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1. Introduction

Let G be a simply connected complex semisimple Lie group with Lie algebra g,
B the flag variety of G, N the nilpotent cone in g, and Ñ the Springer resolu-
tion {(x, b)∈ N × B | x ∈ b} of N. We also let

Z = Ñ ×N Ñ = {(x, b, b′)∈ N × B × B | x ∈ b ∩ b′}
be the Steinberg variety. Since its inception, the Steinberg variety has proved
to be an important object in the representation theory of Weyl groups and affine
Hecke algebras. In particular, if we let H∗(Z, C) = ⊕

i≥0 Hi(Z, C) be the com-
plex graded Borel–Moore homology algebra equipped with a convolution product,
then the knowledge of the graded algebra structure of H∗(Z, C) is a key ingredient
for obtaining all irreducible representations of Weyl groups through the decompo-
sition theorem of Bellinson, Bernstein, and Deligne.

In this paper, we study more explicitly the C-algebra structure of H∗(Z, C).

To do so, we will examine the convolution product of H∗(Z, C) through multi-
plications on other objects, such as the Grothendieck group of a graph variety,
(co)homology of the flag variety, and a certain crossed product algebra. We prove
that the convolution product on H∗(Z, C) is compatible with all of these multi-
plications (see Theorem 3.7). As an application of our compatibility theorem, we
construct a C-algebra isomorphism between H∗(Z, C) and a certain crossed prod-
uct algebra (see Theorem 3.9).

After this paper was written, the author was informed that Douglass and Röhrle
[DR1; DR2] proved a result similar to Corollary 3.10. However, our approach dif-
fers from that of Douglass and Röhrle.

2. Preliminaries

Borel–Moore Homology. Let X be a complex algebraic variety, and let X̂ =
X ∪ {∞} be the one-point compactification of X. Then the ith Borel–Moore ho-
mology space is defined as Hi(X) := H ord

i (X̂, ∞), where H ord
i denotes the ith

singular relative homology over the complex coefficients (see [BoMo] for details).
Throughout the paper, we will consider all Borel–Moore homology spaces to be
over the complex numbers C.
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One of the most important properties of Borel–Moore homology is the existence
of a fundamental class [X] for any complex algebraic variety X. In particular, let
X be a complex algebraic variety of complex dimension n, and let {X1, . . . ,Xm}
be the n-dimensional irreducible components of X. Then it is known that the fun-
damental classes [X1], . . . , [Xm] form a basis for the vector space H2n(X).

Let M be a smooth variety of complex dimension n. Then we can consider the
following standard ∪-product in cohomology:

∪ : H 2n−i(M) × H 2n−j(M) → H 4n−i−j(M). (2.1)

Applying the Poincaré duality to (2.1) yields the following bilinear pairing, which
is called the intersection pairing:

∩ : Hi(M) × Hj(M) → Hi+j−2n(M). (2.2)

Convolutions in Borel–Moore Homology and K-theory. We first review
the construction of the convolution product in Borel–Moore homology that is due
to Ginzburg [CG].

Let M1, M2, and M3 be connected, oriented smooth manifolds with the (i, j)-
projections pij : M1 × M2 × M3 → Mi × Mj. We suppose that Z12 ⊂ M1 × M2

and Z23 ⊂ M2 × M3 are closed subsets. We also assume that

p13 : (p−1
12 (Z12) ∩ p−1

23 (Z23)) → M1 × M3 (2.3)

is proper, and we write Z12 � Z23 for the image of p13.

We define a convolution product in Borel–Moore homology as

∗ : Hi(Z12) ⊗ Hj(Z23) → Hi+j−d(Z12 � Z23), c12 ⊗ c23 �→ c12 ∗ c23, (2.4)

where c12 ∗ c23 = (p13)∗(p∗
12c12 ∩ p∗

23c23) and d = dimR M2.

In particular, if we let M1 = M2 = M3 = M be a smooth manifold of dimen-
sion n and Z12 = Z23 = M, then we have the convolution map

∗ : Hi(M) ⊗ Hj(M) → Hi+j−2n(M). (2.5)

In this case, the convolution product in (2.5) reduces to the intersection pairing
in (2.2).

A similar convolution construction works for the algebraic K-theory. More ex-
plicitly, let X be a smooth algebraic variety and let Z1,Z2 be closed subsets of X.

We also let K(X) be the Grothendieck group of all coherent sheaves on X.

