d⊥ | d ∈DX}
is locally finite in the cone -X and partitions -X into the connected components of
0-X. The following proposition is well known (see e.g. [5, Chap.VIII, Cor. 3.9]).

Proposition 4.6. The Kähler cone KX ⊂ HX is the unique connected compo-
nent of -+X ∩ 0-X such that (x, d) > 0 holds for every d ∈4X and every x ∈KX.
A line bundle L onX is called a polarization if L is nef, L2 > 0, and the complete
linear system |L| has no fixed components. If L is a polarization, then |L| has no
base points by [21, Cor. 3.2], and hence defines a morphism

@|L| : X→ PN,

where N = dim|L|.
Proposition 4.7. A vector v ∈ NS(X) is the class of a polarization if and only
if v2 > 0, v is nef, and the set {x ∈NS(X) | (v, x) = 1, x 2 = 0} is empty.

Proof. See Nikulin [17, Prop. 0.1] and the argument in the proof of (4) ⇒ (1) in
Urabe [30, Prop. 1.7].

Let L be a polarization onX. The orthogonal complement [L]⊥ of 〈[L]〉 in NS(X)
is negative definite by the Hodge index theorem. Hence we can easily prove the
following (see [26, Prop. 2.4]).

Proposition 4.8. The set of classes of (−2)-curves that are contracted by @|L|
is equal to the fundamental system of roots in [L]⊥ associated with the linear form
tκ : [L]⊥ → R given by tκ(v) := (v, κ), where κ is a vector in the Kähler cone KX.
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Corollary 4.9. Let U ⊂ HX be a sufficiently small open ball with center [L].
Then U ∩ KX is an open cone with the vertex [L] and with the faces being the
walls d⊥, where d are the (−2)-curves contracted by @|L|.

4.3. Lattice Types of Simple Sextics

We denote by L the K3 lattice—that is, an even unimodular lattice of signature
(3,19)—which is unique up to isomorphisms. We put

CL := {[ω]∈ P∗(L⊗ C) | (ω,ω) = 0, (ω, ω̄) > 0},
which is a complex manifold of dimension 20 with two connected components.
A marked K3 surface is a pair (X,φ) of a K3 surface X and an isomorphism
φ : H 2(X, Z) ∼−→L of lattices. There exists a universal family (π1 : X1→M1,@1)

of markedK3 surfaces over a non-Hausdorff smooth complex manifold M1 of di-
mension 20, where @1 is an isomorphism R2π1∗Z ∼= M1× L of locally constant
systems of lattices over M1. (See [5, Chap.VIII, Sec. 12] or [6].) For t ∈M1, we
have a point

τ1(t) := [φt(ωXt )]∈CL ,

where (Xt ,φt) is the marked K3 surface corresponding to t and ωXt is a basis
of H 2,0(Xt). We call τ1(t) the period point of (Xt ,φt). It is well known that the
period map

τ1 : M1 → CL

is holomorphic and surjective [5, Chap. VIII, Sec. 12; 6].
Yang [32] presented an algorithm to classify all lattice data that can be realized

as lattice data of simple sextics. His method is based on the following proposition,
which was proved by the surjectivity of τ1 and Propositions 4.7 and 4.8.

Proposition 4.10 (Urabe [30; 31]). Lattice data [E ,h, ] is isomorphic to lat-
tice data of simple sextics if and only if [E ,h, ] satisfies the following:

(i) the lattice  can be embedded primitively in L;
(ii) {x ∈ | (x,h) = 0, x 2 = −2} = {x ∈ 〈E〉 | x 2 = −2}; and

(iii) {x ∈ | (x,h) = 1, x 2 = 0} = ∅.
Computation 4.11. Let R be an ADE-type of rank ≤ 19. We determine all lat-
tice data of simple sextics B with RB = R. We put% := 〈h〉⊕ 〈E〉, where h2 = 2
and E is the fundamental system of roots of typeR.We then calculate the discrim-
inant form of %. (See [16, Sec. 1] for the definition of the discriminant form of
an even lattice.) We then make the complete list of isotropic subgroups H of the
discriminant form of %.

For each isotropic subgroup H, we calculate the even overlattice  (H ) of %
corresponding to H by [16, Prop. 1.4.1]. We then determine whether or not  =
 (H ) satisfies conditions (ii) and (iii) in Proposition 4.10 by the method described
in [25, Sec. 4] and next determine whether or not  (H ) can be embedded prim-
itively into L by means of [16, Thm. 1.12.1] or by the method of p-excess due to
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Conway and Sloane [9, Chap. 15], as described in [26, Sec. 3] (see also [8, Chaps.
8 and 9]).

We conclude that [E ,h, (H )] is realized as lattice data of simple sexticsB with
RB = R if and only if  (H ) satisfies the conditions in Proposition 4.10.

More precisely, the family of simple sextics B with '(B) ∼= [E ,h, ] is described
as follows. Suppose that lattice data [E ,h, ] satisfies conditions (i), (ii), and (iii)
of Proposition 4.10. We choose a primitive embedding

ψ :  ↪→ L

and consider  as a primitive sublattice of L. In particular, we have E ⊂ L and
h∈L.

Remark 4.12. The primitive embedding of  in L is not unique in general. In
fact, by choosing different primitive embeddings of  in L, we often obtain dis-
tinct connected components of the equisingular family (see Degtyarev [11]). More
strongly, we have obtained examples of pairs of simple sexticsB1 andB2 such that
B1 ∼lat B2 but B1 ∼emb B2 by considering different primitive embeddings of  
(see [1; 27; 28]). See also Section 8.2.

For [ω]∈CL , we put

NS[ω] := {x ∈L | (x,ω) = 0},
which is a primitive sublattice of L. We then put

Cψ⊥ := {[ω]∈CL | (ω, x) = 0 for all x ∈ } ⊂ CL

and denote byC$ψ⊥ the set of all [ω]∈Cψ⊥ such that NS[ω] satisfies the following
conditions, which correspond to properties (ii) and (iii) for in Proposition 4.10:

{x ∈NS[ω] | (x,h) = 0, x 2 = −2} = {x ∈ 〈E〉 | x 2 = −2}; (4.1)

{x ∈NS[ω] | (x,h) = 1, x 2 = 0} = ∅. (4.2)

Note that the complement of C$ψ⊥ in Cψ⊥ is a locally finite family of complex
analytic subspaces. From the surjectivity of τ1 and Propositions 4.7 and 4.8, we
easily obtain the following result.

Proposition 4.13. For any point p ∈ C$ψ⊥ , there exists a simple sextic B with
a marking φ : H 2(XB , Z) ∼−→L such that φ(hB) = h, φ(EB) = E , φ( B) =  ,
and the period point of (XB ,φ) is p.

Conversely, if B is a simple sextic with a marking φ : H 2(XB , Z) ∼−→L and
if ψ ′ :  B ∼−→ is an isomorphism of lattice data from '(B) to the lattice data
[E ,h, ], then the period point of (XB ,φ) is contained inC$ψ⊥ , whereψ :  ↪→ L

is the primitive embedding obtained from φ| B :  B ↪→ L via ψ ′.

We then put
C$$ψ⊥ := {[ω]∈C$ψ⊥ | NS[ω] =  }.
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If p ∈C$$ψ⊥ , then the corresponding simple sexticB is lattice-generic. It is obvious
that C$$ψ⊥ is dense in C$ψ⊥ . Hence we obtain the following corollary.

Corollary 4.14. Given a simple sextic B, we can obtain a lattice-generic sim-
ple sextic B ′ by an arbitrarily small equisingular deformation of B.

5. Algorithms for a Lattice Type

Let B be a simple sextic. Throughout this section, we assume that B is lattice-
generic (except in Corollary 5.26). In particular, every splitting curve is pre-Z-
splitting. We present an algorithm to determine the configuration type and the sets
Z1(B), Z2(B), and Z3(B) from the lattice data '(B) = [EB ,hB , B] of B.

Recall that, for a splitting curve -, we denote by -̃+, -̃− ⊂ XB the lifts of -.
For an irreducible component Bi of B, we denote by B̃i ⊂ XB the reduced part of
the strict transform of Bi; that is, we put B̃i := B̃+i = B̃−i .

We denote by jB : WB → P2 the Jung–Horikawa embedded resolution (canoni-
cal embedded resolution) ofB ⊂ P2, which is the minimal succession of blow-ups
such that the strict transform of B is smooth and such that any distinct irreducible
components of the total transform of B with odd multiplicities do not intersect
(see [5, Chap. III, Sec. 7]). Then we have the finite double covering π̃B : XB →
WB that makes the following diagram commutative:

XB
ρB ��

π̃B

��

YB

πB

��

WB
jB �� P2 .

For P ∈ SingB, let EP = {e1, . . . , er} be the set of exceptional (−2)-curves onXB
over P, which are indexed as in Figure 3.1. For simplicity, we use the same letter
for an exceptional (−2)-curve and its class, and consider EP as a subset of %B.
Then e1, . . . , er form the fundamental system of roots in the sublattice 〈EP〉 of %B
associated with a Kähler class ofXB.We denote by e∨1 , . . . , e∨r the dual basis of the
dual lattice 〈EP〉∨ ⊂ 〈EP〉 ⊗Q. We have an orthogonal direct-sum decomposition

%B = 〈hB〉 ⊕
⊕

P∈SingB

〈EP〉.

Recall that  B is the primitive closure of %B in H 2(XB , Z). We consider the
decomposition

 B ⊗Q = %B ⊗Q = 〈hB〉 ⊗Q⊕
⊕
〈EP〉 ⊗Q. (5.1)

For x ∈ B , we denote by xh ∈ 〈hB〉 ⊗Q and xP ∈ 〈EP〉 ⊗Q the components of x
under the direct-sum decomposition (5.1). The following is obvious.

