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Comodules for Some Simple O-forms of Gm

N. E. Cs ima & R. E. Kottwitz

Tannakian theory allows one to understand an affine group scheme G over a com-
mutative base ring A in terms of the category Rep(G) of G-modules, by which
is meant comodules for the Hopf algebra corresponding to G. The theory is es-
pecially well developed [Sa] in the case that A is a field, and some parts of the
theory still work well over more general rings A, say discrete valuation rings (see
[Sa; W]).

When A is a field of characteristic 0 and G is connected reductive, the category
Rep(G) is very well understood. However, with the exception of groups as sim-
ple as the multiplicative and additive groups, little seems to be known about what
Rep(G) looks like concretely when A is no longer assumed to be a field, even in
the most favorable case in whichA is a discrete valuation ring andG is a flat affine
group scheme over A with connected reductive general fiber.

The modest goal of this paper is to give a concrete description of Rep(G) for
certain flat group schemes G over a discrete valuation ring O such that the general
fiber of G is Gm. It should be noted that O-forms of Gm are natural first examples
to consider, as Gm/Qp arises in the Tannakian description [Sa] of the category of
isocrystals with integral slopes.

Choose a generator π of the maximal ideal of O and writeF for the field of frac-
tions of O. For any nonnegative integer k, the construction of Section 1.1, when
applied to f = π k, yields a commutative flat affine group scheme Gk over O
whose general fiber is Gm. The O-points of Gk are given by

Gk(O) = {t ∈ O× : t ≡ 1 modπ k},
a principal congruence subgroup arising naturally in the much more general con-
text of Moy–Prasad [MoP] subgroups of p-adic reductive groups. These form a
projective system

· · · → G2 → G1 → G0 = Gm

in an obvious way, and we may form the projective limit G∞ := proj limGk. The
Hopf algebra Sk corresponding to Gk can be described explicitly (see Sections 1.1
and 1.2). The Hopf algebra S∞ corresponding to G∞ is

inj lim Sk =
{∑
i∈Z

xiT
i ∈F [T, T −1] :

∑
i∈Z

xi ∈ O
}
.
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The categories Rep(G∞) and Rep(Gk) can be described very concretely. Indeed,
Rep(G∞) consists of the category of O-modules M equipped with a Z-grading on
F ⊗O M (see Section 2.3, where a much more general result is proved). As for
Rep(Gk), we proceed in two steps.

First, the full subcategory of Rep(Gk) consisting of those Gk-modules that are
flat as O-modules is equivalent (see Theorem 1.3.1) to the category of pairs (V,M)

consisting of a Z-graded F -vector space V and an admissible O-submodule M

of V, where admissible means that the canonical map F ⊗O M → V is an isomor-
phism and CnM ⊂ M for all n ≥ 0, where Cn : V → V is the graded linear map
given by multiplication by π kn

(
i
n

)
on the ith graded piece of V. The Gk-module

corresponding to (V,M) is M, equipped with the obvious comultiplication.
Second, anyGk-module (see Section 1.4) is obtained as the cokernel of some in-

jective homomorphismM1 → M0 coming from a morphism (V1,M1) → (V0,M0)

of pairs of the type just described.
When O is a Q-algebra, the situation is even simpler: M is an admissible O-

submodule of the graded vector spaceV if and only if C1M ⊂ M and F ⊗O M ∼=
V. Moreover, in case O is the formal power series ring C[[ε]], there is an inter-
esting connection with affine Springer fibers (see Section 1.5).

1. A Description of Rep(G)f for
Certain Group Schemes G

Throughout this section we consider a commutative ring A and a nonzerodivisor
f ∈ A. Thus the canonical homomorphism A → Af is injective, where Af de-
notes the localization of A with respect to the multiplicative subset {f n : n ≥ 0}.
For the rest of this section we denote Af by B and use the canonical injection
A ↪→ B to identify A with a subring of B.

1.1. The Group Scheme G over A

We are now going to define a commutative affine group scheme G, flat and finitely
presented over A. There will be a canonical homomorphism G → Gm that be-
comes an isomorphism after extending scalars from A to B.

