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Symmetries of Julia Sets of Nondegenerate
Polynomial Skew Products on C2

Kohei Ueno

1. Introduction

The Julia sets of any kind of functions or maps can have symmetries. We say that a
Julia set has symmetries if some nonelementary transformations preserve it. Bear-
don [B] investigated the symmetries of the Julia sets of polynomials on C. For the
Julia set of a polynomial, the symmetries of the Julia set are rotations about some
point. The group of symmetries is infinite if and only if the Julia set is a circle,
which is equivalent to the polynomial being conjugate to z → zd. There was a
problem for polynomials that had the same Julia set. Beardon [B] gave an answer
to this problem in terms of a functional equation in which the symmetries of the
Julia set are used. Finally, the problem was solved by [SS] and [AHu] indepen-
dently: polynomials having the same Julia set are essentially the same.

We want to extend these dynamical objects and results in one dimension to those
in higher dimensions. As a first step, we extend these dynamical objects and results
of polynomials to those of nondegenerate polynomial skew products. Although
the dynamics of polynomial skew products is a complicated dynamics in higher
dimensions, it has many analogies to the dynamics of polynomials.

The paper is organized as follows. In Section 2, we recall the dynamics of a non-
degenerate polynomial skew product and show the existence of the vertical Green
functions and Böttcher functions of the map. In Section 3 we investigate the sym-
metries of the Julia set of a nondegenerate polynomial skew product. We show
that suitable transformations preserving the Julia set are conjugate to rotational
product maps, and we give a necessary and sufficient condition for the group of
symmetries to be infinite. In Section 4 we deal with the problem case of nondegen-
erate polynomial skew products that have the same Julia set. We place a restriction
on nondegenerate polynomial skew products and show that, except for two types,
these maps having the same Julia set are essentially the same. The paper con-
cludes with application of this result to the dynamics of regular polynomial skew
products.

2. Dynamics of Polynomial Skew Products

Let us recall the dynamics of nondegenerate polynomial skew products on C2.

Heinemann [H] and Jonsson [J] studied the dynamics of regular polynomial skew
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products. Favre and Guedj [FG] studied the dynamics of polynomial skew prod-
ucts. A polynomial skew product is a polynomial map of the form f(z, w) =
(p(z), q(z, w)), where p(z) = azδ+O(zδ−1) and q(z, w) = b(z)wd +Oz(w

d−1).

In this paper we say that f is nondegenerate if b(z) is a nonzero constant and that
f is of bidegree (δ, d) if deg p = δ and degw q = d. We always assume that the
degrees δ and d are at least 2. As we shall see in Section 4, regular polynomial
skew products are nondegenerate.

Let f(z, w) = (p(z), q(z, w)) be a nondegenerate polynomial skew product
of bidegree (δ, d). Roughly speaking, the dynamics of nondegenerate polynomial
skew products consists of the dynamics on the base space and the dynamics on
the vertical lines. We denote the nth iterate of f by f n and the composition of
maps f and g by fg; that is, fg(z) = f(g(z)). The first component p defines
the dynamics on the base space C. Define Kp = {z : {pn(z)}n≥1 bounded} and
Jp = ∂Kp. In this paper we call Jp the base Julia set of f. Note that f preserves
the set of vertical lines in C2. In this sense, we often use the notation qz(w) in-
stead of q(z, w). The restriction of f n to a line {z} × C can be viewed as the
composition of n polynomials on C, qpn−1(z) · · · qp(z)qz. For z in Kp, define Kz =
{w : {Qn

z(w)}n≥1 bounded} and Jz = ∂Kz. In this paper we call Jz the vertical
Julia set of f at z. We define the pre-Julia set of f as the union of the vertical
Julia sets on the base Julia set, and we define the Julia set of f as the closure of
the pre-Julia set of f :

Jf = J ′
f , where J ′

f =
⋃
z∈Jp

{z} × Jz.

By definition, Jf is compact and completely invariant under f.

A useful tool in the study of the dynamics of p on the base space is the Green
function Gp of p, defined by

Gp(z) = lim
n→∞ δ−n log+|pn(z)|.

It is known that Gp is a nonnegative, continuous, and subharmonic function on
C. More precisely, Gp is harmonic on C − Kp and is zero on Kp, and Gp(z) =
log|z| + O(1) as z → ∞. By definition, Gp(p(z)) = δGp(z). Note that Gp coin-
cides with the Green function for Kp with a pole at infinity, which is determined
only by the compact set Kp. In a similar fashion, we consider the function

Gz(w) = lim
n→∞ d−n log+|Qn

z(w)|,
where Qn

z(w) = qpn−1(z) · · · qp(z)qz(w). Favre and Guedj [FG] proved that the
limit function Gz is well-defined on Kp ×C and has similar properties to Gp with-
out the assumption of nondegeneracy. For completeness we restate here their claim
and proof with the assumption of nondegeneracy.

Lemma 2.1 [FG, Thm. 6.1]. For a nondegenerate polynomial skew product f ,
where f(z, w) = (p(z), q(z, w)) and q(z, w) = bwd + Oz(w

d−1), and for every
z in Kp, there exists a unique function Gz on {z} × C such that :
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(i) Gz is harmonic on C − Kz and is zero on Kz;
(ii) Gz(w) = log|w| + 1

d−1 log|b| + oz(1) as w → ∞; and
(iii) Gp(z)(qz(w)) = dGz(w).

Proof. We may assume that b = 1 because a polynomial skew product (azδ +
O(zδ−1), bwd +Oz(w

d−1)) is conjugate to a map (zδ +O(zδ−1), wd +Oz(w
d−1))

by a linear map (a1/(δ−1)z, b1/(d−1)w).