Lemma 5.1. Let D be an effective divisor on XB such that (D,hB) = 0. Then
we have [D]∈ 〈EB〉+. In particular, we have [D]∈%B and [D]P ∈ 〈EP〉+ for any
P ∈ SingB.
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Definition 5.2. We say that a vector x ∈  B is v-smooth at P ∈ SingB if
xP = 0 or xP = e∨i for some i. We say that x is v-smooth if x is v-smooth at every
P ∈ SingB. (The “v” in v-smooth stands for “vector”.)

Definition 5.3. Let mP (e∨i ) denote the multiplicity of the curve π̃B(ei) ⊂ WB
in the total transform of B inWB. We also putmP (0) := 0. Thus we havemP (xP)
for a vector x ∈ B that is v-smooth at P.

Lemma 5.4. Let -̃ be a lift of a splitting curve -, and let P be a point of SingB.
Suppose thatP /∈- or that - is smooth atP. Then the vector [-̃]∈ B is v-smooth
at P and mP ([-̃]P) is even.

This lemma is proved together with the following one.

Lemma 5.5. Let - ⊂ P2 be a smooth splitting curve not contained in B. Let
-W ⊂ WB and BW ⊂ WB be the strict transforms of - and B, respectively, by
jB : WB → P2, and let B̃ ⊂ XB be the strict transform of B by ρ̃B : XB → P2.

Then we have

(-̃+, -̃−)X = (-̃+, B̃)X = (-̃−, B̃)X = (-W,BW)W/2,

where (·, ·)X and (·, ·)W denote the intersection numbers on XB and on WB ,
respectively.

Proof of Lemmas 5.4 and 5.5. The statement of Lemma 5.4 is obviously true in
the case where P /∈ -. The proof of Lemma 5.4 for the case where - is an irre-
ducible component of B is given in Remark 5.7.

Suppose that - is splitting, is not contained in B, and passes through P. Let
F1, . . . ,Fm ⊂ WB be the exceptional curves over P of jB , and let mk be the mul-
tiplicity of Fk in the total transform of B by jB. We denote by T ⊂ WB a suf-
ficiently small tubular neighborhood of j−1

B (P ) and put T̃ := π̃−1
B (T ) ⊂ XB.

If
(∑

Fj ,-W
)
W
> 1, then the image - of -W by jB would be singular at P.

Hence there exists a unique irreducible component Fi such that (Fi,-W) = 1 and
(Fj ,-W) = 0 for j = i. Let Q be the intersection point of Fi and -W. Note that
-W is smooth at Q and intersects Fi transversely at Q. Suppose that Q /∈ BW, so
that -W is disjoint from BW in T. Then, since - is splitting, the multiplicity mi is
even and π̃−1

B (Q) consists of two distinct points. Hence -̃+, -̃−, and B̃ are mu-
tually disjoint in T̃, and Lemma 5.4 holds by mP ([-̃]P) = mi. Suppose that Q ∈
BW, and let nQ be the intersection multiplicity of BW and -W at Q. Since - is
splitting, mi + nQ must be even. Since BW ∩ Fi = ∅, it follows that mi is even.
Therefore nQ > 1 and hence BW intersects Fi transversely at Q; in other words,
P is not of type Al with l even. Thus the pull-back of Fi by π̃B is irreducible, and
Lemma 5.4 holds bymP ([-̃]P) = mi. In this case, the intersection multiplicity of
-̃+ and -̃− (or of -̃+ and B̃, or of -̃− and B̃) at the point of XB over Q is equal
to nQ/2.

Remark 5.6. If P is of typeAl , then the multiplicitymP (e∨i ) is even for any i. If
P is of other type, thenmP (e∨i ) is even if and only if ei is subject to the following
restrictions.
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• If P is of type D2k , then i is even or 1 or 2.
• If P is of type D2k+1, then i is odd or 1 or 2.
• If P is of type E6, then i = 1.
• If P is of type E7, then i = 2, 4, 6.
• If P is of type E8, then i = 2, 4, 6, 8.

Remark 5.7. Let Bi be an irreducible component of B that contains P ∈ SingB
and is smooth at P. Then the component [B̃i]P ∈ 〈EP〉 ⊗Q is given as follows.

• If P is of type A2k−1, then [B̃i]P = e∨k.
• If P is of type D2k , then [B̃i]P = e∨1 or [B̃i]P = e∨2 or [B̃i]P = e∨2k.
• If P is of type D2k+1, then [B̃i]P = e∨2k+1.

• If P is of type E7, then [B̃i]P = e∨7 .
If P is of another type, then every local irreducible components of B at P is
singular.

By Remark 5.7, we obtain the following lemma.

Lemma 5.8. Let Bi be an irreducible component of B that contains P ∈ SingB
and is smooth at P. Then [B̃i]P ∈ 〈EP〉 ⊗Q is not contained in 〈EP〉.
The next lemma is elementary, but it plays a crucial role in the sequel.

Lemma 5.9. (1) For every e∨i , we have (e∨i )2 < 0 and e∨i /∈ 〈EP〉+.
(2) Suppose that e∨i − e∨j ∈ 〈EP〉+. Then (e∨i )2 > (e

∨
j )

2 or e∨i = e∨j .
(3) If e∨i is contained in 〈EP〉 and if mP (e∨i ) is even, then (ιB(e∨i ), e

∨
i ) < −9/2

holds.

Proof. We have to prove this lemma only for the negative-definite root lattices of
type Al (l = 1, . . . ,19), Dm (m = 4, . . . ,19), and En (n = 6, 7, 8). Hence the
assertions can be proved by case-by-case calculations. For the proof, we use Re-
mark 5.6. The involution ιB is calculated by Remark 5.10. (The author does not
know any conceptual proof of this lemma.)

Remark 5.10. The involution ιB on  B is determined by the ADE-type of RB.
We have ιB(hB) = hB. The action of ιB on EP is described as follows.

• If P is of type Al , then ιB(ei) = el+1−i .
• If P is of type D2k , then ιB acts on EP identically.
• If P is of type D2k+1, then ιB interchanges e1 and e2 and fixes e3, . . . , e2k+1.

• If P is of type E6, then ιB(e1) = e1 and ιB(ei) = e8−i for i = 2, . . . , 6.
• If P is of type E7 or E8, then ιB acts on EP identically.

Corollary 5.11. Let x ∈  B and y ∈  B be v-smooth vectors. If (x,hB) =
(y,hB) and x 2 = y2 hold and if x − y is effective, then x = y.
Proof. Since x − y is effective and (x − y,hB) = 0, we have xP − yP ∈ 〈EP〉+
for every P ∈ SingB by Lemma 5.1. Suppose that x = y, and let P ∈ SingB
be a point such that xP = yP . Since x and y are v-smooth, each of xP and yP is
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0 or e∨i for some i. If yP = 0, then xP = 0 and xP ∈ 〈EP〉+, which contradicts
Lemma 5.9(1). If yP = 0 then we have x 2

P > y
2
P by Lemma 5.9(1) and (2), which

contradicts x 2 = y2.

Proposition 5.12. Let x ∈ B be a v-smooth vector with (x,hB) = 1 and x 2 =
−2. Then x is the class of a (−2)-curve that is mapped isomorphically to a line
on P2.

Proof. By the Riemann–Roch theorem for XB , we have an effective divisorD on
XB such that x = [D]. Since (x,hB) = 1, there exists a unique irreducible com-
ponent C of D such that (C,hB) = 1. Note that C is mapped isomorphically to a
line on P2 and hence the image of C is a splitting line. Therefore, [C]2 = −2 and
[C] is v-smooth by Lemma 5.4. By Corollary 5.11, we have x = [C].

We put

LB := {x ∈ B | x is v-smooth, (x,hB) = 1, x 2 = −2},
LbB := {x ∈LB | ιB(x) = x}, and

L lB := {x ∈LB | ιB(x) = x}.
Corollary 5.13. The map Bi �→ [B̃i] induces a bijection from the set of irre-
ducible components Bi of B of degree 1 to the set LbB.

Corollary 5.14. The set L lB is equal to the set Z1(B) of the classes of lifts of
Z-splitting lines.

Next we proceed to the study of Z-splitting conics.

Proposition 5.15. Let C̃ ⊂ XB be a curve that is mapped isomorphically to a
smooth conic C on P2. Then [C̃] /∈%B.
Proof. We put x := [C̃]. Suppose that C is an irreducible component of B. Then
xP = 0 for some P ∈ SingB and hence x /∈ %B by Lemma 5.8. Suppose that C
is not contained in B. Then (ιB(x), x) ≥ 0. Since C is smooth, xP is v-smooth
with mP (xP) being even for every P ∈ SingB. Since (x,hB) = 2, we have
(ιB(xh), xh) = x 2

h = 2 and hence

(ιB(x), x) = 2+
∑
P

(ιB(xP), xP) ≥ 0. (5.2)

Suppose that x ∈ %B and hence xP ∈ 〈EP〉 for any P ∈ SingB. For any P ∈
C ∩ SingB, we have xP = 0 and hence (ιB(xP), xP) < −9/2 by Lemma 5.9(3).
By (5.2), we therefore have C ∩ SingB = ∅ and hence (ιB(x), x) = 2. However,
we have (ιB(x), x) = 6 because (B,C) = 12 on P2. Thus we get a contradiction.

Proposition 5.16. Let x ∈ B be a v-smooth vector such that (x,hB) = 2, x 2 =
−2, and x /∈%B. Then one and only one of the following statements holds:
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(i) there exist l1, l2 ∈LB such that x − (l1+ l2)∈ 〈EB〉+; or
(ii) x is the class of a (−2)-curve C̃ that is a lift of a splitting conic C on P2.

