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Quiver Coefficients of Dynkin Type

Anders Skovsted Buch

1. Introduction

Let Q = (Q0,Q1) be a quiver consisting of a finite set of vertices Q0 and a fi-
nite set of arrows Q1. Each arrow a ∈Q1 has a head h(a) and a tail t(a) in Q0.

For convenience we will assume that the vertex set is an integer interval, Q0 =
{1, 2, . . . , n}. Let e = (e1, . . . , en)∈Nn be a dimension vector, and fix vector spaces
Ei = Kei for i ∈Q0 over a field K. The representations ofQ on these vector spaces
form the affine space V = ⊕

a∈Q1
Hom(Et(a),Eh(a)), which has a natural action

of the group G = GL(E1) × · · · × GL(En) given by (g1, . . . , gn).(φa)a∈Q1 =
(gh(a)φag

−1
t(a))a∈Q1 .

Define a quiver cycle to be any G-stable closed irreducible subvariety � in V.
A quiver cycle determines an equivariant (Chow) cohomology class [�]∈H ∗

G(V )

and an equivariant Grothendieck class [O� ] ∈ KG(V ). These classes are well
understood when the quiverQ is equioriented of type A, that is, a sequence {1→
2 → · · · → n} of arrows in the same direction. In this case, a formula for the co-
homology class [�] was given in joint work with Fulton [11], and this formula was
generalized toK-theory in [8]. TheK-theory formula states that the Grothendieck
class [O� ] is given by

[O� ] =
∑
µ

cµ(�)Gµ1(E2 − E1)Gµ2(E3 − E2) · · ·Gµn−1(En − En−1)∈KG(V ),

where the sum is over finitely many sequences µ = (µ1, . . . ,µn−1) of partitions
µi. Each factor Gµi(Ei+1 − Ei) is obtained by applying the stable Grothendieck
polynomial for µi to the standard representations of G on Ei+1 and Ei. This no-
tation will be explained in Section 3.

The coefficients cµ(�) are interesting geometric and combinatorial invariants
called (equioriented) quiver coefficients. They are integers and are nonzero only
when the sum

∑|µi | of the weights of the partitions is greater than or equal to
the codimension of �. The coefficients for which this sum equals codim(�) de-
scribe the cohomology class of� and are called cohomological quiver coefficients.
It was proved in [25] that cohomological quiver coefficients are nonnegative and
in [10; 29] that the more general K-theoretic quiver coefficients have alternating
signs in the sense that (−1)

∑|µi |−codim(�)cµ(�) is a nonnegative integer. These
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properties had earlier been conjectured in [11; 8], and special cases had been
proved in [6; 13; 14]. The equioriented quiver coefficients can also be expressed
in terms of counting factor sequences [11; 6; 25; 10; 12]. They are known to gener-
alize Littlewood–Richardson coefficients [11], (K-theoretic) Stanley coefficients
[7; 8], and the monomial coefficients of Schubert and Grothendieck polynomials
[13; 14]. The equioriented quiver coefficients are themselves special cases of the
K-theoretic Schubert structure constants on flag manifolds [28; 10; 16].

The purpose of this paper is to introduce and study a more general notion of
quiver coefficients that can be defined for an arbitrary quiver Q without oriented
loops. For each vertex i ∈ Q0, we define Mi = ⊕

a :h(a)=i Et(a) to be the direct
sum of all vertex vector spaces at the tails of arrows pointing to i. (If there are
two or more arrows to i from a vertex j, then Ej is included multiple times as a
summand ofMi.) Given a quiver cycle � ⊂ V, we show that there are unique co-
efficients cµ(�) ∈ Z , indexed by sequences µ = (µ1, . . . ,µn) of partitions such
that the length �(µi) is at most ei, for which

[O� ] =
∑
µ

cµ(�)Gµ1(E1 −M1)Gµ2(E2 −M2) · · · Gµn(En −Mn). (1)

As in the equioriented case, a coefficient cµ(�) can be nonzero only if
∑|µi | ≥

codim(�), and the lowest-degree coefficients describe the cohomology class [�].
However, the defining linear combination (1) might possibly be infinite, which
makes sense modulo the gamma filtration on KG(V ). We pose the following.

Conjecture 1.1. Let Q be a quiver without oriented loops and let � ⊂ V be a
quiver cycle.

(a) Only finitely many of the quiver coefficients cµ(�) for � are nonzero. In other
words, the sum (1) is finite.

(b) All cohomological quiver coefficients cµ(�) with
∑|µi | = codim(�) are

nonnegative.
(c) If � has rational singularities, then the quiver coefficients for � have alter-

nating signs; that is, (−1)
∑|µi |−codim(�)cµ(�) ≥ 0.

Our main result is a formula for the quiver coefficients when the quiver Q is of
Dynkin type and � has rational singularities. A quiver is of Dynkin type if the
underlying (undirected) graph is a simply laced Dynkin diagram (i.e., a disjoint
union of Dynkin diagrams of types A, D, and E). In this case, every quiver cycle is
an orbit closure [22]. Bobiński and Zwara have proved that all orbit closures have
rational singularities if Q is a quiver of type A and K is an algebraically closed
field [1] or ifQ is of type D and K is algebraically closed of characteristic zero [2]
(see also [27] for the equioriented case). Our formula relies on an explicit desingu-
larization of an orbit closure given by Reineke [31] and on a list of geometric and
combinatorial properties of stable Grothendieck polynomials established in [9; 8],
and it proves the finiteness part (a) of Conjecture 1.1. Our new formula generalizes
the formula for equioriented quiver coefficients proved in [8] but requires more
operations on Grothendieck polynomials, including multiplication and Grothen-
dieck polynomials indexed by sequences of negative integers. For quivers of type
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A3, we prove the full statement of Conjecture 1.1 and provide positive combinato-
rial formulas for the quiver coefficients in terms of counting set-valued tableaux.

We remark that the positivity properties of quiver cycles suggested by Conjec-
ture 1.1 are analogous to positivity properties satisfied by a closed and irreducible
subvariety Y of a homogeneous spaceG/P. In fact, the cohomology class of Y can
be uniquely written as a positive linear combination of Schubert classes, where
the coefficients count the intersection points of Y with the dual Schubert varieties
placed in general position. Furthermore, Brion has proved that if Y has rational
singularities then the Grothendieck class of Y is an alternating linear combina-
tion of K-theoretic Schubert classes [5]. Aside from this analogy, our conjecture
is supported by computer experiments.

Some other formulas for quiver cycles of Dynkin type have been given that do
not involve quiver coefficients. First of all, Fehér and Rimányi have proved that the
cohomology class of an orbit closure of Dynkin type is uniquely determined, up
to a constant, by the property that its restriction to any disjoint orbit vanishes [18].
Rimányi and Buch have used this result to prove a positive combinatorial formula
for the cohomology class of any orbit closure for a (nonequioriented) quiver of
type A that expresses this class as a sum of products of Schubert polynomials [15].
Moreover, a conjectured K-theory version expresses the Grothendieck classes of
such orbit closures as alternating sums of products of Grothendieck polynomials.
These formulas generalize the (nonstable) component formulas for equioriented
quivers proved by Knutson, Miller, and Shimozono in cohomology [25] and by
Buch in K-theory [10]. Despite the positivity displayed by the generalized com-
ponent formulas, we have not been able to relate them to positivity properties of
quiver coefficients in the nonequioriented cases. Finally, a preprint of Knutson
and Shimozono [26] contains a formula for the Grothendieck class of any orbit
closure of Dynkin type that has rational singularities. This formula is stated in
terms of Demazure operators but does not, to our knowledge, suggest any positiv-
ity properties of quiver cycles.

This paper is organized as follows. In Section 2 we recall the definition and
required properties of stable Grothendieck polynomials. Section 3 describes the
equivariant Grothendieck class of a quiver cycle, defines the corresponding quiver
coefficients, and discusses the available evidence for Conjecture 1.1. We also give
an example of an orbit closure for which the associated quiver coefficients do not
have alternating signs. This orbit closure was earlier studied by Zwara [35], who
proved that it does not have rational singularities. In Section 4 we interpret quiver
coefficients in terms of formulas for degeneracy loci defined by a quiver of vector
bundles over a base variety. In Section 5 we describe Reineke’s desingularization
of orbit closures of Dynkin type. This desingularization is used in Section 6 to
prove a combinatorial formula for quiver coefficients of Dynkin type. Section 7
contains the proof of Conjecture 1.1 for quivers of type A3.

Our formula for orbit closures of Dynkin type was proved at the time the preprint
[26] became available. We do, however, thank Allen Knutson for earlier suggest-
ing that the resolutions we used to compute quiver coefficients of types A and D
might be special cases of Reineke’s general construction. We have benefited from
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many discussions with Richárd Rimányi on this general subject as well as from
answers to questions and useful references provided by Wilbert van der Kallen and
Michel Brion regarding group actions and equivariant K-theory. We also thank
Johan de Jong, Friedrich Knop, Chris Woodward, and Grzegorz Zwara for helpful
comments and answers to questions.