Let Gn(z, w) = d−n log+|Qn
z(w)| and W = Kp × {w : |w| > R} for large

R > 0. We prove the uniform convergence of Gn(z, w) on W. Since Kp is com-
pact, there exists a c > 0 such that, for any (z, w) in W,

||qz(w)| − |w|d | < cR−1|w|d.
It follows that f maps W into itself from this inequality, which thus induces the
following inequality for any (z, w) in W and for any positive integer n:

|Gn+1(z, w) − Gn(z, w)| = 1

d n+1
|log|Qn+1

z (w)| − log|Qn
z(w)|d |

≤ 1

d n+1
log

{
1 +

∣∣∣∣Q
n+1
z (w) − (Qn

z (w))d

(Qn
z (w))d

∣∣∣∣
}

<
1

d n+1
log

(
1 + c

R

)
.

Therefore, Gn(z, w) converges uniformly to Gz(w) on W. Since Gn(z, w) is har-
monic with respect to w, it follows that the limit function Gz(w) is also harmonic
with respect to w. By the preceding equation, we have

|Gn+1(z, w) − log|w|| = |Gn+1(z, w) − G0(z, w)|

<

n∑
j=0

1

dj+1
log

(
1 + c

R

)
≤ 1

d − 1
log

(
1 + c

R

)

for any (z, w) in W and for any positive integer n. Hence Gz(w) = log|w| + o(1)

as w → ∞. By definition, Gp(z)(qz(w)) = dGz(w).

Define K = {(z, w) : {f n(z, w)}n≥1 bounded}. We can extend the domain of
Gz(w) to (Kp × C) − K by using the equation Gp(z)(qz(w)) = dGz(w), since for
any (z, w) in (Kp × C) − K there exists a positive integer n such that f n(z, w)

belongs to W. Finally, let Gz(w) be zero on K; then clearly the extension satisfies
all the required properties. Uniqueness follows from properties (i) and (ii).

In this paper we call Gz the vertical Green function of f at z. By (i) and (ii) of
Lemma 2.1 we know that, for every z in the base Julia set, Gz coincides with the
Green function for Kz with a pole at infinity, which is determined only by the com-
pact set Kz.

A polynomial p of degree δ is conjugate to z → zδ near infinity by the Böttcher
function of p. One can construct the Böttcher function of p from the Green func-
tion of p. For a nondegenerate polynomial skew product, similar Böttcher func-
tions exist on vertical lines. Lemma 2.1 induces the following proposition.
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Proposition 2.2. For a nondegenerate polynomial skew product f , where
f(z, w) = (p(z), q(z, w)) and q(z, w) = bwd + Oz(w

d−1), and for every z

in Kp, there exists a unique conformal function ϕz defined near infinity such that :

(i) ϕz(w) = w + Oz(1) as w → ∞;
(ii) log|cϕz(w)| = Gz(w), where c = b1/(d−1); and

(iii) ϕp(z)(qz(w)) = b(ϕz(w))d.

Proof. Define uz(w) = Gz(w)− log|w|− 1
d−1 log|b|. Then uz is a harmonic func-

tion defined near infinity and maps ∞ to 0. Hence there exists a harmonic func-
tion vz near infinity such that uz + ivz is holomorphic and maps ∞ to 0. Then the
function ϕz(w) = weuz(w)+ivz(w) satisfies all the required conditions. Uniqueness
follows from properties (i) and (ii).

In this paper we call ϕz the vertical Böttcher function of f at z. These functions
may not correspond to the usual one, cϕz(w). However, our vertical Böttcher func-
tions are useful for investigating the symmetries of the Julia set of f and for dealing
with the problem case when nondegenerate polynomial skew products have the
same Julia set (see e.g. Lemma 4.1).

In Section 3 we use the vertical Green functions and Böttcher functions over the
base Julia set in order to investigate the symmetries of the Julia set of f. Moreover,
we need the vertical Böttcher functions over the whole base space when solving,
in Section 4, the problem when nondegenerate polynomial skew products have the
same Julia set. Let us now show the existence of the vertical Green functions and
Böttcher functions over the whole base space.

Lemma 2.3. Let f be a nondegenerate polynomial skew product of bidegree
(δ, d), where f(z, w) = (p(z), q(z, w)) and q(z, w) = bwd + Oz(w

d−1). If
δ ≤ d then, for every z in C, there exists a harmonic function Gz defined near
infinity such that

(i) Gz(w) = log|w| + 1
d−1 log|b| + oz(1) as w → ∞ and

(ii) Gp(z)(qz(w)) = dGz(w).

Proof. We may assume that b = 1 as the proof of Lemma 2.1. Let Gn(z, w) =
d−n log|Qn

z(w)|. We prove the uniform convergence of Gn(z, w) on some subset
of (C − Kp) × C. Let k = degz q and W = {(z, w) : |z| > R, |w| > R|z|k} for
large R > 0. Then there exists a c > 0 such that, for any (z, w) in W,∣∣∣∣qz(w) − wd

wd−1zk

∣∣∣∣ ≤ c.

Hence we get the following inequality for any (z, w) in W :

||qz(w)| − |w|d | ≤ c ·
∣∣∣∣z

k

w

∣∣∣∣ · |w|d < cR−1|w|d. (2.1)

We claim that f maps W into itself. It is enough to show that |qz(w)| >

R|p(z)|k for any (z, w) in W. Let (z, w) be a point in W. It is clear that if R is
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large enough then there exists a c1 > 0 such that |p(z)| < c1|zδ| for any |z| > R.

