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On the Topology of Surface Singularities
{zn = f(x, y)} for f Irreducible

Elizabeth A. Sell

1. Introduction

Let (X, 0) ⊂ (Ck, 0) be the germ of a complex analytic normal surface singular-
ity. The intersection of X with a sufficiently small sphere centered at the origin in
Ck is a compact connected oriented 3-manifold 
, called the link of (X, 0), that
does not depend upon the embedding in Ck. Let � be the dual resolution graph of
a good resolution of the singularity. The homeomorphism type of the link can be
recovered from �; conversely, Neumann [8] proved that (aside from a few excep-
tions) the homeomorphism type of the link determines the minimal good resolution
graph. One interesting class of normal surface singularities is the set of those for
which the link is a rational homology sphere (QHS) (i.e., H1(
, Q) = 0). The
link is a QHS if and only if any good resolution graph � of (X, 0) is a tree of ra-
tional curves.

The work of Neumann and Wahl (described in Section 2; see also [10; 18])
provides a method for generating analytic data for singularities from topological
data. Starting with a resolution graph � that satisfies certain conditions, known
as the “semigroup and congruence conditions”, one can produce defining equa-
tions for a normal surface singularity with resolution graph �. The singularities
that result from this algorithm are called splice quotients. If the link 
 is a ZHS
(H1(
, Z) = 0), then only the semigroup conditions are relevant, and the sin-
gularities produced by the algorithm are said to be of splice type. This work has
led to a recent interest in the properties of splice quotients and related topics (see
[3; 6; 13; 14; 17]), and there are still many unanswered questions.

One of the first questions that arises is: How many singularities with QHS link
are splice quotients? There are two layers to the problem, topological and analytic.
If one has a singularity that satisfies the necessary topological conditions (which
depend only on the resolution graph), then there exist splice quotients with that
topological type—but it is a separate issue to determine whether the singularity is
analytically isomorphic to a splice quotient. Originally, one wondered whether all
Q-Gorenstein singularities with QHS link would turn out to be splice quotients.
However, the first counterexamples were found in the paper of Luengo-Velasco,
Melle-Hernández, and Némethi [3]. The authors give an example of a hyper-
surface singularity for which the resolution graph does not satisfy the semigroup
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conditions; they also give an example of a singularity for which the semigroup and
congruence conditions are satisfied yet the analytic type is not a splice quotient.
On the other hand, there are nice classes of singularities for which all analytic
types are splice quotients: weighted homogeneous singularities, as shown by Neu-
mann in [7], and rational and QHS-link minimally elliptic singularities, as shown
by Okuma in [13].

A natural class of surface singularities to study (after weighted homogeneous,
rational, and minimally elliptic) is the class of hypersurface singularities defined by
an equation of the form zn = f(x, y). If {f(x, y) = 0} defines a reduced curve with
a singularity at the origin in C2 then, for n > 1, the surfaceXf,n := {zn = f(x, y)}
has an isolated (hence normal) singularity at the origin in 0 ∈ C3. For f irreducible,
the resolution graph of (Xf,n, 0) can be constructed from n together with a finite
set of pairs of positive integers associated to f , known as the topological pairs
{(pi, ai) | 1 ≤ i ≤ s} and defined in [2] (a variant of the more commonly known
Puiseux pairs). The topological pairs completely determine the topology of the
plane curve singularity. If there is only one topological pair (s = 1), then any such
(Xf,n, 0) with QHS link has the topological type of a weighted homogeneous sin-
gularity and thus has the topological type of a splice quotient. In [9], Neumann
and Wahl prove that the link of (Xf,n, 0) is a ZHS if and only if f is irreducible
and all pi and ai are relatively prime to n. (The result is incorrectly stated in [9],
where the pairs in question are mistakenly identified as the Newton pairs instead
of the topological pairs.) For this case, Neumann and Wahl prove in [12] that any
such (Xf,n, 0) is of splice type. That is, not only are the semigroup conditions
satisfied but, moreover, every (Xf,n, 0) with ZHS link is isomorphic to one that
results from Neumann and Wahl’s construction.

The main result of this paper is a complete characterization of the (Xf,n, 0), with
f irreducible and s ≥ 2, that have a resolution graph satisfying the semigroup and
congruence conditions. For f irreducible, there is an explicit criterion given by
Mendris and Némethi in [4], in terms of n and the topological pairs, that deter-
mines when the link of (Xf,n, 0) is a QHS (see Proposition 3.2). One can see that
there are plenty of (Xf,n, 0) for which the link is a QHS but not a ZHS. From now
on, whenever we are not referring to topological pairs, the notation (m, n) denotes
the greatest common divisor of the integers m and n. Our main result is the fol-
lowing theorem.

Main Theorem. Letf be irreducible with topological pairs {(pi, ai) | 1 ≤ i ≤ s}
with s ≥ 2, and let n be an integer > 1. Then (Xf,n, 0) has QHS link and a good
resolution graph that satisfies the semigroup and congruence conditions if and
only if either :

(i) (n,ps) = 1, (n,pi) = (n, ai) = 1 for 1 ≤ i ≤ s − 1, and as/(n, as) is in the
semigroup generated by {as−1,p1 · · ·ps−1, ajpj+1 · · ·ps−1 | 1 ≤ j ≤ s − 2};
or

(ii) s = 2, p2 = 2, (n,p2) = 2, and (n, a2) = (
n
2 ,p1

) = (
n
2 , a1

) = 1.

It is somewhat surprising that so few (Xf,n, 0) satisfy the topological conditions,
given the result in the ZHS case. Aside from case (ii), which is rather restrictive,
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this result says that if any of the topological pairs other than as have factors in
common with n, then (Xf,n, 0) does not have the topological type of a splice quo-
tient. One could say that if (Xf,n, 0) gets “too far” from the ZHS case (for which
all analytic types are splice quotients) then it cannot even have the topology of a
splice quotient.

If the resolution graph does satisfy the semigroup and congruence conditions,
then we do not know a priori what the equations of the splice quotients produced
from the Neumann–Wahl algorithm look like. Not only is it unclear whether
(Xf,n, 0) is itself a splice quotient, it is not even clear that there exist splice quo-
tients defined by any equation of the form zn = g(x, y). It turns out that there do
exist such splice quotients, but the length of the proof is such that it cannot be in-
cluded here (see [16] for that result). In the case of weighted homogeneous splice
quotients, it was shown in [15] that, in general, not every deformation with the
same topological type is analytically isomorphic to a splice quotient. Therefore,
we expect that there are few cases for which every (Xf,n, 0) of a given topological
type is a splice quotient.

Consider the following example.

Example 1.1. Let Xn := {zn = y 5 + (x3 + y2)2}. The plane curve singularity
defined by y 5 + (x3 + y2)2 = 0 is irreducible with two topological pairs: p1 = 2
and a1 = 3; and p2 = 2 and a2 = 15. The link of (Xn, 0) is a QHS if and only if
(n, 2) = 1 or (n,15) = 1. We can say the following about Xn.

• If n is relatively prime to 2, 3, and 5, then (Xn, 0) has ZHS link and hence is
of splice type. In fact, we could replace y 5 + (x3 + y2)2 by any curve with the
same topological pairs and still have a singularity of splice type.

• If n is divisible by 3 then, according to the Main Theorem, (Xn, 0) does not
even have the topological type of a splice quotient.

• If n = 5k, where k is relatively prime to 2 and 3, then (Xn, 0) has the topology
of a splice quotient by case (i) of the Main Theorem; in fact, (Xn, 0) is itself a
splice quotient [16].

• If n = 2k, where k is relatively prime to 2, 3, and 5, then (Xn, 0) has the topol-
ogy of a splice quotient by case (ii) of the Main Theorem. It is unclear whether
or not (Xn, 0) is a splice quotient. However, if we replace y 5 + (x3 + y2)2 by
(x3 − y2 − y3)2 − 4y 5, which has the same topological pairs, then it is a splice
quotient [16].

The rest of this paper is entirely devoted to proving the Main Theorem. In Sec-
tion 2, we provide a brief summary of the work of Neumann and Wahl. Section 3
contains a description of the resolution graph and splice diagram for (Xf,n, 0).
Some of the computations that are necessary for the proof of the Main Theorem
depend upon work done by Mendris and Némethi in [4]; Section 3.1 is a reit-
eration of this material. In Section 4, we analyze the semigroup conditions for
the splice diagram associated to (Xf,n, 0). Section 5 contains additional compu-
tations that are needed for checking the congruence conditions. Finally, in Sec-
tion 6, we use the computations from the previous three sections to prove the Main
Theorem.
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2. The Neumann–Wahl Algorithm

This section contains a summary of the method defined by Neumann and Wahl
in [11] to produce equations for the splice quotients and their universal abelian
covers; we refer to this method as the Neumann–Wahl algorithm. The algorithm
begins with a negative-definite graph � that is a tree of smooth rational curves
(equivalently, the dual resolution graph associated to a good resolution of a nor-
mal surface singularity with QHS link) and the splice diagram � associated to �.
Splice diagrams were introduced by Eisenbud and Neumann [2] for plane curve
singularities (building on work of Siebenmann) and were later generalized by Neu-
mann and Wahl. If � satisfies the “semigroup conditions” (Definition 2.1), then
the algorithm produces a set of equations that defines a family of isolated complete
intersection surface singularities. The algorithm also produces an action of the fi-
nite abelian groupD(�), the discriminant group of �, on the coordinates used for
the splice diagram equations. If � satisfies further combinatorial conditions, the
“congruence conditions” (Definition 2.3), then one can choose a set of splice dia-
gram equations such that the discriminant group acts on every singularity (Y, 0)
in the family. Furthermore, the quotient of (Y, 0) by D(�) is an isolated normal
surface singularity with resolution graph �, and the covering given by the quo-
tient map is the universal abelian covering (the maximal abelian covering that is
unramified away from the singular point).

