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Some Results on the
Second Gaussian Map for Curves
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1. Introduction

The first Gaussian map for the canonical series has been intensively studied. It has
been shown that, for a general curve of genus different from 9 and ≤ 10, the first
Gaussian map is injective, while for genus ≥ 10 and different from 11 it is surjec-
tive [7; 9; 20]. In [21] it is proved that if a curve lies on a K3 surface then the
first Gaussian map cannot be surjective, and it is known (see [18]) that the general
curve of genus 11 lies on a K3 surface.

In this paper we study some properties of the second Gaussian map

µ2 : I2(KX) → H 0(X, 4KX).

Our geometrical motivation comes from its relation with the curvature of the mod-
uli space Mg of curves of genus g endowed with the Siegel metric induced by the
period map j : Mg → Ag , which we started to analyze in [10]. There the curva-
ture is computed using the formula for the associated second fundamental form
given in [11]. In particular, in [11] it is proved that the second fundamental form
lifts the second Gaussian map µ2, as stated in an unpublished paper of Green and
Griffiths (cf. [15]).

In [10, Cor. (3.8)] we give a formula for the holomorphic sectional curvature of
Mg along the a Schiffer variation ξP , for P a point on the curve X, in terms of the
holomorphic sectional curvature of Ag and the second Gaussian map.

The relation of the second Gaussian map with curvature properties ofMg in Ag
suggests that its rank could give information on the geometry of Mg. Note that
surjectivity can be expected for a general curve of genus at least 18. Recall that
Mg is uniruled for g ≤ 15, has Kodaira dimension at least 2 for g = 23, and is of
general type for all other values of g ≥ 22.

Along these lines, in this paper we exhibit infinitely many examples of curves
lying on the product of two curves with surjective second Gaussian map. Other
examples of curves whose second Gaussian map is surjective were given in [4] for
complete intersections. Both classes of examples generalize constructions given
by Wahl [21; 22] for the first Gaussian map.
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We are also able to determine the rank of µ2 on the hyperelliptic and trigonal
loci. More precisely: for any hyperelliptic curve of genus g ≥ 3, we show that
rk(µ2) = 2g− 5 and that its image has the Weierstrass points as base points. For
any trigonal (non-hyperelliptic) curve of genus g ≥ 8, we show that rk(µ2) =
4g− 18 and that its image has the ramification points of the g1

3 as base points. Fi-
nally, we prove that for any non-hyperelliptic, non-trigonal curve of genus g ≥ 5,
the image of µ2 has no base points.

In [10] we apply these results to the holomorphic sectional curvature of Mg.

In particular, along a Schiffer variation ξP , the holomorphic sectional curvature
H(ξP) ofMg is strictly smaller than the holomorphic sectional curvature ofAg for
a non-trigonal, non-hyperelliptic curve [10, (4.4)]. Instead, if P is either a Weier-
strass point of a hyperelliptic curve or a ramification point of the g1

3 on a trigonal
curve, then the holomorphic sectional curvatureH(ξP) is equal to the holomorphic
sectional curvature of Ag , which equals −1 [10, (4.4) and (5.3)].

The computations are based on the observation that, for a quadric Q of rank at
most 4, µ2(Q) can be written as the product of the first Gaussian maps associ-
ated to sections of the two adjoint line bundles L and K ⊗ L−1, which define the
quadric. As a first straightforward consequence we show that, for any curve, the
rank of µ2 is greater or equal to g − 3.

In order to study the trigonal case, we use the related results of [6] and [13] on
the first Gaussian map for trigonal curves. A crucial step in determining the rank
of the first (and hence the second) Gaussian map on the trigonal locus is the obser-
vation that a trigonal curve lies on a rational normal scroll. A natural question is
to understand whether restrictions on the rank of µ2 can be obtained if a curve lies
on a special surface, as it happens for the first Gaussian map and K3 surfaces, or
if it occurs in a nontrivial linear system of a surface (see [19] for related results).
We intend to continue our investigations on the rank properties of µ2 for general
curves and for curves on surfaces in the near future.

The paper is organized as follows. In Section 2 we study the second Gaussian
map, on quadrics of rank ≤ 4, in terms of the first Gaussian maps associated to
sections of the two adjoint line bundles L andK ⊗L−1, which define the quadric.
In Section 3 we show a class of infinitely many examples of curves with surjective
second Gaussian map, and in Section 4 we determine the rank of µ2 for hyper-
elliptic and trigonal curves.

In Section 5 we prove injectivity of µ2 for general curves of genus at ≤ 6 by
specialization on trigonal curves and on smooth plane quintics. Finally, in Sec-
tion 6 we study the global generation of the image of µ2.

Acknowledgments. The authors thank Gilberto Bini and Pietro Pirola for sev-
eral fruitful suggestions and discussions on the subject.