2. Grothendieck Polynomials

In this section we fix notation for stable Grothendieck polynomials and state the
required properties. We refer to [8; 9] for more details.

A partition is a weakly decreasing sequence of nonnegative integers λ = (λ1 ≥
λ2 ≥ · · · ≥ λ� ≥ 0). The weight of λ is the sum |λ| = ∑

λi of its parts, and the
length �(λ) is the number of nonzero parts. We will identify the partition λ with
its Young diagram, which has λ1 boxes in the top row, λ2 boxes in the next row,
et cetera. A set-valued tableau of shape λ is a filling T of the boxes of λ with fi-
nite nonempty sets of positive integers such that the largest integer in any box is
(a) smaller than or equal to the smallest integer in the box to the right of it and
(b) strictly smaller than the smallest integer in the box below it. Given an infinite
set of commuting variables x = (x1, x2, . . . ), we let xT denote the monomial in
which the exponent of xi is the number of boxes of T containing i, and we let |T |
be the (total) degree of xT. For example, the set-valued tableau

T =
1,2 2 2,5,8

4 7,8

has shape λ = (3, 2) and gives xT = x1x
3
2 x4x5x7x

2
8 and |T | = 9.

The single stable Grothendieck polynomial for the partition λ is defined as the
formal power series

Gλ = Gλ(x) =
∑
T

(−1)|T |−|λ|xT,

where the sum is over all set-valued tableaux T of shape λ. This power series is
symmetric, and its term of lowest degree is the Schur function sλ. It was proved
in [9] to be a special case of the stable Grothendieck polynomials indexed by per-
mutations of Fomin and Kirillov [19], which in turn were constructed as limits of
Lascoux and Schützenberger’s ordinary Grothendieck polynomials. By conven-
tion, a stable Grothendieck polynomial applied to a finite set of variables is defined
by Gλ(x1, . . . , xp) = Gλ(x1, . . . , xp, 0, 0, . . . ).

Given a set-valued tableau T, define its word w(T ) to be the sequence of integers
in its boxes when read one row at a time from left to right, with the rows ordered
from bottom to top. Integers in the same box are arranged in increasing order. For
example, the tableau displayed previously givesw(T ) = (4, 7, 8,1, 2, 2, 2, 5, 8).A
word of positive integers is called a reverse lattice word if every occurrence of an
integer i ≥ 2 is followed by more occurrences of i −1 than of i. The content of a
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word is the sequence ν = (ν1, ν2, . . . ), where νi is the number of occurrences of i in
the word. For any partition µ = (µ1, . . . ,µl), let u(µ) = (lµl , . . . , 2µ2 ,1µ1) be the
word of the tableau of shapeµ in which all boxes in row i contain the single integer
i. We need the following generalization of the classical Littlewood–Richardson
rule from [9, Thm. 5.4] (an alternative proof can be found in [12, Sec. 3.5]).

Theorem 2.1. The product of two stable Grothendieck polynomials is given by

Gλ · Gµ =
∑
ν

cνλµGν ,

where the sum is over all partitions ν and where cνλµ is equal to (−1)|ν|−|λ|−|µ|
times the number of set-valued tableaux T of shape λ for which the composition
w(T )u(µ) is a reverse lattice word with content ν.

For example, the set-valued tableaux 1 , 2 , and 1,2 , correspond to the terms
of the product G ·G = G +G −G . If a coefficient cνλµ is nonzero, then

|λ| + |µ| ≤ |ν| and (the Young diagrams of) λ and µ can be contained in ν.
Theorem 2.1 implies that the linear span $ = ⊕

ZGλ of all stable Grothendieck
polynomials is a commutative ring. The stable Grothendieck polynomials are lin-
early independent because the term of lowest degree in Gλ is the Schur function sλ.

If λ,µ, and ν are partitions such that λ andµ fit inside a rectangular partitionR,
we define

dνλµ = cρRν , where ρ = (R + µ, λ) =

is the partition obtained by attaching λ and µ to the bottom and right sides of R.
This constant dνλµ is independent of the choice of rectangle R, and it is nonzero
only if |ν| ≤ |λ| + |µ| and λ,µ ⊂ ν [9, Thm. 6.6]. These constants define a co-
product ( : $ → $ ⊗ $ given by ((Gν) = ∑

λ,µ d
ν
λµGλ ⊗ Gµ, which gives $ a

structure of commutative and cocommutative bialgebra with unit and counit [9,
Cor. 6.7].

Given an additional set of commuting variables y = (y1, y2, . . . ), define the
double stable Grothendieck polynomial for the partition ν by

Gν(x; y) =
∑
λ,µ

dνλµGλ(x) · Gµ′(y),

where µ′ is the conjugate partition of µ obtained by interchanging the rows and
columns of µ. These power series are separately symmetric in each set of vari-
ables x and y, and they satisfy the identities

Gν(1− a−1, x;1− a, y) = Gν(x; y) (2)

for any indeterminate a [19] and

Gν(x, z; y,w) =
∑
λ,µ

dνλ,µGλ(x; y)Gµ(z;w) (3)
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for arbitrary sets of variables x, y, z, and w [9, (6.1)]. Another useful identity is
the factorization formula [9, Cor. 6.3], which states that

GR+µ,λ(x1, . . . , xp; y1, . . . , yq)

= Gλ(0; y1, . . . , yq) · GR(x1, . . . , xp; y1, . . . , yq) · Gµ(x1, . . . , xp), (4)

where λ and µ are partitions with λ1 ≤ q and �(µ) ≤ p and where R = (qp) is
the rectangular partition with p rows and q columns.

Lemma 2.2. Let R be a commutative ring that is complete with respect to the
ideal m ⊂ R (R = limR/mi ), and let y1, . . . , yq ∈ m. Any symmetric formal
power series f ∈ R[[x1, . . . , xp]]-p can be written uniquely as an (infinite) linear
combination

f =
∑
λ

bλGλ(x1, . . . , xp; y1, . . . , yq), bλ ∈R, (5)

where the sum is over all partitions λ with �(λ) ≤ p.
Proof. Write x = (x1, . . . , xp) and y = (y1, . . . , yq). Set z = (z1, . . . , zq) where
zi = 1− (1− yi)−1 = −∑

k≥1 y
k
i ∈ R, which is well-defined because yi ∈m. If

y1 = · · · = yq = 0, then the lemma follows because the term of lowest degree in
Gλ(x) is the Schur polynomial sλ(x). Given an expression

f =
∑
λ

b ′λGλ(x), (6)

we can define coefficients bλ ∈R by

(∗) bλ = ∑
ν,µ b

′
ν d

ν
λµGµ(z).

This infinite sum is well-defined in R because zi ∈ m and dνλµ is nonzero only
when |µ| ≥ |ν| − |λ|. By (2) and (3) we furthermore have

f =
∑
ν

b ′νGν(z, x; y) =
∑
ν,λ,µ

b ′ν d
ν
λµGµ(z)Gλ(x; y) =

∑
λ

bλGλ(x; y).

Similarly, given coefficients bλ ∈ R such that (5) holds, we obtain coefficients
b ′λ ∈R for which (6) holds by setting b ′λ =

∑
ν,µ bν d

ν
λµGµ′(y). If f = 0 then all

these coefficients b ′λ must be zero. On the other hand, the coefficients bλ can be
recovered from the b ′λ by (∗) since, for any fixed partition λ,

∑
ν,µ

(∑
σ,τ

bσ d
σ
ντGτ ′(y)

)
dνλµGµ(z) =

∑
σ,ν,µ,τ

bσ d
σ
λν d

ν
µτGµ(z)Gτ ′(y)

=
∑
σ,ν

bσ d
σ
λνGν(z; y) = bλ.

The first equality holds because( is a coproduct. The third equality follows from
(2) because Gν(z; y) is equal to one if ν is the empty partition and equal to zero
otherwise.
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The stable Grothendieck polynomials given by partitions can be generalized to
stable polynomials GI indexed by arbitrary finite sequences of integers. These can
be defined by the recursive identities

GI,p,q,J =
q∑

k=p+1

GI,q,k,J −
q−1∑
k=p+1

GI,q−1,k,J (7)

whenever I and J are integer sequences and p < q are integers, as well as by
the identity GI,p = GI for any integer sequence I and negative integer p. Thus,
any finite integer sequence I gives a well-defined element GI ∈$. This notation is
required in our formula for quiver coefficients of Dynkin type given in Section 6.

3. Quiver Coefficients

In this section we define quiver coefficients and discuss their conjectured positiv-
ity properties. We start by giving an elementary construction of the Grothendieck
class of an invariant closed subvariety in a representation.