In a weighted graph, the valency of a vertex is the number of adjacent edges.
A node is a vertex of valency at least 3, a leaf is a vertex of valency 1, and a
string is a connected subgraph that does not include a node. The procedure for
computing the splice diagram � associated to a resolution graph � is as follows.
First, omit the self-intersection numbers of the vertices and contract all strings of
valency-2 vertices in �. To each node v in the resulting diagram�, we then attach
a weight dve in the direction of each adjacent edge e. Remove the vertex in � that
corresponds to the node v and the edge that corresponds to e, and let �ve be the re-
maining connected subgraph that was connected to v by e. Then the weight dve =
det(−Cve), where Cve is the intersection matrix of the graph �ve. Figure 1 gives
a simple example. Similarly, we define a subgraph �ve of � as follows. Remove
v and e, and let �ve be the remaining connected subgraph that was connected to
v by e. For any two vertices v and w in �, the linking number �vw is the product
of the weights adjacent to but not on the shortest path from v to w. Let �′

vw be the
linking number of v and w, excluding the weights around v and w.
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•
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Figure 1 A resolution graph � and its associated splice diagram �
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Definition 2.1 (Semigroup conditions). The semigroup condition at v in the
direction of e is

dve ∈ N〈�′
vw | w is a leaf in �ve〉.

We say that � satisfies the semigroup conditions if the semigroup condition for
every node v and every adjacent edge e is satisfied. Note that the condition is triv-
ially satisfied for an edge leading to a leaf.

To each leaf w in� we associate a variable Zw. If� satisfies the semigroup con-
ditions, then for each v and e as before there exist αvw ∈ N ∪ {0} such that

dve =
∑

w a leaf in �ve

αvw�
′
vw.

Then a monomial Mve = ∏
w Z

αvw
w , a product over leaves w in �ve with αvw as

before, is called an admissible monomial for e at v. If one associates the weight
�vw to Zw then, for this weight system (the v-weighting), Mve has weight dv =∏

e dve, where the product is taken over all edges e adjacent to v.

Definition 2.2 (Splice diagram equations). Suppose� satisfies the semigroup
conditions. For each node v and adjacent edge e, choose an admissible monomial
Mve. Let δv denote the valency of the vertex v. A set of splice diagram equations
for � is a set of equations of the form{∑

e

avieMve = 0
∣∣ 1 ≤ i ≤ δv − 2, v a node in �

}
;

here, for each v, all maximal minors of the matrix (avie) have full rank. (One can
also add to each equation a convergent power series in the Zw for which all of the
terms have v-weight greater than dv; however, since this extension has no bearing
upon the work herein, we omit it in further discussion.)

Each vertex v ∈� corresponds to an exceptional curve Ev. Let E := ⊕
v∈� ZEv.

The intersection pairing defines a natural injection E ↪→ E∗ = Hom(E , Z), and
the discriminant group is the finite abelian group D(�) := E∗/E. This group is
isomorphic to H1(
, Z). The order of D(�) is det(�) := det(−C(�)), where
C(�) : E × E → Z is the intersection pairing. There are induced symmetric pair-
ings of E ⊗ Q into Q and D(�) into Q.

Suppose� has t leaves, and letZ1, . . . ,Zt be the associated variables. Neumann
and Wahl define a faithful diagonal representation of D(�) on C[Z1, . . . ,Zt ]. Let
E1, . . . ,Et be the curves in � corresponding to the t leaves of �, and let ej ∈ E∗
be the dual basis element corresponding to Ej ; that is, ej(Ek) = δjk. Finally,
for r ∈ Q, let [r] denote the image of the equivalence class of r under the map
Q/Z ↪→ C∗ defined by r �→ exp(2πir). Then the action of the discriminant
group on the polynomial ring C[Z1, . . . ,Zt ] is generated by the action of the ej ,
1 ≤ j ≤ t, which is defined by ej · Zk = [−ej · ek]Zk for 1 ≤ j, k ≤ t.

Definition 2.3 (Congruence conditions). Let � be a graph for which the as-
sociated splice diagram � satisfies the semigroup conditions. Then we say that
� satisfies the congruence condition at a node v if one can choose an admissible
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monomial for each adjacent edge e such that all of these monomials transform by
the same character under the action ofD(�). If this condition is satisfied for every
node v, then � satisfies the congruence conditions.

We should mention here that Okuma gives a single condition that is equivalent to
the semigroup and congruence conditions together [13, Cond. 3.3]. That this condi-
tion is equivalent to the semigroup and congruence conditions is shown in [11]. We
will often say “� satisfies the semigroup and congruence conditions” rather than
“� satisfies the semigroup conditions and � satisfies the congruence conditions”.
Suppose a resolution graph � satisfies the semigroup and congruence conditions.
Then by “a set of splice diagram equations for �” we mean equations as in Def-
inition 2.1 such that, for each v, the admissible monomials Mve transform equiv-
ariantly underD(�). A resolution tree � is quasi-minimal if any string in � either
contains no (−1)-weighted vertex or consists of a unique (−1)-weighted vertex.

Theorem 2.4 [11]. Suppose � is quasi-minimal and satisfies the semigroup and
congruence conditions. Then a set of splice diagram equations for � defines an
isolated complete intersection singularity (Y, 0),D(�) acts freely on Y −{0}, and
the quotient X := Y/D(�) has an isolated normal surface singularity and a res-
olution with dual resolution graph �. Moreover, (Y, 0) → (X, 0) is the universal
abelian cover.

We will use the next two propositions to check the congruence conditions.

Proposition 2.5 [11]. Let � be a graph for which the associated splice diagram
� satisfies the semigroup conditions. Then the congruence conditions are equiv-
alent to the following: For every node v and adjacent edge e in � there is an
admissible monomial Mve = ∏

w Z
αw
w such that, for every leaf w ′ in �ve,[ ∑

w �=w ′
αw

�ww ′

det(�)
− αw ′ew ′ · ew ′

]
=
[
�vw ′

det(�)

]
.

Remark 2.6. It is easy to check, using the next proposition, that this condition
is always satisfied for an edge leading directly to a leaf.

Proposition 2.7 [11]. Suppose we have a string from a leaf w to an adjacent
node v in a resolution graph �, as in the following diagram, with associated con-
tinued fraction d/p.

−k1 −k2 −ks• • • •
w v

That is,
d

p
= k1 − 1

k2 − 1

. . . − 1

ks

.

Then, if dv is the product of weights at v, ew · ew = −dv/(d 2 det(�))− p/d.
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3. The Resolution Graph and Splice Diagram

Let {f(x, y) = 0} ⊂ C2 define an analytically irreducible plane curve with a
singularity at the origin, and let Xf,n := {zn = f(x, y)} ⊂ C3. In [4], Mendris
and Némethi prove that the link of (Xf,n, 0) completely determines the Newton/
topological pairs of f and the value of n, with two well-understood exceptions.
In doing so, they give a presentation of the construction of the resolution graph
of (Xf,n, 0) that is useful for our purposes. Section 3.1 summarizes the results we
need from Mendris and Némethi’s work, and we use their notation whenever pos-
sible. In Section 3.2, we describe the associated splice diagram.

It turns out that, when n = ps = 2, the resolution graph has a structure that dif-
fers significantly from the general case. It is referred to as the “pathological case”
or “P-case” by Mendris and Némethi, and we use this terminology as well. Some
of the computations must be done separately for the pathological case.

3.1. Resolution Graph

Suppose that f has Newton pairs {(pk , qk) | 1 ≤ k ≤ s} (see [2, p. 49]). They sat-
isfy the following properties: q1 > p1, qk ≥ 1, pk ≥ 2, and gcd(pk , qk) = 1 for
all k. Define integers ak by a1 = q1 and

ak = qk + ak−1pk−1pk , 2 ≤ k ≤ s. (1)

The pairs {(pk , ak) | 1 ≤ k ≤ s}, defined by Eisenbud and Neumann in [2], are
referred to as the topological pairs of f. These are the integers that appear in the
splice diagram of the link of the plane curve singularity defined by f = 0 in C2.

Note that a1 > p1, ak > ak−1pk−1pk , and gcd(pk , ak) = 1 for all k.
The topological pairs {(pk , ak) | 1 ≤ k ≤ s} are related to the Puiseux pairs

{(pk ,mk) | 1 ≤ k ≤ s} as follows: a1 = m1 and ak = mk −mk−1pk + ak−1pk−1pk
for 2 ≤ k ≤ s. Furthermore, let β̄k , 0 ≤ k ≤ s, be the generators of the semigroup
associated to the plane curve singularity defined by f (see [19]). Then we have
β̄0 = p1p2 · · ·ps , β̄k = akpk+1 · · ·ps for 1 ≤ k ≤ s − 1, and β̄s = as.

By an “embedded” resolution of the germ of a function g : (X, 0) → (C, 0)
we mean a resolution of the singularity π : X̃ → X such that π−1({g = 0}) is
a divisor with only normal crossing singularities. We also assume that no irre-
ducible component of the exceptional set π−1(0) intersects itself and that any two
irreducible components have at most one intersection point. The minimal good
embedded resolution graph of f : (C2, 0) → (C, 0) is a tree of rational curves, de-
noted �(C2, f ). The construction of the graph �(C2, f ) is well known (e.g., [1]).
Reproducing the notation of Mendris and Nèmethi [4], we consider this graph in a
convenient schematic form (Figure 2), where the dashed lines represent strings of
rational curves (possibly empty) for which the self-intersection numbers are deter-
mined by the continued fraction expansions of pk/qk and qk/pk (see Section 5.2
for details).

There is an algorithm for constructing an embedded resolution graph (not nec-
essarily minimal) of the function z : (Xf,n, 0) → (C, 0) from the graph �(C2, f ).
Here we follow the presentation in [4], reproducing only what is necessary for our
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•
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•
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· · · •
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•
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•
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Figure 2 Schematic form of �(C2, f ) (reproduced from [4])

purposes. The output of this algorithm, without any modifications by blowing up
or down, is referred to by Mendris and Némethi as the canonical embedded reso-
lution graph of z in (Xf,n, 0) and is denoted �can(Xf,n, z). The n-fold “covering”
or “graph projection” produced in the algorithm is denoted q : �can(Xf,n, z) →
�(C2, f ).

Definition 3.1 [4]. Define positive integers dk , hk , h̃k , p ′
k , and a ′

k as follows:

• dk = (n,pk+1pk+2 · · ·ps) for 0 ≤ k ≤ s − 1,
• ds = 1;
and, for 1 ≤ k ≤ s,

• hk = (pk , n/dk),
• h̃k = (ak , n/dk),
• p ′

k = pk/hk ,
• a ′

k = ak/h̃k.

If w is a vertex in �(C2, f ) then all vertices in q−1(w) have the same multiplicity
and genus, which we denote by mw and gw (respectively).

