Comodules for Some Simple \mathcal{O}-forms of \mathbb{G}_{m}

N. E. Csima \& R. E. Kottwitz

Tannakian theory allows one to understand an affine group scheme G over a commutative base ring A in terms of the category $\operatorname{Rep}(G)$ of G-modules, by which is meant comodules for the Hopf algebra corresponding to G. The theory is especially well developed [Sa] in the case that A is a field, and some parts of the theory still work well over more general rings A, say discrete valuation rings (see [Sa; W]).

When A is a field of characteristic 0 and G is connected reductive, the category $\operatorname{Rep}(G)$ is very well understood. However, with the exception of groups as simple as the multiplicative and additive groups, little seems to be known about what $\operatorname{Rep}(G)$ looks like concretely when A is no longer assumed to be a field, even in the most favorable case in which A is a discrete valuation ring and G is a flat affine group scheme over A with connected reductive general fiber.

The modest goal of this paper is to give a concrete description of $\operatorname{Rep}(G)$ for certain flat group schemes G over a discrete valuation ring \mathcal{O} such that the general fiber of G is \mathbb{G}_{m}. It should be noted that \mathcal{O}-forms of \mathbb{G}_{m} are natural first examples to consider, as $\mathbb{G}_{m} / \mathbb{Q}_{p}$ arises in the Tannakian description [Sa] of the category of isocrystals with integral slopes.

Choose a generator π of the maximal ideal of \mathcal{O} and write F for the field of fractions of \mathcal{O}. For any nonnegative integer k, the construction of Section 1.1, when applied to $f=\pi^{k}$, yields a commutative flat affine group scheme G_{k} over \mathcal{O} whose general fiber is \mathbb{G}_{m}. The \mathcal{O}-points of G_{k} are given by

$$
G_{k}(\mathcal{O})=\left\{t \in \mathcal{O}^{\times}: t \equiv 1 \bmod \pi^{k}\right\}
$$

a principal congruence subgroup arising naturally in the much more general context of Moy-Prasad [MoP] subgroups of p-adic reductive groups. These form a projective system

$$
\cdots \rightarrow G_{2} \rightarrow G_{1} \rightarrow G_{0}=\mathbb{G}_{m}
$$

in an obvious way, and we may form the projective limit $G_{\infty}:=\operatorname{proj} \lim G_{k}$. The Hopf algebra S_{k} corresponding to G_{k} can be described explicitly (see Sections 1.1 and 1.2). The Hopf algebra S_{∞} corresponding to G_{∞} is

$$
\text { inj } \lim S_{k}=\left\{\sum_{i \in \mathbb{Z}} x_{i} T^{i} \in F\left[T, T^{-1}\right]: \sum_{i \in \mathbb{Z}} x_{i} \in \mathcal{O}\right\}
$$

[^0]The categories $\operatorname{Rep}\left(G_{\infty}\right)$ and $\operatorname{Rep}\left(G_{k}\right)$ can be described very concretely. Indeed, $\operatorname{Rep}\left(G_{\infty}\right)$ consists of the category of \mathcal{O}-modules M equipped with a \mathbb{Z}-grading on $F \otimes_{\mathcal{O}} M$ (see Section 2.3, where a much more general result is proved). As for $\operatorname{Rep}\left(G_{k}\right)$, we proceed in two steps.

First, the full subcategory of $\operatorname{Rep}\left(G_{k}\right)$ consisting of those G_{k}-modules that are flat as \mathcal{O}-modules is equivalent (see Theorem 1.3.1) to the category of pairs (V, M) consisting of a \mathbb{Z}-graded F-vector space V and an admissible \mathcal{O}-submodule M of V, where admissible means that the canonical map $F \otimes_{\mathcal{O}} M \rightarrow V$ is an isomorphism and $C_{n} M \subset M$ for all $n \geq 0$, where $C_{n}: V \rightarrow V$ is the graded linear map given by multiplication by $\pi^{k n}\binom{i}{n}$ on the i th graded piece of V. The G_{k}-module corresponding to (V, M) is M, equipped with the obvious comultiplication.

Second, any G_{k}-module (see Section 1.4) is obtained as the cokernel of some injective homomorphism $M_{1} \rightarrow M_{0}$ coming from a morphism $\left(V_{1}, M_{1}\right) \rightarrow\left(V_{0}, M_{0}\right)$ of pairs of the type just described.