We begin by specifying the functor of points for G. For any commutative A-
algebra R we put

G(R) := {(t, x)∈R× × R : t − 1 = fx}
= {x ∈R : 1 + fx ∈R×}.

Then G is represented by the A-algebra

S := A[T, T −1,X]/(T − 1 − fX)

= A[X]1+fX, (1.1.1)

which is clearly flat and finitely presented.
The multiplication on G(R) is defined as (t, x)(t ′, x ′) = (tt ′, x + x ′ + fxx ′).

The identity element is (1, 0) and the inverse of (t, x) is (t−1, −t−1x).
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There is a canonical homomorphism λ : G → Gm given by (t, x) �→ t. When
f is a nonzerodivisor in R, the homomorphism λ : G(R) → R× identifies G(R)
with ker[R× → (R/fR)×], and when f is a unit in R, then G(R) = R×, showing
that the homomorphism λ : G → Gm becomes an isomorphism after extending
scalars from A to B. Thus there is a canonical isomorphism B ⊗A S ∼= B[T, T −1].

Lemma 1.1.1. Let M be an A-module on which f is a nonzerodivisor. Let F be
any flat A-module. Then f is also a nonzerodivisor on F ⊗A M.

Proof. Tensor the injection M
f−→ M over A with F.

Corollary 1.1.2. The canonical homomorphism S → B ⊗A S = B[T, T −1] is
injective, so that we may identify S with a subring of B[T, T −1].

Proof. Just note that S is flat overA and that f is a nonzerodivisor onA. Therefore
f is a nonzerodivisor on S⊗AA = S, and this means that S → B⊗AS is injective.

1.2. Description of S as a Subring of B[T, T −1]

We have just identified S with a subring of B[T, T −1]. It is obvious from (1.1.1)
that S is the A-subalgebra of B[T, T −1] generated by T, T −1, (T − 1)/f. However
there is a more useful description of S in terms of B-module maps

Ln : B[T, T −1] → B,

one for each nonnegative integer n, defined by the formula

Ln

(∑
i∈Z

biT
i

)
=

∑
i∈Z

f n

(
i

n

)
bi.

Here
(
i
n

)
is the binomial coefficient i(i −1) · · · (i − n+1)/n! defined for all i∈Z.

When n = 0, we have
(
i
n

) = 1 for all i ∈ Z.

The following remarks may help in understanding the maps Ln. For any non-
negative integer n, we have the divided-power differential operator

D [n] : B[T, T −1] → B[T, T −1]
defined by

D [n]

(∑
i∈Z

biT
i

)
=

∑
i∈Z

(
i

n

)
biT

i−n. (1.2.1)

The Leibniz formula says that

D [n](gh) =
n∑

r=0

D [r](g)D [n−r](h). (1.2.2)

For any g ∈B[T ] ⊂ B[T, T −1] the Taylor expansion of g at T = 1 reads

g =
∞∑
n=0

(D [n]g)(1) · (T − 1)n, (1.2.3)

the sum having only finitely many nonzero terms.
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For any g ∈B[T, T −1] we have Ln(g) = f n(D [n]g)(1). It follows from (1.2.2)
that for all g,h∈B[T, T −1]

Ln(gh) =
n∑

r=0

Lr(g)Ln−r (h), (1.2.4)

and for all h∈B[T ] ⊂ B[T, T −1] it follows from (1.2.3) that

h =
∞∑
n=0

Ln(h)

(
T − 1

f

)n
. (1.2.5)

Now we are in a position to prove the following statement.

Proposition 1.2.1. The subring S of B[T, T −1] is equal to

{g ∈B[T, T −1] : Ln(g)∈A ∀n ≥ 0}.
Proof. Write S ′ for {g ∈ B[T, T −1] : Ln(g) ∈ A ∀n ≥ 0}. Obviously S ′ is an
A-submodule of B[T, T −1], and it follows from (1.2.4) that S ′ is a subring of
B[T, T −1]. A simple calculation shows that T, T −1, (T −1)/f lie in S ′, and as these
three elements generate S as A-algebra, we conclude that S ⊂ S ′.

