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1. Introduction

When Fisher initially advocated partitioning the units in an experiment into blocks
of similar units in [14, Sec. 48], he proposed that each treatment should occur on
one unit in each block. (In statistical contexts, the points of a design are usually
called treatments.) Such designs were eventually called randomized block designs
or complete-block designs. However, natural blocks may not be large enough to
contain every treatment and so, in [41], Yates introduced designs with incomplete
blocks. He had the intuition to propose designs in which each pair of treatments
occurs together in the same number of blocks. He called these symmetrical incom-
plete randomized block arrangements; nowadays, statisticians call them balanced
incomplete-block designs while pure mathematicians call them 2-designs. The last
phrase was first used in print by D. R. Hughes [18], who told me in 2001 that it
had been suggested by his then colleague D. G. Higman.

When a design is used for an experiment, there is one observation for each
treatment in each block. These data are analyzed to estimate the relative effects
of the different treatments. In this context, 2-designs have three clear advantages:
(i) analysis of data from an experiment using such a design does not require matrix
inversion (this consideration was important in pre-computer days); (ii) the vari-
ance of the estimator of the difference between the effect of treatment i and the
effect of another treatment j is independent of the pair {i, j}; and (iii) the design
minimizes the average value of these pairwise variances.

For a given practical experiment, there may not exist a 2-design with the re-
quired parameters. What design should one use then? In [42], Yates introduced
square lattice designs for n2 treatments in rn blocks of size n, where 2 ≤ r ≤
n+1. The treatments are the cells of an n×n square array; the blocks correspond
to the rows and columns of the array and to the letters of r − 2 mutually orthogo-
nal n× n Latin squares. In such a design, each pair of treatments occurs together
in either one or zero blocks, and the variance of the estimator of their difference
depends only on this number, being slightly smaller in the former case. Use of
these designs led statisticians to believe that, in any incomplete-block design, the
variance would always depend on the number of blocks containing a given pair
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of treatments; this is called the concurrence of those two treatments. It was also
believed that variance would always decrease as concurrence increases. See [22;
31; 34; 36] for clear examples of this. Both of these ideas are now known to be
false.

To understand a third widespread misconception, consider experiments whose
blocks have size 2. Then the design is just a graph, possibly with multiple edges.
If the graph is a tree then the only estimator of the difference between the effects
of treatments i and j is obtained from the unique path joining i to j. If the path is
(i, a, b, . . . , j) then the difference between i and a is estimated from one block, the
difference between a and b is estimated from the next block, and so on, and the
sum of these differences estimates the difference between i and j. The variance of
the sum is equal to the sum of the variances, so the variance of the estimator of the
difference between the effects of treatments i and j is proportional to the length
of the path. This leads to the idea that variance must increase with distance, even
though this is no longer true in general graphs.

Even when the block size is greater than 2, each incomplete-block design de-
fines a concurrence graph, which may have multiple edges but no loops (as will
be explained in Section 2). If the design is used for an experiment, then the dif-
ferences between treatments will be estimated from the ensuing data: the relative
variances of those estimators can be deduced from the adjacency matrix of the
graph. If there is no 2-design for the given parameters, then we need to decide
(a) what is a good design to use and (b) how to allocate actual treatments to the
abstract ones in the design.

Question (a) has prompted a large amount of research (see [32; 35]). One obvi-
ous criterion is the average pairwise variance: a design that minimizes this variance
is said to be A-optimal. A design that minimizes the maximum pairwise variance
is said to be “MV-optimal” in [20] and “Ẽ-optimal” in [30]. Alternatively, any
convex function of the pairwise variances could be minimized; see [23].

In [27], Kempthorne proved that the average pairwise variance is inversely pro-
portional to the harmonic mean of the nontrivial eigenvalues of the information
matrix, which will be defined in Section 2. Other popular optimality criteria are
other concave functions of these eigenvalues, such as the geometric mean and the
minimum; the latter is studied in [11; 19; 32]. Designs that minimize the last two
are called D-optimal and E-optimal, respectively.

In [29], Kshirsagar showed that 2-designs are A- and D-optimal; in [33], Mote
proved that they are E-optimal. This led to the idea that optimal designs were
likely to have some degree of symmetry. “Symmetry” might mean a transitive
automorphism group: in [24], John recommended cyclic designs, which are those
possessing a cyclic group of automorphisms acting regularly on the treatments. It
might also mean a nontrivial group of automorphisms; see [4]. It might mean that
the concurrence graph is based on a strongly regular graph (see [1; 10; 12]). In
one way of generalizing strongly regular graphs, the design is based on an asso-
ciation scheme; see Section 2. In another, a strongly regular graph is weakened
to a regular graph (see [25]). At the very least, “symmetry” should imply that all
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treatments occur in the same number of blocks—in other words, that the design is
equireplicate or is a 1-design.

Perhaps unsurprisingly, exhaustive computer searches have shown that many
such naive ideas are not correct. In [25], John and Mitchell showed that the A-
optimal design for ten treatments in thirty blocks of size 2 is not the complement
of the Petersen graph. Jones and Eccleston investigated designs for v treatments
in v blocks of size 2 for v ≤ 12 in [26]; they were surprised to find that, in the
A-optimal design for v ≥ 10, most treatments occur in only one block.