2. The Second Gaussian Map

We first recall the definition of the Gaussian maps (cf. [23]). Let X be a smooth
projective curve, let S := X ×X, and let � ⊂ S be the diagonal. Let L be a line
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bundle on X and let LS := p∗
1(L) ⊗ p∗

2(L), where pi : S → X are the natural
projections. Consider the restriction map

µ̃n,L : H 0(S,LS(−n�)) → H 0(�,LS(−n�)|�).
Notice that, since O(�)|� ∼= TX,

H 0(�,LS(−n�)|�) ∼= H 0(X, 2L⊗ nKX).

In the case L = KX we have I2(KX) ⊂ H 0(S,KS(−2�)), so we can define the
second Gaussian map

µ2 : I2(KX) → H 0(X, 4KX)

as the restriction µ̃2,K |I2(KX).

As before, we fix a basis {ωi} of H 0(KX). In local coordinates, ωi = fi(z)dz.

LetQ∈ I2(KX) andQ = ∑
i,j aij ωi ⊗ωj , and recall that

∑
i,j aijfifj ≡ 0; since

the ai,j are symmetric, we also have
∑

i,j aijf
′
ifj ≡ 0. The local expression of

µ2(Q) is
µ2(Q) =

∑

i,j

aijf
′′
i fj(dz)

4 = −
∑

i,j

aijf
′
if

′
j (dz)

4. (1)

We also recall the definition of the first Gaussian map (cf. [22])

µ1,L : �2H 0(L) → H 0(2L⊗KX)

as the restriction of µ̃1,L to �2H 0(L) ⊂ H 0(S,LS(−�)). In local coordinates, if
s0, s1 ∈H 0(L) with si = gil, where l is a local section of L, then

µ1,L(s0 ∧ s1) = (g0g
′
1 − g1g

′
0)l

2dz.

Moreover, we have
div(µ1,L(s0 ∧ s1)) = 2F + R, (2)

where F is the base locus of |〈s0, s1〉| ⊂ |H 0(L)| and R is the ramification divisor
of the induced morphism (see e.g. [9; 23]).

Remark 2.1. Recall that there is the following bijection:

{[Q] ∈ P(I2(KX)) | rk(Q) ≤ 4}
←→ {{L,KX − L,V,W } | V ⊂ H 0(L), dimV = 2,

W ⊂ H 0(KX − L), dimW = 2}.
Here rk(Q) = 3 if and only if 2L = KX and V = W (see e.g. [3, p. 261]).

Lemma 2.2. If a quadricQ of rank at most 4 corresponds to {L,KX −L,V,W }
and if V = 〈s0, s1〉 and W = 〈t0, t1〉, then

µ2(Q) = µ1,L(s0 ∧ s1)µ1,K−L(t0 ∧ t1).
In particular, µ2(Q) �= 0.

Proof. By construction,Q = (s0 t0)⊗ (s1t1)− (s0 t1)⊗ (s1t0)∈ I2(KX). Locally
we have si = gil, where l is a local section of L, and ti = hil

−1dz, so
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µ2(Q) = −((g0h0)
′(g1h1)

′ − (g0h1)
′(h0g1)

′)(dz)4

= (g0g
′
1 − g1g

′
0)(h0h

′
1 − h1h

′
0)(l

2dz)((l−1dz)2dz)

= µ1,L(s0 ∧ s1)µ1,K−L(t0 ∧ t1).
Remark 2.3. Recall that, by a theorem of M. Green ([14]; see also [3, p. 255]),
for a non-hyperelliptic smooth curve of genus g ≥ 4 it follows that I2 is generated
by quadrics of rank ≤ 4.

We now make an easy linear algebra remark that will be useful in the sequel.

Remark 2.4. Let X ⊂ P
n = P(V ) be a projective variety. Let f : V → W be

a linear map, dim(W ) = m + 1, and let f̄ : P(V ) = P
n ��� P(W ) = P

m be the
corresponding projection. LetK be the kernel of f , and assume that P(K)∩X =
∅ (i.e., f̄ |X is a morphism). This clearly implies that dim(X) + dim(K) − 1 ≤
n− 1 or, equivalently, that rk(f ) ≥ dim(X)+ 1.

Consider the rational map

µ̄2 : P(I2(KX)) ��� P(H 0(4KX)), [Q] �→ [µ2(Q)].

Let & = {[Q] ∈ P(I2(KX)) | rk(Q) ≤ 4}; then, by Lemma 2.2, the restriction of
this map to & is a morphism.

Proposition 2.5. For any curve of genus g ≥ 4,

rk(µ2) ≥ dim& + 1 ≥ g − 3.