Now let g ∈ S ′. There exists an integer n large enough that h := T mg lies
in the subring B[T ]. Note that h ∈ S ′. Equation (1.2.5) shows that h ∈ S, since
(T − 1)/f ∈ S and Ln(h)∈A. Therefore g = T −mh∈ S.

Now let M be an A-module on which f is a nonzerodivisor, so that we may use
the canonical A-module map M → B ⊗A M (sending m to 1 ⊗ m) to identify M
with an A-submodule of N := B ⊗A M.

It follows from Lemma 1.1.1 that the canonical A-module map

S ⊗A M → B ⊗A (S ⊗A M) = B[T, T −1] ⊗B N

identifies S ⊗A M with an A-submodule of B[T, T −1] ⊗B N. We will now derive
from Proposition 1.2.1 a description of S ⊗A M inside B[T, T −1] ⊗B N. For this
we will need the B-module maps Ln : B[T, T −1] ⊗B N → N defined by

Ln

(∑
i∈Z

T i ⊗ xi

)
=

∑
i∈Z

f n

(
i

n

)
xi.

Here xi ∈N, all but finitely many being 0.

Lemma 1.2.2. The A-submodule S ⊗A M of B[T, T −1] ⊗B N is equal to

{x ∈B[T, T −1] ⊗B N : Ln(x)∈M ∀n ≥ 0}.
Proof. From Proposition 1.2.1 we see that there is an exact sequence

0 −→ S −→ B[T, T −1]
L−→

∏
n≥0

B/A,

the nth component of the map L being the composition

B[T, T −1]
Ln−→ B →→ B/A.
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In fact the map L takes values in
⊕

n≥0 B/A. Indeed, for any g ∈B[T, T −1] there
exists an integer m large enough that f mg ∈ A[T, T −1], and then Ln(g) ∈ A for
all n ≥ m. Moreover L maps B[T, T −1] onto

⊕
n≥0 B/A. Indeed, a simple calcu-

lation shows that for b ∈B and m ≥ 0

Ln(bf
−m(T − 1)m) =

{
b if m = n,

0 otherwise.

(First check that D [n]((T − 1)m) = (
m
n

)
(T − 1)m−n, say by induction on m; note

that this formula is valid even if n > m, since
(
m
n

) = 0 when 0 ≤ m < n.)

We now have a short exact sequence

0 −→ S −→ B[T, T −1]
L−→

⊕
n≥0

B/A → 0

of A-modules. Tensoring with the A-module M, we obtain an exact sequence

S ⊗A M −→ B[T, T −1] ⊗A M
L⊗idM−−−−→

(⊕
n≥0

B/A

)
⊗A M → 0. (1.2.6)

Now

B[T, T −1] ⊗A M = B[T, T −1] ⊗B B ⊗A M = B[T, T −1] ⊗B N

and (⊕
n≥0

B/A

)
⊗A M =

⊕
n≥0

N/M.

With these identifications (and recalling that S ⊗A M → B[T, T −1] ⊗B N is
injective), we see that (1.2.6) describes S ⊗A M as the subset of B[T, T −1] ⊗B N

consisting of elements x such that Ln(x) ∈ M for all n ≥ 0, and this completes
the proof.

1.3. Comodules for S

Since G is an affine group scheme over A, the A-algebra S is actually a commuta-
tive Hopf algebra, and we can consider Rep(G), the category of S-comodules. We
denote by Rep(G)f the full subcategory of Rep(G) consisting of S-comodules M
such that f is a nonzerodivisor on the A-module underlying M. Our next goal is
to give a concrete description of Rep(G)f .

In order to do so, we need one more construction. Let N = ⊕
i∈Z Ni be a

Z-graded B-module. For each nonnegative integer n we define an endomorphism
Cn : N → N of the graded B-module N by requiring that Cn be given by multi-
plication by f n

(
i
n

)
on Ni. Thus

Cn

(∑
i∈Z

xi

)
=

∑
i∈Z

f n

(
i

n

)
xi.