These results were rediscovered more recently with the widespread use of blocks
of size 2 in microarray experiments. For v treatments in v blocks, biologists—
trained to compare everything with a control—proposed the reference design,
which is the star K1,v with a standard treatment at the center. Statisticians, fa-
miliar with the idea that equal replication is desirable, counterproposed the loop
design, which is a polygon with v edges. In this case the intuition that variance
increases with distance proved to be correct: computer searches reported in [28;
40] showed that the loop design is A-optimal for v ≤ 8 but that for higher values
of v the A-optimal design consists of a star glued to a vertex of either a triangle or
a quadrangle. The theoretical underpinning is in [3].

The purpose of this paper is to investigate question (b) under the assumption
that the design is equireplicate. If we are particularly interested in the difference
between the effects of treatments i and j, then we should ensure that the variance
of the estimator of this difference is small. Thus we explore when properties of the
variances can be deduced from an examination of the graph itself without calculat-
ing the generalized inverse of a matrix. In particular, when is it true that variance
decreases as concurrence increases or that variance increases with distance?

Section 2 introduces the terminology and three instructive examples. Each of the
subsequent sections shows that, for a certain class of block designs, a simple state-
ment linking variance to concurrence or distance holds for all incomplete-block
designs in that class.

2. Definitions and Notation

Let  be an incomplete-block design for v() points (treatments). Denote by
T () the set of treatments of . Thus  is a family of b() subsets of T (),
called blocks, each of size k(). Each treatment occurs in r() blocks; the num-
ber r() is called the replication. Notation such as v() will be abbreviated to v
where no confusion is likely. The concurrence λij() of treatments i and j is the
number of blocks in which i and j both occur: in particular, λii() = r() for all
i in T (). The concurrence matrix �() is the v × v matrix with entries λij().

Let G() be the concurrence graph of . The vertex set of G() is T (), and
the number of edges between vertices i and j is λij if i �= j ; there are no loops.
The block design is said to be connected if G() is a connected graph. From now
on, we assume that  is connected. Put B() = �()− rI, where I is the iden-
tity matrix; then B() is the adjacency matrix of G().
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Let M = I − (rk)−1�. Statisticians call rM the information matrix of the de-
sign. Since G is regular with degree r(k−1), graph theorists know the matrix rkM
as the Laplacian of G.

SinceM has zero row sums, 0 is an eigenvalue ofM. Call this the trivial eigen-
value. Because  is a connected design, this eigenvalue has multiplicity 1, and its
corresponding eigenspace is spanned by the all-1 vector. Let� be the unique gen-
eralized inverse of M that is symmetric and has zero row sums. It is obtained by
expressing M in spectral form as a linear combination of its eigenprojectors and
then replacing each nonzero eigenvalue coefficient by its reciprocal.

It is usually assumed that each observation in the experiment is the sum of an ef-
fect for the relevant treatment, an effect for the relevant block, and a random error
with expectation zero; furthermore, the errors are mutually independent and each
has variance σ 2. Then the variance of the estimator of the difference between the
effects of treatment i and treatment j is equal to (�ii +�jj − 2�ij )σ

2/r (see [2,
Chap. 4]). In a complete-block design with the same replication, this variance is
2σ 2/r. Define the pseudovariance ψij for the difference between treatments i and
j to be the ratio between these two variances, so that ψij = (�ii +�jj − 2�ij )/2.
Thus ψij ≥ 1, with equality if and only if λij = r.

If the design is a 2-design then λij = λ = r(k − 1)/(v − 1) for all i and j
with i �= j. In this case � is completely symmetric—that is, a linear combina-
tion of I and the all-1 matrix J. It follows that � is also completely symmetric
and hence that ψij has a constant value ψ for all i and j with i �= j. In fact, ψ =
k(v − 1)/v(k − 1).

After the square lattice designs, the first nonbalanced incomplete-block designs
to be studied were the partially balanced designs introduced by Bose and Nair in
[6]. These are defined in terms of association schemes. Square lattice designs are
a special case.

An association scheme on T with s associate classes is a partition of T × T
into s + 1 classes satisfying some conditions that can be most easily expressed in
terms of the v×v indicator matricesA0,A1, . . . ,As for the associate classes. Here
the (i, j)-element of Ax is equal to 1 if i and j are xth associates, and otherwise
it is equal to 0. The conditions are (i) A0 = I, (ii) each of A0,A1, . . . ,As is sym-
metric, and (iii) each product AxAy is in the set A of all real linear combinations
of A0, . . . ,As. These conditions ensure that A is a commutative algebra; see [2,
Chap. 2].

In the original definition, implicit in [6] and made explicit in [8], the asso-
ciate classes 1, . . . , s were essentially defined on unordered pairs of treatments, so
condition (ii) is natural. It is sensible because � is a symmetric matrix. In his
investigations of finite permutation groups, Higman introduced the concept of ho-
mogeneous coherent configuration in [17]. This generalizes an association scheme
by weakening condition (ii) to the condition that if Ax is an indicator matrix then
so is its transpose. The theory of coherent configurations is fruitful, but in gen-
eral it cannot assume the commutativity of the algebra A , which we need to use
in Section 4.
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A block design is partially balanced with respect to a given association scheme
if the concurrence λij depends only on the associate class containing (i, j). Thus
� has the form

∑s
x=0 λxAx , which is in A. Because A is an algebra, � is also

in A , so there are scalars φ0,φ1, . . . ,φs such that � = ∑s
x=0 φxAx. Moreover, if

s is small then it is easy to calculate � by hand. If (i, j) is in the associate class x
then ψij = ψx with ψx = φ0 − φx. Thus both concurrence and pseudovariance
are functions of associate class. However, it is possible to have λx = λy for x �=
y or, independently, to have ψx = ψy for x �= y.