Proof. Since µ̄2|& is a morphism, by Remark 2.4 we know that rk(µ2)≥ dim&+1.
Denote by W ⊂ W 1

g−1 the subset of line bundles L ∈W 1
g−1 such that h0(L) = 2;

W is a nonempty open subset of W 1
g−1 of dimension ≥ g − 4 (cf. e.g. [3]). If

we set Y := W/〈τ 〉, where τ is the involution that maps L to KX − L, then we
can identify Y with a subset of &. In fact, given a line bundle L ∈ W, the set
{L,K − L,H 0(L),H 0(K − L)} determines a quadric of rank ≤ 4, as we saw in
Remark 2.1.

Therefore, dim(&) ≥ dim(W ) ≥ g − 4 and so rk(µ2) ≥ g − 3.

3. Surjectivity

In this section we give a class of examples of curves contained in the product of
two curves for which the second Gaussian map is surjective, as Wahl does in [22,
Thm. 4.11] for the first Gaussian map. Other examples of curves whose second
Gaussian map is surjective have been obtained by Ballico and Fontanari [4] in the
case of complete intersections, generalizing Wahl’s result [21] on the first Gauss-
ian map for complete intersections.

Let C1,C2 be two smooth curves of respective genera g1, g2; denote by Ki =
KCi , i = 1, 2; and choose Di divisors on Ci of degree di, i = 1, 2. Let X =
C1 × C2, and let C ∈ |p1

∗(D1) ⊗ p2
∗(D2)| be a smooth curve, where pi is the

projection from C1 × C2 on Ci and KX(C) = p1
∗(K1(D1))⊗ p2

∗(K2(D2)).
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Theorem 3.1. If g1, g2 ≥ 2 with di ≥ 2gi + 5 for i = 1, 2, or if g1 ≥ 2 and
g2 = 1 with d1 ≥ 2g1 + 5 and d2 ≥ 7, or if g2 = 0 with d2 ≥ 7 and d2(g1 − 1) >
2d1 ≥ 4g1 +10, then µ2,KC is surjective for a smooth curve C ∈ |p1

∗D1 ⊗p2
∗D2|.

Therefore, under these assumptions and for the general curve of genus g =
1 + (g2 − 1)d1 + (g1 − 1)d2 + d1d2, the second Gaussian map is surjective.

Proof. Denote by I2(KX(C)) the kernel of the multiplication map

S 2H 0(KX(C)) → H 0(K2
X(2C)).

Let µX2,KX(C)
: I2(KX(C)) → H 0(S 2,1

X ⊗K2
X(2C)) be the second Gaussian map

of the line bundle KX(C) on the surface X. We have the following commutative
diagram:

I2(KX(C))

g

��

µX2,KX(C) �� H 0(S 2,1
X ⊗K2

X(2C))

p1

�����������������

H 0(S 2,1
X|C ⊗K2

C),

p2

�������������������

I2(KC) µ2
�� H 0(K 4

C)

where p1 is the restriction map and p2 is the map that comes from the conormal
extension.

We will prove that p1,p2 and µX2,KX(C)
are surjective. From this we clearly ob-

tain the surjectivity of µ2.

We want to show that H1(,1
X|C ⊗K2

C(−C)) = 0, from which the surjectivity
of p2 will follow. We have

H1(,1
X|C ⊗K2

C(−C)) = H1
(
C, OC(p1

∗(K3
1 (D1))⊗ p2

∗(K2
2 (D2)))

)

⊕H1
(
C, OC(p1

∗(K2
1 (D1))⊗ p2

∗(K3
2 (D2)))

)
,

so it is sufficient to check that, under our assumptions,

OC(p1
∗(K3

1 (D1))⊗ p2
∗(K2

2 (D2))) and OC(p1
∗(K2

1 (D1))⊗ p2
∗(K3

2 (D2)))

both have degree greater than 2g(C)− 2 = d1(2g2 − 2 + d2)+ d2(2g1 − 2 + d1).

Let us now consider the map p1. We have

S 2,1
X ⊗K2

X(C) = (p1
∗(K 4

1 (D1))⊗ p2
∗(K2

2 (D2)))

⊕ (p1
∗(K2

1 (D1))⊗ p2
∗(K 4

2 (D2)))

⊕ (p1
∗(K3

1 (D1))⊗ p2
∗(K3

2 (D2)));
thus, by Künneth, if gi ≥ 1 for i = 1, 2 or if g2 = 0 with d2 ≥ 7 and g1 ≥ 1, then
H1(S 2,1

X ⊗K2
X(C)) = 0. Hence p1 is surjective.
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We want now to show that µX2,KX(C)
is surjective. Observe that

S 2H 0(KX(C)) = (S 2H 0(K1(D1))⊗ S 2H 0(K2(D2)))

⊕ (�2H 0(K1(D1))⊗�2H 0(K2(D2))),

so we have

I2(KX(C)) = {(I2(K1(D1))⊗ S 2H 0(K2(D2)))

+ (S 2H 0(K1(D1))⊗ I2(K2(D2)))}
⊕ (�2H 0(K1(D1))⊗�2H 0(K2(D2))).