When \mathcal{O} is a \mathbb{Q}-algebra, the situation is even simpler: M is an admissible \mathcal{O} submodule of the graded vector space V if and only if $C_{1} M \subset M$ and $F \otimes_{\mathcal{O}} M \cong$ V. Moreover, in case \mathcal{O} is the formal power series ring $\mathbb{C}[[\varepsilon]]$, there is an interesting connection with affine Springer fibers (see Section 1.5).

1. A Description of $\operatorname{Rep}(G)_{f}$ for Certain Group Schemes \boldsymbol{G}

Throughout this section we consider a commutative ring A and a nonzerodivisor $f \in A$. Thus the canonical homomorphism $A \rightarrow A_{f}$ is injective, where A_{f} denotes the localization of A with respect to the multiplicative subset $\left\{f^{n}: n \geq 0\right\}$. For the rest of this section we denote A_{f} by B and use the canonical injection $A \hookrightarrow B$ to identify A with a subring of B.

1.1. The Group Scheme G over A

We are now going to define a commutative affine group scheme G, flat and finitely presented over A. There will be a canonical homomorphism $G \rightarrow \mathbb{G}_{m}$ that becomes an isomorphism after extending scalars from A to B.

We begin by specifying the functor of points for G. For any commutative A algebra R we put

$$
\begin{aligned}
G(R) & :=\left\{(t, x) \in R^{\times} \times R: t-1=f x\right\} \\
& =\left\{x \in R: 1+f x \in R^{\times}\right\}
\end{aligned}
$$

Then G is represented by the A-algebra

$$
\begin{align*}
S & :=A\left[T, T^{-1}, X\right] /(T-1-f X) \\
& =A[X]_{1+f X}, \tag{1.1.1}
\end{align*}
$$

which is clearly flat and finitely presented.
The multiplication on $G(R)$ is defined as $(t, x)\left(t^{\prime}, x^{\prime}\right)=\left(t t^{\prime}, x+x^{\prime}+f x x^{\prime}\right)$. The identity element is $(1,0)$ and the inverse of (t, x) is $\left(t^{-1},-t^{-1} x\right)$.

There is a canonical homomorphism $\lambda: G \rightarrow \mathbb{G}_{m}$ given by $(t, x) \mapsto t$. When f is a nonzerodivisor in R, the homomorphism $\lambda: G(R) \rightarrow R^{\times}$identifies $G(R)$ with $\operatorname{ker}\left[R^{\times} \rightarrow(R / f R)^{\times}\right]$, and when f is a unit in R, then $G(R)=R^{\times}$, showing that the homomorphism $\lambda: G \rightarrow \mathbb{G}_{m}$ becomes an isomorphism after extending scalars from A to B. Thus there is a canonical isomorphism $B \otimes_{A} S \cong B\left[T, T^{-1}\right]$.

Lemma 1.1.1. Let M be an A-module on which f is a nonzerodivisor. Let F be any flat A-module. Then f is also a nonzerodivisor on $F \otimes_{A} M$.
Proof. Tensor the injection $M \xrightarrow{f} M$ over A with F.
Corollary 1.1.2. The canonical homomorphism $S \rightarrow B \otimes_{A} S=B\left[T, T^{-1}\right]$ is injective, so that we may identify S with a subring of $B\left[T, T^{-1}\right]$.

Proof. Just note that S is flat over A and that f is a nonzerodivisor on A. Therefore f is a nonzerodivisor on $S \otimes_{A} A=S$, and this means that $S \rightarrow B \otimes_{A} S$ is injective.

1.2. Description of S as a Subring of $B\left[T, T^{-1}\right]$

We have just identified S with a subring of $B\left[T, T^{-1}\right]$. It is obvious from (1.1.1) that S is the A-subalgebra of $B\left[T, T^{-1}\right]$ generated by $T, T^{-1},(T-1) / f$. However there is a more useful description of S in terms of B-module maps

$$
L_{n}: B\left[T, T^{-1}\right] \rightarrow B,
$$

one for each nonnegative integer n, defined by the formula

$$
L_{n}\left(\sum_{i \in \mathbb{Z}} b_{i} T^{i}\right)=\sum_{i \in \mathbb{Z}} f^{n}\binom{i}{n} b_{i} .
$$

Here $\binom{i}{n}$ is the binomial coefficient $i(i-1) \cdots(i-n+1) / n$! defined for all $i \in \mathbb{Z}$. When $n=0$, we have $\binom{i}{n}=1$ for all $i \in \mathbb{Z}$.