Proof. Note that x is the class of an effective divisor ofXB. We denote by |D| the
complete linear system of effective divisorsD such that x = [D]. The irreducible
decomposition of each D ∈ |D| is either

D = C̃1+ C̃2 +∑
ei with (C̃1,hB) = (C̃2,hB) = 1 and ei ∈ EB (5.3)

or
D = C̃ +∑

ei with (C̃,hB) = 2 and ei ∈ EB. (5.4)

Suppose that there exists a D ∈ |D| for which (5.3) holds. Since B is assumed
to be lattice-generic, we have [C̃1], [C̃2 ] ∈ B. Since C̃1 and C̃2 are mapped iso-
morphically to lines on P2, the vectors [C̃1] and [C̃2 ] are v-smooth with the square
norm −2. Therefore [C̃1] and [C̃2 ] are in LB and thus case (i) occurs.

Suppose that there exists a D ∈ |D| for which (5.4) holds. The image of C̃ in
P2 is either a line or a smooth conic. If the image were a line, then C̃ would be a
strict transform of the line and hence [C̃] would be contained in %B , which con-
tradicts the assumption. Therefore C̃ is a lift of a splitting conic C. In particular,
[C̃] ∈ B is a v-smooth vector with [C̃]2 = −2. By Corollary 5.11 we have x =
[C̃], and therefore case (ii) occurs.

Suppose that both cases (i) and (ii) occur. Then there exists a D1 ∈ |D| for
which (5.3) holds and there exists a D2 ∈ |D| for which (5.4) holds. By the pre-
ceding argument, the existence of D2 implies that x is the class of a lift C̃ of a
splitting conic C and, in particular, that |D| consists of a single member C̃, which
contradicts the existence of D1. Hence only one of (i) or (ii) occurs.

We put:

C ′B := {x ∈ B | x is v-smooth, (x,hB) = 2, x 2 = −2, x /∈%B},
CB := {x ∈ C ′B | for any l1, l2 ∈LB , we have x − (l1+ l2) /∈ 〈EB〉+};
C bB := {x ∈ CB | ιB(x) = x},
C lB := {x ∈ CB | ιB(x) = x}.

Corollary 5.17. The map Bi �→ [B̃i] induces a bijection from the set of irre-
ducible components Bi of B of degree 2 to the set C bB.

Corollary 5.18. The set C lB is equal to the set Z2(B) of the classes of lifts of
Z-splitting conics.

Next we study Z-splitting cubic curves. We put

GB := {g ∈ B | g2 = 0, (g,hB) = 3, and (g, v) ≥ 0 for any v ∈ EB ∪ LB},
G bB := {g ∈ GB | ιB(g) = g},
G lB := {g ∈ GB | ιB(g) = g}.
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Lemma 5.19. Every g ∈ GB is the class [Ẽ ] of a member of an elliptic pencil |Ẽ|
on XB.

Proof. We have an effective divisor D such that g = [D] and dim|D| > 0. We
decompose |D| into the movable part |M| and the fixed partI. Since dim|M| > 0,
we have (M,hB) ≥ 2 and hence (I,hB) ≤ 1. Therefore every irreducible compo-
nent C of I either is an element of EB or is mapped isomorphically to a line of P2.

In the latter case, we have [C] ∈ LB. Hence (C, g) ≥ 0 holds for any irreducible
component C of I by the definition of GB. Therefore g is nef. Then, by Nikulin
[17, Prop. 0.1], we have I = ∅ and there exists an elliptic pencil |Ẽ| on XB such
that |D| = m|Ẽ| for some integer m > 0. From (g,hB) = 3, we obviously have
m = 1.

By Proposition 3.6, we see that every g ∈Z3(B) is nef and hence satisfies (g, v) ≥
0 for any v ∈ EB ∪ LB. Combining Proposition 3.6 and Lemma 5.19, we obtain
the following statement.

Corollary 5.20. We have G lB = Z3(B).

Proposition 5.21. Suppose that B does not have any irreducible components of
degree ≤ 2. Then B is irreducible if and only if G bB = ∅.
Proof. Suppose that B is reducible. Then B is a union of two irreducible cubic
curves E0 and E∞. Note that, for each P ∈E0 ∩ E∞, either E0 or E∞ is smooth
at P. Let P ⊂ |OP2(3)| be the pencil spanned by E0 and E∞. Examining the
Jung–Horikawa resolution jB : WB → P2 explicitly, we see that jB resolves the
base points of P; hence we obtain an elliptic fibration

φP : WB → P1

onWB such that, by jB : WB → P2, the general fiber of φP is mapped to a member
of P and φ−1

P (0) and φ−1
P (∞) are mapped to E0 and E∞, respectively. Moreover,

the branching locus of π̃B : XB →WB is contained in φ−1
P (0) ∪ φ−1

P (∞). Indeed,
suppose that E0 is smooth at P ∈E0 ∩ E∞, and let F1, . . . ,Fm be the exceptional
curves of jB over P. There exists a unique Fi among them that intersects the strict
transform of E0. This component Fi becomes a section of φP , and the other com-
ponents are mapped to ∞ by φP . The multiplicity of Fi in the total transform of
B is even, so π̃B does not ramify along the section Fi.

Thus we have an elliptic fibration ψP : XB → P1 that fits in a commutative
diagram

XB
π̃B ��

ψP
��

WB

φP
��

P1
π̄B �� P1,

where π̄B : P1 → P1 is the double covering branching at 0 ∈ P1 and ∞∈ P1. Let
Ẽ ⊂ XB be the general fiber of the elliptic fibration ψP : XB → P1. Since Ẽ is
nef, we see that g := [Ẽ ]∈ B is an element of G bB.
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Conversely, suppose that g ∈ G bB. By Lemma 5.19 we have an elliptic fibration
ψ : XB → P1 such that the class of its general fiber Ẽ is g. Since ιB(g) = g, the
involution ιB preserves this elliptic fibration. Therefore ψ : XB → P1 is obtained
from an elliptic fibration φ : WB → P1 on WB = XB/〈ιB〉 by the base change
π̄ : P1 → P1 of degree 2. Since the branch points of π̄ consist of two points, the
branch curve of π̃B : WB → XB is contained in the union of two fibers of φ : WB →
P1, each of which is mapped to a cubic irreducible component of B.

Remark 5.22. Suppose that g ∈ G bB. Note that a point P ∈ SingB of type A1 is
an intersection point of the irreducible components E0 and E∞ of B if and only if
gP = 0. Therefore we can recover the configuration type of B from g.

Remark 5.23. There are additional necessary conditions for degsB to be [3, 3],
which are helpful in calculation. If degsB = [3, 3], thenRB consists of the follow-
ing ADE-types: A2, A2k−1, D5, D2k , and E7. Moreover, for a point P ∈ SingB
of type tP , the component gP of the vector g ∈ G bB should be the one indicated in
the following table.

tP A2 A1 A2k−1 (k > 1) D5 D4 D2k (k > 2) E7
∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣
gP 0 0 or e∨1 e∨k e∨5 e∨1 , e∨2, or e∨4 e∨1 or e∨2 e∨7

We now interpret these geometric results as lattice-theoretic results.

Definition 5.24. A fundamental system of roots is called irreducible if the cor-
responding Dynkin diagram is connected.

Let ' = [E ,h, ] be lattice data. We put

% := 〈h〉 ⊕ 〈E〉.
We denote by sing ' the set of irreducible components of E , and we let

E =
⊔

P∈sing '

EP

be the irreducible decomposition of E . We then have an orthogonal direct-sum
decomposition

 ⊗Q = 〈h〉 ⊗Q⊕
⊕
〈EP〉 ⊗Q.

We say that x ∈ is v-smooth at P ∈ sing ' if the component xP ∈ 〈EP〉 ⊗ Q of
x is either 0 or equal to some e∨i ∈ 〈EP〉∨, where e∨1 , . . . , e∨r is the basis of 〈EP〉∨
dual to the basis EP = {e1, . . . , er} of 〈EP〉. We say that x is v-smooth if x ∈ is
v-smooth at every P ∈ sing '.

Remark 5.25. The notion “v-smooth” is the lattice-theoretic version of the geo-
metric notion “v-smooth” defined in Definition 5.2.

We also define an involution ι of  ⊗ Q by Remark 5.10 with  B replaced by  
and ιB replaced by ι. Then we can define the subsets

L l('), Lb('), C l('), C b('), G l('), G b(')
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of  in the same way as we defined the sets L l(B), Lb(B), C l(B), C b(B), G l(B),
and G b(B) but with  B replaced by  , hB replaced by h, %B replaced by %,
v-smooth replaced by v-smooth, and ιB replaced by ι. If φ :  B ∼−→ is an iso-
morphism of lattice data from '(B) to ', then φ maps L l(B), Lb(B), C l(B), C b(B),
G l(B), and G b(B) to (respectively) L l('), Lb('), C l('), C b('), G l('), and G b(') bi-
jectively. In other words, these subsets of  B are determined only by the lattice
data of B.

Thus we have shown that the configuration type of a lattice-generic simple sex-
tic B is determined by the lattice type of B. Hence we obtain the following result,
which was proved by Yang in [32].

Corollary 5.26. Let B1 and B2 be simple sextics (not necessarily lattice-
generic) of the same lattice type. Then B1 ∼cfg B2 holds.

Proof. There exist lattice-generic simple sextics B ′1 and B ′2 such that B ′1 ∼eqs B1

and B ′2 ∼eqs B2. Since B ′1 ∼lat B
′
2, we have B ′1 ∼cfg B

′
2 by the previous argu-

ments. Thus B1 ∼cfg B2 follows.