Since

H 0(S 2,1
X ⊗K2

X(2C)) = (H 0(C1,K 4
1 (2D1))⊗H 0(C2,K2

2 (2D2)))

⊕ (H 0(C1,K2
1 (2D1))⊗H 0(C2,K 4

2 (2D2)))

⊕ (H 0(C1,K3
1 (2D1))⊗H 0(C2,K3

2 (2D2))),

one can easily check that µX2,KX(C)
: I2(KX(C)) → H 0(S 2,1

X ⊗ K2
X(2C)) is the

sum of the three following maps:

µ2,K1(D1) ⊗m2 : I2(K1(D1))⊗ S 2H 0(K2(D2))

→ H 0(K 4
1 (2D1))⊗H 0(K2

2 (2D2)),

n2 ⊗ µ2,K2(D2 ) : S
2H 0(K1(D1))⊗ I2(K2(D2))

→ H 0(K2
1 (2D1))⊗H 0(K 4

2 (2D2)),

µ1,K1(D1) ⊗ µ1,K2(D2 ) : �
2(H 0(K1(D1))⊗�2H 0(K2(D2))

→ H 0(K3
1 (2D1))⊗H 0(K3

2 (2D2));
here m2 and n2 are the multiplication maps. Now we apply [5, Thm. (1.7)] to the
line bundles Li := Ki(Di) on the curves Ci, i = 1, 2, to obtain that if deg(Li) =:
li satisfies 2 li ≥ 3(2gi + 2) + 2gi − 1 then both µ2,Li and µ1,Li are surjective.
Therefore, if di ≥ 2gi + 5, then µ2,Li and µ1,Li are surjective; hence µX2,KX(C)

is
surjective, and this concludes the proof.

Remark 3.2. The example of lowest genus of a smooth curveC∈|p1
∗D1⊗p2

∗D2|
with surjective second Gaussian map is 71, obtained by choosing g1 = 2, g2 = 1,
d1 = 9, and d2 = 7.

4. Hyperelliptic and Trigonal Curves

Assume now thatX is either a hyperelliptic curve of genus ≥ 3 or a trigonal curve
of genus g ≥ 4. Let |F | denote the g1

2 in the hyperelliptic case or the g1
3 in the

trigonal case. Let φF : X → P
1 be the induced morphism and let ν : P

1 ↪→ P
g−1

be the Veronese embedding, so that (in the hyperelliptic case) φK = ν �φF , where
φK is the canonical map. Observe that, in the hyperelliptic case, the hyperelliptic
involution τ acts as −Id on H 0(KX); we thus have an exact sequence

0 → I2(KX) → S 2(H 0(KX)) → H 0(2KX)
+ → 0,
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where H 0(2KX)+ denotes the τ -invariant part of H 0(2KX) whose dimension is
(2g − 1) and where I2(KX) is the vector space of the quadrics containing the ra-
tional normal curve.

Set L := KX −F. Fix a basis {x, y} ofH 0(F ) and a basis {t1, . . . , tr} ofH 0(L),
both in the hyperelliptic and in the trigonal case. We have a linear map

ψ : �2(H 0(L)) → I2, ti ∧ tj �→ Qij = xti � ytj − xtj � yti .

We recall that, in both cases, the linear map ψ : �2(H 0(L)) → I2 is an isomor-
phism, which can be easily checked or found in [1].

Lemma 4.1. Let X be either a hyperelliptic curve of genus ≥ 3 or a trigonal
curve of genus g ≥ 4, and let q1, . . . , ql be the ramification points of either the g1

2
or the g1

3. Then
µ2(Q) = µ1,F (x ∧ y)µ1,L(ψ

−1(Q))

for any quadric Q of rank 4. In particular, the image of µ2 is contained in
H 0(4KX − (q1 + · · · + ql)) and rk(µ2) = rk(µ1,L).

Proof. The first statement is straightforward. So we have

div(µ2(Q)) = div(µ1,F (x ∧ y))+ div(µ1,L(ψ
−1(Q)))

= q1 + · · · + ql + div(µ1,L(ψ
−1(Q))).

Therefore, µ2(Q)(qi) = 0 for all i = 1, . . . , l.

Proposition 4.2. Let X be a hyperelliptic curve of genus g ≥ 3. Then the rank
of µ2 is 2g − 5.

Proof. Given a hyperelliptic curve of genus g with equation y2 = f(x), where
f has degree 2g + 2 and only simple roots, a basis of H 0(KX) is

{
ωi = xi dx

y
|

0 ≤ i ≤ g−1
}
. Let |F | be the g1

2 onX, and assume that F = φ−1
F (0) =: p1 +p2.