3.1. Grothendieck Classes

Let G be a linear algebraic group over the field K and let V be a rational repre-
sentation ofG; that is,V is a K-vector space of finite dimension and theG-action
is given by a map of varieties G → GL(V ). Then the coordinate ring K[V ] =
Sym•(V ∨) of polynomial functions onV has a locally finite linearG-action, which
in set-theoretic notation is given by (g.f )(v) = f(g−1.v) for g ∈ G, f ∈ K[V ],
and v ∈ V. Here “locally finite” means that K[V ] is a union of rational represen-
tations of G. Define a (K[V ],G)-module to be a module M over K[V ] together
with a locally finite linear G-action on M that satisfies g.(fm) = (g.f )(g.m) for
m ∈ M. We will say that M is finitely generated (resp. free) if this is true as a
K[V ]-module. If M is finitely generated, then there exists a finite-dimensional
G-stable vector subspace U ⊂ M that contains a set of generators. Observe that
K[V ]⊗K U has a natural structure of a (K[V ],G)-module, where K[V ] acts on
the first factor and G acts on both factors. The map K[V ] ⊗ U → M given by
f ⊗ u �→ fu is a surjective G-equivariant map. Since M has finite projective
dimension as a module over the polynomial ring K[V ] and since all projective
K[V ]-modules are free, it follows that M has a finite equivariant resolution by
finitely generated free (K[V ],G)-modules.

Let � ⊂ V be a G-stable closed subvariety. Then the coordinate ring O� =
K[V ]/I(�) is a finitely generated (K[V ],G)-module, so it has an equivariant
resolution

0 → Fp → Fp−1 → · · · → F0 → O� → 0, (8)

where Fi is a finitely generated free (K[V ],G)-module. Notice that Fi/mFi is a
rational representation of G for each i, where m = I(0) ⊂ K[V ] is the maximal
ideal of functions vanishing at the origin of V.

Let R(G) be the ring of virtual representations of G—that is, formal linear
combinations of irreducible rational representations. Multiplication in this ring is
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defined by tensor products. We define theG-equivariant Grothendieck class of�
to be the virtual representation

[O� ] =
∑
i≥0

(−1)i[Fi/mFi]∈R(G).

It follows from results of Thomason [33] that this class can be identified with the
class of the structure sheaf of � in the equivariant K-theory of V (see Section 4).

3.2. Classes of Quiver Cycles

Let V = ⊕
a∈Q1

Hom(Et(a),Eh(a)) be the vector space of representations of the
quiver Q. Then V is a rational representation of the group G = ∏n

i=1 GL(Ei). It
follows that any quiver cycle � ⊂ V defines a Grothendieck class [O� ]∈R(G).

Choose a decomposition of each vertex vector space as a sum of one-dimensional
vector spaces, Ei = Li1⊕ · · · ⊕Liei , and let T ⊂ G be the maximal torus that pre-
serves these decompositions. Then the virtual representations of T form the Lau-
rent polynomial ring R(T) = Z[[Lij ]

±1]. It follows from [24, Cor. II.2.7] that
the restriction map R(G) → R(T) is injective, and the image must consist of
Laurent polynomials that are simultaneously symmetric in each group of vari-
ables {[Li1], . . . , [Liei ]}. Since all such polynomials can be generated by the ex-
terior powers

[ ∧j
Ei

]∈R(G), it follows that R(G) ⊂ R(T) is the subring of
simultaneously symmetric Laurent polynomials.

Set xij = 1− [Lij ]
−1 for 1 ≤ i ≤ n and 1 ≤ j ≤ ei, and let Z[[xij ]] be the ring

of formal power series in these variables. We will consider R(T) as a subring of
Z[[xij ]], with [Lij ] =

∑
p≥0(x

i
j )
p. In particular, the Grothendieck class [O� ] can

be regarded as a power series in Z[[xij ]]. The T-equivariant cohomology of V can
be identified with the polynomial ring H ∗

T (V ) = Z[xij ], and H ∗
G(V ) ⊂ H ∗

T (V ) is
the subring of simultaneously symmetric polynomials. The power series [O� ] ∈
Z[[xij ]] has no nonzero terms of total degree smaller than d = codim(�;V ), and
the term of degree d is the cohomology class [�]∈H d

G(V ) (see Section 4.2).
If U is any rational representation of G, we can write it as a direct sum of one-

dimensional T-representations, U = L1 ⊕ · · · ⊕ Lu. Given a partition ν, we then
define Gν(U) = Gν(1− [L1]−1, . . . ,1− [Lu]−1) ∈ R(G) ⊂ R(T). For example,
Gν(Ei) = Gν(x i1, . . . , xiei ). More generally, given two rational G-representations
U1 and U2, we define

Gν(U1 − U2) =
∑
λ,µ

dνλµGλ(U1)Gµ′(U∨
2 )∈R(G), (9)

where U∨
2 is the dual representation of U2. The Schur function sν(U1−U2) is de-

fined as the term of total (and lowest) degree |ν| in Gν(U1−U2) when considered
as a power series in Z[[xij ]].

From now on we assume that Q is a quiver without oriented loops. Our defi-
nition of quiver coefficients is based on the following proposition. Recall that we
set Mi = ⊕

a :h(a)=i Et(a) for i ∈Q0.
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Proposition 3.1. Let Q be a quiver without oriented loops. Every element of
R(G) can be expressed uniquely as a ( possibly infinite) Z-linear combination of
products

Gµ1(E1 −M1)Gµ2(E2 −M2) · · ·Gµn(En −Mn)

given by partitions µ1, . . . ,µn such that �(µi) ≤ ei for each i.

Proof. Let l ∈ Q0 be a vertex that is not the tail of any arrow in Q. Because
every element of R(G) ⊂ Z[[xij ]] is symmetric in the variables x l1, . . . , x lel , we
can use Lemma 2.2 to write it as an (infinite) linear combination of the elements
Gµl(El −Ml) given by partitions µl with at most el rows and with coefficients in
the subring R = Z[[xij : i �= l]]. By induction on n applied to the quiver obtained
fromQ by removing the vertex l and all arrows to it, it follows that each of the co-
efficients are unique Z-linear combinations of the products

∏
i �=l Gµi(Ei −Mi).

Definition 3.2. Let � ⊂ V be a quiver cycle for a quiver Q without oriented
loops. The quiver coefficients of � are the unique integers cµ(�)∈Z , indexed by
sequences µ = (µ1, . . . ,µn) of partitions µi with �(µi) ≤ ei, such that

[O� ] =
∑
µ

cµ(�)Gµ1(E1 −M1)Gµ2(E2 −M2) · · ·Gµn(En −Mn)∈R(G).

The cohomological quiver coefficients of � are the coefficients cµ(�) for which∑|µi | = codim(�).

It follows from Corollary 4.3 (in the next section) that these coefficients gener-
alize the equioriented quiver coefficients from [11; 8]. The cohomological quiver
coefficients determine the cohomology class of � as

[�] =
∑

∑|µi |=codim(�)

cµ(�)sµ1(E1−M1)sµ2(E2−M2) · · · sµn(En−Mn)∈H ∗
G(V ).

Example 3.3. Let Q = {1 → 2} be a quiver of type A2. Then any quiver cy-
cle in V = Hom(E1,E2) has the form �r = {φ ∈ V | rank(φ) ≤ r}. It follows
from Corollary 4.3 and the Thom–Porteous formula of [8, Thm. 2.3] that [O�r ] =
GR(E2−E1), where R = (e1− r)e2−r is the rectangular partition with e2− r rows
and e1− r columns. We have c(R)(�r) = 1, and all other quiver coefficients of�r
are zero.

3.3. Properties of Quiver Coefficients

We do not know a good reason why the quiver coefficients should satisfy the finite-
ness and positivity properties stated in Conjecture 1.1. In the case of equioriented
quivers, where this conjecture is known, these properties are consequences of ex-
plicit formulas for quiver coefficients that are proved by a combination of geo-
metric and combinatorial methods. This is also true for our proof of the finiteness
part (a) for quivers of Dynkin type in Section 6 as well as for our proof of the full
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conjecture for quivers of type A3 in Section 7. However, if the full conjecture is
true then it is natural to expect that some underlying geometric principle is in play.

One might try to express the classes of quiver cycles as linear combinations of
other products of Grothendieck polynomials than those used in Definition 3.2, but
most choices do not lead to finiteness or positivity properties of the coefficients
(or they lead to such properties that follow from Conjecture 1.1). The one interest-
ing alternative choice that we know of is to define dual quiver coefficients c̃µ(�)
of a quiver cycle � by the identity

[O� ] =
∑
µ

c̃µ(�)Gµ1(N1 − E1)Gµ2(N2 − E2) · · ·Gµn(Nn − En),

where the sum is over sequences µ = (µ1, . . . ,µn) of partitions such that µi has
at most ei columns for each i and Ni = ⊕

a : t(a)=i Eh(a). These dual coefficients
are nothing but the ordinary quiver coefficients for � when considered as a cycle
of quiver representations on the dual vector spaces E∨

i for the quiver obtained
from Q by reversing all arrows. This follows from the identity Gλ(U1 − U2) =
Gλ′(U∨

2 − U∨
1 ), which holds for arbitrary rational representations U1 and U2 of

G [9, Lemma 3.4]. We remark that, for an equioriented quiver Q = {1 → 2 →
· · · → n}, the two notions of quiver coefficients coincide without modifying the
quiver. In fact, an equioriented coefficient c(µ1,...,µn)(�) is nonzero only if µ1 is
the empty partition, in which case c(∅,µ2,...,µn)(�) = c̃(µ2,...,µn,∅)(�). On the other
hand, for quivers that are not equioriented, it is difficult to relate the properties of
quiver coefficients and dual quiver coefficients of the same quiver cycle. For the
simplest example, the reader is invited to compare the formulas for inbound and
outbound A3-quivers proved in Section 7.