For given F1 ∈ K(Z1) and F2 ∈ K(Z2), we write F1 � F2 ∈ K(Z1 × Z2) for
the external tensor product p∗

Z1
F1 ⊗OZ1×Z2

p∗
Z2

F2 of F1 and F2. Here pZ1 and pZ2

denote the projections of Z1 × Z2 to corresponding factors. Next, let � : X ↪→
X × X be the diagonal embedding. Then we have �−1(Z1 × Z2) = Z1 ∩ Z2. So
the restriction map � : Z1 ∩ Z2 → Z1 × Z2 induces the map

�∗ : K(Z1 × Z2) → K(Z1 ∩ Z2). (2.6)

By combining �∗ with the external tensor product, we obtain the following tensor
product with supports:
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⊗ : K(Z1) ⊗ K(Z2) → K(Z1 ∩ Z2), (F1, F2) �→ �∗(F1 � F2). (2.7)

With the tensor product in (2.7), we define the convolution product in the algebraic
K-theory as follows.

Let M1,M2,M3 be smooth algebraic varieties. Let Z12 ⊂ M1 × M2 and Z23 ⊂
M2 ×M3 be closed subvarieties satisfying condition (2.3). Then we define a con-
volution product

∗ : K(Z12) ⊗ K(Z23) → K(Z12 � Z23) (2.8)

to be F12 ∗ F23 := (p13)∗((p12)
∗F12 ⊗ (p23)

∗F23).

In particular, the convolution product ∗ : K(X) ⊗ K(X) → K(X) coincides
with the tensor product ⊗ : K(X) ⊗ K(X) → K(X) defined in (2.7).

Specializations in Borel–Moore Homology and K-theory. Let (X, o) be
a smooth manifold with base point o. Given a possibly singular space E, sup-
pose that we have a map p : E → X. We also assume that the restriction map
p : P−1(X − o) → X is a locally trivial fibration with possibly singular fibers.
However, we do not assume that p : E → X is locally trivial around o. According
to Fulton and MacPherson [FM], there is a homomorphism

limX→o : Hi(p
−1(X − o)) → Hi−dimR(X)(p

−1(o)),

which is called a specialization map.
One of the essential features of the specialization map in Borel–Moore homol-

ogy is that it commutes with the convolution product of Borel–Moore homology.
We can similarly define the specialization homomorphism in K-theory. In more
detail, let X be a variety and C a smooth algebraic curve with a base point o.

Further, let p : X → C be a morphism. Then there exists a specialization homo-
morphism limC→o : K(p−1(X − o)) → K(p−1(o)). Like the specialization map
in Borel–Moore homology, the specialization map in K-theory commutes with the
convolution product in K-theory.

The Chern Character. Let X be a smooth quasi-projective variety. Then
there is a ring homomorphism ch∗ : K(X) → H ∗(X), called the cohomological
Chern character map, from the Grothendieck ring K(X) to the cohomology ring
H ∗(X). If we apply the Poincaré duality between the cohomology ring H ∗(X)

and the graded Borel–Moore homology H∗(X), then we obtain the homological
Chern character map ch∗ : K(X) → H∗(X). The cohomological Chern character
map ch∗ : K(X) → H ∗(X) is a ring homomorphism, so we see that the homolog-
ical Chern character map ch∗ : K(X) → H∗(X) becomes a ring homomorphism
for a smooth quasi-projective variety X (see Corollary 3.4). Construction of the
Chern character maps over a smooth quasi-projective variety can be extended to
those over any closed subvariety of a smooth quasi-projective variety. However,
for a nonsmooth variety such as the Steinberg variety, we can no longer guarantee
that the homological Chern character map is a ring homomorphism.
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Notation. Throughout the paper, the following notation will be in force:

• KC(X) denotes the tensor product C ⊗Z K(X) for any algebraic variety X;
• B is the flag variety of a complex semisimple Lie algebra g;
• N is the nilpotent cone in g;
• Z denotes the Steinberg variety {(x, b1, b1)∈ N × B × B | x ∈ b1 ∩ b2}.
The following theorem shows why we are interested in the homological Chern
character map.

Theorem 2.1. For a variety X = B, T ∗(B), or Z, the homological Chern char-
acter map yields an isomorphism KC(X) → H∗(X) of abelian groups.

Proof. See [CG, Thm. 6.2.4].

We conclude this section with the following theorem.

Theorem 2.2. (1) The homological Chern character map commutes with the
specialization homomorphism in K-theory and also with Borel–Moore homology.