Set L = KX − F = KX − p1 − p2, let H 0(L) ⊂ H 0(KX), and let

µ1,L : �2H 0(L) = �2H 0(KX − p1 − p2)

→ H 0(2L+KX) = H 0(3KX − 2p1 − 2p2)

be the first Gaussian map of L; then

µ1,L = µ1,K |�2H 0(KX−p1−p2 ).

By Lemma 4.1, the rank of µ2 is equal to the rank of µ1,L. As shown in [9],

µ1,K(ωi ∧ ωj) = (i − j)
xi+j−1

y2
(dx)3, 0 ≤ i < j ≤ g − 1,

so there are exactly 2g − 3 distinct powers of x.
Then clearly a basis of H 0(KX − p1 − p2) is given by

{
xi dx

y
, i > 0

}
. We want

to compute the dimension of the span of {µ1,K(ωi ∧ ωj), 0 < i < j ≤ g − 1}.
Observe that l := i + j − 1 = 0 if and only if i = 0 and j = 1; l = 1 if and only
if i = 0 and j = 2. But if l ≥ 2, then l = i + j − 1 also for some i, j > 0.

Therefore, rk(µ1,L) = rk(µ1,K)− 2 = 2g − 5.
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Assume now that X is a non-hyperelliptic trigonal curve of genus g ≥ 4. Let |F |
be the g1

3 onX and assume that F = p1 +p2 +p3, pi ∈X. Let us denote by L =
KX−F = KX−p1−p2 −p3, deg(L) = 2g−5, and h0(L) = g−2. SoH 0(L) ⊂
H 0(KX) and µ1,L = µ1,K |�2H 0(KX−p1−p2−p3). In [9] it is proved that, for the gen-
eral trigonal curve of genus g ≥ 4, dim(coker(µ1,K)) = g+5; moreover, specific
examples of trigonal curves (whose genera are all equal to 1 modulo 3) such that
the corank of µ1,K is g + 5 are exhibited. Using results of [13], in [6] Brawner
proved that dim(coker(µ1,K)) = g + 5 for any trigonal curve of genus g ≥ 4.

We shall now compute the rank of µ2 for trigonal curves. By Lemma 4.1 it suf-
fices to compute rk(µ1,L), which we shall do following the computation used in
[13] and [6] for µ1,K.

Recall that a canonically embedded trigonal curve of genus g lies on a rational
normal scroll Sk,l , where k ≤ l and l + k = g− 2; here k is the Maroni invariant,
which is bounded by

g − 4

3
≤ k ≤ g − 2

2
(3)

(cf. [17]).
The surface Sk,l is isomorphic to Fn with n = l − k. Let us denote by H the

hyperplane section and by R the fiber of the ruling; set B ≡ H − lR. We have

H 2 = g − 2, B2 = −n,

C ≡ 3H − (g − 4)R,

KS ≡ −2H + (g − 4)R;
consequently,

KS + C − R ≡ H − R ≡ B + (l − 1)R

and
(KS + C − R)|C ≡ L.

Theorem 4.3. For any trigonal curve C of genus g ≥ 8, the rank of µ2 is
4g − 18. Hence, for the general curve of genus g ≥ 8, µ2 has rank ≥ 4g − 18.

Proof. As in [13, (2.1)], we have the following commutative diagram involving the
first Gaussian map µS1,H−R for the scroll S := Sk,l :

�2H 0(S, OS(KS + C − R))
µS1,H−R

��

Res

��

H 0(S,,1
S(2KS + 2C − 2R))

γ ′

��

�2H 0(C,KC − F ))
µ1,L

�� H 0(C, 3KC − 2F ).

We will prove that the map µS1,H−R is surjective, that γ ′ is injective, and that
Res is surjective. This implies that rk(µ1,L) = h0(S,,1

S(2KS + 2C − 2R)) =
h0(S,,1

S(2B + 2(l − 1)R)).
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Observe that, by the bound (3) of the Maroni invariant, k ≥ 2 for g ≥ 8; hence
the hypotheses of [13, Cor. (3.3.2)] are satisfied, so h0(S,,1

S(2B + 2(l−1)R)) =
4g−18. In fact, [13, Cor. (3.3.2)] asserts that h0(S,,1

S(rB+sR)) = 2rs−nr 2 −2
if r ≥ 1 and s ≥ nr + 2.

The surjectivity ofµS1,H−R follows by [13,Thm. (4.5)], which states thatµS1,rB+sR
is surjective if r ≥ 0 and s ≥ nr + 1.

In [6, (3.4)] it is proved that the map

γ : H 0(S,,1
S(2H )) → H 0(C, 3KC)

is injective. Since γ ′ is the restriction of γ to H 0(S,,1
S(2H − 2R)), it follows

that γ ′ is also injective.
We finally show that the restriction map

H 0(S, OS(H − R)) → H 0(C,L)

is surjective. Consider the exact sequence

0 → OS(H − R − C) → OS(H − R) → OC(H − R) → 0.