Here xi ∈Ni, all but finitely many being 0.
Let C be the category whose objects are pairs (N,M), N being a Z-graded B-

module, and M being an A-submodule of N such that the natural map B⊗AM →
N is an isomorphism and such that CnM ⊂ M for all n ≥ 0. A morphism
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(N,M) → (N ′,M ′) is a homomorphism φ : N → N ′ of graded B-modules such
that φM ⊂ M ′.

We now define a functor F : Rep(G)f → C. Let M be an object of Rep(G)f .
Then N := B ⊗A M is a comodule for B ⊗A S = B[T, T −1]. It is known (see
[DGr], Exp.1) that the category of B[T, T −1]-comodules is equivalent to the cate-
gory of Z-gradedB-modules. ThusN has a Z-gradingN = ⊕

i∈Z Ni, and the co-
multiplication&N : N → B[T, T −1]⊗B N is given by

∑
i∈Z xi �→ ∑

i∈Z T
i ⊗xi.

Since f is a nonzerodivisor on M, the canonical map M → B ⊗A M = N identi-
fies M with an A-submodule of N.

We define our functor F by FM := (N,M). For this to make sense we must
check that CnM ⊂ M for all n ≥ 0. Let m ∈ M, and write m = ∑

i∈Z xi in⊕
i∈Z Ni = N. Since the comodule N was obtained from M by extension of

scalars, the element x = &Nm = ∑
i∈Z T

i ⊗ xi ∈ B[T, T −1] ⊗B N lies in the
image of S ⊗A M → B[T, T −1] ⊗B N. Lemma 1.2.2 then implies that Ln(x) =∑

i∈Z f
n
(
i
n

)
xi = Cn(m) lies in M, as desired.

Theorem 1.3.1. The functor F : Rep(G)f → C is an equivalence of categories.

Proof. Let us first show that F is essentially surjective. Let (N,M) be an object
in C. We are going to use the comultiplication &N : N → B[T, T −1] ⊗B N to turn
M into an S-comodule.

Since M is an A-submodule of N, it is clear that f is a nonzerodivisor on M. As
we have seen before, it follows that f is a nonzerodivisor on S ⊗A M and hence
that the natural map S ⊗A M → B ⊗A (S ⊗A M) = B[T, T −1] ⊗B N identifies
S ⊗A M with an A-submodule of B[T, T −1] ⊗B N.

Using Lemma 1.2.2, we see that our assumption that CnM ⊂ M for all n ≥ 0
is simply the statement that &NM ⊂ S ⊗A M. In other words, there exists a
unique A-module map &M : M → S ⊗A M such that &M yields &N after extend-
ing scalars from A to B.

We claim that &M makes M into an S-comodule. For this we must check the
commutativity of two diagrams, and this follows from the commutativity of these
diagrams after extending scalars from A to B, once one notes that for any two
A-modules M1,M2 on which f is a nonzerodivisor

HomA(M1,M2) = {φ ∈ HomB(B ⊗A M1,B ⊗A M2) : φ(M1) ⊂ M2}. (1.3.1)

Here of course we are identifying M1 and M2 with A-submodules of B ⊗A M1

and B ⊗A M2, respectively. (At one point we need that f is a nonzerodivisor on
S ⊗A S ⊗A M, which is true since S ⊗A S is flat over A.)

As F takes M to (N,M), we are done with essential surjectivity. It is easy to
see that F is fully faithful; this too uses (1.3.1).

1.4. Principal Ideal Domains A

One defect of the theorem we have just proved is that it only describes those G-
modules on which f is a nonzerodivisor. When A is a principal ideal domain, as
we assume for the rest of this subsection, we can do better. Now f is simply any
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nonzero element of A. As a consequence of Theorem 1.3.1 we obtain an equiv-
alence of categories between the category Rep(G)flat of G-modules M such that
M is flat as A-module and the full subcategory of C consisting of pairs (N,M)

for which M is a flat A-module (in which case N ∼= B ⊗A M is necessarily a flat
B-module).

The next lemma is a variant of [Se, Prop. 3].

Lemma 1.4.1. LetA be a principal ideal domain, letC be a flatA-coalgebra, and
let E be a C-comodule. Then there exists a short exact sequence of C-comodules

0 −→ F1 −→ F0 −→ E −→ 0

in which F0 and F1 are flat as A-modules.