It is convenient to encode the quiver coefficients for � as a linear combination
of tensors:

P� =
∑
µ

cµ(�)Gµ1 ⊗ Gµ2 ⊗ · · · ⊗ Gµn . (10)

If Conjecture 1.1(a) is true, then P� is an element of the tensor power $⊗n of
the ring of stable Grothendieck polynomials $; otherwise, P� lives in a comple-
tion of this ring. We will use the following notation: for any linear combination
P = ∑

µ cµGµ1 ⊗ · · · ⊗ Gµn and classes α1, . . . ,αn ∈R(G), set P(α1, . . . ,αn) =∑
µ cµGµ1(α1) · · ·Gµn(αn). The definition of quiver coefficients then states that

[O� ] = P�(E1 −M1, . . . ,En −Mn)∈R(G).
In addition to the evidence for Conjecture 1.1 mentioned previously, we have

used Macaulay 2 [23] and other software to compute the quiver coefficients of
many quiver cycles, including some that are not orbit closures (and not of Dynkin
type). In almost all cases where Macaulay 2 was able to produce a free resolu-
tion of the coordinate ring of a quiver cycle, we could convert the corresponding
expression for its Grothendieck class into a finite linear combination of products
of Grothendieck polynomials as in Definition 3.2. In a few cases we did not suc-
ceed, but we suspect this was due to insufficient computing power. We have never
encountered any negative cohomological quiver coefficients; and when the gen-
eral quiver coefficients failed to have alternating signs, we could often show that
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the corresponding quiver cycle did not have rational singularities—for example,
by using Brion’s theorem [5] described in the Introduction.

Example 3.4. Let Q = {1→→ 2} be the Kronecker quiver and fix the dimension
vector e = (3, 3). Let � ⊂ V be the closure of the orbit through the point([ 0 0 0

1 0 0
0 1 0

]
,
[ 1 0 0

0 0 0
0 0 1

])
.

Zwara [35] showed that this orbit closure has ugly singularities; in particular, they
are not rational. With help from Macaulay 2 [23], we have determined the quiver
coefficients for �. There are finitely many of them, and they are encoded in the
following expression P� satisfying that P�(E1,E2 − E1 ⊕ E1) = [O� ]:

P� = 3⊗ G3,1 + 4G1 ⊗ G3 + 1⊗ G2,2 + 2G1 ⊗ G2,1 + 3G2 ⊗ G2 + G2 ⊗ G1,1

+ 2G3 ⊗ G1 + G4 ⊗ 1

− 3⊗ G3,2 − 8G1 ⊗ G3,1 − 6G2 ⊗ G3 − 2G1 ⊗ G2,2 − 5G2 ⊗ G2,1

− 4G3 ⊗ G2 − 2G3 ⊗ G1,1 − 2G4 ⊗ G1

− 1⊗ G4,2 − 3⊗ G4,1,1 − 6G1 ⊗ G4,1 − 3G2 ⊗ G4 − 6G1,1 ⊗ G4

+ 4G1 ⊗ G3,2 + 7G2 ⊗ G3,1 + 2G3 ⊗ G3 + G2 ⊗ G2,2 + 4G3 ⊗ G2,1

+ G4 ⊗ G2 + G4 ⊗ G1,1

+ 1⊗ G4,3 + 5⊗ G4,2,1 + 10G1 ⊗ G4,2 + 10G1 ⊗ G4,1,1 + 14G2 ⊗ G4,1

+ 15G1,1 ⊗ G4,1 + 4G3 ⊗ G4 + 12G2,1 ⊗ G4 − G2 ⊗ G3,2

− 2G3 ⊗ G3,1 − G4 ⊗ G2,1

− 2⊗ G4,3,1 − 4G1 ⊗ G4,3 − 1⊗ G4,2,2 − 16G1 ⊗ G4,2,1 − 16G2 ⊗ G4,2

− 12G1,1 ⊗ G4,2 − 12G2 ⊗ G4,1,1 − 10G1,1 ⊗ G4,1,1 − 10G3 ⊗ G4,1

− 29G2,1 ⊗ G4,1 − G4 ⊗ G4 − 7G3,1 ⊗ G4 − 3G2,2 ⊗ G4

+ 1⊗ G4,3,2 + 6G1 ⊗ G4,3,1 + 5G2 ⊗ G4,3 + 3G1,1 ⊗ G4,3 + 2G1 ⊗ G4,2,2

+ 18G2 ⊗ G4,2,1 + 14G1,1 ⊗ G4,2,1 + 8G3 ⊗ G4,2 + 22G2,1 ⊗ G4,2

+ 6G3 ⊗ G4,1,1 + 18G2,1 ⊗ G4,1,1 + 2G4 ⊗ G4,1 + 16G3,1 ⊗ G4,1

+ 6G2,2 ⊗ G4,1 + G4,1 ⊗ G4 + 3G3,2 ⊗ G4

− 2G1 ⊗ G4,3,2 − 6G2 ⊗ G4,3,1 − 4G1,1 ⊗ G4,3,1 − 2G3 ⊗ G4,3

− 5G2,1 ⊗ G4,3 − G2 ⊗ G4,2,2 − G1,1 ⊗ G4,2,2 − 8G3 ⊗ G4,2,1

− 24G2,1 ⊗ G4,2,1 − G4 ⊗ G4,2 − 11G3,1 ⊗ G4,2 − 3G2,2 ⊗ G4,2

− G4 ⊗ G4,1,1 − 9G3,1 ⊗ G4,1,1 − 3G2,2 ⊗ G4,1,1 − 2G4,1 ⊗ G4,1

− 6G3,2 ⊗ G4,1

+ G2 ⊗ G4,3,2 + G1,1 ⊗ G4,3,2 + 2G3 ⊗ G4,3,1 + 6G2,1 ⊗ G4,3,1

+ 2G3,1 ⊗ G4,3 + G2,1 ⊗ G4,2,2 + G4 ⊗ G4,2,1 + 11G3,1 ⊗ G4,2,1

+ 3G2,2 ⊗ G4,2,1 + G4,1 ⊗ G4,2 + 3G3,2 ⊗ G4,2 + G4,1 ⊗ G4,1,1

+ 3G3,2 ⊗ G4,1,1

− G2,1 ⊗ G4,3,2 − 2G3,1 ⊗ G4,3,1 − G4,1 ⊗ G4,2,1 − 3G3,2 ⊗ G4,2,1
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Although this expression does not have alternating signs, the signs are still pe-
riodic in a curious way. In fact, the terms Gλ⊗Gν of P� displayed here are sorted
according to the lexicographic order on the partitions, with ν taking precedence
over λ, which makes the periodicity readily visible. Furthermore, starting from
the degree-8 term, the signs of the quiver coefficients are the opposite of the ex-
pected. We have also observed this phenomenon for other quiver cycles without
rational singularities but have no explanation for it.

Our calculation also shows that � is the cone over a subvariety of P17 with
Grothendieck class equal to

51h4 − 132h5 + 70h6 + 144h7 − 261h8 + 184h9 − 66h10 + 12h11 − h12,

where h is the class of a hyperplane. Using Brion’s result [5], this gives an alter-
native proof that � lacks rational singularities.

Finally, if the cohomology class of � is expressed in the basis of products
sµ1(E1)sµ2(E2 − E1), then

[�] = 3s3,1(E2 − E1)+ s1(E1)s3(E2 − E1)+ s2,2(E2 − E1)

− 2s1(E1)s2,1(E2 − E1)

− 2s1,1(E1)s2(E2 − E1)+ s1,1(E1)s1,1(E2 − E1)

+ 3s1,1,1(E1)s1(E2 − E1).

This illustrates that our choice of basis is essential to the positivity conjecture.
It is also essential to the finiteness conjecture, since in general it requires an in-
finite linear combination of products Gµ1(E1)Gµ2(E2 − E1) to express a class
Gλ(E2 − E1 ⊕ E1).

4. Degeneracy Loci

This section interprets quiver coefficients as formulas for degeneracy loci defined
by quivers of vector bundles over a base variety. We start by summarizing some
facts about equivariant K-theory of schemes based on Thomason’s paper [33].