Since |qz(w) − wd | < cR−1|w|d, there exists a c2 > 0 such that∣∣∣∣qz(w)

wd

∣∣∣∣ ≥ 1 −
∣∣∣∣qz(w) − wd

wd

∣∣∣∣ ≥ c2.

From these inequalities, it follows that
∣∣∣∣qz(w)

p(z)k

∣∣∣∣ =
∣∣∣∣ zδ

p(z)

∣∣∣∣
k

·
∣∣∣∣qz(w)

zδk

∣∣∣∣ >
1

c k
1

·
∣∣∣∣qz(w)

wd
· wd

zdk
· zdk

zδk

∣∣∣∣
>

c2

c k
1

Rd ·
∣∣∣∣z

dk

zδk

∣∣∣∣ = c2

c k
1

Rd−1 · R ·
∣∣∣∣z

dk

zδk

∣∣∣∣.
If R is large enough, then c2c−k

1 Rd−1 > 1. Finally, the condition δ ≤ d implies
that |qz(w)| > R|p(z)|k.

By the same argument used in the proof of Lemma 2.1, (2.1) induces the uniform
convergence of Gn(z, w) on W. The limit function Gz(w) satisfies all the required
properties. We can extend the domain of Gz(w) with respect to z to C − Kp by
using the equation Gp(z)(qz(w)) = dGz(w), since for any z in C − Kp there exists
a positive integer n such that pn(z) belongs to {|z| > R}. Clearly, the extension
satisfies all the required properties.

The existence of vertical Green functions of f implies the existence of vertical
Böttcher functions of f , as in the proof of Proposition 2.2.

Proposition 2.4. Let f be a nondegenerate polynomial skew product of bi-
degree (δ, d), where f(z, w) = (p(z), q(z, w)) and q(z, w) = bwd + Oz(w). If
δ ≤ d then, for every z in C, there exists a conformal function ϕz defined near
infinity such that :

(i) ϕz(w) = w + Oz(1) as w → ∞;
(ii) log|cϕz(w)| = Gz(w), where c = b1/(d−1); and

(iii) ϕp(z)(qz(w)) = b(ϕz(w))d.

3. Symmetries of a Julia Set

In this section we investigate the symmetries of the Julia set of a nondegenerate
polynomial skew product f of bidegree (δ, d),

f

(
z

w

)
=

(
p(z)

q(z, w)

)
=

(
aδz

δ + aδ−1z
δ−1 + · · · + a0

bdwd + bd−1(z)w
d−1 + · · · + b0(z)

)
.

We use this notation for f (including p, qz, bd , and bj(z)) in the proofs that fol-
low. We omit the proofs of results in one dimension, but one can reconstruct the
proofs for p from our proofs for f.

First, let us recall objects and results of the symmetries of the Julia sets of poly-
nomials on C (for further detail, see [B]). We view conformal functions as the
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symmetries of the Julia set of a polynomial p. Because the Julia set of p is com-
pact, such functions are conformal Euclidean isometries. Hence the group of the
symmetries of the Julia set of p is defined by

# = #(Jp) = {σ(z) = c1z + c2 : |c1| = 1, σ(Jp) = Jp},
where c1 and c2 are complex numbers.

The centroid of p is defined by

ζ = −aδ−1

δaδ

.

If the solutions of p(z) = Z are z1, z2, . . . , zδ , then

p(z) = aδ(z − z1)(z − z2) · · · (z − zδ) + Z

and so the center of gravity of the points zj coincides with ζ. Each symmetry σ is
a rotation about the centroid of p; that is, σ(z) = µ(z − ζ) + ζ for some µ in the
unit circle S1. We can normalize p by a conjugation function z → z − ζ so that
the centroid is at the origin, and the group #(Jp) can be identified with a subgroup
of the unit circle S1.

Let us generalize these dynamical objects and results of polynomials to those
of nondegenerate polynomial skew products. We consider polynomial automor-
phisms whose first components depend only on the first coordinate as the symme-
tries of the Julia set of a nondegenerate polynomial skew product. Let γ (z, w) =
(σ(z), γz(w)) be a polynomial automorphism that preserves the Julia set of f.

Since σ is homeomorphic and since the base Julia set is compact, it follows that
σ is a conformal Euclidean isometry: σ(z) = c1z + c2 for some complex num-
bers c1 and c2 with |c1| = 1. Note that γ preserves the set of vertical lines. Since
γz is homeomorphic, it is an affine function in w: γz(w) = c3(z)w + c4(z) for
some polynomials c3(z) and c4(z). Since γ is homeomorphic, c3(z) is a constant
c3. Moreover, since γ preserves the compact set Jf , it follows that γz is also a
conformal Euclidean isometry: |c3| = 1. Hence we may define the group of the
symmetries of the Julia set of f as

* = *(Jf) = {γ ∈ S : γ (Jf) = Jf },
where

S =
{
γ

(
z

w

)
=

(
c1z + c2

c3w + c4(z)

)
: |c1| = |c3| = 1

}
.

In the same manner, we can define *(J ′
f ). Let J ∗

z be the intersection of the Julia
set of f and the vertical line {z} × C for any z in the base Julia set. Because J ∗

z is
included in Kz, it follows that *(Jf) = *(J ′

f ). Hence γ in *(Jf) preserves J ′
f and

so it sends Jz onto Jσ(z) for any z in the base Julia set.
As in the one-dimensional case, we define the centroid of qz by

ζz = −bd−1(z)

dbd

.
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If the solutions of qz(w) = W are w1, w2, . . . , wd , then the center of gravity of the
points wj coincides with ζz. We can normalize f by the conjugation map (z, w) →
(z−ζ, w−ζz) so that all centroids ζ and ζz are at the origin. We say that a polyno-
mial skew product f is in normal form if all its centroids ζ and ζz are at the origin
and if the coefficients of the leading terms of p and qz are both 1. Before normal-
izing the polynomial skew product, we express symmetries by using the centroids
ζ and ζz.