Proof. We imitate Serre’s proof. Recall [Se, 1.2] that for any A-module M the
map & ⊗ idM : C ⊗A M → C ⊗A C ⊗A M (& being the comultiplication for C)
gives C⊗AM the structure of C-comodule, and [Se, 1.4] that the comultiplication
map &E : E → C ⊗A E is an injective comodule map when C ⊗A E is given the
comodule structure just described. We use &E to identify E with a subcomodule
of C ⊗A E.

Now choose a surjective A-linear map p : F → E, where F is a free A-
module. Let F0 denote the preimage of E under the surjective comodule map
id ⊗ p : C ⊗A F →→ C ⊗A E. Since F0 is the kernel of

C ⊗A F −→ C ⊗A E −→ (C ⊗A E)/E,

it is a subcomodule of C⊗A F. Moreover id ⊗p restricts to a surjective comodule
map F0 → E, whose kernel we denote by F1. Since C and F are flat, so too are
C ⊗A F, F0, and F1, and we are done. We used that for principal ideal domains, a
module is flat if and only if it is torsion-free, and the property of being torsion-free
is inherited by submodules.

Returning to our Hopf algebra S, we see that anyG-moduleE has a resolution 0 →
F1 → F0 → E → 0 in whichF1 andF0 are objects of Rep(G)flat and hence are de-
scribed by our theorem. We conclude thatE has the following form. There exist an
injective homomorphismφ : N → N ′ of gradedB-modules and flatA-submodules
M,M ′ of N,N ′ respectively such that φM ⊂ M ′ and (N,M), (N ′,M ′) ∈ C, hav-
ing the property that E is isomorphic to M ′/φM as a G-module.

1.5. A Special Case

When A is a Q-algebra, the category C is very simple. Indeed, there is a polyno-
mial Pn ∈ Q[U ] of degree n such that

(
i
n

) = Pn(i), and therefore Cn = Qn(C),
where C = C1 and Qn := f nPn(f

−1U) ∈ A[U ]. Therefore C is the category
of pairs (N,M) consisting of a Z-graded B-module N and an A-submodule M

of N such that the natural map B ⊗A M → N is an isomorphism and such that
CM ⊂ M, where C is the endomorphism of the graded module N = ⊕

i∈Z Ni

given by multiplication by fi on Ni.
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When A is the formal power series ring O := C[[ε]], and f = εk (for some
nonnegative integer k) our constructions yield a group scheme G over O such that
G(O) = {t ∈ O× : t ≡ 1 mod εk}, and the category of representations ofG on free
O-modules of finite rank is equivalent to the category of pairs (V,M), whereV is a
finite-dimensional graded vector space over F := C((ε)) and M is an O-lattice in
V such that CM ⊂ M , where C is given by multiplication by iεk on the ith graded
piece of V. It is amusing to note that for fixed V, the space of all M satisfying
CM ⊂ M is an affine Springer fiber, which, when all the nonzero graded pieces
of V are one-dimensional, is actually one of the affine Springer fibers studied at
some length in [GKM], where it was shown to be paved by affine spaces. Finally,
since O is a principal ideal domain, the results in Section 1.4 give a concrete de-
scription of all G-modules.

2. Certain Hopf Algebras and Their Comodules

Throughout this section A is a commutative ring and B is a commutative alge-
bra such that the canonical homomorphism B ⊗A B → B (given by b1 ⊗ b2 �→
b1b2) is an isomorphism. For example B might be of the form S−1A/I for some
multiplicative subset S of A and some ideal I in S−1A.

Let N be a B-module. Then the canonical B-module map B⊗AN → N (given
by b⊗n �→ bn) is an isomorphism. It follows that the canonicalA-module homo-
morphism N → B ⊗A N (given by n �→ 1 ⊗ n) is actually an isomorphism of
B-modules (since N → B ⊗A N → N is the identity).