Proposition 3.2 [4]. Let q : �can(Xf,n, z) → �(C2, f ) be the graph projection
described just before Definition 3.1. Then �can(Xf,n, z) is a tree such that the fol-
lowing equalities hold :

(a) #q−1(vs) = 1 and #q−1(vk) = hk+1 · · ·hs for 1 ≤ k ≤ s − 1,
#q−1(vs) = h̃s and #q−1(vk) = h̃khk+1 · · ·hs for 1 ≤ k ≤ s − 1,
#q−1(v0) = h1 · · ·hs;

(b) mvk = a ′
kp

′
kp

′
k+1 · · ·p ′

s for 1 ≤ k ≤ s,
mv0 = p ′

1p
′
2 · · ·p ′

s ,
mvk = a ′

kp
′
k+1 · · ·p ′

s for 1 ≤ k ≤ s − 1,
mvs = a ′

s;
(c) gvk = (hk − 1)(h̃k − 1)/2 for 1 ≤ k ≤ s,

gvk = 0 for 0 ≤ k ≤ s.

In particular, the link of (Xf,n, 0) is a QHS if and only if (hk − 1)(h̃k − 1) = 0
for all k, 1 ≤ k ≤ s.

The schematic form of �can(Xf,n, z) is displayed in Figure 3. Abusing notation, we
have labeled any vertex in q−1(vk) (resp. q−1(vk)) with vk (resp. vk). The dashed
lines represent strings of vertices that are not necessarily minimal. By construc-
tion, each string must contain at least as many vertices as its image in �(C2, f ).
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Figure 3 Schematic form of �can(Xf,n, z) (reproduced from [4])

A vertex is called a rupture vertex if it has positive genus or is a node. Note that
any rupture vertex of �can(Xf,n, z) must be in q−1(vk) for some k.

Certain subgraphs of �can(Xf,n, z) and their determinants
Let w be a vertex in �(C2, f ), and let v ′ be any vertex in q−1(w). If w = vk
for some k, 1 ≤ k ≤ s − 1, then the shortest path from v ′ to the arrowhead of
�can(Xf,n, z) contains at least one rupture vertex, and the rupture vertex along that
path that is closest to v ′ is a vertex v ′′ ∈ q−1(vk+1). Define �(v ′) to be the sub-
graph of �can(Xf,n, z) consisting of the string of vertices between v ′ and v ′′, not
including v ′ and v ′′. If w = vs , then the shortest path from v ′ to the arrowhead
is a string; let �(v ′) be this string, not including v ′. Finally, if w = vk , 0 ≤ k ≤
s, let v ′′ be the rupture vertex that is closest to v ′ on the shortest path from v ′ to
the arrowhead. Define �(v ′) to be the subgraph consisting of the string of vertices
from v ′ to v ′′, including v ′ but not v ′′. Up to isomorphism, none of these strings
depends upon the choice of v ′ in q−1(w), so whenever the particular vertex v ′ does
not matter, we will simply use �(w) to denote these strings.
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Fix an integer k, 1 ≤ k ≤ s, and fix a vertex v ′ in q−1(vk). Consider the col-
lection of connected subgraphs that make up �can(Xf,n, z) − {v ′}. There are h̃k
isomorphic components that are strings of isomorphism type �(vk). There is one
connected subgraph that contains the arrowhead; denote this subgraph�A(v ′). The
hk remaining components are all isomorphic. Let �−(v ′) denote any of these iso-
morphic subgraphs. Again, whenever the particular choice of v ′ is unimportant,
we use�−(vk) instead of �−(v ′) and�A(vk) instead of �A(v ′). Note that�−(v1) =
�(v0) and �A(vs) = �(vs). We should also point out that the subgraphs �A(vk) do
not appear in [4]; in particular, �A(vk) is not the same as their �+(vk).

For any resolution graph �, let det(�) := det(−C), where C is the intersec-
tion matrix of the exceptional curves in �. If � is empty, then we define det(�)
to be 1. Nearly all of the determinants of the subgraphs just defined are explicitly
computed by Mendris and Némethi in [4], and those that are not can be computed
by the same method.

Lemma 3.3 [4]. For anyw in �(C2, f ) as before, letD(w) := det(�(w)). Then

D(v0) = a ′
1,

D(vk) = p ′
k for 1 ≤ k ≤ s,

D(vs) = n/(hs h̃s),

D(vk) = nqk+1/(dk−1h̃k h̃k+1) for 1 ≤ k ≤ s − 1.

It follows from the construction of �can(Xf,n, z) that if D(vs) = 1, then �(vs) is
empty; that is, the arrowhead in �can(Xf,n, z) is connected directly to the unique
vertex in q−1(vs).

Lemma 3.4 [4]. Let D−(vk) := det(�−(vk)), 1 ≤ k ≤ s. If s ≥ 2, then for 2 ≤
k ≤ s we have

D−(vk)
a ′
k

= (a ′
k−1)

hk−1−1(p ′
k−1)

˜hk−1−1

[
D−(vk−1)

a ′
k−1

]hk−1

.

The method used to prove Lemma 3.4 can be suitably modified to prove the next
two lemmas. The computation is straightforward, so we omit the details.

Lemma 3.5. Assume s ≥ 2, and let DA(vk) := det(�A(vk)), 1 ≤ k ≤ s. Let Ak
be defined recursively by As−1 = as−1ps−1p

′
s + qs and, for 1 ≤ k ≤ s − 2,

Ak = akpkp
′
k+1Ak+1 + qk+1ak+2 · · · as.

Then

DA(vk) =
nAk

{∏s
j=k+1(p

′
j )
h̃j−1D−(vj )hj−1

}
hk h̃k dk ak+1 · · · as

for 1 ≤ k ≤ s − 1.
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Lemma 3.6. The determinant of �can(Xf,n, z) is given by

det(�can(Xf,n, z)) = (a ′
s )
hs−1(p ′

s )
h̃s−1

[
D−(vs)
a ′
s

]hs
.

A minimal good embedded resolution graph of z in (Xf,n, 0), denoted�min(Xf,n, z),
is obtained from �can(Xf,n, z) by repeatedly blowing down any rational (−1)-
curves for which the corresponding vertex has valency 1 or 2. By dropping both
the arrowhead and the multiplicities of �min(Xf,n, z) and then blowing down any
appropriate rational (−1)-curves, we obtain a minimal good resolution graph of
(Xf,n, 0), denoted �min(Xf,n).

Proposition 3.7 [4]. All of the rupture vertices in �can(Xf,n, z) survive as rup-
ture vertices in �min(Xf,n, z). That is, they are not blown down in the minimaliza-
tion process and, after minimalization, they are still rupture vertices.

Proposition 3.8 [4]. Assume that deleting the arrowhead of �min(Xf,n, z)
yields a nonminimal graph. This can occur if and only if n = ps = 2. Then
the link is a QHS and �min(Xf,n, z) has the following schematic form with e ≥ 3.

• • · · · • •
−e

• • • •
−1

v

• • · · · • •
−e

• • •
The minimal resolution graph �min(Xf,n) is obtained from �min(Xf,n, z) by delet-
ing the arrowhead and blowing down v.

Propositions 3.7 and 3.8 imply that all of the nodes in �can(Xf,n, z) remain nodes
in the minimal good resolution graph of (Xf,n, 0) except in the case n = ps = 2.
We refer to n = ps = 2 as the pathological case, which is treated separately in
what follows.

3.2. Splice Diagram

From now on, we assume that the link of (Xf,n, 0) is a QHS. That is, for each k (1 ≤
k ≤ s), either hk or h̃k is equal to 1. One complication that arises is that certain
strings in �can(Xf,n, z)may completely collapse upon minimalization. Therefore,
if we used the minimal good resolution graph �min(Xf,n) in what follows, then we
would constantly need to note that certain strings may be empty and, more impor-
tantly, that certain leaves in the splice diagram may not be present. We will avoid
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this by using the splice diagram associated to �can(Xf,n), the graph that results
from deleting the arrowhead and multiplicities in �can(Xf,n, z). We could easily
use a quasi-minimal modification of �can(Xf,n), and the computation of the splice
diagram would not change. Therefore, we can apply Theorem 2.4 to �can(Xf,n).

Splice diagram in the general case
Assume that we are not in the pathological case, and let �f,n be the splice dia-
gram associated to �f,n := �can(Xf,n). If a vertex v in �f,n is in q−1(vk) (resp.
q−1(vk)), we say that v is “of type vk” (resp. vk). We use the same terminology
for the corresponding vertices of �f,n.

Consider a node v of type vk , 1 ≤ k ≤ s, in �f,n. In general, there are hk+ h̃k+1
edges adjacent to v: h̃k edges that lead to strings of (isomorphism) type �(vk),
hk edges that lead to subgraphs of type �−(vk), and one edge that leads toward a
subgraph of type �A(vk). The corresponding pieces of �f,n associated to the sub-
graphs of type �−(vk) and �A(vk) are denoted �−(vk) and �A(vk), respectively.
Recall that �−(v1) = �(v0) and �A(vs) = �(vs), and keep in mind that �(vs)may
be empty.

The weights of the splice diagram �f,n are given by Lemmas 3.3, 3.4, and 3.5.
At a node of type vk in�f,n, the weights on the h̃k edges that lead to leaves of type
vk are D(vk) = p ′

k; the weights on the hk edges connected to subgraphs of type
�−(vk) are D−(vk); and the weight on the single edge connected to the subgraph
of type �A(vk) is DA(vk) (see Figure 4).

•
D−(vk)

···

... hk
• DA(vk) • ···

•

D−(vk)

··· h̃k. . .

•

p′
k

vk

•

p′
k

vk

Figure 4 Splice diagram at a node of type vk , 2 ≤ k ≤ s − 1

The pathological case
For this case (n = ps = 2), it is more convenient to use the splice diagram associ-
ated to the minimal resolution graph �min(Xf,n) (see Figure 5). Here hs = 2 and
hence n/hs = n/ds−1 = 1. Then, by definition, hk = h̃k = 1 for 1 ≤ k ≤ s − 1,
and h̃s = 1 because gcd(ps , as) = 1. The link is a QHS, and the only string of
type �(vk) that collapses completely in �min(Xf,n, z) is �(vs) (Proposition 3.8).
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• a1 • Ã1 · · · as−1• Ãs−1 Ãs−1 •as−1 · · · Ã1 • a1 •

•

p1

•

ps−1

•

ps−1

•

p1

Figure 5 Splice diagram for the pathological case

The graph �min(Xf,n) has a total of 2(s −1) nodes: two of type vk for each k, 1 ≤
k ≤ s − 1. Each of these nodes has valency 3.