(2) Let X be a smooth variety. Then the following diagram commutes:

KC(X) ⊗ KC(X)
∗=⊗

��

ch∗
��

KC(X)

ch∗
��

H∗(X) ⊗ H∗(X)
∗=∩ �� H∗(X).

(2.9)

Proof. See [BFM]. In fact, in [BFM] we can find a proof of a more generalized
version of (2). Yet the statement (2) is enough for our purpose, and we give a sim-
ple proof in Corollary 3.4.

3. CCC-algebra Structure of H∗(Z)

In the rest of this paper we fix a complex, semisimple, simply connected Lie group
G with the Lie algebra g. We also fix a maximal torus T of G.

Universal Resolution of g. Let g̃ be the universal resolution of g (i.e., g̃ =
{(x, b)∈ g×B | x ∈ b}), and let µ be the first projection µ : g̃ → g. We denote by
Ñ the set µ−1(N ). Since all quotient spaces b/[b, b] are isomorphic for all b ∈ B,
we denote by H the the resulting space. We now define a map ν : g̃ → H as the
quotient map

(x, b) �→ x + [b, b] ∈ b/[b, b] � H.

We write gsr for the set of semisimple regular elements in g. Here a regular ele-
ment x ∈ g means that dimZg(x) = rank g. We also denote by g̃sr the inverse
image µ−1(gsr ). Then there is a natural action of the Weyl group W = N(T )/T

on g̃sr that preserves fibers µ−1(x).
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Borel Isomorphism. Let W = NG(T )/T be the Weyl group with respect to the
maximal torus T. Then the Weyl group W acts on T. This action yields the alge-
bra C[T ]W of W-invariants, where C[T ] is the algebra of regular functions on T.

There is a natural evaluation homomorphism C[T ]W → C given by evaluation at
1∈ T. We denote by I the ideal in C[T ] generated by the kernel of this evaluation
homomorphism. It is known from the Borel isomorphism that an algebra C[T ]/I
is isomorphic to the cohomology ring H ∗(B) of the flag variety B as a C-algebra.
We now let X(T ) be the character group of T. Then the group algebra C[X(T )] is
identified with C[T ]. Through this identification, we will write eλ for the element
of C[T ] corresponding to a weight λ∈X(T ).

Let C[T ]/I  C[W ] be the crossed product of the C-algebra C[T ]/I and the
group algebra C[W ]. This product coincides with the tensor product C[T ]/I ⊗C

C[W ] (as a vector space) and is equipped with multiplication:

(eλ1 ⊗ w1) · (eλ2 ⊗ w2) = eλ1(w1e
λ2) ⊗ w1w2,

where w1e
λ2 denotes the action of W on C[T ].

Let us now consider the direct sum
⊕

w∈W(C[T ]/I )w and define multiplica-
tion on it as follows:

(eλ1 · w1)(e
λ2 · w2) = eλ1(w1e

λ2) · w1w2.

Then it is clear that ⊕
w∈W

(C[T ]/I )w � C[T ]/I  C[W ] (3.1)

as C-algebras.

Graph Variety #h
w. From now on, we fix a semisimple regular element h in

gsr. In [CG], the authors introduced the graph variety #h
w ⊂ ν−1(h) × ν−1(w · h).

This is the graph of the action w : ν−1(h) → ν−1(w ·h) obtained by restricting the
action w : g̃sr → g̃sr. By the definition of #h

w, we have

#h
w = {(x, b, x, Adw(b))∈ g̃sr × g̃sr | x ∈ b ∩ Adw(b),

ν(x, b) = h, ν(x, Adw(b)) = Adw(h)}.
The following lemma is due to Ginzburg.

Lemma 3.1. (1) The inverse image ν−1(h) is a smooth variety.
(2) The graph variety #h

w is a smooth variety.

Proof. See [G].

Next, let us consider the isomorphisms

ν−1(h)
w �� ν−1(w · h) y

�� ν−1(yw · h)
for elements w, y ∈ W. These isomorphisms yield a set-theoretic composition
#h

w �#w·h
y defined in (2.3), and we can see that #h

w �#w·h
y = #h

yw. Thus we obtain
the convolution product

∗ : K(#h
w) ⊗ K(#w·h

y ) → K(#h
yw). (3.2)
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Lemma 3.2. The map p : #h
w → B given by (x, b, x, Adw(b)) �→ b is a vector

bundle over B with fiber h + n, and p is a homotopy equivalence.