Moreover, for any two B-modules N1 and N2, we have isomorphisms

HomB(N1,N2) ∼= HomA(N1,N2) (2.0.1)

and
N1 ⊗A N2

∼= N1 ⊗B N2. (2.0.2)

2.1. General Remarks on Hopf Algebras and Their Comodules

Let S be a Hopf algebra over A. The composition A → S → A of the unit and co-
unit is the identity, and therefore there is a direct sum decomposition S = A⊕ S0

of A-modules, where S0 is by definition the kernel of the counit S → A. In this
subsection all tensor products will be taken over A and the subscript A will be
omitted.

We denote by & : S → S ⊗ S the comultiplication for S. The counit axioms
imply that & takes the form &(a + s0) = a + s0 ⊗ 1 + 1 ⊗ s0 + &̄(s0) when we
identify S with A ⊕ S0 and S ⊗ S with A ⊕ (S0 ⊗ A) ⊕ (A ⊗ S0) ⊕ (S0 ⊗ S0).

Here &̄ is a uniquely determined A-module map S0 → S0 ⊗ S0.

For any S-comodule M with comultiplication &M : M → S ⊗ M the counit
axiom for M implies that &M(m) = 1 ⊗ m + &̄M(m) for a uniquely determined
A-module map

&̄M : M → S0 ⊗M.
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In this way we obtain an equivalence of categories between S-comodules and A-
modules M equipped with an A-linear map &̄M : M → S0 ⊗ M such that the
diagram

M
&̄M ��

&̄M

��

S0 ⊗M

&̄⊗id
��

S0 ⊗M
id⊗&̄M �� S0 ⊗ S0 ⊗M

(2.1.1)

commutes.

2.2. Hopf Algebras for B Give Hopf Algebras for A

Let S be a Hopf algebra over B. As in Section 2.1, we decompose S as B ⊕ S0. It
is easy to see that there is a unique Hopf algebra structure on R := A ⊕ S0 such
that the unit and counit for R are the obvious maps A ↪→ R and R →→ A and
such that the Hopf algebra structure on B ⊗A R agrees with the given one on S

under the natural B-module isomorphism B ⊗A R ∼= S. What makes this work is
(2.0.2), a consequence of our assumption that B⊗AB → B is an isomorphism, so
that, for example, S0 ⊗B S0

∼= S0 ⊗A S0. The comultiplications &R ,&S on R, S
respectively are given by

&R(a + s0) = a + s0 ⊗ 1 + 1 ⊗ s0 + &̄(s0), (2.2.1)

&S(b + s0) = b + s0 ⊗ 1 + 1 ⊗ s0 + &̄(s0), (2.2.2)

and similar considerations apply to the multiplication maps R ⊗A R → R and
S ⊗B S → S and the antipodes R → R and S → S.

Proposition 2.2.1. The category of R-comodules is equivalent to the category
of A-modules M equipped with an S-comodule structure on N := B ⊗A M.

Proof. We have already observed that giving an R-comodule is the same as giv-
ing an A-module M equipped with an A-module map &̄M : M → S0 ⊗A M such
that (2.1.1) commutes. Since S0 is a B-module and B ⊗A B ∼= B, giving &̄M such
that (2.1.1) commutes is the same as giving a B-module map &̄N : N → S0 ⊗B N

such that

N
&̄N ��

&̄N

��

S0 ⊗B N

&̄⊗id
��

S0 ⊗B N
id⊗&̄N �� S0 ⊗B S0 ⊗B N

commutes, or, in other words, giving an S-comodule structure on N.

2.3. Special Case

Let O be a valuation ring and F its field of fractions. Let G be an affine group
scheme over F and let S be the corresponding commutative Hopf algebra over F.
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Decompose S as F ⊕ S0 and define a commutative Hopf algebra R over O by
R := O⊕S0. Corresponding to R is an affine group scheme G̃ over O, and giving
a representation of G̃ (i.e., an R-comodule) is the same as giving an O-module M
together with an S-comodule structure on F ⊗O M.

For example, when G is the multiplicative group Gm, the Hopf algebra R is{∑
i∈Z aiT

i ∈F [T, T −1] :
∑

i∈Z ai ∈ O}
, which is easily seen to be the union of

the Hopf subalgebras Sk discussed in the Introduction.
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