If s = 2 then the pairs in each class form the edges of a strongly regular graph
(possibly not connected). Now if λ1 = λ2 then the design is balanced and so
ψ1 = ψ2 as well. Hence pseudovariance is a function of concurrence for partially
balanced incomplete-block designs with two associate classes. We shall show in
Sections 3 and 6 that, for such designs, λ1 > λ2 implies ψ1 < ψ2.

Example 1. The following array shows a block design  for the ten treatments
A, . . . , J in six blocks of size 5 (blocks are columns).

D E A B C F

E A B C D H

A B C D E J

F G H I J G

I J F G H I

Figure 1 shows the treatments as the vertices of the Petersen graph. This graph is
strongly regular and so defines an association scheme on T ( ) with two associate
classes, the edges and nonedges of the Petersen graph. We find that λij( ) = 2 if
{i, j} is an edge and λij( ) = 1 if {i, j} is a nonedge. Moreover, ψij( ) = 13/12
if {i, j} is an edge and ψij( ) = 7/6 if {i, j} is a nonedge.

Figure 1 The Petersen graph used in Example 1

It was probably their experience from balanced designs and from partially balanced
designs with two associate classes—as well as intuition—that once led statisticians
to think that pseudovariance should be a (preferably decreasing) function of con-
currence. The following examples show that this is not true in general.
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Figure 2 The design in Example 2: v = 10, r = 3, k = 2, and b = 15

Example 2. Let be the design for ten treatments whose fifteen blocks of size 2
are the edges of the graph in Figure 2. Then

A B C D E F G H I J

� =




4.83 3.33 2.88 2.88 1.08 −1.92 −3.12 −3.12 −3.42 −3.42

3.33 4.83 2.88 2.88 1.08 −1.92 −3.12 −3.12 −3.42 −3.42

2.88 2.88 4.18 2.18 1.38 −1.62 −2.82 −2.82 −3.12 −3.12

2.88 2.88 2.18 4.18 1.38 −1.62 −2.82 −2.82 −3.12 −3.12

1.08 1.08 1.38 1.38 2.58 −0.42 −1.62 −1.62 −1.92 −1.92

−1.92 −1.92 −1.62 −1.62 −0.42 2.58 1.38 1.38 1.08 1.08

−3.12 −3.12 −2.82 −2.82 −1.62 1.38 4.18 2.18 2.88 2.88

−3.12 −3.12 −2.82 −2.82 −1.62 1.38 2.18 4.18 2.88 2.88

−3.42 −3.42 −3.12 −3.12 −1.92 1.08 2.88 2.88 4.83 3.33

−3.42 −3.42 −3.12 −3.12 −1.92 1.08 2.88 2.88 3.33 4.83




.

Now some pairs have the same concurrence but different pseudovariance; for ex-
ample, λAB = λAD = 1 but ψAB = 3/2 and ψAD = 13/8. Other pairs have the
same pseudovariance but different concurrence; for example, ψCD = ψCE = 2
but λCD = 0 and λCE = 1. Even worse, λEF = 1 > 0 = λBE but ψEF = 3 >

21/8 = ψBE.

Example 3. The rectangular association scheme on the 2×n rectangle has three
associate classes: pairs in the same row are in class 1; those in the same column
in class 2; and other pairs in class 3. Consider the design with n(n+ 1) blocks of
size 2 in which each column occurs as two blocks and there is also one block con-
taining each pair of treatments in the same row. Then� = (n+1)I+A1+2A2 and

� = n+ 1

2n(n+ 4)

[
(5n+ 8)I + nA1 + 8A2 − n2 + 4n+ 16

2n
J

]
.

Hence ψ1 = (4n+ 8)(n+ 1)/2n(n+ 4) and ψ2 = 5n(n+ 1)/2n(n+ 4). If n >
8, then ψ2 > ψ1 even though λ2 > λ1.

Thus, even in a partially balanced design with three associate classes, variance
may not decrease as concurrence increases.

3. Graphs with Two Nontrivial Eigenvalues

In [21], James andWilkinson defined the canonical efficiency factors of a connected
incomplete-block design to be the nontrivial eigenvalues ofM. Evidently, these
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are linear combinations of the eigenvalues of B. Less evidently, they all lie in the
interval (0,1].

James and Wilkinson also defined to have nth-order balance if there are n dis-
tinct values among the canonical efficiency factors. Thus, first-order balance is
equivalent toM being completely symmetric. In this case, all canonical efficiency
factors are equal to v(k−1)/k(v−1). In other words, if any one of concurrences,
pseudovariances, and canonical efficiency factors takes just a single value, then
so do the other two. However, if all take more than one value then there is no
straightforward relationship in general. The design in Example 2 has two different
concurrences, ten different pseudovariances, and seven different canonical effi-
ciency factors.

The following theorem shows that there is a simple relationship between vari-
ance and concurrence if there are only two different canonical efficiency factors.
It is proved in [2, Sec. 5.3].

Theorem 1. Let  be a connected incomplete-block design with block size k,
replication r, concurrences λij , and pseudovariances ψij . If  has second-order
balance with canonical efficiency factors e and f , then

ψij = c − dλij

for all pairs of distinct treatments i and j, where

c = k(e + f − 1)+ 1

efk
, (1)

d = 1

efrk
. (2)

Corollary1.1. If a block design has second-order balance, then pseudovariance
is a monotonic decreasing function of concurrence.

This corollary applies to three important families of designs. The first consists of
partially balanced incomplete-block designs with two associate classes. The other
two are defined in terms of duals.