The following remarks may help in understanding the maps L_{n}. For any nonnegative integer n, we have the divided-power differential operator

$$
D^{[n]}: B\left[T, T^{-1}\right] \rightarrow B\left[T, T^{-1}\right]
$$

defined by

$$
\begin{equation*}
D^{[n]}\left(\sum_{i \in \mathbb{Z}} b_{i} T^{i}\right)=\sum_{i \in \mathbb{Z}}\binom{i}{n} b_{i} T^{i-n} . \tag{1.2.1}
\end{equation*}
$$

The Leibniz formula says that

$$
\begin{equation*}
D^{[n]}(g h)=\sum_{r=0}^{n} D^{[r]}(g) D^{[n-r]}(h) . \tag{1.2.2}
\end{equation*}
$$

For any $g \in B[T] \subset B\left[T, T^{-1}\right]$ the Taylor expansion of g at $T=1$ reads

$$
\begin{equation*}
g=\sum_{n=0}^{\infty}\left(D^{[n]} g\right)(1) \cdot(T-1)^{n}, \tag{1.2.3}
\end{equation*}
$$

the sum having only finitely many nonzero terms.

For any $g \in B\left[T, T^{-1}\right]$ we have $L_{n}(g)=f^{n}\left(D^{[n]} g\right)(1)$. It follows from (1.2.2) that for all $g, h \in B\left[T, T^{-1}\right]$

$$
\begin{equation*}
L_{n}(g h)=\sum_{r=0}^{n} L_{r}(g) L_{n-r}(h) \tag{1.2.4}
\end{equation*}
$$

and for all $h \in B[T] \subset B\left[T, T^{-1}\right]$ it follows from (1.2.3) that

$$
\begin{equation*}
h=\sum_{n=0}^{\infty} L_{n}(h)\left(\frac{T-1}{f}\right)^{n} . \tag{1.2.5}
\end{equation*}
$$

Now we are in a position to prove the following statement.
Proposition 1.2.1. The subring S of $B\left[T, T^{-1}\right]$ is equal to

$$
\left\{g \in B\left[T, T^{-1}\right]: L_{n}(g) \in A \forall n \geq 0\right\} .
$$

Proof. Write S^{\prime} for $\left\{g \in B\left[T, T^{-1}\right]: L_{n}(g) \in A \forall n \geq 0\right\}$. Obviously S^{\prime} is an A-submodule of $B\left[T, T^{-1}\right]$, and it follows from (1.2.4) that S^{\prime} is a subring of $B\left[T, T^{-1}\right]$. A simple calculation shows that $T, T^{-1},(T-1) / f$ lie in S^{\prime}, and as these three elements generate S as A-algebra, we conclude that $S \subset S^{\prime}$.

Now let $g \in S^{\prime}$. There exists an integer n large enough that $h:=T^{m} g$ lies in the subring $B[T]$. Note that $h \in S^{\prime}$. Equation (1.2.5) shows that $h \in S$, since $(T-1) / f \in S$ and $L_{n}(h) \in A$. Therefore $g=T^{-m} h \in S$.

Now let M be an A-module on which f is a nonzerodivisor, so that we may use the canonical A-module map $M \rightarrow B \otimes_{A} M$ (sending m to $1 \otimes m$) to identify M with an A-submodule of $N:=B \otimes_{A} M$.

It follows from Lemma 1.1.1 that the canonical A-module map

$$
S \otimes_{A} M \rightarrow B \otimes_{A}\left(S \otimes_{A} M\right)=B\left[T, T^{-1}\right] \otimes_{B} N
$$

identifies $S \otimes_{A} M$ with an A-submodule of $B\left[T, T^{-1}\right] \otimes_{B} N$. We will now derive from Proposition 1.2 .1 a description of $S \otimes_{A} M$ inside $B\left[T, T^{-1}\right] \otimes_{B} N$. For this we will need the B-module maps $\mathbf{L}_{n}: B\left[T, T^{-1}\right] \otimes_{B} N \rightarrow N$ defined by

$$
\mathbf{L}_{n}\left(\sum_{i \in \mathbb{Z}} T^{i} \otimes x_{i}\right)=\sum_{i \in \mathbb{Z}} f^{n}\binom{i}{n} x_{i}
$$