Proposition 3.1. Let f(z, w) = (p(z), q(z, w)) be a nondegenerate polynomial
skew product. Then any symmetry γ in * can be written as

γ

(
z

w

)
=

(
µ(z − ζ) + ζ

ν(w − ζz) + ζσ(z)

)

for some µ and ν in S1, where σ(z) = µ(z − ζ) + ζ belongs to #.

Proof. Let us denote γ in * by (σ(z), γz(w)). It is known that σ(z) = µ(z−ζ)+ζ

for some µ in S1, which is proved by an argument similar to the following.
First, note that the Böttcher function ϕz has a relationship with the centroid ζz

of qz for any z in the base Julia set. Combining (i) and (iii) of Proposition 2.2
yields

bdwd + bd−1(z)w
d−1 + · · · = bd(w + cz + · · · )d.

Comparing the second terms in this equation shows that cz = −ζz and so ϕz(w) =
w − ζz + oz(1).

Next, let us show that the assumption γ (Jf) = Jf induces the required for-
mula. Fix any z in the base Julia set. Then γz(Jz) = Jσ(z) and so γz(Kz) = Kσ(z).

Hence Gσ(z)γz and Gz are the Green functions for Kz with a pole at infinity. By
the uniqueness property of the Green functions, Gσ(z)γz = Gz. From the rela-
tion between the vertical Green functions and Böttcher functions it follows that
ϕσ(z)γz(w) = νϕz(w) for some ν in S1. By comparing the regular terms in this
equation, we obtain γz(w) − ζσ(z) = ν(w − ζz). By the uniqueness theorem of
holomorphic functions on horizontal lines, this equation holds on C2.

We can now identify the group of symmetries with a subgroup of the torus. For a
nondegenerate polynomial skew product f in normal form,

* = {γµ,ν(z, w) = (µz, νw) : γµ,ν(Jf) = Jf }
� {(µ, ν) ∈ S1 × S1 : γµ,ν ∈ *} ⊂ S1 × S1.

The following lemma helps us to investigate the symmetries of the Julia set of f.

Although the idea comes from [B], we give a slightly different statement.

Lemma 3.2. Let f(z, w) = (p(z), q(z, w)) be a nondegenerate polynomial skew
product of bidegree (δ, d) in normal form. Then

* = {γ (z, w) = (µz, νw) : f nγ = γ (δn,d n)f n for any n ≥ 1},
where µ and ν belong to S1 and where γ (δn,d n)(z, w) = (µδn

z, νd n

w).
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Proof. Since f is in normal form, any γ in * is a rotational product map. Let
γ (z, w) = (σ(z), γz(w)), where σ(z) = µz and γz(w) = νw.

Assume that γ belongs to *. Since σ belongs to #, it is known that p(µz) =
µδp(z), which is proved by an argument similar to the following. Fix any z in the
base Julia set. Since γ preserves the Julia set, Gσ(z)γz = Gz; that is, Gµz(νw) =
Gz(w). Therefore, ϕµz(νw) = νϕz(w). By Lemma 2.2, ϕp(µz)(qµz(νw)) =
(ϕµz(νw))d = (νϕz(w))d = νd(ϕz(w))d = νdϕp(z)(qz(w)). A comparison of
the regular terms in this equation yields qµz(νw) = νdqz(w). By the unique-
ness theorem of holomorphic functions on horizontal lines, this equation holds on
C2. Consequently, fγ = γ (δ,d )f and so γ (δ,d ) belongs to *. It follows similarly
that fγ (δ,d ) = γ (δ2,d 2)f and so γ (δ2,d 2) belongs to *. Therefore, f 2γ = γ (δ2,d 2)f 2.

By continuing this argument, we arrive at fγ (δn−1,d n−1) = γ (δn,d n)f and so f nγ =
γ (δn,d n)f n for any positive integer n.

Assume that f nγ = γ (δn,d n)f n for any positive integer n. Since p(µz) =
µδp(z), it is known that σ belongs to #, which is proved by an argument similar
to the following. Fix any z in the base Julia set. Since Qn

µz(νw) = νd n

Qn
z (w), it

follows that w belongs to Kz if and only if νw belongs to Kµz. Therefore, γz maps
Kz onto Kµz and hence it maps Jz onto Jµz. Consequently, γ preserves the Julia
set and so it belongs to *.

Remark 3.3. If δ = d, then one can replace the conditions f nγ = γ d n

f n for
every positive integer n with the condition fγ = γ df.

Let us now give three examples of the symmetries of the Julia sets of nondegener-
ate polynomial skew products in normal form. Using fγ = γ df , one can calculate
the group of symmetries from the given map.

Example 3.4. Let f(z, w) = (z3 + 1, w3 + w) be a polynomial product. Then
* � {(µ, ν) : µ3 = ν 2 = 1}.
Example 3.5. Let f(z, w) = (z3, w3 + zw + 1). Then it follows that * �
{(µ, ν) : µ3 = µν = 1} = {(1,1), (ρ, ρ2), (ρ2, ρ) for ρ3 = 1}.
Example 3.6. Let f(z, w) = (z2, w2 + z). Then * � {(µ, ν) : µ = ν 2 ∈ S1}.
In particular, * is an infinite group. Moreover, f is semiconjugate to (z, w) →
(z2, w2 + 1) by π(z, w) = (z2, zw).