The dual ∗ of a design  is obtained from  by interchanging the roles of
blocks and treatments. The canonical efficiency factors of ∗ are the same as
those of, including multiplicities, apart from |b−v| canonical efficiency factors
equal to 1. Thus if v = b then  and ∗ have the same order of balance, whereas
if v �= b then they have the same order of balance if and only if they both have
some canonical efficiency factor equal to 1. In particular, if  is a nonsymmetric
2-design then ∗ has second-order balance.

Example 4. Let  consist of all 3-subsets of a 6-set. The single canonical effi-
ciency factor for  is 4/5. Thus ∗ has second-order balance with canonical effi-
ciency factors 4/5 (with multiplicity 5) and 1 (with multiplicity 14). Also, r(∗) =
3 and k(∗) = 10, so Theorem 1 shows that ψij(∗) = (27 −λij(

∗))/24. In fact,
∗ is partially balanced with respect to the Johnson association scheme J(6, 3),
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which has three associate classes; see [2, Chap. 1]. Its concurrences are 0, 1, and
2, so its corresponding pseudovariances are 9/8, 13/12, and 25/24.

Example 5. The dual  ∗ of the design in Example 1 is a 2-design for six treat-
ments in ten blocks of size 3. Hence  has second-order balance with canonical
efficiency factors 4/5 and 1. Theorem 1 gives the values of ψij( ) reported in the
last sentence of Example 1.

For the third family, take  to be a group-divisible design in which every block
contains the same number of treatments from each group, so that the between-
group canonical efficiency factor is equal to 1. Since  is partially balanced with
two associate classes, ∗ also has second-order balance if it is not a 2-design.
Affine-resolved designs belong to this family: they are resolved designs in which
the intersection of any two blocks from different parallel classes has the same size.
Theorem 1 is given for affine-resolved designs in [5, Thm. 3.6].

Corollary 1.2. If and  are designs with second-order balance and with the
same values of v, r, k, e, and f , then pseudovariance is the same monotonic de-
creasing function of concurrence for both  and  .

Most optimality criteria are functions of the canonical efficiency factors. Suppose
that  and  do have the same values of v, r, k, e, and f. The multiplicities p and
q of e and f satisfy

1 + p + q = v,

pe + qf = v(k − 1)

k
,

so  and  also have the same values of p and q and hence of optimality crite-
ria such as A, D, and E. It would then be sensible to choose between  and  
by minimizing maxψij . Theorem 1 and Corollary 1.2 show that maxψij() <
maxψij( ) if and only if min λij() > min λij( ). So we should choose the de-
sign with the larger minimal concurrence.

Example 6. Let , be the 2-design for six treatments in twenty blocks of size 3
consisting of two copies of  ∗, where  is the design in Example 1. Then ,∗ has
the same canonical efficiency factors and other parameters as the design∗ in Ex-
ample 4. However,,∗ has concurrences 1, 2, and 3, whereas∗ has concurrences
0, 1, and 2; thus ∗ has the larger value of maxψij and so ,∗ should be preferred.

Similarly, affine-resolved designs for the same parameters do not all have the same
value of maxψij (see [5]).

The values of c and d in Theorem 1 depend on e and f. It is possible to find de-
signs with the same values of v, r, and k but with different values of e and f , so that
they have different linear functions giving pseudovariance in terms of concurrence.

Example 7. Let - be the dual of the affine plane with nine treatments. Thus
v(-) = 12, b(-) = 9, r(-) = 3, and k(-) = 4. This design is group-divisible,
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with four groups of size 3 corresponding to parallel classes in -∗. It has within-
group concurrence 0 and between-group concurrence 1. Its canonical efficiency
factors are 3/4 (with multiplicity 8) and 1 (with multiplicity 3). By Theorem 1,
ψij(-) = (12 − λij(-))/9 and so - has pseudovariances 4/3 and 11/9.

Consider the complete bipartite graph K3,3 as a block design for six treatments
in nine blocks of size 2. Obtain the block design . from this by replacing each
treatment with a pair of treatments. Then . is partially balanced with respect to
the hierarchical group-divisible association scheme 2/3/2, which has three asso-
ciate classes (see [2, Chap. 3]). It has the same values of v, b, r, and k as does -.
It has concurrences 3 (within pairs), 0 (between pairs within parts of K3,3), and 1
(between parts). Its canonical efficiency factors are 1/2 (with multiplicity 4) and
1 (with multiplicity 7). By Theorem 1, ψij(.) = (9 − λij(.))/6 and so . has
pseudovariances 3/2, 4/3, and 1.

Now we prove the converse of Theorem 1 and hence give a partial converse to
Corollary 1.1.

Theorem 2. Let  be a connected incomplete-block design with block size k,
replication r, concurrences λij , and pseudovariances ψij . If there are at least two
different concurrences and if there are constants c and d such that ψij = c− dλij
for all i and j with i �= j, then  has second-order balance and its canonical
efficiency factors e and f are the solutions of equations (1) and (2).