Because the determinant of a resolution tree remains constant throughout the
minimalization process, the weights of the splice diagram associated to�min(Xf,n)

can be determined from Lemmas 3.3, 3.4, and 3.5. Since hk h̃k = 1 for 1 ≤ k ≤
s − 1, we have D−(vk) = ak for 2 ≤ k ≤ s. Define integers Ãk as follows:

Ãk := as − akpkp
2
k+1 · · ·p2

s−1 for 1 ≤ k ≤ s − 2,

Ãs−1 := as − as−1ps−1.

It is easy to check that DA(vk) = Ãk for 1 ≤ k ≤ s − 1.

4. The Semigroup Conditions

In this section we discuss the semigroup conditions for the splice diagram �f,n.

Throughout this section, we assume that we are not in the pathological case. For a
node v of type vk in�f,n, 1 ≤ k ≤ s, there are at most two inequivalent semigroup
conditions to check: one for an edge that leads to a subdiagram of type �−(vk)
(nontrivial for 2 ≤ k ≤ s) and one for an edge that leads to a subdiagram of type
�A(vk) (nontrivial for 1 ≤ k ≤ s − 1). Clearly, for a fixed k, the semigroup con-
ditions are equivalent for any node v of type vk.

4.1. Semigroup Conditions in the Direction of �−(vk)

Lemma 4.1. Let v be a node of type vk , 2 ≤ k ≤ s, and let wj be a leaf of type vj
in �−(v), 0 ≤ j ≤ k − 1. Then

�′
vwj

=


(D−(vk)/a ′

k)p
′
1 · · ·p ′

k−1 for j = 0,

(D−(vk)/a ′
k)a

′
jp

′
j+1 · · ·p ′

k−1 for 1 ≤ j ≤ k − 2,

(D−(vk)/a ′
k)a

′
k−1 for j = k − 1.

Proof. We prove this by induction on k. For k = 2, the lemma is true because, if
v is a node of type v2, then

�′
vw0

= (a ′
1)
h1−1(p ′

1)
h̃1 ,

�′
vw1

= (a ′
1)
h1(p ′

1)
h̃1−1,

D−(v2)/a
′
2 = (a ′

1)
h1−1(p ′

1)
h̃1−1.
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∆−(vi−1)
D−(vi−1) • D−(vi)

hi

...

vi−1 •v ∆A(vi)

hi−1

... ∆−(vi)

∆−(vi−1)

D−(vi−1)

•

p′
i−1

wi−1

. . .
h̃i−1

•

p′
i−1

•

p′
i

. . .
h̃i

•

p′
i

Figure 6 Relevant portion of �f,n at a node v of type vi

Now assume the lemma is true for k = i − 1; we show that it is true for k = i.

Fix a node v of type vi, and (abusing notation) let vi−1 denote the unique node of
type vi−1 in �−(v). For 0 ≤ j ≤ i − 2, any leaf of type vj in �−(v) is in one of
the subdiagrams of type �−(vi−1). Thus (refer to Figure 6)

�′
vwj

=
{
D−(vi−1)

hi−1−1(p ′
i−1)

˜hi−1�′
vi−1wj

for 0 ≤ j ≤ i − 2,

D−(vi−1)
hi−1(p ′

i−1)
˜hi−1−1 for j = i − 1.

By Lemma 3.4, we have

D−(vi)
a ′
i

= (p ′
i−1)

˜hi−1−1D−(vi−1)
hi−1−1 · D−(vi−1)

a ′
i−1

.

Applying this fact and the induction hypothesis yields the desired result.

Proposition 4.2. At a node of type vk , 2 ≤ k ≤ s, the semigroup condition in
the direction of any of the hk edges that lead to a subdiagram of type �−(vk) is
equivalent to

a ′
k ∈ N〈a ′

k−1,p
′
1p

′
2 · · ·p ′

k−1, a
′
jp

′
j+1 · · ·p ′

k−1, 1 ≤ j ≤ k − 2〉. (2)

Furthermore, if h̃k = 1 then this condition is automatically satisfied.

Proof. Fix a node v of type vk in �f,n. By Definition 2.1, the condition is

D−(vk)∈ N〈�′
vw | w is a leaf in �−(v)〉.

The leaves in �−(v) are of type vj for 0 ≤ j ≤ k − 1. Hence there are k gener-
ators for the semigroup in question—namely, �′

vwj
for 0 ≤ j ≤ k − 1, where wj

denotes any leaf in �−(v) of type vj . The first statement of the proposition fol-
lows from Lemmas 3.4 and 4.1, sinceD−(vk) and all generators of the semigroup
are divisible by D−(vk)/a ′

k.

The second statement follows from [12, Prop. 8.1].

4.2. Semigroup Conditions in the Direction of �A(vk)

Fix an integer k, 1 ≤ k ≤ s − 1, and fix a node v of type vk. By definition, the
semigroup condition is DA(vk)∈ Rk , where
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• DA(vk)
v

• DA(vk+1)vk+1

hk+1
... • DA(vm)vm • n/hsh̃svs •wa

∆−(vk+1)
· · ·

h̃k+1

hm
... · · ·

h̃m

hs
... · · ·

h̃s

•wk+1
• •

wm
• •

ws
•

∆−(vm−1) • vm−1

· · ·
h̃m−1

∆−(vs)

∆−(vm−1) •
wm

m−1

•

Figure 7 Relevant portion of �f,n at a node v of type vk

Rk := N〈�′
vw | w is a leaf in �A(v)〉.

Refer to Figure 7 for what follows. There is at least one leaf ws in �A(v) of type
vs connected to vs (the unique node of type vs), and if n/hs h̃s �= 1 then there is a
leaf wa resulting from the string �(vs) in �f,n. These contribute �′

vws
and �′

vwa
as

generators of Rk.

Next, travel along the shortest path from v to vs. If k < s − 1, then this path
contains one node of type vm for eachm such that k+1 ≤ m ≤ s−1. Since there
can be no confusion here, we will simply refer to the nodes along this path as vm.
Each of these nodes is directly connected to at least one leaf wm of type vm, and
each such leaf contributes the generator �′

vwm
to Rk. If hi = 1 for k + 1 ≤ i ≤ s,

then there are no other types of leaves in �A(v) and so we have listed all the gen-
erators of Rk.

For each m such that hm �= 1, k + 1 ≤ m ≤ s, there are more generators for
Rk—namely, �′

vw for each type of leaf w in �−(vm). There are m different types
of such leaves: type vj for j where 0 ≤ j ≤ m− 1. Let wm

j be a leaf of type vj in
�−(vm). Then the generators of the semigroup Rk are:

�′
vwm

, k + 1 ≤ m ≤ s;
�′
vwm

j
, 0 ≤ j ≤ m− 1 for all m such that k + 1 ≤ m ≤ s and hm �= 1;

�′
vwa

(absent if n/hs h̃s = 1).

Proposition 4.3. Suppose hs > 1. Then the semigroup conditions imply that
hs = ps and hs−1h̃s−1 = 1.

Proof. Observe that, since the link is a QHS, hs > 1 implies h̃s = 1. Let v be a
node of type vs−1, and consider the semigroup condition at v in the direction of
�A(v): DA(vs−1) is in the semigroup R s−1. The generators of R s−1 are �′

vws
and
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∆−(vs−1)

• DA(vs−1) D−(vs)

v

hs−1

... • n/hs

vs

•wa

∆−(vs−1)
. . .

h̃s−1

hs

...

• • ∆−(vs) •

p′
s

ws

Figure 8 Splice diagram �f,n for h̃s = 1

�′
vws

j

(0 ≤ j ≤ s − 1) and �′
vwa

(absent if n/hs = 1). It is easy to check (see Fig-

ure 8) that

�′
vws

= (n/hs)D−(vs)hs−1,

�′
vwa

= p ′
sD−(vs)hs−1,

�′
vws

j
= (n/hs)p

′
sD−(vs)hs−2�′

vsw
s
j
.

Since ds−1 = hs and a ′
s = as , it follows from Lemma 3.5 that

DA(vs−1) = nAs−1D−(vs)hs−1

hs−1h̃s−1hs as
,

where
As−1 = as−1ps−1p

′
s + qs = as − as−1ps−1(ps − p ′

s ).

Note that n/(hs−1h̃s−1hs) and D−(vs)hs−1/as are both integers in this case. Since
ps > p ′

s = ps/hs , we have

n

hs−1h̃s−1hs
[as − as−1ps−1(ps − p ′

s )] <
n

hs−1h̃s−1hs
as ≤ n

hs
as

and therefore DA(vs−1) < �′
vws
. Hence we can forget about the generator �′

vws
,

since it is too large.
By Lemma 4.1,

�′
vsw

s
j

=


p ′

1 · · ·p ′
s−1 ·D−(vs)/as for j = 0,

a ′
jp

′
j+1 · · ·p ′

s−1 ·D−(vs)/as for 1 ≤ j ≤ s − 2,

a ′
s−1 ·D−(vs)/as for j = s − 1.

Thus, all generators of R s−1 andDA(vs−1) are divisible byD−(vs)hs−1/as , and the
semigroup condition is equivalent to the following: n/(hs−1h̃s−1hs)As−1 is in the
semigroup generated by{
n

hs
p ′

1 · · ·p ′
s ,

n

hs
a ′
jp

′
j+1 · · ·p ′

s

∣∣∣∣ 1 ≤ j ≤ s − 1, asp
′
s

(
absent if

n

hs
= 1

)}
. (3)
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All of the generators of this semigroup are divisible by p ′
s . Therefore, the semi-

group condition implies that p ′
s divides n/(hs−1h̃s−1hs)[as − as−1ps−1(ps −p ′

s )].
Suppose p ′

s > 1. Since p ′
s divides ps −p ′

s and since (as ,ps) = 1, it follows that p ′
s

divides n/(hs−1h̃s−1hs). This is impossible, since by definition p ′
s = ps/(n,ps)

and thus (p ′
s , n) = 1. Therefore we must have p ′

s = 1. Since p ′
s = ps/hs , we have

shown that the semigroup conditions imply hs = ps.

Now we show that the semigroup conditions imply hs−1h̃s−1 = 1. Note that if
n/hs = 1 then this is automatically true by definition of hi and h̃i , so assume that
n/hs �= 1. Observe that all of the generators in (3) are divisible by n/hs except for
as. Therefore, if the semigroup condition is satisfied, then there existM and N in
N ∪ {0} such that

n/(hs−1h̃s−1hs)[as − as−1ps−1(ps − 1)] = Mas +Nn/hs.