Next we consider when the group of symmetries is infinite. A nondegenerate poly-
nomial skew product is conjugate to a map that is in normal form. Hence we may
assume, without loss of generality, that the polynomial skew product is in normal
form.

Theorem 3.7. Let f(z, w) = (p(z), q(z, w)) be a nondegenerate polynomial
skew product of bidegree (δ, d) in normal form. Then * is infinite if and only if
one of the following holds for a one-dimensional Julia set J and for some positive
integers n and m:
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(i) Jf = S1 × S1;
(ii) Jf = Jp × S1;

(iii) Jf = S1 × J ;
(iv) Jf = ⋃

z∈S1{z} × zm/nJ.

These conditions are equivalent to the following counterparts:

(i′) f(z, w) = (zδ, wd);
(ii′) f(z, w) = (p(z), wd);

(iii′) f(z, w) = (zδ, q(w));
(iv′) δ = d, p(z) = zd, and f is semiconjugate to a polynomial product

(zd, q(1, w)) by π(z, w) = (zn, zmw) for some positive integers n and m.

Proof. Each condition implies that * is infinite. We prove the converse. Let *

be infinite. We identify the group * = {γµ,ν(z, w) = (µz, νw) : γµ,ν(Jf) = Jf }
with the subgroup of the torus, {(µ, ν) ∈ S1 × S1 : γµ,ν ∈ *}.

If * has only finitely many different µ, then it must have infinitely many differ-
ent ν. Because * is a closed subgroup of S1 × S1, it includes {1} × S1. Hence each
vertical Julia set Jz is a circle with center at the origin for any z in the base Julia
set. We can use vertical Böttcher functions to show that qz(w) = wd. Let rz(w) =
czw

d so that it maps the circle Jz to the circle Jp(z). Then d−1Gp(z)rz and Gz are
the Green functions for Kz with a pole at infinity. From the uniqueness property of
the Green functions, Gp(z)rz = dGz; hence ϕp(z)(rz(w)) = cz(ϕz(w))d. By com-
bining this equation and the equation ϕp(z)(qz(w)) = (ϕz(w))d, we establish that
ϕp(z)(rz(w)) = czϕp(z)(qz(w)). Therefore, qz(w) = (cz)

−1rz(w) = wd. Thus we
get (ii′), which implies (ii). One can use the same argument to show that (ii) im-
plies (ii′).

Assume that * has infinitely many different µ. Because the projection of * to
the first coordinate is a closed subgroup of S1, it coincides with S1. Hence Jp is a
circle. In a similar way as described previously, one can show that Jp being a cir-
cle is equivalent to p being conjugate to z → zd. By assumption, p(z) = zd and
Jp = S1.

In addition, assume that * has only finitely many different ν. Then * includes
S1 × {1}. Hence Jµz = Jz for any z in the base Julia set and for any µ in S1; that
is, the vertical Julia sets over the base Julia set are all the same. Thus we get (iii).
Arguing similarly (or from Theorem 4.6 in the next section), we can show that
polynomials of degree d that map J to itself differ only in terms of the symme-
tries of J. Since the coefficient of the leading term of qz is a constant, qz(w) is
independent of z. Thus we get (iii′). Clearly, (iii′) implies (iii).

Assume that * has infinitely many different µ and ν. We show that the condition
δ �= d implies (i) and (i′). Because the projection of * to the second coordinate
coincides with S1, there exists a γ = (µ, ν) in * such that ν n �= 1 for any nonzero
integer n. Then, by Lemma 3.2, (µδ, νd) also belongs to *. On the other hand,
γ δ = (µδ, νδ) belongs to *. Thus the difference (1, νd−δ) belongs to *, which im-
plies that the vertical Julia set Jz is invariant under the function w → νd−δw for
any z in the base Julia set. Since the group {ν(d−δ)n : n ∈ Z} is dense in S1, it
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follows that * includes {1}×S1. Hence the vertical Julia sets over the base Julia set
are circles with centers at the origin. Analogous arguments show that qz(w) = wd.

Thus we get (i′), which implies (i). One can show that (i) implies (i′) by the same
argument used previously. Finally, we consider the case where δ = d and * has
infinitely many different µ and ν. If f is a polynomial product, then we get (i)
and (i′). Thus we may assume that f is not a polynomial product. Proposition 3.9
(to follow) then completes the proof.

Remark 3.8. We can classify the types of an infinite group * by Theorem 3.7.
Case (i) occurs if * is isomorphic to the torus. Case (ii) occurs if * is isomorphic
to the product of a finite group and the unit circle, and case (iii) occurs if * is iso-
morphic to the product of the unit circle and a finite group. Case (iv) occurs if the
projections of * to the first and the second coordinates are both the unit circle and
if * is not isomorphic to the torus.

Let us now complete the proof of Theorem 3.7.

Proposition 3.9. Let f(z, w) = (zd, q(z, w)) be a nondegenerate polynomial
skew product of bidegree (d, d) in normal form. Assume that f is not a polyno-
mial product. Then the following statements are equivalent.

(i) * is infinite.
(ii) fτ = τ df for some τ(z, w) = (λz, κw) with |λ| �= 1.

(iii) q(zn, zmw) = zmdq(1, w) for some positive integers n and m.

(iv) f is semiconjugate to a polynomial product (zd, q(1, w)) by the projection
π(z, w) = (zn, zmw) for some positive integers n and m.

(v) Jf = ⋃
z∈S1{z}× zm/nJ for a one-dimensional Julia set J and for some pos-

itive integers n and m.