Proof. By definition of ψij , we have

c − dλij = �ii +�jj − 2�ij

2
, (3)

where � is a symmetric generalized inverse of M and
∑v

j=1�ij = 0 for all i.
Summing equation (3) over j �= i gives

2(v − 1)c − 2r(k − 1)d = v�ii +
v∑

j=1

�jj ;

hence�ii is independent of i and so is equal to [(v−1)c−r(k−1)d ]/v. Substituting
in equation (3) gives �ij = [−c − r(k − 1)d + vdλij ]/v for i �= j. Thus

v� = [(v − 1)c − r(k − 1)d ]I − [c + r(k − 1)d ](J − I )+ vd(�− rI )

= v[c + r(k − 1)d ]Ĩ − vrkdM,

where Ĩ = I − v−1J, which is the identity for symmetric matrices such as M and
� with zero row sums. Since � is a generalized inverse of M, this shows that

[(c + r(k − 1)d )Ĩ − rkdM ]M = Ĩ . (4)

Thus any eigenvalue e of M on the image of Ĩ satisfies

[c + r(k − 1)d ]e − rkde2 = 1. (5)
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Hence there are at most two such eigenvalues. Because the concurrences are not
all the same, equation (5) has exactly two solutions, e and f , and so has second-
order balance. The usual theory of quadratic equations shows that

ef = 1

rkd
and

e + f = c + r(k − 1)d

rkd
= c − rd

rkd
+ 1,

whence e and f satisfy equations (1) and (2).

Corollary 2.1. If the block design  has two different concurrences and if its
pseudovariances are a function of concurrence, then  is partially balanced with
two associate classes.

Proof. Let the two concurrences be λ1 and λ2. Then the two pseudovariances are
h(λ1) and h(λ2) for some real function h. Since h is specified at only two points,
h has the form

h(x) = c − dx

for some constants c and d, and Theorem 2 applies.
Let A be the v × v matrix with Aij = 1 if λij = λ1 and i �= j and with Aij = 0

otherwise. Then
� = rI + λ1A+ λ2(J − I − A).

Now equation (4) shows thatA2 is a linear combination ofA, I, and J. This is pre-
cisely condition (iii) for the classes corresponding to I, A, and J − I −A to form
an association scheme.

4. Amorphic Association Schemes

In a square association scheme there are n2 treatments in a square array. A set of
t mutually orthogonal n × n Latin squares is given. Distinct treatments are first
associates if they are in the same row, second associates if they are in the same
column. For x = 3, . . . , t + 2, they are xth associates if they have the same letter
in the (x− 2)th square. If t = n−1 then all pairs of treatments are accounted for;
otherwise, the remaining pairs form the final class.

Square association schemes are amorphic in the sense that any fusion of the
associate classes yields another association scheme. Of course, all association
schemes with two associate classes are amorphic. We shall show that amorphic
association schemes with three or more classes have the property that variance de-
creases as concurrence increases. The proof depends upon the fact that, for an
association scheme, the algebra A is commutative and so has a basis consisting of
the matrices of orthogonal projection onto the mutual eigenspaces of matrices in
A. These are called the minimal idempotents of the association scheme. The trivial
minimal idempotent is the projector P0 onto the space spanned by the all-1 vector.

Theorem 3. If s ≥ 3 then the nontrivial minimal idempotents of an amorphic
association scheme with s associate classes can be numbered as P1, . . . ,Ps in such
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a way that Px = αxI + βAx + γxJ for x = 1, . . . , s, where αx , β, and γx are real
numbers.

Proof. Let P be the set of nontrivial idempotents and Q the set of indicator matri-
ces other than I. Both sets have size s. Since the association scheme is amorphic it
follows that, given any partition π of Q with p parts, the matrices formed by sum-
ming the matrices in each part (together with I ) form an association scheme with
p associate classes. The nontrivial minimal idempotents of this must be sums of
the parts of a partition π ′ of P, also with p parts. Because the indicator matrices
of a scheme span the same algebra as its minimal idempotents, the map π �→ π ′ is
a bijection between partitions of Q and partitions of P, which obviously preserves
refinement.

A partition of Q with parts {Ax} and Q\{Ax} has 2s−2 −1refinements with three
parts. A partition of P into parts of sizem and s−m has (2m−1−1)+ (2s−m−1−1)
refinements with three parts. The first number is odd, while the second is even
unlessm = 1 orm = s−1. Hence the bijection must take {{Ax}, Q\{Ax}} to a par-
tition of P of the form {{Py}, P \{Py}}. Because s ≥ 3, {Py} is the only singleton
in this partition. Therefore we can unambiguously label the minimal idempotents
in such a way that the minimal idempotents of the scheme with indicator matrices
I, Ax , and J − I − Ax are P0, Px , and I − P0 − Px.

Now there are constantsαx ,βx , and γx such thatPx = αxI+βxAx+γxJ for x =
1, . . . , s. Summing these equations gives I−P0 = (∑

αx
)
I+∑

βxAx+
(∑

γx
)
J.

The only linear combination of A1, . . . ,As that is also a linear combination of I
and J is their sum, so there is a constant β such that βx = β for x = 1, . . . , s.

Theorem 3 can be used to prove that the number of elements in an amorphic asso-
ciation scheme with more than two classes has the form n2 for some positive in-
teger n. Moreover, there are only two possibilities. In one, every indicator matrix
Ax satisfies the equation

A2
x = cx(n− 1)I + [(cx − 1)(cx − 2)+ n− 2]Ax + cx(cx − 1)(J − I − Ax)

for some positive integer cx , as happens for fusions of a square scheme, including
the association scheme of a square lattice design. In the other possibility, every
indicator matrix Ax satisfies

A2
x = cx(n+ 1)I + [(cx + 1)(cx + 2)− n− 2]Ax + cx(cx + 1)(J − I − Ax)

for some positive integer cx. The corresponding strongly regular graphs are said to
have Latin-square type and negative Latin-square type, respectively. A different
proof of this was given in [16].

Theorem 4. If a block design is partially balanced with respect to an amorphic
association scheme with more than two classes, then pseudovariance is a mono-
tonic decreasing function of concurrence.