Here $x_{i} \in N$, all but finitely many being 0 .
Lemma 1.2.2. The A-submodule $S \otimes_{A} M$ of $B\left[T, T^{-1}\right] \otimes_{B} N$ is equal to

$$
\left\{x \in B\left[T, T^{-1}\right] \otimes_{B} N: \mathbf{L}_{n}(x) \in M \forall n \geq 0\right\} .
$$

Proof. From Proposition 1.2 .1 we see that there is an exact sequence

$$
0 \rightarrow S \rightarrow B\left[T, T^{-1}\right] \xrightarrow{L} \prod_{n \geq 0} B / A
$$

the nth component of the map L being the composition

$$
B\left[T, T^{-1}\right] \xrightarrow{L_{n}} B \rightarrow B / A .
$$

In fact the map L takes values in $\bigoplus_{n \geq 0} B / A$. Indeed, for any $g \in B\left[T, T^{-1}\right]$ there exists an integer m large enough that $f^{m} g \in A\left[T, T^{-1}\right]$, and then $L_{n}(g) \in A$ for all $n \geq m$. Moreover L maps $B\left[T, T^{-1}\right]$ onto $\bigoplus_{n \geq 0} B / A$. Indeed, a simple calculation shows that for $b \in B$ and $m \geq 0$

$$
L_{n}\left(b f^{-m}(T-1)^{m}\right)= \begin{cases}b & \text { if } m=n \\ 0 & \text { otherwise }\end{cases}
$$

(First check that $D^{[n]}\left((T-1)^{m}\right)=\binom{m}{n}(T-1)^{m-n}$, say by induction on m; note that this formula is valid even if $n>m$, since $\binom{m}{n}=0$ when $0 \leq m<n$.)

We now have a short exact sequence

$$
0 \rightarrow S \rightarrow B\left[T, T^{-1}\right] \xrightarrow{L} \bigoplus_{n \geq 0} B / A \rightarrow 0
$$

of A-modules. Tensoring with the A-module M, we obtain an exact sequence

$$
\begin{equation*}
S \otimes_{A} M \rightarrow B\left[T, T^{-1}\right] \otimes_{A} M \xrightarrow{L \otimes \operatorname{id}_{M}}\left(\bigoplus_{n \geq 0} B / A\right) \otimes_{A} M \rightarrow 0 \tag{1.2.6}
\end{equation*}
$$

Now

$$
B\left[T, T^{-1}\right] \otimes_{A} M=B\left[T, T^{-1}\right] \otimes_{B} B \otimes_{A} M=B\left[T, T^{-1}\right] \otimes_{B} N
$$

and

$$
\left(\bigoplus_{n \geq 0} B / A\right) \otimes_{A} M=\bigoplus_{n \geq 0} N / M
$$

With these identifications (and recalling that $S \otimes_{A} M \rightarrow B\left[T, T^{-1}\right] \otimes_{B} N$ is injective), we see that (1.2.6) describes $S \otimes_{A} M$ as the subset of $B\left[T, T^{-1}\right] \otimes_{B} N$ consisting of elements x such that $\mathbf{L}_{n}(x) \in M$ for all $n \geq 0$, and this completes the proof.

1.3. Comodules for S

Since G is an affine group scheme over A, the A-algebra S is actually a commutative Hopf algebra, and we can consider $\operatorname{Rep}(G)$, the category of S-comodules. We denote by $\operatorname{Rep}(G)_{f}$ the full subcategory of $\operatorname{Rep}(G)$ consisting of S-comodules M such that f is a nonzerodivisor on the A-module underlying M. Our next goal is to give a concrete description of $\operatorname{Rep}(G)_{f}$.

In order to do so, we need one more construction. Let $N=\bigoplus_{i \in \mathbb{Z}} N_{i}$ be a \mathbb{Z}-graded B-module. For each nonnegative integer n we define an endomorphism $C_{n}: N \rightarrow N$ of the graded B-module N by requiring that C_{n} be given by multiplication by $f^{n}\binom{i}{n}$ on N_{i}. Thus

$$
C_{n}\left(\sum_{i \in \mathbb{Z}} x_{i}\right)=\sum_{i \in \mathbb{Z}} f^{n}\binom{i}{n} x_{i}
$$

Here $x_{i} \in N_{i}$, all but finitely many being 0 .
Let \mathcal{C} be the category whose objects are pairs (N, M), N being a \mathbb{Z}-graded B module, and M being an A-submodule of N such that the natural map $B \otimes_{A} M \rightarrow$ N is an isomorphism and such that $C_{n} M \subset M$ for all $n \geq 0$. A morphism
$(N, M) \rightarrow\left(N^{\prime}, M^{\prime}\right)$ is a homomorphism $\phi: N \rightarrow N^{\prime}$ of graded B-modules such that $\phi M \subset M^{\prime}$.