Proof. (i) ⇒ (iii). We identify the group

* = {γµ,ν(z, w) = (µz, νw) : γµ,ν(Jf) = Jf }
with the subgroup of the torus, {(µ, ν) ∈ S1 × S1 : γµ,ν ∈ *}. Observe that * has
infinitely many different µ. Otherwise, it follows (from the same argument used
in the proof of Theorem 3.7) that f is a polynomial product, which contradicts the
assumption. Because the projection of * to the first coordinate is a closed sub-
set of S1, it coincides with S1. Thus there exists γ (z, w) = (µz, νw) in * such
that µn �= 1 for any nonzero integer n. Lemma 3.2 implies that q(µz, νw) =
νdq(z, w). Therefore, if q contains the term zmiwli with a nonzero coefficient for
li < d, then µ and ν are related by µmiν li = νd. The equations µmi = νd−li

and µmj = νd−lj imply that µmi(d−lj )−mj(d−li ) = 1. By the property of µ, we have
mi(d − lj ) − mj(d − li) = 0; hence the ratio of d − li and mi is independent of i.

Let n and m be, for example, the minimum positive integers whose ratio is equal
to that of d − li and mi. Then these integers n and m satisfy (iii). Similarly, (ii)
implies (iii) because λn �= 1 for any nonzero integer n.

(iii) ⇒ (iv). Let f0(z, w) = (zd, q(1, w)). Then f is semiconjugate to f0 by
π : πf0 = fπ.
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(iv) ⇒ (i). Let f0(z, w) = (zd, q0(w)) be a polynomial product such that πf0 =
fπ. Then γ0(z, w) = (µz, w) belongs to *(Jf0) for any µ in S1. A rotational prod-
uct map γ0 projects to γ (z, w) = (µnz, µmw) by π. The equation f0γ0 = γ d

0 f0

implies that fγ = γ df. By Lemma 3.2, γ belongs to *(Jf). Similarly, (iv) im-
plies (ii) because τ0(z, w) = (λz, w) satisfies f0τ0 = τ d

0f0 for any λ in C − {0}.
(iii) ⇒ (v) ⇒ (i). Let J be the Julia set of a polynomial q(1, w). Then (iii)

implies that Jz = zm/nJ for any z in the base Julia set S1. Moreover, (v) implies
that the linear map (z, w) → (µnz, µmw) preserves Jf for any µ in S1. Thus * is
infinite.

4. Polynomial Skew Products with Same Julia Set

In this section we consider the case where nondegenerate polynomial skew prod-
ucts have the same Julia set. We give partial answers to this question. First, we
generalize Beardon’s answer in terms of a functional equation. Next, we place a
restriction on the maps and generalize the answer in [SS] and [AHu].

Let f(z, w) = (p(z), q(z, w)) and g(z, w) = (r(z), s(z, w)) be nondegenerate
polynomial skew products having the same Julia set. We often use the notation
f = (p, q) and g = (r, s) for simplicity. We denote the vertical Julia set, Green
function, and Böttcher function of f (resp. g) by J

f
z , G

f
z , and ϕ

f
z (resp. J

g
z , G

g
z ,

and ϕ
g
z ). The following two lemmas are useful for dealing with this case.

Lemma 4.1. Let f and g be nondegenerate polynomial skew products. If Jf =
Jg , then ϕ

f
z = ϕ

g
z for any z in the base Julia set.

Proof. Fix any z in the base Julia set. Then J
f
z = J

g
z and K

f
z = K

g
z . By the

uniqueness property of the Green functions, G
f
z = G

g
z . The relation between the

vertical Green functions and Böttcher functions implies the identity ϕ
f
z = ϕ

g
z ,

since the coefficients of the leading terms of ϕ
f
z and ϕ

g
z are both 1.

Lemma 4.2. Let f and g be nondegenerate polynomial skew products. If Jf = Jg

and if the bidegrees of f and g are the same, then f = γg for some γ in *.

Proof. Let f = (p, q) and g = (r, s), where qz(w) = bwd + Oz(w
d−1) and

sz(w) = b ′wd + Oz(w
d−1). Since Jp = Jr and deg p = deg r, it is known that

p = σr for some σ in #, which is proved by an argument similar to the follow-
ing. We start by comparing the second components of f and g. Fix any z in the
base Julia set. By Lemma 4.1, ϕ

f
z = ϕ

g
z ; we denote it by ϕz for simplicity. By

Proposition 2.2,

ϕp(z)(qz(w)) = b(ϕz(w))d and ϕr(z)(sz(w)) = b ′(ϕz(w))d.

Comparing the regular terms in ϕp(z)(qz(w)) = νϕr(z)(sz(w)) then yields

qz(w) − ζp(z) = ν(sz(w) − ζr(z)), where ν = b

b ′ ∈ S1.
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Hence qz = γr(z) sz, where γz(w) = ν(w − ζz) + ζσ(z). By the uniqueness the-
orem of holomorphic functions on horizontal lines, qz(w) = γr(z) sz(w) on C2.

Consequently, f = γg for γ (z, w) = (σ(z), γz(w)) and so γ belongs to *.

We next recall Beardon’s answer to the problem when polynomials have the same
Julia set. We assume that the degrees of the polynomials are at least 2.

Theorem 4.3 [B, Thm. 1]. Let P and Q be polynomials. Then JP = JQ if and
only if PQ = σQP for some σ in #(JQ).

Remark 4.4. The condition σ ∈ #(JQ) is equivalent to the condition σ ∈ #(JP),
since the equation PQ = σQP for some σ in #(JQ) implies QP = σ−1PQ, where
σ−1 also belongs to #(JQ).

We can generalize Theorem 4.3 to the case of nondegenerate polynomial skew
products. We use Montel’s theorem as in [B], from which the idea of the proof
comes, but we give a slightly different proof.