Proof. Let the concurrences be λ1, . . . , λs. Then rkM = r(k−1)I −∑
x �=0 λxAx.

Theorem 3 shows that there is some constant κ0 such that
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rkM =
∑
x �=0

(
κ0 − λx

β

)
Px.

Therefore

� = rk
∑
x �=0

(
β

βκ0 − λx

)
Px

= rk

[
κ1I + κ2J +

∑
x �=0

(
β2

βκ0 − λx

)
Ax

]

for some constants κ1 and κ2. Thus

ψx = rk

[
κ1 − β2

βκ0 − λx

]
,

which is a monotonic decreasing function of λx.

5. Walk-Regular Graphs

For t = 1, . . . , v − 1, let λ[t]
ij be the number of walks of length t from i to j in G.

Thus λ[1]
ij = λij if i �= j and λ[1]

ii = 0. For completeness, put λ[0]
ii = 1 and λ[0]

ij = 0
if i �= j. Now λ

[t]
ij is the (i, j)-entry of Bt.

Authors such as Paterson [34] and Mead [31] have suggested that, if pseudo-
variance is not simply a function of concurrence, then it should be related to
the numbers of walks of lengths 2, 3, . . . , in G. We shall prove a generalization
of Theorems 1 and 2 giving pseudovariance as a linear combination of the λ[t]

ij .

However, the proofs of Theorems 1 and 2 involve a step showing that �ii is inde-
pendent of i. As Example 2 shows, this is not true in general.

Extending the definition given in [15] for simple graphs, we define the graph G
to be walk-regular if λ[t]

ii is independent of i for all t. If  has nth-order balance
with canonical efficiency factors e1, . . . , en, then

(M − e1Ĩ )(M − e2Ĩ ) · · · (M − enĨ ) = 0,

soBn is a linear combination of I,B,B2, . . . ,Bn−1, and J ; hence G is walk-regular
if and only if λ[t]

ii is independent of i for 0 ≤ t ≤ n− 1.
In [36], Sinha defined a binary equireplicate design to be simple if the multiset

(λij )j �=i is independent of i—that is, if each row of � is a permutation of the first
row. This is yet another way in which a design can be considered to have sym-
metry. All partially balanced designs are simple, as are all regular-graph designs,
which were defined in [25] to be those designs in which all concurrences differ by
at most 1. Many designs used in practice are simple.

Lemma 1. The concurrence graph G() is walk-regular if the block design 
satisfies any of the following conditions:

(a)  has a group of automorphisms that is transitive on the treatments;
(b)  is partially balanced ;
(c)  has second-order balance;
(d)  is simple and has third-order balance.
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Proof. (a) Let i and j be different treatments. If  has a group of automorphisms
that is transitive on the treatments, then there is an automorphism of  that takes
i to j. For every t, such an automorphism also permutes the rows and columns of
Bt accordingly and so λ[t]

ii = λ
[t]
jj .

(b) If  is partially balanced with respect to the association scheme with indi-
cator matrices A0,A1, . . . ,As , then there are scalars b0, b1, . . . , bs such that Bt =∑s

x=0 bxAx. Hence all diagonal elements of Bt are equal to b0.

(c) By definition, λ[0]
ii = 1 and λ[1]

ii = 0 for all i. If  has second-order balance,
this ensures that G() is walk-regular.

(d) For each i, λ[2]
ii is the sum of the squares of the entries in the ith row of

B. If  is simple, then these rows have the same multiset of entries and so λ[2]
ii

is independent of i. Since  has third-order balance, this ensures that G() is
walk-regular.

The special case of Lemma 1(d) for which G() has no multiple edges was proved
in [13].

Theorem 5. Let  be a connected incomplete-block design with concurrences
λij and pseudovariances ψij such that G is walk-regular. If  has nth-order bal-
ance then there are constants c0, c1, . . . , cn−1 such that

ψij = c0 + c1λ
[1]
ij + · · · + cn−1λ

[n−1]
ij

for all pairs of distinct treatments i and j.

Proof. Since  has nth-order balance, it follows that Bn is a linear combination
of I, B, B2, . . . ,Bn−1, and J ; hence these n+1 matrices span a commutative alge-
bra B. Now, M ∈ B and so � ∈ B. Thus there are constants φ0,φ1, . . . ,φn−1,φ∞
such that � = ∑n−1

t=0 φtB
t + φ∞J. Hence

2ψij = �ii +�jj − 2�ij

=
n−1∑
t=0

φt(λ
[t]
ii + λ

[t]
jj − 2λ[t]

ij )

= 2φ0 +
n−1∑
t=1

φt(λ
[t]
ii + λ

[t]
jj − 2λ[t]

ij ).

Because G is walk-regular, λ[t]
ii is a constant λ[t] independent of i, so

ψij = c0 +
n−1∑
t=1

ctλ
[t]
ij ,

where c0 = φ0 + ∑n−1
t=1 φtλ

[t] and ct = −φt for 1 ≤ t ≤ n− 1.

Theorem 5 can be applied to rectangular lattice designs, which are resolved de-
signs for k(k + 1) treatments in blocks of size k constructed from r − 2 mutu-
ally orthogonal (k + 1) × (k + 1) Latin squares with a common transversal; see
[2, Chap. 5]. The treatments are the cells of the square array that are not in the
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Table 1 The rectangular lattice design  in Example 8:
v = 20, r = 3, k = 4, and b = 15 (blocks are columns)

A E I M Q E A B C D H B D A C

B F J N R I J F G H K I G E F

C G K O S M N O K L O P N L J

D H L P T Q R S T P R T Q S M

Table 2 The rectangular lattice design  in Example 8:
v = 20, r = 3, k = 4, and b = 15 (blocks are columns)

A E I M Q E A B C D F A B C D

B F J N R I J F G H J G E H K

C G K O S M N O K L P I L N M

D H L P T Q R S T P T O R Q S

transversal. The blocks of the first parallel class are the rows of the array; those of
the second are the columns. For x = 3, . . . , r, the blocks of the xth parallel class
are the letters of the (x − 2)th square.