An easy computation on the scroll shows that

H1(S, OS(H − R − C)) = H1(S, OS(−2H + (g − 5)R)) = 0,

proving our assertion.

5. Injectivity for Low Genus

We now give some examples of computations of the rank of µ2 for genus ≤ 7,
from which will follow that µ2 is injective for the general curve of genus ≤ 6.
Note that if g(X) = 4, then I2(KX) has dimension 1 and so µ2 is injective.

Proposition 5.1. For any trigonal curve X of genus 5, µ2 is injective. Hence,
for the general curve of genus 5, µ2 is injective.

Proof. For a curve of genus 5, the dimension of I2(KX) is 3. Let us assume that
X is trigonal. Then there exists a line bundle L on X such that h0(L) = 2 with
deg(L) = 3, so that h0(K −L) = 3. Let Gr(2,H 0(K −L)) be the Grassmannian
of the 2-dimensional subspaces inH 0(K−L). To anyW ∈ Gr(2,H 0(K−L))we
associate the quadricQW of rank 4 corresponding to the set {L,K−L,H 0(L),W }
as in Lemma 2.2. Thus we have a morphism

Gr(2,H 0(K − L)) → P(H 0(4K)), W �→ µ̄2(QW).

Then, by Remark 2.4, we have

rk(µ2) ≥ dim(Gr(2,H 0(K − L))+ 1 = 3.

Theorem 5.2. Let X be a smooth plane quintic; then the map µ2 is injective
and its image has no base points. Then, for the general curve of genus 6, µ2 is
injective.
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Proof. Because X has genus 6, the dimension of I2(KX) is 6. We will find six
quadrics of rank at most 4 such that their images under µ2 are linearly indepen-
dent. Observe that KX ≡ OX(2); hence L := OX(1) is such that 2L ≡ KX. Let
q1, q2, q3 be distinct points of X, in general position, such that the tangent line ri
of X at qi is a simple tangent, i = 1, 2, 3. Assume also that P12 := r1 ∩ r2, P13 :=
r1 ∩ r3, and P23 := r2 ∩ r3 are in general position and do not lie on X. Denote
by π12,π13,π23 the respective projections X → P

1 from the points P12,P13,P23.

These three projections πij correspond to three pencils Vij ⊂ H 0(L) with 2L ≡
K. Let Rij (for 1 ≤ i < j ≤ 3) be the ramification divisor of πij ; then we have

Rij = qi + qj + Aij .

Observe that, by construction, q3 /∈ A12; otherwise, P12 would lie on r3 and we
would have P12 = P13 = P23. Analogously q1 /∈A23 and q2 /∈A13. Observe that,
since r2 and r3 are simple tangents, it follows that q2, q3 /∈ A23 and hence there
must exist a point q4 ∈ A23 that is different from q2 and q3. Notice that q4 /∈
R12 ∪ R13. In fact, by construction P23 ∈ r4 (r4 is the tangent line of X at q4),
hence P23 = r2 ∩ r3 = r4 ∩ r2 = r4 ∩ r3. So if q4 ∈R12 then P12 ∈ r4; thus P12 =
r4 ∩ r2 = P23, a contradiction. Analogously, if q4 ∈R13 then we get P12 = P23 =
P13, which is impossible.

Define now the six quadrics in & by the following six sets as in Lemma 2.2:

Qij,kl ←→ {L,L = K − L,Vij ,Vkl}
for 1 ≤ i < j ≤ 3 and 1 ≤ k < l ≤ 3. Then, by Lemma 2.2, we have

div(µ2(Q12,12)) = 2R12 = 2q1 + 2q2 + 2A12,

div(µ2(Q12,13)) = R12 + R13 = 2q1 + q2 + q3 + A12 + A13,

div(µ2(Q12,23)) = R12 + R23 = q1 + 2q2 + q3 + A12 + A23,

div(µ2(Q13,13)) = 2R13 = 2q1 + 2q3 + 2A13,

div(µ2(Q13,23)) = R13 + R23 = q1 + q2 + 2q3 + A13 + A23,

div(µ2(Q23,23)) = 2R23 = 2q2 + 2q3 + 2A23.

Assume now that there exists a linear combination
∑
λij,klµ2(Qij,kl) = 0.

Then, evaluating in q1 yields λ23,23µ2(Q23,23)(q1) = 0 and so λ23,23 = 0, since
q1 /∈ R23. Evaluating in q2 yields λ13,13µ2(Q13,13)(q2) = 0; thus λ13,13 = 0 since
q2 /∈R13. By evaluating in q3 we obtain λ12,12µ2(Q12,12)(q3) = 0; thus λ12,12 = 0
since q3 /∈R12. We now evaluate in q4 ∈A23 and find that λ12,13µ2(Q12,13)(q4) =
0. This implies λ12,13 = 0, since otherwise we would have q4 ∈A12 + A13, which
is impossible. Finally, we must have λ12,23 = λ13,23 = 0, for otherwise we would
have R12 = R13—a contradiction. This proves the injectivity of µ2.