We now define a functor $F: \operatorname{Rep}(G)_{f} \rightarrow \mathcal{C}$. Let M be an object of $\operatorname{Rep}(G)_{f}$. Then $N:=B \otimes_{A} M$ is a comodule for $B \otimes_{A} S=B\left[T, T^{-1}\right]$. It is known (see [DGr], Exp. 1) that the category of $B\left[T, T^{-1}\right]$-comodules is equivalent to the category of \mathbb{Z}-graded B-modules. Thus N has a \mathbb{Z}-grading $N=\bigoplus_{i \in \mathbb{Z}} N_{i}$, and the comultiplication $\Delta_{N}: N \rightarrow B\left[T, T^{-1}\right] \otimes_{B} N$ is given by $\sum_{i \in \mathbb{Z}} x_{i} \mapsto \sum_{i \in \mathbb{Z}} T^{i} \otimes x_{i}$. Since f is a nonzerodivisor on M, the canonical map $M \rightarrow B \otimes_{A} M=N$ identifies M with an A-submodule of N.

We define our functor F by $F M:=(N, M)$. For this to make sense we must check that $C_{n} M \subset M$ for all $n \geq 0$. Let $m \in M$, and write $m=\sum_{i \in \mathbb{Z}} x_{i}$ in $\bigoplus_{i \in \mathbb{Z}} N_{i}=N$. Since the comodule N was obtained from M by extension of scalars, the element $x=\Delta_{N} m=\sum_{i \in \mathbb{Z}} T^{i} \otimes x_{i} \in B\left[T, T^{-1}\right] \otimes_{B} N$ lies in the image of $S \otimes_{A} M \rightarrow B\left[T, T^{-1}\right] \otimes_{B} N$. Lemma 1.2.2 then implies that $\mathbf{L}_{n}(x)=$ $\sum_{i \in \mathbb{Z}} f^{n}\binom{i}{n} x_{i}=C_{n}(m)$ lies in M, as desired.

Theorem 1.3.1. The functor $F: \operatorname{Rep}(G)_{f} \rightarrow \mathcal{C}$ is an equivalence of categories.
Proof. Let us first show that F is essentially surjective. Let (N, M) be an object in \mathcal{C}. We are going to use the comultiplication $\Delta_{N}: N \rightarrow B\left[T, T^{-1}\right] \otimes_{B} N$ to turn M into an S-comodule.

Since M is an A-submodule of N, it is clear that f is a nonzerodivisor on M. As we have seen before, it follows that f is a nonzerodivisor on $S \otimes_{A} M$ and hence that the natural map $S \otimes_{A} M \rightarrow B \otimes_{A}\left(S \otimes_{A} M\right)=B\left[T, T^{-1}\right] \otimes_{B} N$ identifies $S \otimes_{A} M$ with an A-submodule of $B\left[T, T^{-1}\right] \otimes_{B} N$.

Using Lemma 1.2.2, we see that our assumption that $C_{n} M \subset M$ for all $n \geq 0$ is simply the statement that $\Delta_{N} M \subset S \otimes_{A} M$. In other words, there exists a unique A-module map $\Delta_{M}: M \rightarrow S \otimes_{A} M$ such that Δ_{M} yields Δ_{N} after extending scalars from A to B.

We claim that Δ_{M} makes M into an S-comodule. For this we must check the commutativity of two diagrams, and this follows from the commutativity of these diagrams after extending scalars from A to B, once one notes that for any two A-modules M_{1}, M_{2} on which f is a nonzerodivisor
$\operatorname{Hom}_{A}\left(M_{1}, M_{2}\right)=\left\{\phi \in \operatorname{Hom}_{B}\left(B \otimes_{A} M_{1}, B \otimes_{A} M_{2}\right): \phi\left(M_{1}\right) \subset M_{2}\right\}$.
Here of course we are identifying M_{1} and M_{2} with A-submodules of $B \otimes_{A} M_{1}$ and $B \otimes_{A} M_{2}$, respectively. (At one point we need that f is a nonzerodivisor on $S \otimes_{A} S \otimes_{A} M$, which is true since $S \otimes_{A} S$ is flat over A.)