4.1. K-Theory

Let G be an algebraic group over the field K and let X be an algebraic G-scheme
over K. A G-equivariant sheaf on X is a coherent OX-module F together with
a given isomorphism I : a∗F ∼= p∗2 F, where a : G × X → X is the action and
p2 : G×X→ X is the projection. This isomorphism must satisfy (m× idX)∗I =
p∗23I � (idG× a)∗I as morphisms of sheaves onG×G×X, wherem is the group
operation on G and p23 is the projection to the last two factors of G × G × X.
A G-equivariant vector bundle on X is a locally free G-equivariant sheaf of con-
stant rank.

The G-equivariant K-homology of X is the Grothendieck group KG(X) gen-
erated by isomorphism classes of G-equivariant sheaves, modulo relations stat-
ing that [F ] = [F ′ ] + [F ′′ ] if there exists a G-equivariant short exact sequence
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0 → F ′ → F → F ′′ → 0. The G-equivariant K-cohomology of X is the Gro-
thendieck ring KG(X) of G-equivariant vector bundles. The group KG(X) is a
module over the ring KG(X); both the ring structure of KG(X) and its action on
KG(X) are defined by tensor products. IfX is a nonsingular variety andG is a lin-
ear algebraic group, then the implicit map KG(X)→ KG(X) that sends an equi-
variant vector bundle to its sheaf of sections is an isomorphism [38, Thm. 1.8]. The
equivariantK-theory of a point is the ringKG(point) = R(G) of virtual represen-
tations of G. Any G-equivariant map f : X → Y defines a ring homomorphism
f ∗ : KG(Y )→ KG(X) given by pullback of vector bundles. If f is flat then it also
defines a pullback mapf ∗ : KG(Y )→ KG(X) on Grothendieck groups. The same
is true if f is a regular embedding, in which case the pullback is given by f ∗ [F ] =∑

i≥0(−1)i[TorYi (OX, F )]. A proper equivariant map f : X→ Y defines a push-
forward map f∗ : KG(X)→ KG(Y ) given by f∗[F ] = ∑

i≥0(−1)i[Rif∗F ]. This
pushforward map is a homomorphism of KG(Y )-modules by the projection for-
mula. If π : E → X is (the total space of ) a G-equivariant vector bundle then
π∗ : KG(X) → KG(E) is an isomorphism [33, Thm. 1.7], and we will identify
KG(E) with KG(X) using this map. The inverse map is pullback along any equi-
variant section X→ E. When G = {e} is the trivial group, we will use the nota-
tion K◦(X) = K {e}(X) and K◦(X) = K{e}(X) for the ordinary K-theory groups
of X.

Stable Grothendieck polynomials can be used to defineK-theory classes as fol-
lows. Given a vector bundle over X that can be written as a direct sum of line
bundles, E = L1 ⊕ · · · ⊕ Lr , and a partition ν, we define

Gν(E ) = Gν(1− L−1
1 , . . . ,1− L−1

r )∈K◦(X). (11)

The symmetry of Gν implies that this class is a polynomial in the exterior powers
of the dual bundle E∨, so it is well-defined even when E is not a direct sum of line
bundles. Furthermore, ifX is aG-scheme and E is aG-equivariant vector bundle,
then (11) defines a class Gν(E )∈KG(X). Given two G-vector bundles E1 and E2,
we define

Gν(E1 − E2) =
∑
λ,µ

dνλµGλ(E1)Gµ′(E∨2 )∈KG(X). (12)

This extends (9). The linear map$→ KG(X) given by Gν �→ Gν(E1−E2) is a ring
homomorphism. The identity (2) implies that Gν(E1⊕E3−E2⊕E3) = Gν(E1−E2)

for any third G-vector bundle E3. Equivalently, the stable Grothendieck polyno-
mial for ν defines a linear operator Gν : KG(X)→ KG(X). Equation (3) implies
that Gν(α + β) = ∑

λ,µ d
ν
λµGλ(α)Gµ(β) for all classes α,β ∈KG(X).

4.2. Interpretations of Grothendieck Classes

Assume thatG is a connected reductive linear algebraic group containing a K-split
maximal torus T ⊂ G; that is, T ∼= (Gm)

r is defined over K. Let V be a ratio-
nal representation of G and let � ⊂ V be a G-stable closed subvariety. Then the
structure sheaf O� is a G-equivariant sheaf on V, so it defines a class [O� ] ∈
KG(V ). If we use that V is an equivariant vector bundle over a point to identify
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KG(V ) with R(G), then this class agrees with the Grothendieck class of � de-
fined in Section 3.1.

Let X be an algebraic scheme equipped with a principal G-bundle P → X. In
other words, G acts freely on P and X equals P/G as a geometric quotient [30].
For aG-variety Y we write YG = P ×G Y = (P ×Y )/G. We will use this notation
only when Y is equivariantly embedded as a closed subvariety of a nonsingular
variety, in which case it follows from [17, Prop. 23] that YG is defined as a scheme.
Given that the category of G-equivariant sheaves on P is equivalent to the cate-
gory of coherent OX-modules [4, Thm. 6.1.4], it follows thatVG is a vector bundle
over X with fibers isomorphic to V [17, Lemma 1] and that the closed subscheme
�G ⊂ VG is a translated degeneracy locus consisting of one copy of � in each
fiber; its structure sheaf defines a Grothendieck class [O�G ]∈K◦(VG) = K◦(X).

More generally, let H be a second algebraic group over K , and assume that P
andX areH-schemes such that the mapP → X is equivariant and theH-action on
P commutes with theG-action. In this case,VG is anH-vector bundle overX and
�G defines an equivariant class [O�G ] ∈KH(VG) = KH(X). Let φG : R(G)→
KH(X) be the ring homomorphism defined by φG(U) = [UG] for any rationalG-
representation U. The following lemma interprets the Grothendieck class [O� ]∈
R(G) as a formula for degeneracy loci.

Proposition 4.1. The H-equivariant Grothendieck class of �G ⊂ VG is given
by [O�G ] = ϕG([O� ])∈KH(X).
Proof. A finitely generated free (K[V ],G)-module F corresponds to a G-equi-
variant vector bundle F̃ = Spec(Sym• F∨) over V, which in turn defines the H-
equivariant vector bundle F̃G = P ×G F̃ on VG [17, Lemma 1]. This construction
applied to (8) produces an exact sequence

0 → (F̃r )G → (F̃r−1)G → · · · → (F̃0)G → O�G → 0

of H-equivariant coherent sheaves on VG. Let s : X → VG be the zero section.
Since the fiber of F̃i over the origin of V equals Fi/mFi, it follows that s∗(F̃i)G =
(Fi/mFi)G. Therefore,

[O�G ] =
∑
i≥0

(−1)is∗ [(F̃i)G] =
∑
i≥0

(−1)i[(Fi/mFi)G] = ϕG([O� ])

in KH(X), as required.

Write T = (Gm)
r as a product of multiplicative groups, and define one-dimen-

sional T -representations L1, . . . ,Lr by Li = K and (t1, . . . , tr ).v = tiv for v ∈
Li. Then R(T ) = Z[L±1

1 , . . . ,L±1
r ] ⊂ Z[[x1, . . . , xr ]], where xi = 1− L−1

i . Since
R(G) ⊂ R(T ) by [24, Cor. II.2.7], we may regard the class [O� ] as a power
series.

The variety � ⊂ V also defines a class [�] in the equivariant Chow cohomol-
ogy ringH ∗

T (V ). If we abuse notation and write xi also for the Chern root c1(Li)∈
H ∗
T (point) = H ∗

T (V ), then this ring is the polynomial ringH ∗
T (V ) = Z[x1, . . . , xr ]

by [34, Sec. 15], and the class [�] coincides with the term of total degree d =
codim(�;V ) in the power series [O� ]. To see this, we need Totaro’s algebraic
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approximation of the classifying space for T [34]. Set P = ∏r
i=1(L

⊕d+1
i \ {0})

and X = P/T = ∏r
i=1 P d. Then H i

T (V ) = H i(VT ) = H i(X) for i ≤ d by [34,
Thm. 1.1] or [17, Prop. 4], where VT = P ×T V and xi ∈H i

T (V ) corresponds to
a hyperplane class in the ith factor of X. The cohomology class of � is defined
by [�] := [�T ] ∈H d(VT ). Let ch : K◦(VT )→ H ∗(VT )⊗ Q be the Chern char-
acter—that is, the ring homomorphism defined formally by ch(L) = exp(c1(L))
for any line bundle L on VT [20, Ex. 3.2.3]. Then ch(ϕT (xi)) = 1− exp(−xi),
so the lowest term of [O� ] agrees with the lowest term of ch(ϕT ([O� ])). Now
Proposition 4.1 and [20, Ex. 15.2.16] imply that ch(ϕT ([O� ])) = ch([O�T ]) =
[�T ]+ higher terms. This shows that [�] is the lowest term in [O� ] and also that
[O� ] has no nonzero terms of degree smaller than codim(�;V ).

We finally prove that the Grothendieck class of� is uniquely determined by the
formula it provides in ordinary K-theory.