All concurrences are 0 or 1, so these are regular-graph designs and hence simple.
If r = k+1 then they have second-order balance; otherwise, they have third-order
balance with canonical efficiency factors 1, (k+1)(r−1)/kr, and (kr− k−1)/kr.
Many of them do not satisfy (a) or (b), yet Lemma 1 shows that their concurrence
graphs are walk-regular.

Example 8. Any single 5 × 5 Latin square with a transversal gives a rectangu-
lar lattice design for twenty treatments in fifteen blocks of size 4. Here r = 3 and
k = 4, so B = 9I −12M. The canonical efficiency factors are 5/6, 7/12, and 1, so(

M − 5

6
Ĩ

)(
M − 7

12
Ĩ

)
(M − Ĩ ) = 0,

which expands as

M 3 − 29

12
M 2 + 137

72
M − 35

72
Ĩ = 0.

Hence

� = 72

35

[
M 2 − 29

12
M + 137

72
Ĩ

]
= 1

70

[
94I + 11B + B2 − 274

20
J

]
.

The diagonal elements of B2 are all equal to 9, so

ψij = 1

70
(103 − 11λij − λ

[2]
ij ). (6)

Tables 1 and 2 show different rectangular lattice designs for these parameters,
using the treatment array in Table 4. Design is constructed from the cyclic Latin
square in Table 3, while design  is constructed from the noncyclic Latin square
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Table 3 Cyclic Latin square

α β γ δ ε

β γ δ ε α

γ δ ε α β

δ ε α β γ

ε α β γ δ

Table 4 Treatment array

A B C D

E F G H

I J K L

M N O P

Q R S T

Table 5 Noncyclic Latin square

α β γ δ ε

γ ε α β δ

β α δ ε γ

ε δ β γ α

δ γ ε α β

Table 6 Walks of lengths 1 and 2 in the designs  and  
in Example 8, and corresponding pseudovariances

Design  Design  

Number Example Number Example
λ

[0]
ij λij λ

[2]
ij 70ψij of pairs pair i, j of pairs pair i, j

1 0 9 20 A,A 20 A,A
0 1 4 88 80 A,D 72 A,B
0 1 3 89 80 A,B 96 A, I
0 1 2 90 20 A,E 12 A,D
0 0 5 98 40 A,F 48 A,K
0 0 4 99 160 A,G 144 A,H
0 0 3 100 0 8 G,R

in Table 5. The values of λij and λ[2]
ij that occur in these designs are shown in

Table 6, together with the pseudovariances given by equation (6).
Neither  nor  is partially balanced. However,  does have a transitive auto-

morphism group;  does not because the rows of (B( ))2 are not all permutations
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of each other. The largest pseudovariance for  does not occur for any pair in .
This shows that rectangular lattice designs with the same parameters do not nec-
essarily have the same pseudovariances. In this case,  is MV-worse than .

Williams [37] showed that, for a rectangular lattice design, � is a linear com-
bination of I, �, and �2 with explicit coefficients, but he did not go on to work
out the individual pseudovariances explicitly. For u = 0,1, Williams calculated
the average value of the ψij for which λij = u; the figures given in Table 6 are
consistent with his results.

Theorem 5 also has a partial converse, as follows.

Theorem 6. Let  be a connected incomplete-block design with concurrences
λij and pseudovariances ψij such that G is walk-regular. If there are constants
c0, c1, . . . , cn−1 such that

ψij = c0 +
n−1∑
t=1

ctλ
[t]
ij

for all pairs of distinct treatments i and j, and if n is minimal subject to this, then
 has nth-order balance.

Proof. For i �= j we have

c0 +
n−1∑
t=1

ctλ
[t]
ij = �ii +�jj − 2�ij

2
. (7)

Since BJ = r(k − 1)J we have BtJ = r t(k − 1)tJ for t ≥ 1, so that
∑v

j=1 λ
[t]
ij

is independent of i. Since G is walk-regular, λ[t]
ii is also independent of i and so∑

j �=i λ
[t]
ij is independent of i. As in the proof of Theorem 2, summing equation (7)

over j �= i shows that �ii has a constant value φ independent of i. Hence

�ij = φ − c0 −
n−1∑
t=1

ctλ
[t]
ij

for i �= j. Thus� is a linear combination of I, B, B2, . . . , Bn−1, and J. Because�
has zero row sums, it is a linear combination of Ĩ, M, M 2, . . . , Mn−1. But �M =
Ĩ, so M satisfies a polynomial equation of degree n on the image of Ĩ ; hence M
has at most n eigenvalues on the image of Ĩ . If it has fewer than n eigenvalues
then  has a smaller order of balance than n, so Theorem 5 contradicts the mini-
mality of n. Hence M has exactly n eigenvalues on the image of Ĩ and so  has
nth-order balance.