We have also shown that the subsets Z1(B), Z2(B), and Z3(B) of B for a lattice-
generic simple sextic B are determined only by the lattice type of B, and hence
Theorem 3.2 is proved.

Computation 5.27. We have already obtained the complete list of lattice data
of simple sextics by Computation 4.11. For each piece ' = [E ,h, ] of the lattice
data in this list, we make the following calculation.

We compute the subsets L l('), Lb('), C l('), C b(') of  . If Lb(') = C b(') = ∅,
then we calculate G b('). Thus we determine the configuration type containing the
lattice type of the lattice data '. We then calculate

) :=
{
% + 〈Lb(')〉 + 〈C b(')〉 if Lb(') = ∅ or C b(') = ∅,

% + 〈G b(')〉 if Lb(') = C b(') = ∅,

and F' :=  /).
Suppose that L l(') = ∅ or C l(') = ∅. We confirm that F' = 0 and that the

equality  = ) + 〈L l(')〉 + 〈C l(')〉 holds. Suppose that L l(') = C l(') = ∅ but
F' = 0. We then calculate G l(') and confirm that G l(') consists of two elements,
that  = )+ 〈G l(')〉 holds, and that  /% is cyclic of order 4.

Remark 5.28. In order to determine whether or not two lattice types are con-
tained in the same configuration type, we have to use the combinatorial definition
of the configuration type; this is given in [4, Rem. 3], for example.

By this calculation, we prove Theorem 3.5, Theorem 3.21, and the first part of
Theorem 3.23. We also obtain the complete list of lattice data of Z-splitting pairs
(B,-) with deg- ≤ 2 or with z1(λ(B)) = z2(λ(B)) = 0, FB = 0, and - smooth
cubic. Our next task is to determine the relation of specializations among the lat-
tice data of Z-splitting pairs.
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6. Specialization of Lattice Types

For the study of specialization of lattice types, we need to refine the period map
τ1 : M1 → CL (see [5, Chap. VIII] or [6]). Consider the real vector bundle
R2π1∗R of rank 22 over the non-Hausdorff moduli space M1, where π1 : X1 →
M1 is the universal family of (marked)K3 surfaces. A point of this vector bundle
is given by (t, x), where t ∈M1 and x ∈H 2(Xt , R). We then put

M2 := {(t, κ)∈R2π1∗R | κ is a Kähler class of Xt };
that is, M2 is the base space of the universal family of the triples (X,φ, κ), where
(X,φ) is a marked K3 surface and κ is a Kähler class of X.

For a point [ω] of CL , we put

H [ω] := {x ∈L⊗ R | (x,ω) = 0},
NS[ω] := H [ω] ∩ L (as defined in Section 5),

D [ω] := {d ∈NS[ω] | d 2 = −2},
- [ω] := {x ∈H [ω] | x 2 > 0},

0- [ω] := {x ∈- [ω] | (x, d) = 0 for all d ∈D [ω]}.
We then put

HCL := {([ω], x)∈CL × (L⊗ R) | x ∈H [ω]},
KCL := {([ω], x)∈CL × (L⊗ R) | x ∈- [ω]},

0KCL := {([ω], x)∈CL × (L⊗ R) | x ∈ 0- [ω]}.
We have a commutative diagram

0KCL ↪ ��

JC
����

��
��

��
�

KCL ↪ ��

��

HCL

����
��

��
��

�

CL ,

(6.1)

where the maps to CL are the projection onto the first factor. Note that KCL and
HCL are locally trivial fiber spaces over CL. We have the following lemma.

Lemma 6.1 [5, Chap. VIII, Cor. 9.2]. The space 0KCL is open in KCL , and
hence the projection JC is an open immersion.

Let t be a point of M1, and let

[ωt ] := τ1(t)∈CL

be the period point of (Xt ,φt). Then the marking φt : H 2(Xt , Z) ∼−→L mapsHXt
to H [ωt ], -Xt to - [ωt ], NS(Xt) to NS[ωt ], and DXt to D [ωt ]; hence φt maps 0-Xt
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to 0- [ωt ]. Since every Kähler class of Xt is contained in the Kähler cone KXt ⊂
0-Xt , we can define a map

τ2 : M2 → 0KCL ,

which is called the refined period map, by

τ2(t, κ) := (τ1(t),φt(κ)).

Then we obtain a commutative diagram

M2
τ2 ��

JM
��

0KCL

JC

��

M1
τ1 �� CL ,

(6.2)

where the vertical arrows JM and JC are the forgetful maps.
The following statement plays a crucial role in the study of specialization of

lattice types.

Theorem 6.2 [5, Chap. VIII, Thms. 12.3 and 14.1]. The refined period map τ2

is an isomorphism.

The specialization of lattice types of simple sextics and Z-splitting pairs can be
described by geometric embeddings of lattice data.

Definition 6.3. Let ' = [E ,h, ] and '0 = [E0,h0, 0 ] be lattice data. By a
geometric embedding of ' into '0 we mean a primitive embedding σ :  ↪→  0

of the lattice  into the lattice  0 that satisfies σ(h) = h0 and σ(E ) ⊂ 〈E0〉+.
Definition 6.4. Let 'P = [E ,h, , S ] and 'P0 = [E0,h0, 0, S0 ] be extended
lattice data. A geometric embedding of 'P into 'P0 is a geometric embedding
σ :  ↪→  0 of [E ,h, ] into [E0,h0, 0 ] such that

σ(S) ⊂ S0 + 〈E0〉+ := (v+0 + 〈E0〉+) ∪ (v−0 + 〈E0〉+), where S0 = {v±0 }.
Let f : B → 4 be an analytic family of simple sextics, where f is the projection
from B ⊂ P2 ×4 to 4 and Bt := f −1(t) is a simple sextic on P2 × {t} for any
t ∈4. Suppose that f is equisingular over4×. We define a geometric embedding

σB,t :  Bt ↪→  B0

of the lattice data '(Bt ) with t = 0 into the lattice data '(B0) as follows. We con-
sider the double cover

YB → P2 ×4
branching exactly along B. Note that every fiber of YB → 4 is birational to a
K3 surface. Therefore, by Kulikov [15], there exists a birational transformation
XB → YB such that the composite holomorphic map

πB : XB → 4
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is a smooth family of K3 surfaces. Note that the fiber of πB over t ∈ 4 is iso-
morphic to XBt . Note also that XB has a line bundle LB such that the class of the
restriction of LB to XBt = π−1

B (t) is equal to hBt ∈ H 2(XBt , Z) for any t ∈ 4.
Then we have a trivialization

R2πB∗Z ∼= 4× L,

which induces markingsH 2(XBt , Z)
∼−→L for any t ∈4. Using this trivialization,

we obtain a primitive embedding σB,t :  Bt ↪→  B0 of lattices by the specializa-
tion homomorphism

H 2(XBt , Z)
∼−→H 2(XB0 , Z).

This σB,t induces a geometric embedding of the lattice data '(Bt ) for t = 0 into
the lattice data '(B0). Indeed, σB,t maps hBt to hB0 because the polarizations on
XBt form a family LB. Moreover, any exceptional (−2)-curve onXBt (t = 0) de-
generates into an effective divisor onXB0 , whose reduced irreducible components
must be exceptional (−2)-curves on XB0 because its degree with respect to the
polarization hB0 is 0.

Proposition 6.5. Let {(Bt ,-t)}t∈4 be an analytic family ofZ-splitting pairs that
is equisingular over 4×. Then the geometric embedding σB,t of '(Bt ) with t = 0
into '(B0) yields a geometric embedding of the extended lattice data 'P(Bt ,-t)
with t = 0 into the extended lattice data 'P(B0,-0).

Proof. Since -t degenerates into -0, the curve -̃+t ⊂ XBt for t = 0 degenerates
into an effective divisor on XB0 that is the sum of -̃+0 (or -̃−0 ) and some excep-
tional (−2)-curves on XB0 . Hence the geometric embedding σB,t :  Bt ↪→  B0

of '(Bt ) into '(B0) constructed previously satisfies σB,t([-̃+t ]) ∈ [-̃+0 ] + 〈EB0〉+
or σB,t([-̃+t ])∈ [-̃−0 ]+ 〈EB0〉+.

Corollary 6.6. Let λP0 and λP be lattice types of Z-splitting pairs, and let 'P0
and 'P be the corresponding extended lattice data. If λP0 is a specialization of λP,
then there exists a geometric embedding of 'P into 'P0 .

Since a geometric embedding σ :  B ↪→  B0 of 'P(B,-) into 'P(B0,-0) induces
a homomorphism of finite abelian groupsGB → GB0 that maps ([-̃+ ] mod%B)∈
GB to ([-̃+0 ] mod%B0) ∈ GB0 or ([-̃−0 ] mod%B0) ∈ GB0 , we obtain our next
corollary.

Corollary 6.7. If λP0 = λP(B0,-0) is a specialization of λP = λP(B,-), then
the class order of λP0 is a divisor of the class order of λP.

In order to show that the existence of a geometric embedding of lattice data with
certain properties is sufficient for the existence of the specialization, we prepare
two easy lemmas.

Let π : X → 4 be a smooth family of K3 surfaces. We put Xt := π−1(t).
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Lemma 6.8. Let s be a section ofR2π∗Z. If st := s|Xt ∈H 2(Xt , Z) is contained
in H1,1(Xt) for any t ∈4, then there exists a line bundle LX on X such that the
class of the restriction L t := LX |Xt is equal to st .

Proof. This follows immediately from the commutative diagram

H1(X , O×) �� H 2(X , Z) ��

&
��

H 2(X , O)
&

��

H 0(4,R2π∗Z) �� H 0(4,R2π∗O),
where the horizontal sequences are induced from the exponential exact sequence
0 → Z → O → O× → 0.