Proof. We first notice that #h
w is isomorphic to ν−1(h), which in turn is isomor-

phic to G ×B (h + n) as G-equivariant vector bundles over B. Moreover, n is
contractible because it is nilpotent. The lemma now follows.

Action of the Weyl Group W on H∗(B) and KC(B). Let B be a Borel sub-
group containing a maximal torus T, and letW be the Weyl groupW = NG(T )/T.

We also let p : G/T → G/B = B be the natural projection. Then p is a homotopy
equivalence and induces an isomorphism p∗ : H i(B) → H i(G/T ). We notice
that the right action of W on G/T given by w : gT → gwT yields a W-action on
H i(G/T ), and thisW-action on H i(G/T ) can be transferred to H i(B) through the
isomorphism p∗. Thus we obtain a W-module structure on H i(B) that is called
the classical action of W on H i(B); see [S] for details. Furthermore, if we apply
the Poincaré duality H∗(B) � H ∗(B), then the graded Borel–Moore homology
H∗(B) also acquires a W-module structure by means of the classical action of W
on H ∗(B).

Similarly, the homotopy equivalence p : G/T → G/B = B yields the natural
W-module structure on KC(B) through the right W-action on G/T.

According to [CG, Prop. 6.4.19], there is a W-module isomorphism

φ : C[T ]/I → KC(B). (3.3)

If we combine φ with the cohomological Chern character isomorphism

ch∗ : KC(B) → H ∗(B),

then we obtain a W-equivariant algebra isomorphism

ψ : C[T ]/I → H ∗(B), (3.4)

which is nothing but the Borel isomorphism introduced in Section 3 (see [CG,
Sec. 6.4] for details).

In the following proposition we show that, for a given smooth quasi-projective
variety X, the graded Borel–Moore homology H∗(X) is isomorphic to the coho-
mology ring H ∗(X) as C-algebras.

Proposition 3.3. Let H∗(X) and H ∗(X) be equipped with C-algebra structures
via the convolution product and the cup product, respectively. Then the Poincaré
duality H∗(X) � H ∗(X) yields a C-algebra isomorphism.

Proof. We first recall from Section 2 that the convolution ∗ : H∗(X)⊗H∗(X) →
H∗(X) reduces to the intersection pairing ∩ : H∗(X)⊗H∗(X) → H∗(X). How-
ever, by definition the intersection pairing ∩ : Hi(X)⊗Hj(X) → Hi+j−dimR X(X)

is induced from the standard ∪-product ∪ : H dimR X−i(X) ⊗ H dimR X−j(X) →
H 2 dimR X−i−j(X) through the Poincaré duality . The result now follows.
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Corollary 3.4. Let X be a smooth quasi-projective variety. Then the homolog-
ical Chern character map ch∗ : KC(X) → H∗(X) is a C-algebra homomorphism.

Proof. We recall that the cohomological Chern character map ch∗ : KC(X) →
H ∗(X) is a ring homomorphism. Then the result follows from Proposition 3.3
and the construction of ch∗.

Corollary 3.5. Let ρ : H ∗(B) → H∗(B) be the Poincaré duality isomorphism
for the flag variety B. Then the composition map ρ � ψ : C[T ]/I → H∗(B) is a
W-equivariant algebra isomorphism, where ψ is the isomorphism in (3.4).

Proof. Observe that ρ : H ∗(B) → H∗(B) is a W-module isomorphism by the
construction of the W-module structure on H∗(B). The result is now immediate
from Proposition 3.3 and the W-equivariant algebra isomorphism ψ.

In addition to the classical action of W on H∗(B), we have another Weyl group
action on H∗(B) via the convolution product. In more detail, we first recall from
the work of Ginzburg that the group algebra C[W ] is isomorphic to HdimR Z(Z) as
C-algebras when HdimR Z(Z) is equipped with the convolution product. We also
have the convolution product

∗ : HdimR Z(Z) ⊗ H∗(B) → H∗(B) (3.5)

under the circumstances M1 = M2 = Ñ , M3 = {point}, Z = Ñ ×N Ñ ⊂ M1×M2,
and B � µ−1(0) ⊂ M2 × M3, where µ : g̃ → g is the first projection map.

Then, through the identification C[W ] � HdimR Z(Z), we can define aW-action
on H∗(B) via the convolution product in (3.5). Thus we have two W-actions on
H∗(B): one is obtained from the classical W-action on H∗(B), and the other comes
from the convolution action in (3.5). However, it is known that these twoW-actions
on H∗(B) coincide.