Proposition 4.2. The equivariant Grothendieck class of � is the unique virtual
representation [O� ] ∈ R(G) for which [O�G ] = ϕG([O� ]) ∈ K◦(X) for every
nonsingular variety X and principal G-bundle P → X.

Proof. In view of Proposition 4.1, it is enough to show that if α �= 0∈R(G) then,
for some principal G-bundle P → X with X nonsingular, ϕG(α) �= 0∈K◦(X).

Let d be the degree of the lowest nonzero term of α ∈ Z[[x1, . . . , xr ]]. As in
[17, Lemma 9], we embed G in GL(m) for some m and let P be the set of all
m× (m+ d) matrices of full rank. Then G acts freely on P ; the quotients X =
P/G and P/T are nonsingular varieties; and, since P has codimension d + 1 in
the vector space of allm× (m+ d)matrices, it follows from [34, Thm. 1.1] or [17,
Prop. 4] that H i(P/T ) = H i

T (V ) for i ≤ d. Consider the commutative diagram

R(G) ��

ϕG

��

R(T )
ϕT

��

K◦(X) �� K◦(P/T ) ch �� H ∗(P/T )⊗Q,

where the bottom left map is pullback along P/T → P/G = X. Since the im-
age of α in H d(P/T )⊗ Q = H d

T (V )⊗ Q is nonzero, we conclude that ϕG(α) ∈
K◦(X) = K◦(X) is nonzero as well.

4.3. Degeneracy Loci Defined by Quiver Cycles

Let V and G be as in Section 3.2, and let� ⊂ V be a quiver cycle. We will use the
constructions given previously to interpret the quiver coefficients of� in terms of
formulas for degeneracy loci. LetX be an algebraic scheme over K equipped with
vector bundles E1, . . . , En of ranks given by the dimension vector e = (e1, . . . , en).
Define the bundle V = ⊕

a∈Q1
Hom(Et(a), Eh(a)) over X. Because the fibers of V

are isomorphic to the representation space V, any quiver cycle � ⊂ V defines a
translated degeneracy locus �̃ ⊂ V. To be precise, let π : P → X be the princi-
pal G-bundle such that Ei = (Ei)G = P ×G Ei for each i. This bundle can be
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constructed as a multiframe bundle P ⊂ E⊕e1
1 ⊕ · · · ⊕ E⊕enn with fibers π−1(x)

consisting of lists of bases of the fibers Ei(x). Then V = VG and �̃ = �G ⊂ V.

Corollary 4.3. The Grothendieck class of the translated degeneracy locus �̃ ⊂
V is given by

[O�̃ ] =
∑
µ

cµ(�)Gµ1(E1 −M1) · · ·Gµn(En −Mn)∈K◦(V ),

where Mi = ⊕
a :h(a)=i Et(a) = P ×G Mi. Furthermore, the quiver coefficients

for � are uniquely determined by the truth of this identity for all nonsingular va-
rieties X and vector bundles E1, . . . , En.

Proof. This follows from Proposition 4.2 and the definition of quiver coefficients,
since ϕG(Gµi(Ei −Mi)) = Gµi(Ei −Mi ).

Define a representation E• ofQ on the vector bundles E1, . . . , En overX to be a col-
lection of bundle maps Et(a) → Eh(a) corresponding to the arrows a ∈Q1. Such a
representation defines a section s : X→ V. We define the degeneracy locus�(E•)

as the scheme-theoretic inverse image �(E•) = s−1(�̃) ⊂ X. This degeneracy
locus consists of all points in X over which the bundle maps of E• degenerate to
representations in �. For example, if Ẽ• denotes the tautological representation
of Q over V, defined by the universal maps between the pullbacks of the vector
bundles Ei to V, then �̃ = �(Ẽ•).

Assume that X has an action of an algebraic group H over K and that the rep-
resentation E• consists ofH-equivariant vector bundles and bundle maps. Then P
has a commuting H-action (as in Section 4.2) and V is an H-vector bundle, so it
follows from Proposition 4.1 that the identity of Corollary 4.3 holds in KH(V ). It
also follows that s : X→ V is an equivariant section.

We can define a localized class �(E•) in KH(�(E•)) by

�(E•) = s!([O�̃ ]) =
∑
j≥0

(−1)j [TorVj (OX, O�̃)].

This definition is compatible with (H-equivariant) flat or regular pullback and
proper pushforward [21], and the image of �(E•) in KH(X) is given by

�(E•) = s∗ [O�̃ ] =
∑
µ

cµ(�)Gµ1(E1 −M1) · · ·Gµn(En −Mn).

Furthermore, if X and � are Cohen–Macaulay and if the codimension of �(E•)

in X is equal to the codimension of � in V, then we have �(E•) = [O�(E•)
] ∈

KH(�(E•)). This is true because a local regular sequence generating the ideal of
X in V restricts to a local regular sequence defining the ideal of�(E•) in �̃ by [20,
Lemma A.7.1]. This implies that TorV

j (OX, O�̃) = 0 for all j > 0, so �(E•) =
[OX ⊗OV O�̃ ] = [O�(E•)

]. We note that if Q is a Dynkin quiver of type A or D
and if K is algebraically closed, then any orbit closure� ⊂ V is Cohen–Macaulay
[27; 1; 2]. The following corollary generalizes all the preceding formulas involv-
ing quiver coefficients, including Definition 3.2.
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Corollary 4.4. Let E• be a representation of Q consisting of H-equivariant
vector bundles and bundle maps over X. Assume that both X and � are Cohen–
Macaulay and that the codimension of �(E•) in X is equal to the codimension of
� in V. Then

[O�(E•)
] =

∑
µ

cµ(�)Gµ1(E1 −M1) · · ·Gµn(En −Mn)∈KH(X).

Let X be a nonsingular variety. Subject to mild conditions, Corollaries 4.3 and
4.4 have cohomological analogues. For a partition λ = (λ1, . . . , λl) and vec-
tor bundles A and B over X, define sλ(A − B) = det(hλi+j−i )l×l ∈ H ∗(X),
where the classes hi are defined by

∑
i≥0 hi = c(B∨)/c(A∨) and where c(A∨) =

1− c1(A)+ c2(A)− · · · is the total Chern class of A∨.

Corollary 4.5. If X admits an ample line bundle or ifQ is a quiver of Dynkin
type, then the Chow class of the translated degeneracy locus �̃ ⊂ V is given by

[�̃] =
∑

∑|µi |=codim(�)

cµ(�)sµ1(E1 −M1) · · · sµn(En −Mn) ∩ [V ]∈H∗(V ).

Without these conditions, this identity holds in H ∗(V )⊗Q.

If X has an ample line bundle, then one can deduce this statement from the ex-
pression for [�]∈H ∗

G(V ) along the lines of [15, Sec. 2.5]; ifQ is of Dynkin type,
then one can replace Grothendieck polynomials with Schur polynomials in the
proof of the formula for quiver coefficients given in Section 6. The formula with
rational coefficients follows from Corollary 4.3 by using the Chern character [20,
Ex. 15.2.16]. If H is a linear algebraic group, then a cohomological analogue of
Corollary 4.4 can be proved from Corollary 4.5 by first replacingX with the Borel
construction P ×H X, where P/H is an algebraic approximation of the classify-
ing space of H [34; 17], and then applying [20, Prop. 7.1]. We leave the details to
the reader. We expect that Corollary 4.5 is true without the assumptions, but we
have not found a proof.

5. Resolution of Singularities

Our formula for quiver coefficients of Dynkin type is based on Reineke’s resolu-
tion of the singularities of orbit closures for Dynkin quivers [31]. It will be conve-
nient to formulate Reineke’s construction for an arbitrary quiver Q together with
a representation of Q on vector bundles over a base scheme X.

Let X be an algebraic scheme over K that is equipped with a representation E•
of Q on vector bundles over X with rank(Ei ) = ei . Let i ∈ Q0 be a quiver ver-
tex and let r be an integer with 1 ≤ r ≤ ei . Let ρ : Y = Gr(ei − r, Ei ) → X

be the Grassmann bundle of rank-r quotients of Ei with universal exact sequence
0 → S → Ei → Q → 0. (We will avoid explicit notation for pullback of vector
bundles.) We define the scheme Xi,r = Xi,r (E•) to be the zero scheme

Xi,r = Z(Mi → Q) ⊂ Y,

where Mi = ⊕
a :h(a)=i Et(a) and the map Mi → Q is obtained by composing the

projection Ei →Q with the sum of the bundle maps Ej → Ei of the representation



110 Anders Skovsted Buch

E•. This scheme has a natural projection ρ : Xi,r → X. Observe that, on Xi,r , all
the maps Ej → Ei can be factored through the subbundle S ⊂ Ei . Using the fac-
tored maps, we obtain an induced representation E ′• over Xi,r on vector bundles
given by E ′j = Ej for j �= i and E ′i = S.