Lemma 6.9. Let LX be a line bundle on X , and let L t := LX |Xt for t ∈ 4.
If h1(X0, L0) = 0 and h0(X0, L0) > 0, then there exists a linear subspace
V ⊂ H 0(X , LX ) of dimension equal to h0(X0, L0) such that, after replacing
4 with a smaller disc if necessary, the restriction homomorphism H 0(X , LX )→
H 0(Xt , L t ) maps V isomorphically onto H 0(Xt , L t ) for any t ∈4.
Proof. From h0(X0, L0) > 0, we have h2(X0, L0) = 0. By the semi-continuity
theorem, the assumption h1(X0, L0) = 0 implies that both h1(Xt , L t ) = 0 and
h0(Xt , L t ) = h0(X0, L0) for t in a sufficiently small neighborhood of 0 because
L2
t ∈ Z is constant. Hence, by replacing 4 with a smaller disc if necessary, we

can assume that H1(X , LX ) = 0 and hence H1(X , LX (−Xt)) = 0 holds for any
t ∈4 because LX ∼= LX (−Xt) on X . Therefore, the restriction homomorphism
H 0(X , LX )→ H 0(Xt , L t ) is surjective for any t ∈4.
The following proposition seems to be well known. However, we present a com-
plete proof because it illustrates how the refined period map is used for the study
of specializations of simple sextics and it also sets up various tools necessary for
the proof of Proposition 6.16.

Proposition 6.10. Let '0 = [E0,h0, 0 ] and ' = [E ,h, ] be lattice data of sim-
ple sextics. Suppose that a simple sextic B0 with an isomorphism α0 :  0

∼−→ B0

of lattice data from '0 to '(B0) is given. If a geometric embedding σ :  ↪→  0 of
' into '0 is given, then we can construct an analytic family f : B → 4 consisting
of simple sextics Bt = f −1(t) and isomorphisms

αt :  ∼−→ Bt

of lattice data from ' to '(Bt ) for t = 0 that satisfy the following conditions:

(i) the central fiber f −1(0) of f is the given simple sextic B0;
(ii) f is equisingular over 4×;

(iii) for t = 0, the composite α−1
0 ' σB,t ' αt :  ↪→  0 is equal to the given geo-

metric embedding σ of ' into '0; and
(iv) the locus of all t ∈4 such that Bt is lattice-generic is dense in 4.
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Proof. For simplicity, we put
X0 := XB0 .

We fix a marking
φ0 : H 2(X0, Z) ∼−→L.

By α0 and φ0, we obtain a primitive embedding

ψ :  0 ↪→ L;
by the composition of σ and ψ, we obtain a primitive embedding

ψ ' σ :  ↪→ L.

From now on, we consider and 0 as primitive sublattices of L by ψ ' σ and
ψ, respectively:

 ⊂  0 ⊂ L.

In particular, we have h = h0 = φ0(hB0) ∈ L as well as E0 = φ0(EB0) ⊂ L and
E ⊂ 〈E0〉+ ⊂ L. Moreover, we have inclusions of complex submanifolds

Cψ⊥ ⊂ C(ψ'σ)⊥ ⊂ CL.

Let [η0 ] ∈CL be the period point of the marked K3 surface (X0,φ0). Then [η0 ]
is a point of Cψ⊥ . We choose an analytic embedding

δ : 4 ↪→ C(ψ'σ)⊥

of the open unit disk 4 ⊂ C into a sufficiently small neighborhood of [η0 ] such
that (a) δ(0) = [η0 ], (b) δ−1(C$(ψ'σ)⊥) = 4 \ {0} holds, and (c) δ−1(C$$(ψ'σ)⊥) is
dense in4. (These properties can be achieved becauseC$(ψ'σ)⊥ is open inC(ψ'σ)⊥
and C$$(ψ'σ)⊥ is dense in C(ψ'σ)⊥ .) We write

δ(t) = [ηt ]∈CL.

Consider the pull-back

0KCδ ↪ ��

����
��

��
��

�
KCδ ↪ ��

��

HCδ

����
��

��
��

�

4

(6.3)

of the diagram (6.1) by δ : 4 ↪→ C(ψ'σ)⊥ ↪→ CL. For simplicity, we put

H := H [η0 ] and - := - [η0 ].

Then we have trivializations

KCδ ∼= 4× - and HCδ ∼= 4×H (6.4)

over 4 that extend the identity maps over 0 ∈ 4 and such that the inclusion
KCδ ↪→ HCδ is the Cartesian product of the identity map of4 and the inclusion
- ↪→ H. Since ([ω],h) ∈ KCL for any [ω] ∈ C(ψ'σ)⊥ , we have a section t �→
(δ(t),h) of KCδ → 4.
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We choose the trivialization (6.4) in such a way that KCδ ∼= 4× - maps this
section to the constant section t �→ (t,h) of4×-→ 4. For a vector d ∈L with
d 2 = −2 and a point [ω]∈CL with (ω, d) = 0, we put

W(d) := {x ∈L⊗ R | (x, d) = 0} and d⊥[ω] := W(d) ∩H [ω].

Then d⊥[ω] is a hyperplane of the real vector spaceH [ω]. Since 〈E〉 ⊂ 〈E0〉+, we see
that 〈E〉 is a sublattice of 〈E0〉, and hence the setD〈E〉 of roots in 〈E〉 is a subset of
the set D〈E0〉 of roots in 〈E0〉:

D〈E〉 ⊂ D〈E0〉.
We have

D〈E〉 ⊂ D [ηt ] for any t ∈4 and D〈E0〉 ⊂ D [η0 ].

More precisely, we have

D〈E〉 = {d ∈D [ηt ] | h∈ d⊥[ηt ]} for t = 0, (6.5)

because δ(t)∈C$(ψ'σ)⊥ for t = 0, and

D〈E0〉 = {d ∈D [η0 ] | h∈ d⊥[η0 ]}. (6.6)

We choose the trivialization (6.4) in such a way that, for each d ∈D〈E〉, the iso-
morphism HCδ ∼= 4×H maps the family of walls {([ηt ], x)∈HCδ | x ∈ d⊥[ηt ]}
over 4 to the constant family 4× d⊥[η0 ]. We denote by 0(4× -) the open subset
of 4× - that corresponds to the open subset 0KCδ ⊂ KCδ by the trivialization,
and we put

W := (4× -) \ 0(4× -).
Recall that the complement of 0KCδ in KCδ is the union of walls

{([ηt ], x)∈KCδ | x ∈ d⊥[ηt ] for some d ∈D [ηt ]}.
Therefore, by the description (6.5) and (6.6) of walls passing through h, if B ⊂ -
is a sufficiently small ball with the center h then

(4× B) ∩W =
⋃
d∈D〈E〉

(4× d ′⊥[η0 ]) ∪
⋃

d∈D〈E0〉\D〈E〉
({0} × d ′⊥[η0 ]),

where d ′⊥[η0 ] := d⊥[η0 ] ∩ -. In other words, the projection

0(4× -) ∩ (4× B)→ 4

is a constant family of cones in the ball B partitioned by the walls associated with
d ∈D〈E〉 over 4×, where the central fiber is partitioned further by the walls asso-
ciated with d ∈D〈E0〉 \D〈E〉.

We have a unique connected component of the central fiber
0(4× -) ∩ ({0} × B) ⊂ {0} × - = - [η0 ]

that is mapped to the Kähler cone KXB0
⊂ 0-XB0

of XB0 via the marking φ0. We
choose a point (0, v0) from this connected component. Then v0 ∈ - [η0 ] corre-
sponds to a Kähler class of XB0 via the marking φ0. In particular, we have
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(v0, e) > 0 for any e ∈ E0.

Since E ⊂ 〈E0〉+, we have

(v0, e) > 0 for any e ∈ E . (6.7)

By the foregoing description of 0(4× -) ∩ (4× B), we see that (t, v0)∈4× -
is a point of 0(4× -) for any t ∈4. We denote by

δ̃ : 4→ 0KCδ

the section of KCδ → 4 corresponding to the constant section t �→ (t, v0) of
0(4× -)→ 4, and we let

δ̃M : 4→ M2

be the map corresponding to δ̃ via τ2. We denote by (Xt ,φt , κt ) the marked K3
surface (Xt ,φt) with a Kähler class κt corresponding to δ̃M(t) ∈M2. Let hXt ∈
H 2(Xt , Z) be the vector such that φt(hXt ) = h. Since ηt ⊥ h, we have hXt ∈
NS(Xt). Suppose that t = 0. Since h is contained in the closure of the connected
component of 0- [ηt ] containing φt(κt ), the class hXt ∈NS(Xt) is nef by Proposi-
tion 4.5. By Proposition 4.7 and δ(t) ∈C$(ψ'σ)⊥ , condition (4.2) in the definition
of C$(ψ'σ)⊥ implies that hXt is the class of a polarization L t of degree 2 on Xt .
Note that we have (κt , e) > 0 for any e ∈ φt(E ) by (6.7). By δ(t) ∈ C$(ψ'σ)⊥
again, condition (4.1) in the definition of C$(ψ'σ)⊥ implies that φ−1

t (E ) is a funda-
mental system of roots in 〈hXt〉⊥ ⊂ NS(Xt) associated with the Kähler class κt .
Consequently, Proposition 4.8 implies that φ−1

t (E ) is equal to the set of classes of
(−2)-curves contracted by @|L t | : Xt → P2. Let Bt be the branch curve of @|L t |.
Then the markings φt : H 2(Xt , Z) ∼= L yield isomorphisms of lattices from Bt ⊂
H 2(Xt , Z) to ⊂ L that induce isomorphisms of lattice data '(Bt ) ∼= ' for t = 0.
We define αt :  ∼−→ Bt to be the inverse of this isomorphism.