Theorem 4.5. Let f and g be nondegenerate polynomial skew products. Then
Jf = Jg if and only if fg = γgf for some γ in *(Jf).

Proof. Assume that Jf = Jg. Since the bidegrees of fg and gf are the same, it
follows from Lemma 4.2 that fg = γgf for some γ in *.

Assume that fg = γgf for some γ in *(Jf). We may also assume that f is
in normal form and that γ (z, w) = (µz, νw) for some µ and ν in S1. Let f =
(p, q) and g = (r, s). Since pr = σrp, it is known that Jp = Jr , which is
proved by an argument similar to the following. Combining the equations fg =
γgf and fγ (δn−1,d n−1) = γ (δn,d n)f in the proof of Lemma 3.2 yields f n+1g =
γ (δn+1,dn+1)gf n+1 for any positive integer n, where δn+1 = δn + · · · + δ + 1 and
dn+1 = d n+· · ·+d+1. Fix any z in the base Julia set. Then Qn

r(z) sz = νdnspn(z)Q
n
z ,

where Qn
z = qpn−1(z) · · · qp(z)qz. Hence w belongs to C − K

f
z if and only if sz(w)

belongs to C − Kf
r(z). In particular, sz maps C − K

f
z to C − Kf

r(z) and so S n
z maps

C − K
f
z to C − Kf

r n(z), where S n
z = sr n−1(z) · · · sr(z) sz. Note that K

f
z contains infi-

nitely many points and is uniformly bounded for any z in the base Julia set. Thus
it contains different points az and bz, which are uniformly bounded for any z in
the base Julia set.

Let us define affine functions hn
z as

hn
z(w) = w − ar n(z)

br n(z) − ar n(z)

.

Then hn
z S n

z (C − K
f
z ) omits 0 and 1. By Montel’s theorem, the family of poly-

nomials {hn
z S n

z }n≥1 is normal in C − K
f
z . We may assume that br n(z) − ar n(z) is

uniformly bounded away from 0. Hence {S n
z }n≥1 is also normal in C − K

f
z and

so C − K
f
z ⊂ C − K

g
z . Again, the equation Qn

r(z) sz = ν lnspn(z)Q
n
z implies that w

belongs to K
f
z if and only if sz(w) belongs to K

f

r(z). In particular, sz maps K
f
z to
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K
f

r(z) and so S n
z maps K

f
z to K

f

r n(z). Hence K
f
z ⊂ K

g
z . Consequently, K

f
z = K

g
z

and so J
f
z = J

g
z .

We now recall the answer in [SS] and [AHu] to this problem, which will be used
to prove our Theorem 4.10.

Theorem 4.6 [SS; AHu]. For any Julia set J of a polynomial that is not a circle
or a straight line segment, there exists a polynomial R such that any polynomial
with the Julia set J can be written in the form σRk for some positive integer k and
σ in # :

{Q : polynomial, JQ = J } = {σRk : σ ∈ #, k ∈ N}.
Remark 4.7. A polynomial P is conjugate to z → zd if and only if JP is a cir-
cle. A polynomial P is conjugate to a Chebyshev polynomial if and only if JP is a
straight line segment. Combined, these results imply that polynomials having the
same Julia set are essentially the same.

Let us generalize Theorem 4.6 to the case of nondegenerate polynomial skew prod-
ucts. For this purpose, we need to place a restriction on the maps. We shall say that
a nondegenerate polynomial skew product f of bidegree (δ, d) is of iso-bidegree
if δ = d. Important tools are the one-dimensional theorem (Theorem 4.6) and the
vertical Böttcher functions over the whole base space (Proposition 2.4).

Proposition 4.8. Let f and g be nondegenerate polynomial skew products of
iso-bidegree. If Jf = Jg and if the base Julia set is not a circle or a straight line
segment, then f n = γgm for some positive integers n and m and for some γ in *.

Proof. Let f = (p, q) and g = (r, s). By Theorem 4.6, there exists a polyno-
mial R such that p = σ1R

m and r = σ2R
n for some positive integers m and n

and for some σ1 and σ2 in #. Hence the bidegrees of f n and gm are the same, so
Lemma 4.2 now completes the proof.

Lemma 4.9. Let f and g be nondegenerate polynomial skew products of iso-
bidegree. If Jf = Jg and if the base Julia set is not a circle or a straight line
segment, then ϕ

f
z = ϕ

g
z for any z in C.

Proof. We may assume that f is in normal form and that γ (z, w) = (µz, νw) for
some µ and ν in S1. By Proposition 4.8, f n = γgm for some positive integers n and
m and for some γ in *. Let Qn

z = qpn−1(z) · · · qp(z)qz and S n
z = sr n−1(z) · · · sr(z) sz,

where f = (p, q) and g = (r, s). Then Qn
z = νS m

z and so Q
nj
z = ν ljS

mj
z for any

positive integer j, where lj = d(j−1)m + · · · + d m + 1. Hence, for d1 = degw q

and d2 = degw s,

Gf
z(w) = lim

j→∞
1

d
j

1

log|Qj
z(w)| = lim

j→∞
1

d
nj

1

log|Qnj
z (w)|

= lim
j→∞

1

d
mj

2

log|S mj
z (w)| = lim

j→∞
1

d
j

2

log|Sj
z(w)| = Gg

z (w).



166 Kohei Ueno

The relation between the vertical Green functions and Böttcher functions implies
the identity ϕ

f
z = ϕ

g
z for any z in C, since the coefficients of the leading terms of

ϕ
f
z and ϕ

g
z are both 1.

Now, let us generalize the answer in [SS] and [AHu].