Hence,

(n/(hs−1h̃s−1hs)−M)as = Nn/hs + n/(hs−1h̃s−1hs)as−1ps−1(ps − 1)

= n/hs(N + a ′
s−1p

′
s−1(ps − 1)).

Since (n, as) = 1by assumption, this implies that n/hs �= 1divides n

hs−1
˜hs−1hs

− M.

But we have

0 <
n

hs−1h̃s−1hs
−M ≤ n

hs−1h̃s−1hs
≤ n

hs
.

Therefore, the only possibility is n/hs = n/(hs−1h̃s−1hs)−M; that is,M = 0 and
hs−1h̃s−1 = 1.

Lemma 4.4. Assume that s ≥ 3 and that hs−1h̃s−1 = 1. Then the semigroup con-
ditions imply that hk h̃k = 1 for 1 ≤ k ≤ s − 2.

Proof. We prove this by strong downward induction on k. First we show that the
semigroup conditions imply that hs−2 h̃s−2 = 1. By Proposition 3.2(a), there are
hs nodes of type vs−2; let v be any such node. We will show that the semigroup
condition for v in the direction of �A(v) cannot be satisfied if hs−2 h̃s−2 �= 1.

Let Ãi = as − aipip
2
i+1 · · ·p2

s−1(ps − p ′
s ), 1 ≤ i ≤ s − 2. By Lemma 3.5,

DA(vs−1) =


nph̃s−1

s for hs = 1,

nAs−1D−(vs)hs−1

hs as
for hs > 1;

DA(vs−2) =


n

hs−2 h̃s−2

ph̃s−1
s for hs = 1,

nÃs−2D−(vs)hs−1

hs−2 h̃s−2hs as
for hs > 1.

The generators of R s−2 are
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�′
vws−1

= DA(vs−1),

�′
vws

= n/(hs h̃s)ps−1D−(vs)hs−1(p ′
s )
h̃s−1,

�′
vws

j
= n/(hs h̃s)ps−1D−(vs)hs−2(p ′

s )
h̃s �′

vsw
s
j

, 0 ≤ j ≤ s − 1,

�′
vwa

= ps−1D−(vs)hs−1(p ′
s )
h̃s,

although the {�′
vwsj

}s−1
j=0 are absent if hs = 1 and �′

vwa
is absent if n/hs h̃s = 1.

We will consider two separate cases: (i) hs = 1, and (ii) hs > 1.

Case (i). Ifhs = 1, it is easy to see that ifhs−2 h̃s−2 �= 1then �′
vws−1

> DA(vs−2).

Then, sinceDA(vs−2) and every generator of the semigroup are divisible by p h̃s−1
s ,

the semigroup condition is equivalent to: n/(hs−2 h̃s−2) is in the semigroup gener-
ated by ps−1n/h̃s and ps−1ps (absent if n/h̃s = 1). Thus the semigroup condition
implies that n/(hs−2 h̃s−2) is divisible byps−1, which is impossible because hs−1 =
(n,ps−1) = 1. Therefore, we must have hs−2 h̃s−2 = 1. (Note that the argument is
valid even if n/h̃s = 1 or h̃s = 1.)

Case (ii). For hs > 1, the proof that hs−2 h̃s−2 = 1 is nearly identical to the
proof of Proposition 4.3, so we just give the outline here. Recall that the semi-
group conditions imply that p ′

s = 1 in this case. We will assume that n/hs �= 1,
for otherwise the lemma is trivially true by definition of hi and h̃i .

Dividing DA(vs−2) and all the generators of R s−2 by D−(vs)hs−1/as , we
see that the semigroup condition for v in the direction of �A(v) implies that
n/(hs−2 h̃s−2hs)Ãs−2 is in the semigroup generated by asps−1 and a collection of
positive integers divisible by n/hs. The semigroup condition implies that there
exist M and N in N ∪ {0} such that

n/(hs−2 h̃s−2hs)Ãs−2 = Masps−1 +Nn/hs.

Just as in the proof of Proposition 4.3, we must have M = 0 and hs−2 h̃s−2 = 1.
Thus, we have taken care of both cases in the basis step.

For the inductive step, assume that hih̃i = 1 for all i such that k + 1 ≤ i ≤
s − 1. Now let v be one of the hs nodes of type vk. One can show that the semi-
group condition for v in the direction of�A(v) cannot be satisfied if hk h̃k �= 1. In
both cases (hs = 1 and hs > 1) the proof is essentially the same as that of the ba-
sis step, so we omit the details.

Proposition 4.3 and Lemma 4.4 together imply the following result.

Corollary 4.5. Suppose that hs > 1. Then the semigroup conditions imply that
hk h̃k = 1 for 1 ≤ k ≤ s − 1.

In Section 6 we will see that, for the case hs = 1, the semigroup conditions and
congruence conditions together imply that hk h̃k = 1 for 1 ≤ k ≤ s − 1.
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5. Action of the Discriminant Group

In order to use Proposition 2.5 to check the congruence conditions for the reso-
lution graph �f,n, we must compute ew · ew for all leaves w. By Proposition 2.7,
this amounts to computing the continued fraction expansions of the strings from
leaves to nodes. This is essentially done in Mendris and Némethi’s paper [4, proof
of Prop. 3.5], but we need a bit more detail than they included.

5.1. Background

We begin with a summary of facts that we need, which can be found in [5]. Let a,
Q, and P be strictly positive integers with gcd(a,Q,P) = 1. Let (X(a,Q,P), 0)
be the isolated surface singularity lying over the origin in the normalization of
({UaVQ = WP }, 0). Let λ be the unique integer such that 0 ≤ λ < P/(a,P) and

Q+ λ · a

(a,P)
= m · P

(a,P)

for some positive integerm. If λ �= 0, then let k1, . . . , kt ≥ 2 be the integers in the
continued fraction expansion of P/(a,P)

λ
.

The minimal embedded resolution graph of the germ induced by the coordinate
function V on (X(a,Q,P), 0) is given by the string in Figure 9 (omitting the mul-
tiplicities of the vertices). If λ = 0 then the string is empty. One can similarly
describe the embedded resolution graphs of the functions U andW, but we do not
need them here.

−k1 −k2 −kt

(0) • • •
(

P
(Q,P )

)

Figure 9 The embedded resolution graph �(X(a,Q,P),V )

Lemma 5.1. Let N, M, P, and Q be positive integers such that (Q,P) = 1 and
(N,M) = 1. Let � be the resolution graph of the singularity in the normalization
of ({UVQ = WP, T N = VM}, 0) ⊆ (C4, 0). Let λ be the unique integer such that
0 ≤ λ < P/(N,P) and

Q
N

(N,P)
+ λ = m · P

(N,P)

for some positive integer m. Then, if λ �= 0, � is a string of vertices with contin-
ued fraction expansion P/(N,P)

λ
.

Proof. We may assumeM = 1, since it easy to check that the singularity in ques-
tion has the same normalization as {UVQ = WP, T N = V } ⊆ C4. Therefore, �
is the resolution graph of the singularity in the normalization of {UVQN = WP },
which is the same as the resolution graph of
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X

(
1,Q

N

(N,P)
,

P

(N,P)

)
= {UVQN/(N,P) = WP/(N,P)}.

5.2. Strings in �f,n

We need the continued fraction expansion of the strings in �f,n from leaves of type
vk , 0 ≤ k ≤ s, to the corresponding node of type vk (from type v0 to type v1).

First we recall the construction of �(C2, f ), the minimal good embedded resolu-
tion graph of f in C2, as in [4]. Let f have Newton pairs {(pk , qk) | 1 ≤ k ≤ s}.
Determine the continued fraction expansions

pk

qk
= µ0

k − 1

µ1
k − 1

. . . − 1

µ
tk
k

and
qk

pk
= ν0

k − 1

ν1
k − 1

. . . − 1

ν
rk
k

,

where µ0
k , ν0

k ≥ 1 and µjk , νjk ≥ 2 for j > 0. Then �(C2, f ) has the schematic
form given in Figure 2. The strings from v0 to v1 and from vk to vk , 1 ≤ k ≤ s, are
given in Figure 10. The multiplicities of the vertices vk aremvk = akpkpk+1 · · ·ps
for 1 ≤ k ≤ s.

−µ1
1 −µ2

1 −µt1
1

•v0 • • • v1

−ν1
k −ν2

k −νrk

k

•vk • • • vk

Figure 10 Strings in �(C2, f )

Consider the string in Figure 11. The continued fraction expansion [ν1
k , . . . , ν

rk
k ]

corresponds to pk/ηk , where qk + ηk = ν0
kpk. Let X := X(1, qk ,pk). Then this

string is the embedded resolution graph of V akpk+1···ps in X. It follows from the
construction of �f,n that the collection of strings that lies above this one in �f,n is
the (possibly nonconnected) resolution graph of the singularity in the normaliza-
tion of {UV qk = Wpk, T n = V akpk+1···ps }. There are (n, akpk+1 · · ·ps) = h̃k dk =
h̃k hk+1 · · ·hs connected components (see Definition 3.1), and each is the resolu-
tion graph of the normalization of

{UV qk = Wpk, T n/(h̃kdk) = V
a ′
k
p ′
k+1···p ′

s }.
Now we are in the situation of Lemma 5.1, with Q = qk , P = pk , and N =
n/(h̃k dk). We have (N,P) = (n/(h̃k dk),pk) = hk by definition of hk , so in this
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−ν1
k −ν2

k −νrk

k

(0) • • • (akpk · · · ps).

Figure 11 String from �(C2, f )

case P/(N,P) = p ′
k (as expected from Proposition 3.3). If p ′

k = 1 then, upon
minimalization, the string of type vk would completely collapse.

Suppose p ′
k �= 1. By Lemma 5.1, the continued fraction expansion of the

string(s) from a leaf of type vk to the corresponding node of type vk in the mini-
malization of the resolution graph �f,n is given by p ′

k/η
′
k , where η ′

k is the unique
integer such that 0 < η ′

k < p ′
k and

qk
n

hk h̃kdk
+ η ′

k = mp ′
k

for some positive integer m. Since ak = qk + ak−1pk−1pk , we have

η ′
k ≡ −ak · n

hk h̃kdk
(modp ′

k). (4)

Knowing the congruence class of η ′
k modulo p ′

k is enough for our purposes.
The continued fraction expansion from v0 to v1 in �(C2, f ) is given by q1/η0 =

a1/η0, where p1 + η0 = µ0
1a1. Using an argument analogous to the previous one,

we have that if a ′
1 �= 1 then the continued fraction expansion of the string(s) from

a leaf of type v0 to the corresponding node of type v1 in the minimalization of �f,n
is a ′

1/η
′
0, where

η ′
0 ≡ −p1 · n

h1h̃1d1

(mod a ′
1).