Notice that if P is a base point of the image of µ2, then the three projections πij
must have a common ramification point, and by construction this is impossible.

If X is a trigonal curve of genus 7, then the argument of Proposition 5.1 yields
rk(µ2) ≥ dim Gr(2,H 0(K − L))+ 1 = 7. We will now exhibit an example of a
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trigonal curve of genus 7 such that rk(µ2) = rk(µ1,L) = 9. Our example is the
cyclic covering of P

1, constructed in [9], whose affine equation is

y3 = x9 − 1.

In [9] the map µ1,K is explicitly computed on the elements σij = xiy j dx
y2 for 0 ≤

j ≤ 1 and 0 ≤ i ≤ 3(2 − j) − 2, which form a basis of H 0(KX). It is shown
that the image of µ1,K (of dimension 18) is spanned by the following three types
of elements:

µ1,K(σi0 ∧ σk0) = [(k − i)x i+k−1y−4] · (dx)3, 0 ≤ i < k ≤ 4; (4)

µ1,K(σi0 ∧ σk1) = [(k − i)x i+k−1y−3 + 3xi+k+8y−6] · (dx)3,

0 ≤ i ≤ 4, 0 ≤ k ≤ 1; (5)

µ1,K(σ01 ∧ σ11) = y−2 · (dx)3. (6)

The g1
3 on our curve is the linear system |F | = |p1 + p2 + p3|, where pi can be

chosen to be the points (0, yi)with y3
i = −1. Therefore, ifL = KX−p1−p2 −p3

then we can identify H 0(L) with the subspace of 〈σij〉 generated by the elements
σij , where i > 0. Since µ1,L = µ1,K |�2H 0(L), one must compute the dimension of
〈µ1,K(σij ∧ σkl) | i, k > 0〉, which turns out to be 9.

6. Base Points

We will now show global generation of the image of µ2 for curves that are neither
hyperelliptic nor trigonal.

Theorem 6.1. Assume that X is a smooth curve, of genus g ≥ 5, that is non-
hyperelliptic and non-trigonal. Then, for any P ∈X, there exists a quadricQ∈ I2

such that µ2(Q)(P ) �= 0. Equivalently, Im(µ2) ∩H 0(4KX − P) �= Im(µ2) for
all P ∈X.
Proof. We will show that, for any P ∈X, there exists a quadric Q of rank 4 such
that µ2(Q)(P ) �= 0. We recall that any component of the space W 1

g−1(X) has
dimension ≥ g − 4, and in [12, Lemma (2.1.1)] it is proved that, if X is non-
hyperelliptic, non-trigonal, and not isomorphic to a smooth plane quintic, then
there exists a line bundle L∈W 1

g−1 such that both |L| and |KX −L| are base point
free. If X is a plane quintic, then by Theorem 5.2 we know that µ2 has no base
points. So we can assume that there exists a nonempty irreducible open subset V
inW 1

g−1(X) consisting of line bundles L such that h0(L) = 2, L �≡ KX − L, and
both |L| and |KX −L| are base point free. So the condition µ2(Q)(P ) = 0 for the
quadric associated to |L| and |KX − L| says that P is a ramification point either
for the morphism φ|L| : X → P

1 or for the morphism φ|KX−L| : X → P
1.

We claim that there exists an L∈ V such that P is at most a simple ramification
point for both φ|L| and φ|KX−L|; that is, h0(L−3P) = 0 and h0(K−L−3P) = 0.
In fact, assume for all L∈ V that either h0(L− 3P) ≥ 1 or h0(K − L− 3P) ≥ 1.
Consider two maps: F1 : Symg−4(X) → Picg−1(X) with F1(D) = D + 3P ; and
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F2 : Symg−4(X) → Picg−1(X)with F2(D) = KX−D−3P. Then V is contained
in Im(F1) ∪ Im(F2) and, since they have the same dimension and since V is irre-
ducible, it follows that either V = Im(F1) or V = Im(F2). This means that, for all
x1, . . . , xg−4 ∈X, h0(x1 + · · · + xg−4 + 3P) = h0(KX − x1 − · · · − xg−4 − 3P) ≥
2; but this is absurd, since h0(KX − 3P) = g − 3 because X is non-hyperelliptic
and non-trigonal.

So assume that P is a simple ramification point for φ := φ|L| : X → P
1, and let

R be its ramification divisor. Consider the exact sequence

0 −→ TX
φ∗−→ φ∗TP1 −→ Nφ −→ 0.