As F takes M to (N, M), we are done with essential surjectivity. It is easy to see that F is fully faithful; this too uses (1.3.1).

1.4. Principal Ideal Domains A

One defect of the theorem we have just proved is that it only describes those G modules on which f is a nonzerodivisor. When A is a principal ideal domain, as we assume for the rest of this subsection, we can do better. Now f is simply any
nonzero element of A. As a consequence of Theorem 1.3.1 we obtain an equivalence of categories between the category $\operatorname{Rep}(G)_{\text {flat }}$ of G-modules M such that M is flat as A-module and the full subcategory of \mathcal{C} consisting of pairs (N, M) for which M is a flat A-module (in which case $N \cong B \otimes_{A} M$ is necessarily a flat B-module).

The next lemma is a variant of [Se, Prop. 3].
Lemma 1.4.1. Let A be a principal ideal domain, let C be a flat A-coalgebra, and let E be a C-comodule. Then there exists a short exact sequence of C-comodules

$$
0 \rightarrow F_{1} \rightarrow F_{0} \rightarrow E \rightarrow 0
$$

in which F_{0} and F_{1} are flat as A-modules.
Proof. We imitate Serre's proof. Recall [Se, 1.2] that for any A-module M the map $\Delta \otimes \operatorname{id}_{M}: C \otimes_{A} M \rightarrow C \otimes_{A} C \otimes_{A} M$ (Δ being the comultiplication for C) gives $C \otimes_{A} M$ the structure of C-comodule, and [Se, 1.4] that the comultiplication map $\Delta_{E}: E \rightarrow C \otimes_{A} E$ is an injective comodule map when $C \otimes_{A} E$ is given the comodule structure just described. We use Δ_{E} to identify E with a subcomodule of $C \otimes_{A} E$.

Now choose a surjective A-linear map $p: F \rightarrow E$, where F is a free A module. Let F_{0} denote the preimage of E under the surjective comodule map id $\otimes p: C \otimes_{A} F \rightarrow C \otimes_{A} E$. Since F_{0} is the kernel of

$$
C \otimes_{A} F \rightarrow C \otimes_{A} E \rightarrow\left(C \otimes_{A} E\right) / E
$$

it is a subcomodule of $C \otimes_{A} F$. Moreover id $\otimes p$ restricts to a surjective comodule map $F_{0} \rightarrow E$, whose kernel we denote by F_{1}. Since C and F are flat, so too are $C \otimes_{A} F, F_{0}$, and F_{1}, and we are done. We used that for principal ideal domains, a module is flat if and only if it is torsion-free, and the property of being torsion-free is inherited by submodules.

Returning to our Hopf algebra S, we see that any G-module E has a resolution $0 \rightarrow$ $F_{1} \rightarrow F_{0} \rightarrow E \rightarrow 0$ in which F_{1} and F_{0} are objects of $\operatorname{Rep}(G)_{\text {flat }}$ and hence are described by our theorem. We conclude that E has the following form. There exist an injective homomorphism $\phi: N \rightarrow N^{\prime}$ of graded B-modules and flat A-submodules M, M^{\prime} of N, N^{\prime} respectively such that $\phi M \subset M^{\prime}$ and $(N, M),\left(N^{\prime}, M^{\prime}\right) \in \mathcal{C}$, having the property that E is isomorphic to $M^{\prime} / \phi M$ as a G-module.

1.5. A Special Case

When A is a \mathbb{Q}-algebra, the category \mathcal{C} is very simple. Indeed, there is a polynomial $P_{n} \in \mathbb{Q}[U]$ of degree n such that $\binom{i}{n}=P_{n}(i)$, and therefore $C_{n}=Q_{n}(C)$, where $C=C_{1}$ and $Q_{n}:=f^{n} P_{n}\left(f^{-1} U\right) \in A[U]$. Therefore \mathcal{C} is the category of pairs (N, M) consisting of a \mathbb{Z}-graded B-module N and an A-submodule M of N such that the natural map $B \otimes_{A} M \rightarrow N$ is an isomorphism and such that $C M \subset M$, where C is the endomorphism of the graded module $N=\bigoplus_{i \in \mathbb{Z}} N_{i}$ given by multiplication by $f i$ on N_{i}.