We will show that, making4 smaller if necessary, these simple sextics Bt form
an analytic family. Let πδ̃ : Xδ̃ → 4 be the family ofXt , which is the pull-back of
the universal family π1 : X1 → M1 byJM ' δ̃M. Then t �→ hXt gives a section of
R2πδ̃∗Z. By Lemma 6.8, there exists a line bundle LX on Xδ̃ such that the restric-
tion LX |Xt is equal to the polarization L t given previously for any t ∈ 4. Note
that h0(X0, L0) = 3 and h1(X0, L0) = 0 by Nikulin [17, Prop. 0.1]. Therefore,
shrinking 4 if necessary, we have a 3-dimensional subspace V of H 0(Xδ̃ , LX )
such that the restriction homomorphism maps V onto H 0(Xt , L t ) isomorphically
for any t ∈4. In particular, the linear system V has no base points. Considering
the morphism

@V : Xδ̃ → P2

induced byV, we obtain an analytic family of morphismsXt → P2 with the branch
curve Bt ⊂ P2 and hence an analytic family of simple sextics over 4. It is obvi-
ous that this analytic family and the isomorphisms αt :  ∼−→ Bt of lattice data
from ' to '(Bt ) for t = 0 have the required properties.
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By Proposition 6.10 together with the construction of the geometric embedding
σB,t , we obtain the following result.

Corollary 6.11. Let λ0 and λ be lattice types of simple sextics, and let '0 and
' be the corresponding lattice data. Then λ0 is a specialization of λ if and only if
there exists a geometric embedding of ' into '0.

Remark 6.12. By the theory of adjacency of singularities [2; 29], we see that if
λ(B0) is a specialization of λ(B) then the Dynkin diagram of RB is a subgraph of
the Dynkin diagram of RB0 .

Let B be a simple sextic and letD := C1+· · ·+Cm be an effective divisor onXB ,
where C1, . . . ,Cm are reduced and irreducible. A subcurve of D is, by definition,
a divisor

C := Ci1 + · · · + Cin ,
where {Ci1, . . . ,Cin} is a (possibly empty) subset of {C1, . . . ,Cm}.
Lemma 6.13. Let D := C1 + · · · + Cm be an effective divisor on XB. We put
h1(D) := dimH1(XB , O(D)).

(1) Suppose that D2 = −2. For h1(D) = 0 to hold, it is sufficient that C2 ≤
−2 hold for any nonempty subcurve C of D.

(2) Suppose that D2 = 0 and (D,hB) = 3. For h1(D) = 0 to hold, it is suffi-
cient that C2 ≤ 0 hold for any nonempty subcurve C of D.

Proof. Let |M| be the movable part of |D|, whereM is a subcurve ofD. Suppose
thatD2 = −2. If h1(D) > 0, then we have |M| = ∅ and henceM 2 ≥ 0. Suppose
that D2 = 0 and (D,hB) = 3. If h1(D) > 0, then either M 2 > 0 or |M| =
m|E| with m > 1 for some elliptic pencil |E|. Since (D,hB) = 3, we would have
(E,hB) = 1 in the latter case, which is absurd.

We translate this geometric fact into a lattice-theoretic sufficient condition that can
be easily checked by a computer.

Definition 6.14. Let 'P = [E ,h, , {v±}] be extended lattice data, and let

w := v+ +
∑
mee (e ∈ E , me ≥ 0)

be an element of v+ + 〈E〉+. We say that u ∈ is a subcurve vector of w if u is
nvv

+ +∑
nee with me ≥ ne ≥ 0 for any e ∈ E and any nv = 0 (or nv = 1).

Suppose thatw2 = −2 or thatw2 = 0 and (w,h) = 3.We say thatw satisfies the
vanishing-h1 condition if u2 ≤ w2 holds for any nonzero subcurve vector u of w.
We define the vanishing-h1 condition for elementsw of v−+〈E〉+ in the same way.

Definition 6.15. We say that a geometric embedding σ of 'P = [E ,h, , {v±}]
into 'P0 = [E0,h0, 0, {v±0 }] satisfies the vanishing-h1 condition if σ(v+) ∈
{v±0 } + 〈E0〉+ satisfies the vanishing-h1 condition.
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Proposition 6.16. Let 'P = [E ,h, , {v±}] and 'P0 = [E0,h0, 0, {v±0 }] be the
lattice data of Z-splitting pairs (B,-) and (B0,-0), respectively. Suppose that -
and -0 are smooth of degree ≤ 3. Then the lattice type λP(B0,-0) is a special-
ization of the lattice type λP(B,-) if there exists a geometric embedding σ :  ↪→
 0 of 'P into 'P0 that satisfies the vanishing-h1 condition.

Proof. By Remark 2.27, we can assume that the representatives (B,-) and (B0,-0)

of λP(B,-) and λP(B0,-0) are lattice-generic. We fix a marking

φ0 : H 2(XB0 , Z) ∼−→L.

We then consider 0 as a primitive sublattice of L in such a way that the marking
φ0 induces an isomorphism

φ0 :  B0
∼−→ 0

of lattice data from 'P(B0) to 'P0 . By Proposition 6.10, we have an analytic fam-
ily {Bt }t∈4 of simple sextics constructed from the geometric embedding σ :  ↪→
 0 of ' = [E ,h, ] into '0 = [E0,h0, 0 ] and the isomorphism φ0. Let

πδ̃ : Xδ̃ → 4

be the smooth family of K3 surfaces constructed in the proof of Proposition 6.10.
Then Xt := π−1

δ̃
(t) is equal to XBt and is equipped with markings

φt : H
2(Xt , Z) ∼−→L

that are continuously varying with t. We have lifts -̃±0 of -0 on X0 = XB0 . Our
aim is to deform -̃±0 to curves on Xt that are the lifts of Z-splitting curves for Bt .

By construction, the markings φt induce isomorphisms of lattices

φt :  Bt
∼−→ 

for t = 0 that induce an isomorphism of lattice data '(Bt ) ∼= '. Moreover, the
specialization homomorphism

H 2(Xt , Z) ∼−→H 2(X0, Z)

induces the geometric embedding σ :  ↪→  0 of ' to '0 under the isomorphisms
φt (t = 0) and φ0. Then v+ ∈  with σ(v+) ∈  0 gives rise to a section ṽ of
the locally constant system R2πδ̃∗Z on 4; namely, ṽt := ṽ|Xt ∈ H 2(Xt , Z) is
mapped by φt to v+ for t = 0 and to σ(v+) for t = 0. In particular, we have ṽt ∈
H1,1(Xt) for any t ∈4; hence, by Lemma 6.8, there exists a line bundle D on Xδ̃
such that the class of Dt := D|Xt is equal to ṽt . Since [E ,h, , {v±}] is the lattice
data of (B,-), the assumption that - is smooth of degree ≤ 3 implies that v+ sat-
isfies either (v+)2 = −2 or both (v+)2 = 0 and (v+,h) = 3; hence σ(v+) ∈ 0

also satisfies

(σ(v+))2 = −2 or (σ(v+))2 = 0 and (σ(v+),h0) = 3.

Therefore Lemma 6.13 can be applied, and the assumption that σ(v+) satisfies the
vanishing-h1 condition implies

H1(X0, D0) = 0.
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After we interchange v+0 and v−0 (and hence -̃+0 and -̃−0 ) if necessary, there exist
a finite number of exceptional (−2)-curves ei on X0 such that

ṽ0 =
[
-̃+0 +

∑
ei

]
.

Let s0 be the section of the invertible sheaf O(
-̃+0 +

∑
ei

)
onX0 such that s0 = 0

defines the divisor -̃+0 +
∑
ei . By Lemma 6.9, there exists a section s ∈H 0(Xδ̃ , D)

such that its restriction to X0 is s0. We put st := s|Xt for t = 0 and let -̃t be the
curve on Xt cut out by st = 0. Since φt([-̃t ]) = v+ ∈  , we have [-̃t ] ∈  Bt .
Since [E ,h, , {v±}] is the lattice data of (B,-) and since [-̃±]∈Zn(B)with n =
deg- = (v+,h) ≤ 3, we see that if Bτ is lattice-generic with τ = 0 then

[-̃τ ]∈Zn(Bτ )

holds by Theorem 3.2. In particular, if n < 3 then -̃t is a (−2)-curve. When n = 3
we replace s by s + s ′, where

s ′ ∈H 0(Xδ̃ , D(−X0)) = H 0(Xδ̃ , D)⊗O4(−0)

is chosen generally, and we assume that -̃t is irreducible. We denote by -t the im-
age of -̃t by the double coveringXBt → P2. Then -t is a smoothZ-splitting curve
that degenerates to -0. Since the lattice data of (Bt ,-t) for t = 0 is isomorphic to
'P, the analytic family (Bt ,-t)t∈4 of Z-splitting pairs gives rise to the specializa-
tion of 'P to 'P0 .

Computation 6.17. By Computation 5.27, we have obtained the complete list
LDn of lattice data of Z-splitting pairs (B,-) with n := deg- ≤ 2 as well as
the complete list LD3 of lattice data of Z-splitting pairs (B,-) with z1(λ(B)) =
z2(λ(B)) = 0, FB = 0, and - a smooth cubic.

For each 'P = [E ,h, , S ] in LD1 (resp. LD2), we calculate the class order d of
'P (i.e., the order of v ∈ S in the finite abelian group  /(〈h〉 ⊕ 〈E〉)) and confirm
that d is either 6, 8, 10, or 12 (resp., 3, 4, 5, 6, 7, or 8).