Theorem 4.10. For any Julia set J of a nondegenerate polynomial skew prod-
uct of iso-bidegree whose base Julia set is not a circle or a straight line segment,
there exists a nondegenerate polynomial skew product h of iso-bidegree such that
any nondegenerate polynomial skew product of iso-bidegree with the Julia set J

can be written in the form γhk for some positive integer k and γ in * :

{g : polynomial skew product, Jg = J } = {γhk : γ ∈ *, k ∈ N},
where g is nondegenerate and of iso-bidegree.

Proof. Let h be a nondegenerate polynomial skew product of the minimum iso-
bidegree such that Jh = J. If the bidegree of g coincides with that of h then, by
Lemma 4.2, g = γh for some γ in *. If the bidegree of g is larger than that of
h, then it follows from Theorem 4.6 and the property of iso-bidegree that the bi-
degree of g is divisible by that of h. Let h = (p, q) and g = (r, s), where qz(w) =
bwd + Oz(w

d−1) and sz(w) = b ′wds + Oz(w
ds−1).

We shall construct a nondegenerate polynomial skew product f of iso-bidegree
such that g = fh; in a similar way, one can construct a polynomial t such that
r = tp. By Lemma 4.9, ϕ

f
z = ϕ

g
z for any z in C. We denote it simply by ϕz and

define the following function for any z in C:

ũz(w) = ϕ−1
t(z)(c(ϕz(w))s ), where c = b ′

b s
.

Then ũz is a holomorphic function defined near infinity and sz = ũp(z)qz near in-
finity. Since ũz ∼ cws as w → ∞, one can put ũz(w) = uz(w) + oz(1), where
uz(w) = cws + Oz(w

s−1) are the regular terms of ũz. From the equation sz =
ũp(z)qz it follows that sz(w) − up(z)(qz(w)) = op(z)(qz(w)) near infinity. Thus
op(z)(qz(w)) = 0 and so op(z)(1) = 0. Hence ũz coincides with uz, which is a
polynomial in w, and g = fh for f = (t, u). Let us show that f is a polynomial
skew product.

We must show that all the coefficients in uz are polynomials in z. Let u(z, w) =
uz(w) = cws + cs−1(z)w

s−1 + cs−2(z)w
s−2 + · · · + c0(z). Since g = fh, it fol-

lows that all the coefficients in uh with respect to w are polynomials in z. The
coefficient of ws−1 in uh is the sum of cs−1(p(z)) and a polynomial in z. Thus
cs−1(p(z)) is a polynomial in z, and so is cs−1(z). The coefficient of ws−2 in uh

is the sum of cs−2(p(z)) and a polynomial in z that contains cs−1(p(z)). Hence
cs−2(p(z)) is a polynomial in z, and so is cs−2(z). By continuing the same argu-
ment, it follows that cj(z) is a polynomial in z for any j.

We have shown that g is divisible by h; that is, g = fh. It then follows that J

is completely invariant under f and so Jf = J. Again we divide f by h—in other
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words, we divide g by h2. We continue dividing g by h until the bidegree of g

coincides with that of hk for some positive integer k. Then Lemma 4.2 completes
the proof.

We end the paper by applying the results in this section to the dynamics of regular
polynomial skew products. We say that a polynomial skew product on C2 is regu-
lar if it extends to a holomorphic map on the two-dimensional complex projective
space P2. For a polynomial skew product f(z, w) = (p(z), q(z, w)) of bidegree
(δ, d), where q(z, w) = bd(z)wd + bd−1(z)w

d−1 + · · · + b0(z), it follows that f

is regular if and only if δ = d and deg bj(z) ≤ d − j for any j. Clearly, a regular
polynomial skew product is nondegenerate and of iso-bidegree.

Corollary 4.11. Let J be the Julia set of a regular polynomial skew product
whose base Julia set is not a circle or a straight line segment. Then all nondegen-
erate polynomial skew products of iso-bidegree with the Julia set J are regular.

Proof. Let f be a regular polynomial skew product with the Julia set J, and let g

be a nondegenerate polynomial skew product of iso-bidegree with the Julia set J.

By Proposition 4.8, f n = γgm for some integers n and m and for some γ in *.

Since f n and γ are regular, gm is also regular. Hence g is regular.

Let f be a regular polynomial skew product, and let f̂ be the extension of f to a
holomorphic map on P2. We define the first Julia set J1(f ) of f as the support of
the Green current of f̂ and define the second Julia set J2(f ) of f as the support
of the Green measure of f̂ . In [J] it was shown that the second Julia set J2(f )

coincides with the Julia set Jf . One can denote the first Julia set in terms of Green
functions. There exists the Green function Gf of f on C2, defined by

Gf (z) = lim
n→∞ d−n log+|f n(z, w)|,

where d is the degree of f and |(z, w)| = max{|z|, |w|} is a norm on C2. Define
Kz = {w : Gf (z, w) = Gp(z)} and Jz = ∂Kz, where p is the first component of
f. Then

J1(f ) =
⋃
z∈C

{z} × Jz ∪
⋃
z∈Jp

{z} × Kz,

where the closure is taken in P2.

Corollary 4.12. For a regular polynomial skew product whose base Julia set
is not a circle or a straight line segment, the first Julia set is uniquely determined
by the second Julia set.

Proof. Let f = (p, q) and g = (r, s) be regular polynomial skew products hav-
ing the same Julia set. If the base Julia set is not a circle or a straight line segment,
then by Proposition 4.8 it follows that f n = γgm for some positive integers n and
m and for some γ in *. Hence Gp = Gr and Gf = Gg , so J1(f ) = J1(g).
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