Lemma 3.6. The W-action on H∗(B) arising from the convolution product in
(3.5) is the same as the one obtained from the classical W-action on H∗(B).

Proof. See [CG, Claim 3.6.17].

For given w1,w2 ∈W, let

+ : (C[T ]/I )w1 ⊗ (C[T ]/I )w2 → KC(B) ⊗ KC(B)

be a map defined by +(eλw1 ⊗ eµw2) = φ(eλ) ⊗ w1 · φ(eµ), where φ is the
W-module isomorphism in (3.3). Then + becomes a vector space isomorphism.
We also let , : (C[T ]/I )w → KC(B) be a W-module isomorphism given by
,(eλw) = φ(eλ), and we write ρ : H ∗(B) → H∗(B) for the Poincaré duality
isomorphism.

Now we present the main result of this paper.
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Theorem 3.7. The following diagram commutes for any w1,w2 in W :

(C[T ]/I )w1 ⊗ (C[T ]/I )w2
multiplication

��

+ �
��

(C[T ]/I )w1w2

� ,

��

KC(#
h
w1
) ⊗ KC(#

w1(h)
w2

)
∗ ��

Lemma 3.2 ‖
��

KC(#
h
w1w2

)

‖ Lemma 3.2

��

KC(B) ⊗ KC(B)
∗=⊗

��

ch∗⊗ch∗ �
��

KC(B)

� ch∗
��

H ∗(B) ⊗ H ∗(B)
∪ ��

ρ⊗ρ �
��

H ∗(B)

� ρ

��

H∗(B) ⊗ H∗(B)
∗=∩ �� H∗(B),

where the first row is induced by multiplication in
⊕

w∈W(C[T ]/I )w and the sec-
ond row is obtained from (3.2).

Proof. We first recall that the induced K-group homomorphisms from homotopy
equivalences commute with the convolution products. From this we obtain that
the second rectangular diagram in Theorem 3.7 commutes.

By definition, the composition map ch∗ �ρ : KC(B) → H∗(B) yields the homo-
logical Chern character map ch∗. Then, by Theorem 2.2, the following diagram
commutes:

KC(B) ⊗ KC(B)
∗=⊗

��

(ρ⊗ρ)�(ch∗⊗ch∗)=ch∗⊗ch∗
��

�
��

KC(B)

�
��

ρ�ch∗=ch∗
��

H∗(B) ⊗ H∗(B)
∗=∩ �� H∗(B).

(3.6)

Moreover, the definition of the intersection pairing in Section 2 implies that the
last rectangular diagram in Theorem 3.7 also commutes. Hence, we obtain the
following commutative diagram:

KC(B) ⊗ KC(B)
∗=⊗

��

ch∗⊗ch∗
��

�
��

KC(B)

�
��

ch∗
��

H ∗(B) ⊗ H ∗(B)
∪ ��

ρ⊗ρ

��

�
��

H ∗(B)

�
��

ρ

��

H∗(B) ⊗ H∗(B)
∗=∩ �� H∗(B).

(3.7)
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Now we shall show that the following diagram commutes, which is the main
part of this proof:

(C[T ]/I )w1 ⊗ (C[T ]/I )w2
multiplication

��

(ρ⊗ρ)�(ch∗⊗ch∗)�+
��

�
��

(C[T ]/I )w1w2

�
��

ρ�ch∗�,
��

H∗(B) ⊗ H∗(B)
∗=∩ �� H∗(B).

(3.8)

Let eλw1 ∈ (C[T ]/I )w1 and eµw2 ∈ (C[T ]/I )w2. Then

((ρ ⊗ ρ) � (ch∗ ⊗ ch∗) � +)(eλw1 ⊗ eµw2)

= (ρ � ch∗ � φ)(eλ) ⊗ w1 · (ρ � ch∗ � φ)(eµ)

because ρ, ch∗, and φ are W-module isomorphisms (see Corollary 3.5 and [CG,
Sec. 6.4]). Notice that by Lemma 3.6 we obtain

w1 · (ρ � ch∗ � φ)(eµ) = [#w1 ] ∗ (ρ � ch∗ � φ)(eµ),

where by [#w1 ] we denote the fundamental class corresponding to w1 through the
identification C[W ] � HdimR Z(Z). Hence (ρ �ch∗ �φ)(eλ)⊗w1·(ρ �ch∗ �φ)(eµ)

goes to (ρ � ch∗ �φ)(eλ)∗ [#w1 ]∗ (ρ � ch∗ �φ)(eµ) under the convolution product
∗ : H∗(B) ⊗ H∗(B) → H∗(B).