For each n = 1, 2 and the class order d, we denote by LDn,d the set of lattice data
'P ∈ LDn with the class order d and denote by lPn,d the member of LDn,d whose to-
tal Milnor number µB = rank〈E〉 is minimal. It turns out that the condition that
µB be minimal determines lPn,d uniquely and that the corresponding lattice types
are equal to λPlin,d or λPcon,d , given in Definition 3.12 or 3.17 according as n = 1 or
2. Then, for each 'P in LDn,d that is not lPn,d , we search for a geometric embed-
ding of lPn,d into 'P that satisfies the vanishing-h1 condition and confirm that there
exists at least one such embedding. Thus Theorems 3.13 and 3.19 are proved.

We also confirm that there exists unique lattice data lPQC in LD3 with µB being
minimal; that the lattice type corresponding to lPQC is λQC,n; and that, for each
piece of lattice data 'P in LD3 that is not lPQC , there exists at least one geomet-
ric embedding of lPQC into 'P that satisfies the vanishing-h1 condition. Thus the
second half of Theorem 3.23 is also proved.
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Table 7.1 The Isotropic Subgroups Hi

Generators

H0 0 0
H1 [[0, 4, 4, 0]] Cyclic of order 2
H2 [[1, 1, 1, 1]] Cyclic of order 8
H3 [[2, 2, 2, 0]] Cyclic of order 4

7. Demonstration

We demonstrate the calculations for the ADE-type A3 + 2A7. Let 〈E〉 be the
negative-definite root lattice of type A3 + 2A7 with a distinguished fundamental
system of roots

E = {t1, t2, t3} ⊥ {e1, . . . , e7} ⊥ {e ′1, . . . , e ′7},
where {t1, t2, t3} is of typeA3 with (ti, ti+1) = 1 for i = 1, 2 and where {e1, . . . , e7}
and {e ′1, . . . , e ′7} are of typeA7 with (ei, ei+1) = (e ′i, e ′i+1) = 1 for i = 1, . . . , 6. The
automorphism group Aut(E ) of E is isomorphic to {±1} × ({±1} &S2), where the
first factor is the involution t1 ↔ t3 of A3 and where {±1} &S2 is the wreath prod-
uct of the involution ei ↔ e8−i of A7 and the permutation of the components of
2A7. We put

% = 〈E〉 ⊕ 〈h〉,
where h2 = 2. Then the discriminant group %∨/% of % is

〈t̄ ∨3 〉 ⊕ 〈ē∨7 〉 ⊕ 〈ē ′∨7 〉 ⊕ 〈h̄∨〉 ∼= (Z/4Z)⊕ (Z/8Z)⊕ (Z/8Z)⊕ (Z/2Z),

where x̄ = x mod%. Here the discriminant form q : %∨/% → Q/2Z of % is
given by

q(w, x, y, z) = −3

4
w2 − 7

8
x 2 − 7

8
y2 + 1

2
z2 mod 2Z ,

where (w, x, y, z) = wt̄ ∨3 + xē∨7 + yē ′∨7 + zh̄∨. We determine all isotropic sub-
groups H such that the corresponding overlattice  =  (H ) satisfies the three
conditions in Proposition 4.10. Up to the action of Aut(E ), these subgroups are
given in Table 7.1. Hence there exist four lattice types λ(Hi) of simple sextics B
with RB = A3 + 2A7. We denote by B(Hi) a lattice-generic member of λ(Hi).

Next we calculate the subsets L(Hi) := LB(Hi) and C(Hi) := CB(Hi) of  (Hi)
for eachHi and then deduce information about the geometry of B(Hi). From now
on, vectors in  (Hi) ⊂ %∨ are written with respect to the basis

t∨1 , . . . , t∨3 , e∨1 , . . . , e∨7, e ′∨1 , . . . , e ′∨7 ,h∨

of %∨ that is dual to E ∪ {h}.
(H0) We have L(H0) = ∅ and C(H0) = ∅. Hence B(H0) is irreducible. (If

degsB(H0) = [3, 3], then the two cubic irreducible components would intersect
with multiplicity 10.) Moreover, we have z1(λ(H0)) = z2(λ(H0)) = 0.
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(H1)We have L(H1) = ∅ and C(H1) = {u}, where

u := [0, 0, 0, 0, 0, 0,1, 0, 0, 0, 0, 0, 0,1, 0, 0, 0, 2].

Since u is invariant under the involution on  (H1), we have degsB(H1) = [2, 4]
with the irreducible component of degree 2 passing through twoA7 points and dis-
joint from the tacnode A3. Moreover, we have z1(λ(H1)) = z2(λ(H1)) = 0. This
lattice type is denoted by λB,n in Proposition 3.11.
(H2)We have L(H2) = {v, ιB(v)} and C(H2) = {u}, where

v := [1, 0, 0,1, 0, 0, 0, 0, 0, 0,1, 0, 0, 0, 0, 0, 0,1] = ιB(v)
and u is the same vector as in (H1). Hence we have B(H2) ∼cfg B(H1) as well
as z1(λ(H2)) = 1 and z2(λ(H2)) = 0. This lattice type is denoted by λB,l . The
class v of the lift of aZ-splitting line is of order 8 in the discriminant group%∨/%.
Because there are no Z-splitting lines of class order 8 for simple sextics of total
Milnor number < 17, it follows that the Z-splitting line for B(H2) is the origina-
tor of the lineage of Z-splitting lines of class order 8 whose lattice type is denoted
by λPlin,8.

(H3)We have L(H3) = ∅ and C(H3) = {u,w, ιB(w)}, where

w := [0,1, 0, 0,1, 0, 0, 0, 0, 0, 0,1, 0, 0, 0, 0, 0, 2] = ιB(w)
and u is the same vector as in (H1). Hence we have B(H3) ∼cfg B(H1) as well as
z1(λ(H3)) = 0 and z2(λ(H3)) = 1. This lattice type is denoted by λB,c. The class
w = [-̃] of the lift of a Z-splitting conic - is of order 4 in the discriminant group
%∨/%. The conic - is tangent to the quartic irreducible component of B(H3) at
the three singular points of B(H3).

Next we describe the originator of the lineage of Z-splitting conics of class
order 4 and how the Z-splitting conic for B(H3) is obtained from this originator
by specialization.

Any simple sextic of total Milnor number< 14 does not have Z-splitting conics
of class order 4, and there exists a unique lattice type λb,c of total Milnor num-
ber 14 whose lattice-generic member B ′ has a Z-splitting conic - of class order 4.
TheADE-type of the lattice type is 2A1+4A3. Consider the negative-definite root
lattice 〈E ′ 〉 of type 2A1+ 4A3 with a distinguished fundamental system of roots

E ′ := {a(1)} ⊥ {a(2)} ⊥ {b(1), c(1), d(1)} ⊥ · · · ⊥ {b(4), c(4), d(4)},
where {a(ν)} is of type A1 and {b(ν), c(ν), d(ν)} is of type A3 with (b(ν), c(ν)) =
(c(ν), d(ν)) = 1. We put

%′ = 〈E ′ 〉 ⊕ 〈h〉.
The discriminant group of %′ is isomorphic to

(Z/2Z)2 ⊕ (Z/4Z)4 ⊕ (Z/2Z),
with

q ′(x1, x2, y1, y2, y3, y4, z)

= −1

2
x 2

1 −
1

2
x 2

2 −
3

4
y2

1 −
3

4
y2

2 −
3

4
y2

3 −
3

4
y2

4 +
1

2
z2 mod 2Z.
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The overlattice  B ′ of the lattice type λb,c corresponds to the isotropic subgroup

H ′ := 〈[1,1,1,1,1,1, 0]〉,
which is cyclic of order 4. We denote vectors of  B ′ ⊂ (%′)∨ with respect to the
basis of (%′)∨ dual to the basis E ′ ∪ {h} of %′. Then the classes of the lifts of the
Z-splitting conic - ′ for the lattice-generic member B ′ of λb,c are equal to

w ′ := [1,1, 0, 0,1, 0, 0,1, 0, 0,1, 0, 0,1, 2]

and ιB(w ′). Let σ : (%′)∨ → %∨ be the homomorphism given by the matrix




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−a −a 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −b −a −c b a c 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 b −a −b −b −a b 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 c a b b −a −b 0 0 0 0

0 0 0 0 0 −c −a −b c a b 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 b a −b 0 0 0 0 0 0 −b −a −c 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 −b a b 0 0 0 0 0 0 b a −b 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −c −a −b 0 0 0 0 0 0 −b a b 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




,

where a = 1/2, b = 1/4, and c = 3/4. It can be easily checked that σ(h) =
h, that σ(E ′) ⊂ 〈E〉+, and that σ embeds the lattice  B ′ ⊂ (%′)∨ into the lattice
 B(H3) ⊂ %∨ primitively. Moreover, we have

σ(w ′) = w + t2 + e ′2.
We can easily see that σ(w ′) = w + t2 + e ′2 satisfies the vanishing-h1 condition.
Therefore, λP(B(H3),-) is a specialization of λP(B ′,- ′).

Remark 7.1. There are six configuration types and seven lattice types withADE-
type 2A1+ 4A3.

Remark 7.2. This triple {λB,c, λB,l , λB,n} is the example of lattice Zariski triple
with the smallest total Milnor number.

Remark 7.3. LetBτ be a sextic in the lattice type λB,τ , where τ = c, l, n, and let
Bτ = Cτ ∪Qτ be the irreducible decomposition ofBτ with degQτ = 4. Consider
the normalization
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ν : Q̃τ → Qτ

of the quartic curve Qτ with one tacnode. Then Q̃τ is a curve of genus 1. Let
p, q ∈ Q̃τ be the inverse images of the tacnode, and let s, t ∈ Q̃τ be the inverse im-
ages of the two A7-singular points Cτ ∩Qτ . Then, in the elliptic curve Pic0(Q̃τ ),
the order of the class of the divisor p + q − s − t on Q̃τ is 4, 2, or 1 according as
τ = c, l, or n.