When A is the formal power series ring $\mathcal{O}:=\mathbb{C}[[\varepsilon]]$, and $f=\varepsilon^{k}$ (for some nonnegative integer k) our constructions yield a group scheme G over \mathcal{O} such that $G(\mathcal{O})=\left\{t \in \mathcal{O}^{\times}: t \equiv 1 \bmod \varepsilon^{k}\right\}$, and the category of representations of G on free \mathcal{O}-modules of finite rank is equivalent to the category of pairs (V, M), where V is a finite-dimensional graded vector space over $F:=\mathbb{C}((\varepsilon))$ and M is an \mathcal{O}-lattice in V such that $C M \subset M$, where C is given by multiplication by $i \varepsilon^{k}$ on the i th graded piece of V. It is amusing to note that for fixed V, the space of all M satisfying $C M \subset M$ is an affine Springer fiber, which, when all the nonzero graded pieces of V are one-dimensional, is actually one of the affine Springer fibers studied at some length in [GKM], where it was shown to be paved by affine spaces. Finally, since \mathcal{O} is a principal ideal domain, the results in Section 1.4 give a concrete description of all G-modules.

2. Certain Hopf Algebras and Their Comodules

Throughout this section A is a commutative ring and B is a commutative algebra such that the canonical homomorphism $B \otimes_{A} B \rightarrow B$ (given by $b_{1} \otimes b_{2} \mapsto$ $b_{1} b_{2}$) is an isomorphism. For example B might be of the form $S^{-1} A / I$ for some multiplicative subset S of A and some ideal I in $S^{-1} A$.

Let N be a B-module. Then the canonical B-module map $B \otimes_{A} N \rightarrow N$ (given by $b \otimes n \mapsto b n$) is an isomorphism. It follows that the canonical A-module homomorphism $N \rightarrow B \otimes_{A} N$ (given by $n \mapsto 1 \otimes n$) is actually an isomorphism of B-modules (since $N \rightarrow B \otimes_{A} N \rightarrow N$ is the identity).

Moreover, for any two B-modules N_{1} and N_{2}, we have isomorphisms

$$
\begin{equation*}
\operatorname{Hom}_{B}\left(N_{1}, N_{2}\right) \cong \operatorname{Hom}_{A}\left(N_{1}, N_{2}\right) \tag{2.0.1}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{1} \otimes_{A} N_{2} \cong N_{1} \otimes_{B} N_{2} \tag{2.0.2}
\end{equation*}
$$

2.1. General Remarks on Hopf Algebras and Their Comodules

Let S be a Hopf algebra over A. The composition $A \rightarrow S \rightarrow A$ of the unit and counit is the identity, and therefore there is a direct sum decomposition $S=A \oplus S_{0}$ of A-modules, where S_{0} is by definition the kernel of the counit $S \rightarrow A$. In this subsection all tensor products will be taken over A and the subscript A will be omitted.

We denote by $\Delta: S \rightarrow S \otimes S$ the comultiplication for S. The counit axioms imply that Δ takes the form $\Delta\left(a+s_{0}\right)=a+s_{0} \otimes 1+1 \otimes s_{0}+\bar{\Delta}\left(s_{0}\right)$ when we identify S with $A \oplus S_{0}$ and $S \otimes S$ with $A \oplus\left(S_{0} \otimes A\right) \oplus\left(A \otimes S_{0}\right) \oplus\left(S_{0} \otimes S_{0}\right)$. Here $\bar{\Delta}$ is a uniquely determined A-module map $S_{0} \rightarrow S_{0} \otimes S_{0}$.

For any S-comodule M with comultiplication $\Delta_{M}: M \rightarrow S \otimes M$ the counit axiom for M implies that $\Delta_{M}(m)=1 \otimes m+\bar{\Delta}_{M}(m)$ for a uniquely determined A-module map

$$
\bar{\Delta}_{M}: M \rightarrow S_{0} \otimes M .
$$

In this way we obtain an equivalence of categories between S-comodules and A modules M equipped with an A-linear map $\bar{\Delta}_{M}: M \rightarrow S_{0} \otimes M$ such that the diagram

commutes.