Recall the notation defined in Section 2: for r ∈ Q, [r] = exp(2πir), and for
a leaf w ∈ �f,n, ew denotes the image in the discriminant group of the dual basis
element in E∗ corresponding to w.

Corollary 5.2. Let wk be any leaf of type vk in �f,n, 0 ≤ k ≤ s, and assume
that p ′

k �= 1 (assume a ′
1 �= 1 for k = 0). Then

[ewk · ewk ] =



[
(n/h1h̃1d1)(p1a2 · · · as − A1p

′
1)

a ′
1a2 · · · as

]
for k = 0,[

(n/hk h̃kdk)(ak ak+1 · · · as − Aka
′
k)

p ′
k ak+1 · · · as

]
for 1 ≤ k ≤ s − 1,[

(n/hs h̃s)(as − a ′
s )

p ′
s

]
for k = s.

Proof. Proposition 2.7 states that, for a leaf w connected by a string of vertices to
a node v,

ew · ew = −dv/(d 2 det(�))− p/d,
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where dv is the product of weights at the node v and d/p is the fraction correspond-
ing to the string from w to v. Let dvk be the product of the weights at any node of
type vk , 1 ≤ k ≤ s (refer to Figure 4). Then dvk = DA(vk)D−(vk)hk(p ′

k)
h̃k .

We need the following fact, which is a consequence of Lemmas 3.4 and 3.6.
For any k such that 1 ≤ k ≤ s,

det(�f,n) = D−(vk)
a ′
k

s∏
j=k
(p ′
j )
h̃j−1D−(vj )hj−1.

Now, for 1 ≤ k ≤ s − 1,

ewk · ewk = −DA(vk)D−(vk)hk(p ′
k)
h̃k

(p ′
k)

2 det(�)
− η ′

k

p ′
k

= −

(
nAk ·∏s

j=k+1(p
′
j )
h̃j−1D−(vj )hj−1

hk h̃kdk ak+1 · · · as

)
D−(vk)hk(p ′

k)
h̃k

(p ′
k)

2
D−(vk)
a ′
k

( s∏
j=k
(p ′
j )
h̃j−1D−(vj )hj−1

) − η ′
k

p ′
k

= −n/(hk h̃kdk)Aka
′
k

p ′
k ak+1 · · · as − η ′

k

p ′
k

.

Applying the congruence (4), we have

[ewk · ewk ] =
[
(n/hk h̃kdk)ak

p ′
k

− (n/hk h̃kdk)Aka
′
k

p ′
k ak+1 · · · as

]
,

and from this it is clear that the corollary is true. In the same way, it is easy to
check that [ew0 · ew0 ] and [ews · ews ] are as stated.

6. Proof of the Main Theorem

In this section we prove the Main Theorem, which determines precisely which
(Xf,n, 0), with f irreducible, have a resolution graph �f,n and associated splice
diagram �f,n that satisfy both the semigroup and congruence conditions.

Remark 6.1. 1. The link is a ZHS if and only if n is relatively prime to all pi and
ai (see [12]). This is equivalent to all hi and h̃i being equal to 1. Hence this case
belongs to (i) of the Main Theorem.

2. For the so-called pathological case n = ps = 2, both semigroup and con-
gruence conditions are satisfied only for s = 2.

3. There are classes of (Xf,n, 0) for which the semigroup conditions are satis-
fied but the congruence conditions are not, but we do not write up a complete list
of these types. An example with this property is given by n = 2, s = 2, p1 = 2,
a1 = 3, p2 = 3, and a2 = 20. The minimal good resolution graph and splice dia-
gram for this example are given in Figure 12.



Topology of Surface Singularities {zn = f(x, y)} 107

−3 −4 −1 −3

Γ = • • • • ∆ = • 3 • 3 30 • 3 •

•−3 •−3 •
3

•
3

Figure 12 Example for which the semigroup conditions are satisfied but the
congruence conditions are not

We must treat the cases hs = 1 and hs > 1 separately. The second case takes much
more work than the first.

6.1. Case (i), hs = (n,ps) = 1

First of all, we have the following statement.

Proposition 6.2. Suppose hs = 1. If �f,n satisfies the semigroup and congru-
ence conditions, then hih̃i = 1 for 1 ≤ i ≤ s − 1.

Proof. In light of Lemma 4.4, it suffices to show that the semigroup and congru-
ence conditions imply hs−1h̃s−1 = 1. We claim that the congruence condition at
the unique node v of type vs−1 cannot be satisfied if hs−1h̃s−1 �= 1. Let uj , 1 ≤ j ≤
h̃s , denote the leaves of type vs in �f,n, and let y denote the leaf that arises from
the string �(vs) in �can(Xf,n, z), as in Figure 13. If n/h̃s = 1, then the leaf y does
not exist, but one can see that the argument holds regardless.

∆−(vs−1)
D−(vs−1) • DA(vs−1) D−(vs)

v

• n/h̃s

ps ps

vs

• y

hs−1

...
. . .

h̃s−1

. . .
h̃s

∆−(vs−1) • •

p′
s−1

•
u1

•
u

h̃s

Figure 13 Splice diagram for hs = 1

The semigroup condition at v in the direction of �A(v) says that there exist β
and αi, 1 ≤ i ≤ h̃s , in N ∪ {0} such that

DA(vs−1) =
(

h̃s∑
i=1

αi

)
ph̃s−1
s

n

h̃s
+ βph̃ss .

It follows from Lemma 3.5 that DA(vs−1) = n/(hs−1h̃s−1)(ps)
h̃s−1. Therefore,
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n

hs−1h̃s−1

=
(

h̃s∑
i=1

αi

)
n

h̃s
+ βps. (5)

If h̃s = 1 then it is clear that hs−1h̃s−1 must be 1, for otherwise α1 = 0, imply-
ing that ps divides n/(hs−1h̃s−1). But this contradicts the assumption that hs = 1.
Furthermore, note that if all αi ≥ 1 then this implies that all αi = 1, β = 0, and
hs−1h̃s−1 = 1. If we assume hs−1h̃s−1 �= 1, then there exists a j such that αj = 0.

Let Uj be the variable associated to the leaf uj (resp., Y associated to y). By
Proposition 2.5, the congruence condition at v in the direction of �A(v) implies
in particular that there exists an admissible monomial H = U

α1
1 · · ·Uα

h̃s

h̃s
Y β such

that, for every leaf uj (1 ≤ j ≤ h̃s),[
β

�yuj

det(�f,n)
+
∑
i �=j

αi
�uiuj

det(�f,n)
− αjeuj · euj

]
=
[

�vuj

det(�f,n)

]
.

For the particular j such that αj = 0, this condition reduces to[
β

�yuj

det(�f,n)
+
∑
i �=j

αi
�uiuj

det(�f,n)

]
=
[

�vuj

det(�f,n)

]
. (6)

By Lemmas 3.4 and 3.6,

det(�f,n) = ph̃s−1
s

(
D−(vs)
a ′
s

)
= ph̃s−1

s (p ′
s−1)

˜hs−1−1D−(vs−1)
hs−1

a ′
s−1

.

One can easily see that [�vuj/det(�f,n)] = [0], [�yuj/det(�f,n)] = [0], and
[�uiuj/det(�f,n)] = [(a ′

s n/h̃s)/ps] for i �= j. Thus the congruence condition (6)

for the leaf uj is
[(∑

i �=j αi
) a ′

s n/h̃s

ps

] = [0]; that is,
(∑

i �=j αi
)
a ′
s n/h̃s ∈ Zps. Since

a ′
s and n/h̃s are relatively prime to ps , this implies that

∑
i �=j αi ∈ Zps. But then

(5) implies that n/(hs−1h̃s−1) is divisible by ps , which is a contradiction. There-
fore, we must have hs−1h̃s−1 = 1.

This leads us to the next result.

Proposition 6.3. Suppose hs = 1. Then �f,n satisfies the semigroup and con-
gruence conditions if and only if both of the following statements hold :

(I) hih̃i = 1 for 1 ≤ i ≤ s − 1;
(II) a ′

s = as/h̃s ∈ N〈as−1,p1 · · ·ps−1, ajpj+1 · · ·ps−1 | 1 ≤ j ≤ s − 2〉.
Remark 6.4. Condition (II) is clearly not always satisfied. For example, take n
divisible by as.

Proof of Proposition 6.3. We have already shown (Propositions 6.2 and 4.2) that
if the semigroup and congruence conditions are satisfied then (I) and (II) must
hold. So assume that (I) and (II) are satisfied. When h̃s = 1, the link is a ZHS and
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the semigroup conditions are satisfied [12]. (There are no congruence conditions
when the link is a ZHS.)

Assume h̃s �= 1. By Lemma 3.4,D−(vk) = ak for 2 ≤ k ≤ s−1 andD−(vs) =
a ′
s; it follows from Lemma 3.5 that DA(vk) = nph̃s−1

s for 1 ≤ k ≤ s − 1. There
is exactly one node of type vk in �f,n for 1 ≤ k ≤ s, which we simply denote vk.
We denote the leaves z0, . . . , zs−1, u1, . . . , uh̃s, and y, as in Figure 14.

• a1z0 • nph̃s−1
s a2

p1

v1

• nph̃s−1
s

v2

p2

as−1 • nph̃s−1
s a′

s

ps−1

vs−1

• n/h̃s

vs

•y

•
z1

•
z2

•
zs−1

•

ps

u1

. . .
h̃s

•

ps

u
h̃s

Figure 14 Splice diagram for h̃s �= 1 and hi h̃i = 1, 1 ≤ i ≤ s − 1

It is clear from Proposition 4.2 that (a) the semigroup condition at the node vk
in the direction of�−(vk) is satisfied for 2 ≤ k ≤ s−1 and (b) at the node vs , this
semigroup condition is equivalent to (II). Furthermore, one can see by examina-
tion of the splice diagram that the semigroup condition at each vk in the direction
of �A(vk) is always satisfied (including in the case n = h̃s).