Notice that φ∗TP1 = TX(R), Nφ = TX(R)|R , and φ∗ is the inclusion map of TX in
TX(R); hence our exact sequence is

0 −→ TX −→ TX(R) −→ TX(R)|R −→ 0.

The induced cohomology exact sequence is

0 −→ H 0(TX(R))
i−→ H 0(TX(R)|R) β−→ H1(TX) −→ 0.

We recall (see e.g. [2]) that H 0(TX(R)) = H 0(φ∗TP1) parameterizes the infini-
tesimal deformations of the morphism φ that do not move X, and it contains the
3-dimensional subspace φ∗(H 0(TP1)). Note that, sinceH1(TX(R)) = 0, any first-
order deformation extends.

The strategy of the proof is to exhibit an infinitesimal deformationρ∈H 0(TX(R))

of φ such that i(ρ) /∈H 0(TX(R−P)|R−P) ⊂ H 0(TX(R)|R) and ρ is not contained
in φ∗(H 0(TP1)). The assumption that the ramification in P is simple implies that
ρ extends to a deformation of φ such that the new map is no longer ramified in P.

Denote by ξP ∈H1(TX) a Schiffer variation in P—that is, by definition a gen-
erator of the subspace Im(H 0(TX(P ))|P) ⊂ H1(TX). Since P is a ramification
point,

ξP ∈ β(H 0(TX(R)|R)).
If we can prove that β(H 0(TX(R − P)|R−P)) ⊂ β(H 0(TX(R)|R)) generates
H1(TX), then there exists an element x ∈ H 0(TX(R − P)|R−P) such that ξP =
β(x). So if cP ∈H 0(TX(P )|P) ⊂ H 0(TX(R)|R) is such that β(cP) = ξP , then the
element η = cP − x ∈H 0(TX(R)|R) maps to zero in H1(TX); hence there exists
an element θ ∈H 0(TX(R)) such that η = i(θ) and η /∈H 0(TX(R−P)|R−P), since
the coefficient of cP in η is nonzero.

Therefore, we seek to prove the existence of an L∈V with simple ramification
in P such that β(H 0(TX(R−P)|R−P)) generatesH1(TX). Assume to the contrary
that, for anyL∈ V, β(H 0(TX(R−P)|R−P)) lies on a hyperplane inH1(TX)—that
is, there exists an element ω ∈ H 0(2KX) such that ω(Pi) = 0 for all i ≥ 2 and
ordPi ω = ni, where

∑
i≥2 niPi = R − P. Then we have

2KX ≡ div(ω) = P +
∑

i≥2

niPi − P + q ≡ KX + 2L− P + q

for some q ∈X. So for any L there exists a point q ∈X such that
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2L ≡ KX + P − q.

Since L varies in an open subset of W 1
g−1, which has dimension at least g − 4,

while q varies in X, it follows that if g ≥ 6 then this cannot hold for all L∈ V.
If g = 5, we still get a contradiction by noting that the multiplication by 2 in

the Jacobian restricts to a connected topological covering X̃ of the curve X of de-
gree 210 corresponding to the surjective homomorphism π1(X) → H1(X, Z/2Z).

Hence X̃ cannot coincide with a component of W 1
4 that is a 2-to-1 covering of a

quintic plane curve ramified along at most ten points (cf. [3, p. 270]).
Finally, we show that we can choose the deformation outside φ∗(H 0(TP1)). Set

W = i(H 0(TX(R))∩H 0(TX(R−P)|R−P)). We have just proved that, for L gen-
eral, i(H 0(TX(R))) �⊂ H 0(TX(R − P)|R−P); thus dim(W ) = h0(TX(R)) − 1 =
g − 2 ≥ 3 since g ≥ 5. As a result, if {e1, e2, e3} are three linearly independent
elements inW then the four elements {i(θ) = η, η+ e1, η+ e2, η+ e3} are linearly
independent, since η is not contained inH 0(TX(R−P)|R−P). Hence there exists
a deformation ρ with i(ρ) ∈ {i(θ) = η, η + e1, η + e2, η + e3} ⊂ i(H 0(TX(R)))

that does not belong to the 3-dimensional subspace i(φ∗(H 0(TP1))), so ρ is the
deformation we are looking for.

We have shown that if L does not belong to the curve γ given by the equation
2L ≡ KX + P − q with q ∈X, then we can deform L in such a way that P is no
longer a ramification point. Analogously, if L1 := KX −L does not belong to the
curve γ, then we can deformL1 = KX−L in such a way that P is no longer a ram-
ification point of the corresponding morphism. So if we take L∈ V − γ − ι−1(γ ),
where ι : W 1

g−1 →W 1
g−1 is the involution sending L to KX − L, we find deforma-

tions of L (then also of KX − L) such that, for L′ the deformed line bundle, P is
not a ramification point of either φ|L′| or φ|KX−L′|.
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