2.2. Hopf Algebras for B Give Hopf Algebras for A

Let S be a Hopf algebra over B. As in Section 2.1, we decompose S as $B \oplus S_{0}$. It is easy to see that there is a unique Hopf algebra structure on $R:=A \oplus S_{0}$ such that the unit and counit for R are the obvious maps $A \hookrightarrow R$ and $R \rightarrow A$ and such that the Hopf algebra structure on $B \otimes_{A} R$ agrees with the given one on S under the natural B-module isomorphism $B \otimes_{A} R \cong S$. What makes this work is (2.0.2), a consequence of our assumption that $B \otimes_{A} B \rightarrow B$ is an isomorphism, so that, for example, $S_{0} \otimes_{B} S_{0} \cong S_{0} \otimes_{A} S_{0}$. The comultiplications Δ_{R}, Δ_{S} on R, S respectively are given by

$$
\begin{align*}
\Delta_{R}\left(a+s_{0}\right) & =a+s_{0} \otimes 1+1 \otimes s_{0}+\bar{\Delta}\left(s_{0}\right) \tag{2.2.1}\\
\Delta_{S}\left(b+s_{0}\right) & =b+s_{0} \otimes 1+1 \otimes s_{0}+\bar{\Delta}\left(s_{0}\right), \tag{2.2.2}
\end{align*}
$$

and similar considerations apply to the multiplication maps $R \otimes_{A} R \rightarrow R$ and $S \otimes_{B} S \rightarrow S$ and the antipodes $R \rightarrow R$ and $S \rightarrow S$.

Proposition 2.2.1. The category of R-comodules is equivalent to the category of A-modules M equipped with an S-comodule structure on $N:=B \otimes_{A} M$.

Proof. We have already observed that giving an R-comodule is the same as giving an A-module M equipped with an A-module map $\bar{\Delta}_{M}: M \rightarrow S_{0} \otimes_{A} M$ such that (2.1.1) commutes. Since S_{0} is a B-module and $B \otimes_{A} B \cong B$, giving $\bar{\Delta}_{M}$ such that (2.1.1) commutes is the same as giving a B-module map $\bar{\Delta}_{N}: N \rightarrow S_{0} \otimes_{B} N$ such that

commutes, or, in other words, giving an S-comodule structure on N.

2.3. Special Case

Let \mathcal{O} be a valuation ring and F its field of fractions. Let G be an affine group scheme over F and let S be the corresponding commutative Hopf algebra over F.

Decompose S as $F \oplus S_{0}$ and define a commutative Hopf algebra R over \mathcal{O} by $R:=\mathcal{O} \oplus S_{0}$. Corresponding to R is an affine group scheme \tilde{G} over \mathcal{O}, and giving a representation of \tilde{G} (i.e., an R-comodule) is the same as giving an \mathcal{O}-module M together with an S-comodule structure on $F \otimes_{\mathcal{O}} M$.

For example, when G is the multiplicative group \mathbb{G}_{m}, the Hopf algebra R is $\left\{\sum_{i \in \mathbb{Z}} a_{i} T^{i} \in F\left[T, T^{-1}\right]: \sum_{i \in \mathbb{Z}} a_{i} \in \mathcal{O}\right\}$, which is easily seen to be the union of the Hopf subalgebras S_{k} discussed in the Introduction.

References

[DGr] M. Demazure and A. Grothendieck, SGA3, Schémas en groupes, tome I, Lecture Notes in Math., 151, Springer-Verlag, Heidelberg, 1970.
[GKM] M. Goresky, R. Kottwitz, and R. MacPherson, Purity of equivalued affine Springer fibers, Represent. Theory 10 (2006), 130-146.
[MoP] A. Moy and G. Prasad, Unrefined minimal K-types for p-adic groups, Invent. Math. 116 (1994), 393-408.
[Sa] N. Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Math., 265, Springer-Verlag, Berlin, 1972.
[Se] J.-P. Serre, Groupes de Grothendieck des schémas en groupes réductifs déployés, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 37-52.
[W] T. Wedhorn, On Tannakian duality over valuation rings, J. Algebra 282 (2004), 575-609.

N. E. Csima
Department of Mathematics
University of Chicago
Chicago, IL 60637
ecsima@math.uchicago.edu

R. E. Kottwitz

Department of Mathematics
University of Chicago
Chicago, IL 60637
kottwitz@math.uchicago.edu

[^0]: Received September 29, 2008. Revision received February 26, 2009. Partially supported by NSF Grant no. DMS-0245639.