It remains to show that�f,n satisfies the congruence conditions. Lemma 3.6 im-
plies that det(�f,n) = ph̃s−1

s . In Figure 14 it is easy to see that, for any node v and
any leafw in�f,n, �vw is always divisible by ph̃s−1

s . Therefore, [�vw/det(�f,n)] =
[0] for any node v and any leaf w. For each node, there are at most two condi-
tions to check: one for each adjacent edge that does not lead directly to a leaf.
By Proposition 2.5, we must show that for every node v and adjacent edge e
there is an admissible monomial Mve = ∏

w∈�ve Z
αw
w such that, for every leaf w ′

in �ve, [ ∑
w �=w ′

αw
�ww ′

det(�)
− αw ′ew ′ · ew ′

]
= [0]. (7)

In this case, we haveAi = ai+1 · · · as for1 ≤ i ≤ s−1. SinceA1p
′
1 = a2 · · · asp1

and Aj a ′
j = aj+1 · · · as aj , it follows from Corollary 5.2 that [ezj · ezj ] = [0] for

0 ≤ j ≤ s − 1. For any leaf zj , 0 ≤ j ≤ s − 1, it is easy to see that �zjw ′ is di-
visible by ph̃s−1

s for all leavesw ′ �= zj in�f,n. Because the only leaves in the sub-
graph �−(vk) are of the form zj , 0 ≤ j ≤ k − 1, equation (7) holds for all leaves
in �−(vk) for any choice of admissible monomial. (In fact, we have shown that
the action of the discriminant group element ezj is trivial for 0 ≤ j ≤ s − 1.)

LetZj be the variable associated to the leaf zj , 0 ≤ j ≤ s−1. It is easy to check
that, for 1 ≤ k ≤ s − 2, the congruence condition at vk in the direction of �A(vk)

is satisfied for the admissible monomialZk+1. The only remaining condition is for
the node vs−1 in the direction of vs. Let Uj be the variable associated to the leaf
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uj , 1 ≤ j ≤ h̃s . We claim that the monomial U1 · · ·Uh̃s (which is easily seen to be
an admissible monomial) satisfies the congruence condition. It is clear from the
splice diagram that [�uiuj/det(�f,n)] = [(n/h̃s)a ′

s/ps] for i �= j ; since each uj is
a leaf of type vs , by Corollary 5.2 we have [euj · euj ] = [(n/h̃s)(as − a ′

s )/ps] for
all j. Hence, for each uj , equation (7) for the monomial U1 · · ·Uh̃s is

[(h̃s − 1)(n/h̃s)a
′
s/ps − (n/h̃s)(as − a ′

s )/ps] = [0].

This is clearly true, since h̃sa ′
s = as. Finally, for the leaf y, equation (7) for

U1 · · ·Uh̃s is [h̃s �yuj/det(�f,n)] = [0] (for any choice of j). Since �yuj is divisible
by ph̃s−1

s , the condition is satisfied.

6.2. Case (ii), hs = (n,ps) > 1

The pathological case n = ps = 2 is treated separately at the end of the section.
Our main goal is to prove the following.

Proposition 6.5. Suppose hs > 1 and n > 2. Then �f,n satisfies the semigroup
and congruence conditions if and only if

s = 2, p2 = 2, (n,p2) = 2, (n, a2) = (n/2,p1) = (n/2, a1) = 1. (∗)
Let us first assume that �f,n satisfies the semigroup and congruence conditions.
We have already shown in Section 4 that the semigroup conditions imply hs =
(n,ps) = ps and hih̃i = 1 for 1 ≤ i ≤ s − 1. Recall that, since the link is a QHS,
h̃s = 1 and a ′

s = as. We prove that (∗) must hold in two steps as follows.

Step 1. The congruence conditions imply that ps = 2.
Step 2. The congruence conditions imply that s = 2.

•
n/ps

y

• a1z1,0 • as−1 •
v

DA(vs−1) as • as DA(vs−1) • as−1 •a1 •z2,0

•
p1

z1,1
•
ps−1

z1,s−1

. . .
ps − 2 •

ps−1

z2,s−1
•
p1

z2,1

∆−(vs)

as

{z3,i}
∆−(vs)

as

{zps,i}

Figure 15 Splice diagram for hs = ps and hi h̃i = 1 for 1 ≤ i ≤ s − 1

Proof of Step 1. For maximum convenience, we will use the splice diagram � as-
sociated to the minimal good resolution graph �min(Xf,n) (see Figure 15). Recall
that p ′

s = 1 implies that there is no leaf of type vs , since that string completely col-
lapses in the minimal resolution graph. We show that the congruence condition as
in Proposition 2.5 for a node v of type vs−1 in the direction of �A(v) cannot hold
unless ps = 2. The only difficulty is in notation.
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By Lemmas 3.4 and 3.5, D−(vk) = ak for 2 ≤ k ≤ s and

DA(vk) = n

ps
Ãk a

ps−2
s for 1 ≤ k ≤ s − 1, (8)

where Ãs−1 = as − as−1ps−1(ps − 1) and Ãk = as − akpkp
2
k+1 · · ·p2

s−1(ps − 1)
for 1 ≤ k ≤ s − 2. Suppose that ps > 2. For each i, 0 ≤ i ≤ s − 1, there are
hs = ps leaves of type vi. We label these leaves {zj,i | 1 ≤ j ≤ ps}, as indicated
in Figure 15. The leaf on the edge with weight n/ps is denoted y, and it is ab-
sent if n/ps = 1. Let the variables corresponding to those in the Neumann–Wahl
algorithm be {Zj,i} and Y, respectively. LetG be an admissible monomial for v in
the direction of �A(v) (i.e., in the direction of the central node). By the proof of
Proposition 4.3 (M = 0), we know that the variable Y cannot appear in any admis-
sible monomial G. Therefore, G = ∏ps

j=2(Zj,0)
αj,0 · · · (Zj,s−1)

αj,s−1, with αj,k ∈
N ∪ {0} such that

DA(vs−1) =
s−1∑
k=0

ps∑
j=2

�′
vzj,k

αj,k. (9)

For convenience of notation, we define integers Mi as follows:

Mi :=


p1 · · ·ps−1 for i = 0,

aipi+1 · · ·ps−1 for 1 ≤ i ≤ s − 2,

as−1 for i = s − 1.

(Note thatMi = β̄i/ps.) Let vs denote the unique node of type vs (the central node).
By Lemma 4.1, �′

vszj,i
= Mi for all j. Therefore, �vzj,i = Mias−1ps−1a

ps−2
s n/ps

and �′
vzj,i

= Mia
ps−2
s n/ps for 1 ≤ i ≤ s−1. Applying equation (8) and cancelling

a
ps−2
s n/ps from both sides of equation (9) yields

Ãs−1 =
s−1∑
k=0

ps∑
j=2

Mkαj,k. (10)

Consider the congruence condition in Proposition 2.5 for the node v in the di-
rection of �A(v) for each of the leaves z2,i, 0 ≤ i ≤ s − 1. By Lemma 3.6,
det(�f,n) = a

ps−1
s . For any admissible monomialG, the condition for w ′ = z2,i is

equivalent to[ s−1∑
k=0

ps∑
j=3

αj,k
�zj,k z2,i

a
ps−1
s

+
∑
k �=i

α2,k

�z2,k z2,i

a
ps−1
s

− α2,iez2,i
· ez2,i

]
=
[
�vz2,i

a
ps−1
s

]
. (11)

For 0 ≤ i ≤ s − 1,
�vz2,i

a
ps−1
s

= (n/ps)Mias−1ps−1

as
. (12)

Furthermore, for any j �= 2 and for 0 ≤ k, i ≤ s − 1,
�zj,k z2,i

a
ps−1
s

= (n/ps)MiMk

as
. (13)
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Claim 6.6. Fix i such that 0 ≤ i ≤ s − 1. Then

(a) [ez2,i
· ez2,i

] =
[
(n/ps)M

2
i (ps − 1)

as

]
and

(b) for k �= i,

[
�z2,k z2,i

a
ps−1
s

]
=
[−(n/ps)MiMk(ps − 1)

as

]
, 0 ≤ k ≤ s − 1.

Let us assume for now that Claim 6.6 is true and finish the proof of Step 1. By
equation (13) and the claim, we have the following:

LHS of (11) =
[ s−1∑
k=0

ps∑
j=3

αj,k
(n/ps)MiMk

as
−

s−1∑
k=0

α2,k

(n/ps)MiMk(ps − 1)

as

]

=
[
(n/ps)Mi

as

{ s−1∑
k=0

ps∑
j=2

αj,kMk − ps

s−1∑
k=0

α2,kMk

}]

=
[
(n/ps)Mi

as

{
Ãs−1 − ps

s−1∑
k=0

α2,kMk

}]
(by (10))

=
[
(n/ps)Mi

as

{
as − as−1ps−1(ps − 1)− ps

s−1∑
k=0

α2,kMk

}]

=
[
(n/ps)Mi

as

{
−as−1ps−1(ps − 1)− ps

s−1∑
k=0

α2,kMk

}]
.

Therefore, by (12), the congruence condition (11) is equivalent to[
(n/ps)Mi

as

{
−as−1ps−1(ps − 1)− ps

s−1∑
k=0

α2,kMk

}]
=
[
(n/ps)Mias−1ps−1

as

]
,

which is clearly equivalent to[
− (n/ps)Mips

as

(
as−1ps−1 +

s−1∑
k=0

α2,kMk

)]
= [0].

Since (as , n) = 1 and (as ,ps) = 1, this is equivalent to

Mi

(
as−1ps−1 +

s−1∑
k=0

α2,kMk

)
∈ Zas. (14)

Therefore, if the congruence conditions are satisfied then this implies, in particu-
lar, that (14) holds for all i such that 0 ≤ i ≤ s − 1.

We claim that if (14) holds for all i then this implies that as divides

S := as−1ps−1 +
s−1∑
k=0

α2,kMk.
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Let as = q
e1
1 · · · qell be the prime power factorization of as. Suppose there is a j

such that qejj does not divide S. Then at least one power of qj must divide Mi for
0 ≤ i ≤ s − 1. In particular, qj divides Ms−1 = as−1 and, since (as−1,ps−1) = 1,
this implies that qj divides as−2 becauseMs−2 = as−2ps−1. This, in turn, implies
qj divides as−3 and so forth, down to a1. But M0 = p1 · · ·ps−1, which cannot
possibly be divisible by qj . We have derived a contradiction, so as divides S.