6. Distance-Regular Graphs

If there are only two different concurrences, then pseudovariances may be calcu-
lated from knowledge of the regular simple graph whose vertices are the treat-
ments and whose edges are the pairs with the higher concurrence. It seems plau-
sible that pseudovariance should be a monotonic increasing function of distance
in this graph, but Example 2 shows that this is not true in general.
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A connected simple graph is distance-regular if its distance classes form an
association scheme. Label the associate classes so that class x consists of all pairs
of vertices at distance x. Let s be the number of associate classes, which is equal
to the diameter of the graph. The graph must be regular (of valency d, say), and
there are nonnegative integers b0, . . . , bs and c0, . . . , cs such that c0 = bs = 0,
b0 = d, c1 = 1, 0 < bx + cx ≤ d, and

AxA1 = bx−1Ax−1 + (d − bx − cx)Ax + cx+1Ax+1

for x = 0, . . . , s; see [9, Chap. 4]. Moreover, if nx is the number of xth associates
of each treatment, then n1 = d and nxbx = nx+1cx+1 for 0 ≤ x ≤ s − 1.

Theorem 7. Let  be a connected incomplete-block design with block size k,
replication r, and two concurrences λ and λ + µ, where µ > 0. If the pairs of
treatments with concurrence λ + µ form the edges of a distance-regular graph,
then pseudovariance is a monotonic increasing function of distance.

Proof. We have
� = rI + λ(J − I )+ µA1

and
r(k − 1) = λ(v − 1)+ µd,

where v = v() and d is the valency of the graph. Hence

rkM = (λv + µd)I − µA1 − λJ.

If s is the diameter of the graph then the distance classes form an association
scheme with s associate classes, so there are scalars φ0, . . . ,φs such that � =
φ0I + φ1A1 + · · · + φsAs. Therefore, if treatments i and j are at distance x then
ψij = ψx = φ0 − φx.

The row sums of � are all zero, so �J = 0. Also, �M = Ĩ, so

(λv + µd)φx − µφx−1cx − µφx(d − bx − cx)− µφx+1bx = −rk/v
for x = 1, . . . , s. This can be rewritten as

λvnyφy + µnycy(φy − φy−1)+ µny by(φy − φy+1) = −rkny/v. (8)

Summing equations (8) from y = x to y = s gives

λv(nxφx + · · · + nsφs)+ µnxcx(φx − φx−1) = −rk(nx + · · · + ns)/v.

This shows that λv2(nxφx+· · ·+nsφs)+rk(nx+· · ·+ns) and φx−φx−1 have
opposite signs. Thus, if λv2φs ≤ −rk then reverse induction yields φx ≤ φx+1 ≤
· · · ≤ φs−1 ≤ φs , so that λv2(nxφx +· · ·+nsφs) ≤ −rk(nx +· · ·+ns) and φx ≥
φx−1. Consequently, φ0 ≤ φ1, which contradicts the fact that φ0 − φ1 = ψ1 ≥ 1.

This contradiction shows that λv2φs > −rk. Now a similar reverse induc-
tion gives φx > φx+1 > · · · > φs−1 > φs and so λv2(nxφx + · · · + nsφs) >

−rk(nx + · · · + ns) and φx < φx−1. Hence ψx = φ0 − φx > φ0 − φx−1 = ψx−1.

Example 9. Let  be a projective plane of order q, so that v( ) = b( ) =
q2 +q+1, k( ) = r( ) = q+1, and λ( ) = 1. The following construction for a
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resolved design  with v() = v( )k( ), k() = k( ), and r() = 2 was rec-
ommended by Bose and Nair in [7]. Take T () to be the set of incident point-line
pairs in  . In the first parallel class of , two treatments are in the same block
if they have the same line in  ; in the second parallel class of , two treatments
are in the same block if they have the same point in  . Such a design is called a
generalized hexagon in [9, Sec. 6.5].

The concurrences in are all equal to 0 or 1. The pairs with concurrence 1 form
the edges of a distance-regular graph with diameter 3 that has n0 = 1, d = n1 =
2q, n2 = 2q2, and n3 = q3. Also,

A2
1 = 2qI + (q − 1)A1 + A2,

A2A1 = qA1 + (q − 1)A2 + 2A3,

A3A1 = qA2 + 2(q − 1)A3.

Since � = 2I + A1 and k = q + 1, we have 2(q + 1)M = 2qI − A1. Some
calculation gives

� = 1

q2 + q + 1
[(q2 + 3q + 5)I + (q + 3)A1 + A2 + κJ ],

where κ = −(5q2 + 9q + 5)/v. Thus ψ1 = (q2 + 2q + 2)/(q2 + q + 1), ψ2 =
(q2 + 3q + 4)/(q2 + q + 1), and ψ3 = (q2 + 3q + 5)/(q2 + q + 1).

It was shown in [38; 39] that this design is A-optimal among resolved designs.

Theorem 7 can be generalized to disconnected graphs whose components are
distance-regular. In this case, we need λ > 0 for a connected design.

Theorem 8. Let  be a connected incomplete-block design with block size k,
replication r, and two concurrences λ and λ + µ, where µ > 0. If the pairs of
treatments with concurrence λ+µ form the edges of a disconnected graph whose
components are distance-regular graphs with the same parameters, then pseudo-
variance is a monotonic increasing function of distance, where the distance be-
tween vertices in different components is deemed to be ∞.

Proof. Let A∞ be the indicator matrix for pairs of treatments in different compo-
nents of the graph. Then A1A∞ = n1A∞. Following the proof of Theorem 7, we
obtain the extra equation (λv+µd −µn1)φ∞ = −rk/v. Hence φ∞ = −rk/λv2.

As in the previous proof, if φs ≤ φ∞ then induction gives a contradiction, while
if φs > φ∞ then induction shows that φ0 > φ1 > · · · > φs > φ∞.
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