More generally, let i = (i1, . . . , im) be a sequence of quiver vertices and r =
(r1, . . . , rm) a sequence of positive integers such that, for each i ∈ Q0, we have
ei ≥ ∑

ij=i rj . We can iterate the foregoing construction and define

Xi,r = Xi,r(E•) = (· · · ((Xi1,r1)i2,r2 ) · · · )im,rm .

The variety (Xi1,r1)i2,r2 is constructed using the induced representation E ′• onXi1,r1,
and so forth. Let π : Xi,r → X denote the projection. In general, this map may
have fibers of positive dimension.

Now let Q be a quiver of Dynkin type and let C+ ⊂ Nn be the set of positive
roots for the underlying Dynkin diagram. Here we identify the simple roots with
the unit vectors εi ∈ Nn, 1 ≤ i ≤ n. According to Gabriel’s classification [22],
there is a unique indecomposable representation of Q with dimension vector α
for every positive root α ∈C+, and all indecomposable representations have this
form. This implies that the G-orbits inV correspond to sequences (mα)∈NC+ for
which

∑
mαα is equal to the dimension vector e. Furthermore, since the number

of orbits is finite, it follows that every quiver cycle in V is an orbit closure.
For dimension vectors α,β ∈ Nn, let 〈α,β〉 = ∑n

i=1 αiβi −
∑

a∈Q1
αt(a)βh(a)

denote the Euler form for Q. Let C′ ⊂ C+ be any subset of the positive roots.
A partition C′ = I1 ∪ · · · ∪ Is of this set is called directed if 〈α,β〉 ≥ 0 for all
α,β ∈ Ij , 1 ≤ j ≤ s, and 〈α,β〉 ≥ 0 ≥ 〈β,α〉 for all α ∈ I i and β ∈ Ij with i <
j. A directed partition always exists because the category of representations ofQ
is representation directed [32].

Let (mα) ∈ NC+ be a sequence representing an orbit closure � ⊂ V, let C′ ⊂
C+ be a subset containing {α : mα �= 0}, and let C′ = I1 ∪ · · · ∪ Is be a directed
partition. For each j ∈ [1, s], write

∑
α∈Ij mαα = (p

j

1 , . . . ,pjn) ∈ Nn. Then let
ij = (i1, . . . , il) be any sequence of the vertices i ∈Q0 for which pji �= 0, with no
vertices repeated, and ordered so that the tail of any arrow of Q comes before the
head. Set r j = (pji1, . . . ,pjil ). Finally, let i and r be the concatenated sequences
i = i1i2 · · · is and r = r1r2 · · · r s. We will call any pair of sequences (i , r) arising
in this way a resolution pair for �.

Let Ẽ• denote the representation ofQ on the vector bundles Ẽi = V ×Ei overV
defined by the tautological maps Et(a) → Eh(a), (φ, y) �→ (φ,φa(y)), for a ∈Q1.

Theorem 5.1 (Reineke). Let Q be a quiver of Dynkin type, � ⊂ V an orbit
closure, and (i , r) a resolution pair for �. Then the map π : Vi,r(Ẽ•) → V has
image � and is a birational isomorphism of Vi,r(Ẽ•) with �.

We remark that Reineke’s paper [31] states this theorem only in the case where
the resolution pair (i , r) is constructed from a directed partition of the set of all
positive roots C+, but the proof covers the more general statement.

Our formula for quiver coefficients given in the next section uses a resolution
pair (i , r) and requires a number of steps proportional to the common length of i
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and r. It is therefore desirable to make these sequences as short as possible. One
reasonable choice is to take the minimal set C′ = {α : mα �= 0} and use the fol-
lowing “greedy” algorithm to produce a shortest possible directed partition of C′.

Define I(C′) to be the (unique) largest subset of C′ for which every element
α in I(C′) satisfies both 〈α,β〉 ≥ 0 for all β ∈ C′ and 〈β,α〉 ≤ 0 for all β ∈
C′ \ I(C′). This set can be constructed by starting with all roots α ∈C′ for which
the first inequality holds and then discarding roots until the second inequality is sat-
isfied. Since at least one directed partition forC′ exists, it follows that I(C′) �= ∅.
We now obtain a shortest possible directed partition of C′ by setting I1 = I(C′),
I2 = I(C′ \ I1), I3 = I(C′ \ (I1 ∪ I2)), . . . .

Example 5.2. Let Q = {1 → 2 ← 3} be the quiver of type A3 in which both
arrows point toward the center. The set of positive roots is C+ = {αij | 1 ≤ i <
j ≤ 3}, where αij = ∑j

p=i εp. Given an arbitrary partition C+ = I1 ∪ · · · ∪ Is ,
we write η(α) = j for α ∈ Ij . The partition is directed if and only if η(α) ≤ η(β)
when the following graph has an arrow from α to β and η(α) < η(β) when the
graph has a solid arrow from α to β:

α12

���
�

�
�

�� α33

α22 ��

���
�

�
�

���
�

�
�

α13

���
�

�
�

���
�

�
�

α23 ��

���
�

�
�

α11.

This graph is constructed by drawing a solid arrow from α to β if 〈β,α〉 < 0 or
a dashed arrow from α to β if 〈β,α〉 ≥ 0 and 〈α,β〉 > 0. The shortest directed
partition of the positive roots is C+ = {α22,α12,α23} ∪ {α13,α11,α33}.

Let� ⊂ V = Hom(E1,E2)⊕Hom(E3,E2) be an orbit closure corresponding
to the integer sequence (mij )∈NC+ with

∑
mij αij = e = (e1, e2, e3). Then � is

defined set-theoretically by

� = {(φ1,φ3)∈V | rank(φ1) ≤ m12 +m13 and rank(φ3) ≤ m23 +m13

and rank(φ1 + φ3 : E1 ⊕ E3 → E2) ≤ m12 +m23 +m13}.
As preparation for Section 7, we will work out the desingularization of � ob-
tained from the directed partition C+ = {α22} ∪ {α12,α23,α13} ∪ {α11,α33}. The
corresponding resolution pair (i , r) is given by i = (2,1, 3, 2,1, 3) and r =
(m22,m12 +m13,m23 +m13, e2 −m22,m11,m33). Form the product of Grassmann
varieties P = Gr(m11,E1) × Gr(e2 − m22,E2) × Gr(m33,E3). The desingular-
ization of � defined by (i , r) is the variety

Vi,r(Ẽ•)

= {(S1, S2, S3,φ1,φ3)∈P ×V | φi(Ei) ⊂ S2 and φi(Si) = 0 for i = 1, 3}.
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6. A Formula for Quiver Coefficients

Let Q be an arbitrary quiver, and let X be an algebraic scheme over K equipped
with vector bundles E1, . . . , En such that rank(Ei ) = ei for each i. Over the scheme
V = ⊕

a∈Q1
Hom(Et(a), Eh(a)) we have a tautological representation Ẽ• of Q on

(the pullbacks of ) the bundles Ei . Any pair of sequences i = (i1, . . . , im)∈Qm
0 and

r = (r1, . . . , rm)∈Nm, with
∑

ij=i rj ≤ ei for each i, defines a map π : Vi,r(Ẽ•)→
V. In this section we give a formula for coefficients cµ(i , r) ∈ Z , indexed by se-
quences of partitions µ = (µ1, . . . ,µn) with �(µi) ≤ ei, such that

π∗[OVi,r ] =
∑
µ

cµ(i , r)Gµ1(E1−M1)Gµ2(E2−M2) · · ·Gµn(En−Mn)∈K◦(V ),

where π∗ : K◦(Vi,r)→ K◦(V ) is the proper pushforward along π. IfQ is a quiver
of Dynkin type and (i , r) is a resolution pair for an orbit closure � ⊂ V with
rational singularities, then cµ(�) = cµ(i , r). Our formula is stated in terms of op-
erators on tensors of Grothendieck polynomials that we define as follows.

Let i ∈Q0 be a quiver vertex. We use ψi : $⊗n+1 → $⊗n+1 to denote the lin-
ear operator that applies the coproduct( to the ith factor and multiplies one of the
components of this coproduct to the last factor. More precisely, ψi is defined by

ψi(Gµ1 ⊗ · · · ⊗ Gµn ⊗ Gλ)

=
∑
σ,ν

(∑
τ

dµiστ c
ν
τλ

)
Gµ1 ⊗ · · · ⊗ Gµi−1 ⊗ Gσ ⊗ Gµi+1 ⊗ · · · ⊗ Gµn ⊗ Gν ,

where the sum is over all partitions σ, τ, and ν and where the constants dµiστ and
cντλ are as defined in Section 2.