Finally, we claim that forps > 2 it is impossible foras to divide S. Equation (10),
which is equivalent to as − as−1ps−1(ps −1) = ∑s−1

k=0

∑ps
j=2 αj,kMk , implies that∑s−1

k=0 α2,kMk ≤ as − as−1ps−1(ps − 1), and hence

S = as−1ps−1 +
s−1∑
k=0

α2,kMk ≤ as − as−1ps−1(ps − 2).

If ps > 2 then as − as−1ps−1(ps − 2) < as , which implies that S < as; hence
S cannot be divisible by as , which is a contradiction. Therefore, we must have
ps = 2 for the congruence conditions to be satisfied. This completes the proof of
Step 1.

Proof of Claim 6.6. Since z2,i is a leaf of type vi , part (a) of the claim follows
from Corollary 5.2. For part (b), without loss of generality we assume i < k. For
1 ≤ i < k ≤ s − 2 with i �= k − 1, we have �z2,k z2,i

= DA(vk)aipi+1 · · ·pk−1

and hence[
�z2,k z2,i

det(�f,n)

]
=
[
(n/ps)Ãk aipi+1 · · ·pk−1

as

]
=
[
(n/ps)(as − akpkp

2
k+1 · · ·p2

s−1(ps − 1))aipi+1 · · ·pk−1

as

]
=
[−(n/ps)(ps − 1)akpkp2

k+1 · · ·p2
s−1 · aipi+1 · · ·pk−1

as

]
=
[−(n/ps)(ps − 1)MkMi

as

]
.

The remaining cases are all similar and easy to check.

Proof of Step 2. So far, we have that the semigroup and congruence conditions
imply that hs = ps = 2 and hih̃i = 1 for 1 ≤ i ≤ s −1. Write n= 2n′ with n′ > 1.
We will show that, for s ≥ 3, the congruence conditions at a node v of type vs−2

in the direction of �A(v) cannot be satisfied. We should note that the congruence
condition at a node of type vs−1 that we studied in Step 1 can be satisfied for s ≥ 3.
For example, take

a1 = 3, a2 = 19, a3 = 117,

p1 = 2, p2 = 3, p3 = 2,

and any n = 2n′ such that n′ is relatively prime to 2, 3, 13, and 19.
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• a1z0 • . . . •
v

DA(vs−2) as−1 • DA(vs−1) as • as DA(vs−1) • as−1. . . •a1 • y0

•
p1

z1
•
ps−2

zs−2
•
ps−1

zs−1
•
n′

y
•
ps−1

ys−1
•
p1

y1

Figure 16 Splice diagram for n > 2, hs = ps = 2, and hi h̃i = 1 for 1 ≤ i ≤ s − 1

Figure 16 depicts the splice diagram in the general situation. The semigroup
condition at v in the direction of �A(v) is

DA(vs−2)∈ N〈DA(vs−1), asps−1, n
′ps−1Mi | 0 ≤ i ≤ s − 1〉.

Recall thatDA(vs−1) = n′(as−as−1ps−1) andDA(vs−2) = n′(as−as−2ps−2p
2
s−1).

The semigroup condition implies that there exist α, β, and γi ∈ N ∪ {0} such that

n′(as − as−2ps−2p
2
s−1) = αn′(as − as−1ps−1)+ βasps−1 +

s−1∑
i=0

γin
′Mips−1.

If β �= 0, then βasps−1 must be divisible by n′ > 1. By assumption, (as , n′) =
h̃s = 1and (ps−1, n′) = hs−1 = 1; therefore, n′ must divideβ. But thenβasps−1 ≥
n′asps−1 > n′as > DA(vs−2), and this is impossible. Hence β = 0.

We can thus cancel n′ from the previous equation, leaving

as − as−2ps−2p
2
s−1 = α(as − as−1ps−1)+

s−1∑
i=0

γiMips−1.

Since Ms−1 = as−1, we have

(α − γs−1)as−1ps−1 = (α − 1)as +
s−2∑
i=0

γiMips−1 + as−2ps−2p
2
s−1, (15)

which implies (α−γs−1)as−1ps−1 > (α−1)as. Suppose α > 1. Then, since as =
qs + as−1ps−1ps and ps = 2, it follows that

(α − γs−1)as−1ps−1 > (α − 1)as > (α − 1)2as−1ps−1,

which implies (α − γs−1)− 2(α − 1) > 0 (i.e., 2 > α + γs−1). But this is impos-
sible for α > 1.

Now suppose α = 1. It is clear from equation (15) that γs−1 = 0, so

as−1ps−1 =
s−2∑
i=0

γiMips−1 + as−2ps−2p
2
s−1;

that is, as−1 = ∑s−2
i=0 γiMi + as−2ps−2ps−1. But, sinceMi is divisible by ps−1 for

0 ≤ i ≤ s − 2, this would imply as−1 is divisible by ps−1, which is impossible.
Therefore, α = 0 and we have

as − as−2ps−2p
2
s−1 =

s−1∑
i=0

γiMips−1. (16)
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(Note that this semigroup condition is already quite restrictive, because it requires
as to be divisible by ps−1.)

Now let us return to the congruence conditions for the node v in the direction of
�A(v). An admissible monomial for v in that direction must be of the form H =
Y
γ0
0 · · ·Y γs−1

s−1 , with γi ∈ N ∪ {0}. The congruence condition for the leaf ys−1 is[
�vys−1

det(�f,n)

]
=
[ s−2∑
i=0

γi
�ys−1yi

det(�f,n)
− γs−1eys−1 · eys−1

]
.

Applying Claim 6.6, we see that this condition is equivalent to[
n′as−2ps−2as−1ps−1

as

]
=
[
−n

′as−1

as

( s−1∑
i=0

γiMi

)]
;

that is, n′as−1
(
as−2ps−2ps−1 +∑s−1

i=0 γiMi

) ∈ Zas. Since (as , n′) = 1, we must
have as−1

(
as−2ps−2ps−1 +∑s−1

i=0 γiMi

) = Nas for some N in Z. If we multiply
both sides of this equation by ps−1 and apply equation (16), the result is

as−1as−2ps−2p
2
s−1 + as−1(as − as−2ps−2p

2
s−1) = Nasps−1

(i.e., as−1 = Nps−1). This implies that ps−1 divides as−1, which is a contradiction.
Thus we have shown that, if s ≥ 3, then the congruence condition for the node v

of type vs−2 in the direction of�A(v) cannot be satisfied for the leaf ys−1. Hence,
the congruence conditions imply that s = 2.

We have finished Steps 1 and 2, proving one direction of Proposition 6.5.

• a1z0 • DA(v1) a2 • a2 DA(v1) • a1 • y0

•

p1

z1

•
n′

y
•

p1

y1

Figure 17 Splice diagram for (∗), n > 2

For the other direction, we must check that (∗) implies that the semigroup and
congruence conditions are satisfied. The splice diagram in this situation is shown
in Figure 17. The only semigroup condition that needs to be checked is

DA(v1)∈ N〈a2, n′a1, n′p1〉,
where DA(v1) = n′(a2 − a1p1) = n′(q2 + a1p1). Since a1 and p1 are relatively
prime, the conductor of the semigroup generated by a1 and p1 is less than a1p1;
hence a1p1 + q2 is in the semigroup generated by a1 and p1 and so this semigroup
condition is satisfied.

There are only two congruence conditions to check. One is equivalent to the
following: there exist α0 and α1 in N ∪ {0} such that a2 = α0p1 + α1a1,
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α1

−n′a1p1

a2
− α0

n′p2
1

a2

]
= [0], and

[
α0

−n′a1p1

a2
− α1

n′a2
1

a2

]
= [0].

But these conditions are obviously both satisfied for any α0 and α1 such that a2 =
α0p1 +α1a1. The other congruence condition is equivalent to the following: there
exist γ0 and γ1 in N ∪ {0} such that a2 − a1p1 = γ0p1 + γ1a1,[

γ1
−n′a1p1

a2
− γ0

n′p2
1

a2

]
=
[
n′a1p

2
1

a2

]
, and[

γ0
−n′a1p1

a2
− γ1

n′a2
1

a2

]
=
[
n′a2

1p1

a2

]
.

But obviously these conditions are also both satisfied for any γ0 and γ1 such that
a2 − a1p1 = γ0p1 + γ1a1. This concludes the proof of Proposition 6.5.

The pathological case
If hs > 1 and n = 2, then the semigroup conditions imply that ps = 2 by Propo-
sition 4.3. Therefore, all that remains in our proof of the Main Theorem is the
pathological case. Let �f,n be the graph associated to the minimal good resolution
(see Section 3).

Proposition 6.7. Suppose n = ps = 2. Then �f,n satisfies the semigroup and
congruence conditions if and only if s = 2.

Proof. We begin by assuming that �f,n satisfies the semigroup and congruence
conditions. It is automatically true that hih̃i = 1 for 1 ≤ i ≤ s − 1 and that
hs = 2. We must show that s must be 2. The splice diagram is pictured in Fig-
ure 18. We can use essentially the same argument as in Step 2 of the proof of
Proposition 6.5 to show that, for s ≥ 3, the congruence conditions at the node v of
type vs−2 in the direction of �A(v) cannot possibly be satisfied for the leaf ys−1.

• a1z0 • Ã1 . . . as−2•
v

Ãs−2 as−1 • Ãs−1 Ãs−1 • as−1. . . Ã1•a1 • y0

•
p1

z1
•
ps−2

zs−2
•
ps−1

zs−1
•
ps−1

ys−1
•
p1

y1

Figure 18 Splice diagram for the pathological case, s > 2

The semigroup condition at v in the direction of �A(v) is

Ãs−2 ∈ N〈Ãs−1,ps−1Mi | 0 ≤ i ≤ s − 1〉.
Precisely the same argument as in Step 2 shows that Ãs−1 cannot appear in the
expression for Ãs−2 that comes from the semigroup condition. Hence there exist
γi in N ∪ {0} such that as − as−2ps−2p

2
s−1 = ∑s−1

i=0 γiMips−1.
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Let H = Y
γ0
0 · · ·Y γs−1

s−1 be an admissible monomial for v in the direction of
�A(v). Then the congruence condition for the leaf ys−1 is equivalent to[

as−2ps−2as−1ps−1

as

]
=
[
−as−1

as

( s−1∑
i=0

γiMi

)]
.

Just as in Step 2, this implies that ps−1 divides as−1 and hence that the congruence
conditions cannot be satisfied for s > 2.

Finally, for s = 2, it is easy to check that the semigroup and congruence condi-
tions are satisfied.
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