8. Miscellaneous Facts and Final Remarks

8.1. Numerical Criterion of the Pre-Z-Splittingness

Definition 8.1. Let - be a smooth splitting curve for B that is not contained in
B. Let P be a singular point of B. We define σP (-)∈Q as follows. If P /∈-, we
put σP (-) := 0. Suppose that P ∈-. If P is of type Al , then

σP (-) := −m2/(l + 1), where m = min(τP (-̃
+), l + 1− τP (-̃+)).

(Recall that τP (-̃+) is defined in Definition 3.15.) If P is of type Dm, then

σP (-) :=



−m/4 if m is even and τP (-̃+) = 1 or 2,

1/2−m/4 if m is odd and τP (-̃+) = 1 or 2,

τP (-̃
+)−m− 1 if τP (-̃+) ≥ 3.

If P is of type En, then σP (-) is defined by the following table.

τP (-̃
+) 1 2 3 4 5 6 7 8

E6 −2 −2/3 −8/3 −6 −8/3 −2/3
E7 −7/2 −2 −6 −12 −15/2 −4 −3/2
E8 −8 −4 −14 −30 −20 −12 −6 −2

Using Remark 5.10, we can easily check that σP (-) does not depend on the choice
of the lift -̃+.

Proposition 8.2. Let B̃ ⊂ XB be the reduced part of the strict transform of B.
Suppose that - is a smooth splitting curve for B that is not contained in B.We put

t- := (B̃, -̃+) = (B̃, -̃−).

Then the following inequality holds:

(deg-)2/2+∑
P σP (-) ≤ t-. (8.1)

The splitting curve - is pre-Z-splitting if and only if the equality holds in (8.1).

Proof. Let NQ denote the orthogonal complement of the subspace %B ⊗ Q =
 B ⊗Q in NS(XB)⊗Q. Then the intersection pairing is negative definite onNQ ,
and the involution ιB on NS(XB)⊗Q acts onNQ by the multiplication by−1. We
have a decomposition



Lattice Zariski k-ples 661

[-̃+ ] = deg-

2
h+

∑
γP + n,

where γP ∈ 〈EP〉 ⊗Q and n∈NQ. Then we have

t- = ([-̃+ ], [-̃− ]) = (deg-)2

2
+

∑
(γP , ιB(γP))− n2

by Lemma 5.5. The valueσP (-) is defined in such a way thatσP (-)= (γP , ιB(γP))
holds. Since n2 ≤ 0 and n2 = 0 holds if and only if n = 0, we obtain the proof.

Example 8.3. Let f and g be general homogeneous polynomials of degree 2
and 3, respectively. The splitting conic - = {f = 0} for a torus sextic Btrs =
{f 3 + g2 = 0} is Z-splitting because we have deg- = 2, t- = 0, and σP (-) =
−1/3 for each ordinary cusp P of Btrs.

Remark 8.4. As a corollary of the classifications of Z-splitting pairs, we ob-
tain the following. Let (B,-) be a lattice-generic Z-splitting pair with deg- ≤ 2.
Then B ∩ - is contained in SingB, and -̃+ ∩ -̃− = ∅.

8.2. Relation between ∼emb and ∼lat

In many lattice Zariski k-ples, the distinct lattice types have different embedding
topology.

Theorem 8.5. Suppose that B and B ′ satisfy B ∼cfg B
′. If GB and GB ′ have

different orders, then B ∼emb B
′.

Proof. We can assume that B and B ′ are lattice-generic. We consider the tran-
scendental lattices of XB and XB ′ defined by

TB := (NS(XB) ↪→ H 2(XB , Z))⊥, TB ′ := (NS(XB ′) ↪→ H 2(XB ′ , Z))
⊥.

From B ∼cfg B
′, we have RB = RB ′ ; hence disc%B = disc%B ′ holds, where disc

denotes the discriminant of the lattice. Combining this with |GB | = |GB ′ |, we ob-
tain disc B = disc B ′ . Since H 2(XB , Z) and H 2(XB ′ , Z) are unimodular, we
obtain

disc TB = disc TB ′ .

Then B ∼emb B
′ follows because the transcendental lattice of XB is a topological

invariant of (P2,B) for a lattice-generic B, a fact that was proved in [27] and [28].

Remark 8.6. We have not yet obtained any examples of pairs [B1,B2 ] of sim-
ple sextics with B1 ∼lat B2 but B1 ∼emb B2. For the example of the lattice Zariski
couple λQC,c and λQC,n in Proposition 3.22 we have |GB | = |GB ′ | = 4, where
B ∈ λQC,c and B ′ ∈ λQC,n, and hence Theorem 8.5 does not apply. It would be an
interesting problem to study the topology of simple sextics in λQC,c and λQC,n.

8.3. Examples of Many Z-Splitting Conics

For any lattice type λ(B) of simple sextics, we have z1(λ(B)) ≤ 1. On the other
hand, we have lattice types λ(B) of simple sextics such that z2(λ(B)) = 12
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or z2(λ(B)) = 6. (These two are the largest and the second-largest values for
z2(λ(B)).)

Suppose that z2(λ(B)) = 12. Then B is a nine-cuspidal sextic. The configura-
tion type of nine-cuspidal sextics B consists of a single lattice type, and the group
GB is isomorphic to Z/3Z × Z/3Z × Z/3Z. Moreover, the class orders of the
twelveZ-splitting conics forB are all 3. A nine-cuspidal sexticB is the dual curve
of a smooth cubic curve C, and the nine cusps are in one-to-one correspondence
with the inflection points of C. In particular, the set SingB has a natural struc-
ture of the 2-dimensional affine space over F3. Each Z-splitting conic - passes
through six points of SingB, and the complement SingB \ (SingB ∩ -) is an
affine line of SingB. Thus there is a one-to-one correspondence between the set
of Z-splitting conics for B and the set of affine lines of SingB.

Suppose that z2(λ(B)) = 6. Then B is a union of three smooth conics with
RB = 6A3. The configuration type of simple sextics B with degsB = [2, 2, 2]
and RB = 6A3 consists of a single lattice type, and the group GB is isomorphic
to Z/4Z × Z/4Z. Moreover, the class orders of the six Z-splitting conics for B
are all 4. Let B = C1 + C2 + C3 be a simple sextic in this lattice type. There
exists a one-to-one correspondence between the six Z-splitting conics for B and
the six tacnodes of B that is described as follows. Let P ∈ SingB be a tacnode
that is a tangent point of two distinct conics Ci and Cj . Then there exists a unique
Z-splitting conic that does not pass through P but (a) is tangent to both Ci and Cj
at the other tacnode P ′ ∈ SingB on Ci ∩ Cj and (b) passes through the other four
tacnodes on Ck (k = i, j).

8.4. Degeneration of Z-Splitting Conics

Consider the following two lattice types of simple sextics:

λA,l = λlin,6 (RB = 3A5, degsB = [3, 3], z1(λA,l) = 1);
λa,c = λcon,3 (RB = 6A2, degsB = [6], z2(λa,c) = 1).

It is well known that any member of λa,c = λcon,3 is defined by an equation of
(2, 3)-torus type,

B : f 3 + g2 = 0 (deg f = 2, deg g = 3),

whereas it is easy to see that any member of λA,l = λlin,6 is defined by an equation
of (2, 6)-torus type,

B ′ : l 6 + g2 = 0 (deg l = 1, deg g = 3).

If the quadratic polynomial f degenerates into l2, then B degenerates into B ′ and
the Z-splitting conic - = {f = 0} for B degenerates into the double of the Z-
splitting line - ′ = {l = 0} for B ′. We can therefore regard the Z-splitting line - ′
as the reduced part of a nonreduced Z-splitting conic.

It seems that any Z-splitting line can be obtained as the reduced part of a nonre-
duced Z-splitting conic as just described. For example, it is quite plausible that
there exist the following specializations—from the lattice type λ with z2(λ) = 1
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to the lattice type λ′ with z1(λ
′) = 1—that transform the Z-splitting conic for λ to

the double of the Z-splitting line for λ′.

λ λ′

λb,c = λcon,4 λB,l = λlin,8

(RB = 2A1+ 4A3, degsB = [2, 4]) (RB = A3 + 2A7, degsB = [2, 4])

λc,c = λcon,5 λC,l = λlin,10

(RB = 4A4, degsB = [6]) (RB = 2A4 + A9, degsB = [1, 5])

λd,c = λcon,6 λD,l = λlin,12

(RB = 2A1+ 2A2 + 2A5, degsB = [2, 4]) (RB = A3 + A5 + A11, degsB = [2, 4])

The adjacency ofADE-types in these conjectural specializations are all of the type
2Al → A2 l+1. However, the existence of these specializations has not yet been
confirmed.

8.5. Z-Splitting Curves in Positive Characteristics

The study of Z-splitting curves stems from the research of supersingular K3 sur-
faces in characteristic 2. In [24] we developed the theory of Z-splitting curves for
purely inseparable double covers of P2 by supersingular K3 surfaces in charac-
teristic 2. The configuration of Z-splitting curves for such a covering is described
by a binary linear code of length 21. Using this theory, we have described the
stratification of the moduli of polarized supersingular K3 surfaces of degree 2 in
characteristic 2 by the Artin invariant.

Using the structure theorem of the Néron–Severi lattices of supersingular K3
surfaces that is given by Rudakov and Sharfarevich [20], we can construct the
theory of Z-splitting curves for supersingular double sextics in odd characteris-
tics. Note that every supersingular K3 surface can be obtained as double sextics
[23; 25].
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