On the other hand, eλw1 ⊗ eµw2 goes to eλ(w1 · eµ)w1w2 under the multipli-
cation map. It now suffices to see the image (ρ � ch∗ � φ)(eλ(w1 · eµ)). We recall
from (3.4) that ψ = ch∗ � φ : C[T ]/I → H ∗(B) and that ψ is a W-equivariant
algebra isomorphism. Therefore,

(ρ � ch∗ � φ)(eλ(w1 · eµ)) = ρ(ψ(eλ) ∪ w1 · ψ(eµ))

= (ρ � ψ)(eλ) ∗ w1 · (ρ � ψ)(eµ)

= (ρ � ch∗ � φ)(eλ) ∗ [#w1 ] ∗ (ρ � ch∗ � φ)(eµ).

Hence, diagram (3.8) commutes.
Since all vertical maps in the diagrams (3.6), (3.7), and (3.8) are isomorphisms,

the theorem is now immediate if we combine those commutative diagrams.

For given w ∈W and h ∈ gsr, take the disjoint union set Z � (∐
λ∈C× #λh

w

)
. We

now consider a map π : Z � (∐
λ∈C× #λh

w

) → C · h = {λh | λ ∈ C} defined by
π(Z) = 0 and π(#λh

w ) = λh for each λ ∈ C
×. Then, the map π induces a lo-

cally trivial fibration π :
∐

λ∈C× #λh
w → C

× · h. Thus we have a specialization
homomorphism

limCh→0 : H∗
( ∐

λ∈C× #λh
w

) → H∗(Z). (3.9)

On the other hand, from the homomorphism ρ�ch∗�, : (C[T ]/I )w → H∗(B)

in Theorem 3.7 we obtain a homomorphism

θ h
w : (C[T ]/I )w → H∗

( ∐
λ∈C× #λh

w

)
. (3.10)
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Combining the homomorphisms in (3.9) and (3.10), we obtain the homomorphism

θw : (C[T ]/I )w
θh
w �� H∗

(∐
λ∈C× #λh

w

) limCh→0 �� H∗(Z), (3.11)

which yields the homomorphism

/ :
⊕
w∈W

(C[T ]/I )w → H∗(Z) (3.12)

after we assemble the homomorphisms θw in (3.11). It is known that θw does not
depend on the choice of h [CG, Lemma 3.4.11].

Corollary 3.8. The homomorphism / in (3.12) is a C-algebra homomorphism
if H∗(Z) is equipped with the convolution product.

Proof. We recall that the specialization map commutes with the convolution prod-
uct in Borel–Moore homology. Now the result is immediate from Theorem 3.7.

Finally, we construct the following isomorphism.

Theorem 3.9. The algebra homomorphism / :
⊕

w∈W(C[T ]/I )w → H∗(Z)

is a C-algebra isomorphism.

Proof. It suffices to show that / is bijective. We first consider the diagram
⊕

w∈W(C[T ]/I )w
⊕

w,λ,

������������� ⊕
w θ h

w

�������������

⊕
w∈W KC

(∐
λ∈C× #λh

w

)
⊕

lim1

��

⊕
w,λ ch∗

��
⊕

w∈W H∗
(∐

λ∈C× #λh
w )

⊕
lim2

��

KC(Z)
ch∗

�� H∗(Z).

This diagram is commutative because:

(1) θ h
w = ⊕

λ∈C×(ρ � ch∗ � ,) = (⊕
λ∈C× ch∗

) � (⊕
λ∈C× ,

); and
(2) the homological Chern character commutes with the specialization homomor-

phism in K-theory and with the Borel–Moore homology.

We also observe that the composition map
(⊕

w,λ,
) � (⊕

lim1
)

in the diagram
is a nonequivariant version of the map in [CG, Lemma 7.3.11, 7.3.13]. Thus the
map

(⊕
w,λ,

) � (⊕
lim1

)
is bijective by the argument in [CG, Lemma 7.3.11,

7.3.13]. The result now follows because the homological Chern character map
ch∗ : KC(Z) → H∗(Z) is an isomorphism of abelian groups.

Corollary 3.10. There is a C-algebra isomorphism

C[T ]/I  C[W ] � H∗(Z).

Proof. The proof is immediate from (3.1) and Theorem 3.9.
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