For integers r, c with r ≥ 0, define the linear map A i,r×c : $⊗n+1 → $⊗n by

A i,r×c(Gµ1 ⊗ · · · ⊗ Gµn ⊗ Gν)
= Gµ1 ⊗ · · · ⊗ Gµi−1 ⊗ G(c)r+ν,µi ⊗ Gµi+1 ⊗ · · · ⊗ Gµn

if �(ν) ≤ r and by A i,r×c(Gµ1⊗· · ·⊗ Gµn⊗ Gν) = 0 otherwise. Here (c)r +ν,µi
denotes the concatenation of the integer sequence (c + ν1, . . . , c + νr) with the
partition µi. When this does not result in a partition, the Grothendieck polyno-
mial G(c)r+ν,µi is defined by equation (7). The operator A i,r×c will be applied with
negative as well as positive integers c.

Let a1, . . . , al ∈ Q1 be the arrows starting at i; that is, t(aj ) = i for each j.
Define the linear map CQ,e

i,r : $⊗n → $⊗n by

C
Q,e
i,r (P ) = A i,r×cψh(a1) · · ·ψh(al)(P ⊗ 1),

where c = rank(Mi )− ei + r.
Given sequences i = (i1, . . . , im)∈Qm

0 and r = (r1, . . . , rm)∈Nm as before, we
define a tensor PQ,e

i,r ∈$⊗n as follows. If m = 0, then we set PQ,e
i,r = 1⊗ · · · ⊗1.

Otherwise we may assume by induction thatPQ,e ′
i ′,r ′ ∈$⊗n has already been defined,

where i ′ = (i2, . . . , im), r ′ = (r2, . . . , rm), and e ′ is the dimension vector defined
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by e ′j = ej for j �= i1 and e ′i1 = ei1 − r1. In this case we set PQ,e
i,r = CQ,e

i1,r1
(P

Q,e ′
i ′,r ′ ).

We define the coefficients cµ(i , r) as the coefficients in the expansion

P
Q,e
i,r =

∑
µ

cµ(i , r)Gµ1 ⊗ Gµ2 ⊗ · · · ⊗ Gµn .

It follows from this definition that cµ(i , r) is zero unless �(µi) ≤ ei for each i.
Given any element P = ∑

cµGµ1 ⊗ · · · ⊗ Gµn ∈$⊗n and α1, . . . ,αn ∈K◦(X),
we set P(α1, . . . ,αn) = ∑

cµGµ1(α1)Gµ2(α2) · · ·Gµn(αn) ∈ K◦(X). The follow-
ing theorem gives the geometric interpretation of the coefficients cµ(i , r).

Theorem 6.1. Let π : Vi,r(Ẽ•) → V be the map associated to sequences i , r.
Then π∗([OVi,r ]) = PQ,e

i,r (E1 −M1, . . . , En −Mn)∈K◦(V ).

Corollary 6.2. Let Q be a quiver of Dynkin type, � ⊂ V an orbit closure,
and (i , r) a resolution pair for �. If � has rational singularities then P� =
P
Q,e
i,r or, equivalently, the quiver coefficients of � are given by cµ(�) = cµ(i , r).

Furthermore, this identity is true for all cohomological quiver coefficients without
the assumption about rational singularities.

Proof. If X is a nonsingular variety, then it follows from Reineke’s theorem that
π : Vi,r(Ẽ•) → �̃ is a desingularization of the translated degeneracy locus �̃ ⊂
V. If � has rational singularities, then π∗([OVi,r ]) = [O�̃ ] ∈ K◦(V ) and so the
corollary follows by comparing Theorem 6.1 to Corollary 4.3. Without this as-
sumption, we still have π∗[Vi,r] = [�̃] in the Chow ring of V, which suffices to
determine the cohomological quiver coefficients.

Remark 6.3. If � ⊂ V is an orbit closure of Dynkin type, then the quiver coef-
ficients for� are identical to the quiver coefficients for� = �×Spec(K) Spec(K),
where K is an algebraic closure of K. Corollary 6.2 therefore applies also if� has
rational singularities, which has been proved for quivers of type A in any charac-
teristic and for quivers of type D in characteristic zero [27; 1; 2].

We have computed the coefficients cµ(i , r) for lots of randomly chosen quiversQ
and sequences i and r, and in all cases they had alternating signs in the following
sense.

Conjecture 6.4. We have (−1)
∑|µi |+∑|µ′

i
|cµ(i , r)cµ′(i , r) ≥ 0 for arbitrary

sequences of partitions µ and µ′.

In almost all examples that we computed, the coefficients cµ(i , r) of lowest degree
were positive. However, we also found examples where the lowest-degree coeffi-
cients were negative, the next degree up were positive, and so forth. We speculate
that in many examples the class π∗([OVi,r ]) has been equal to the Grothendieck
class of the image of π, which is always a quiver cycle in V. We therefore regard
our verification of Conjecture 6.4 as additional evidence for Conjecture 1.1. For
the proof of Theorem 6.1, we need the following Gysin formula from [8,Thm. 7.3].
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Theorem 6.5. Let F and B be vector bundles on X. Write rank(F ) = s + q
and let ρ : Gr(s, F ) → X be the Grassmann bundle of s-planes in F with uni-
versal exact sequence 0 → S → ρ∗F → Q → 0. Let I = (I1, . . . , Iq) and J =
(J1, J2, . . . ) be finite sequences of integers such that Ij ≥ rank(B) for all j. Then

ρ∗(GI(Q− ρ∗B) · GJ(S − ρ∗B)) = GI−(sq ),J(F − B)∈K◦(X),

where I − (sq) and J = (I1 − s, . . . , Iq − s, J1, J2, . . . ).

Consider a variety Vi,r = Z(Mi → Q) ⊂ Y = Gr(ei − r, Ei ) as in the previous
section, where 0 → S → Ei → Q → 0 is the universal exact sequence on Y. Let
ρ : Vi,r → V be the projection and let E ′• be the induced representation on Vi,r .

Lemma 6.6. Let P ′ ∈ $⊗n+1 and set P = ψi(P
′). Then P ′(α1, . . . ,αn, Q) =

P(α1, . . . ,αi−1,αi −Q,αi+1, . . . ,αn, Q) for any elements α1, . . . ,αn ∈K◦(Vi,r ).
Proof. For partitions µi and λ we have

Gµi(αi) · Gλ(Q) = Gµi(αi −Q+Q) · Gλ(Q)
=

∑
σ,τ

dµiστGσ(αi −Q) · Gτ(Q) · Gλ(Q)

=
∑
σ,τ

dµiστGσ(αi −Q)
∑
ν

cντλGν(Q).

Proposition 6.7. Let P ′ ∈$⊗n and set P = CQ,e
i,r (P ) and M′

i =
⊕

h(a)=i E ′t(a).
Then ρ∗(P ′(E ′1 −M′

1, . . . , E ′n −M′
n)) = P(E1 −M1, . . . , En −Mn) in K◦(V ).

Proof. For each j ∈Q0 we have [Mj ] = [M′
j ] + p[Q] ∈ K◦(Vi,r ), where p is

the number of arrows from i to j. Lemma 6.6 therefore implies that

P ′(E ′1 −M′
1, . . . , E ′n −M′

n) = P ′′(E ′1 −M1, . . . , E ′n −Mn, Q),
where P ′′ = ψh(a1) · · ·ψh(al)(P ′ ⊗ 1).

It follows from Example 3.3 that [OVi,r ] = GR(Q−Mi ) inK◦(Y ), where R =
(rank(Mi )

r ). The pushforward of P ′(E ′1 −M′
1, . . . , E ′n −M′

n) from Vi,r to Y is
therefore equal to P ′′(E ′1 −M1, . . . , E ′n −Mn, Q) · GR(Q).

Let µi and ν be partitions. If �(ν) > r then Gν(Q) = 0. Otherwise it follows
from the factorization formula (4) that Gν(Q)GR(Q − Mi ) = GR+ν(Q − Mi ),
and Theorem 6.5 implies that

ρ ′∗(GR+ν(Q−Mi ) · Gµi(S −Mi )) = G(c)r+ν,µi(Ei −Mi ),

where ρ ′ : Y → V is the projection and c = rank(Mi ) − ei + r. We conclude
that ρ∗(P ′(E ′1 −M′

1, . . . , E ′n −M′
n)) = P(E1 −M1, . . . , En −Mn), where P =

A i,r×c(P ′′) = CQ,e
i,r (P

′).

Proof of Theorem 6.1. Let X ′ = Gr(ei1 − r1, Ei1)→ X be the Grassmann bundle
of rank-r1 quotients of Ei1. Then the bundles E ′j are defined on X ′, and Y =
V ×X X ′ can be constructed as the bundle

⊕
a∈Q1

HomOX ′(Et(a), Eh(a)) over X ′.
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It follows that Vi1,r1 = Z(Mi → Ei/E ′i ) ⊂ Y is isomorphic to the bundle⊕
a∈Q1

HomOX ′(Et(a), E ′h(a)), which implies that Vi1,r1 is an affine bundle over V ′ =⊕
a∈Q1

HomOX ′(E ′t(a), E ′h(a)). Moreover, we have the fiber square

Vi,r ��

β

��

V ′
i ′,r ′(E ′• )

β ′

��

Vi1,r1 �� V ′.

By induction on m we know that β ′∗(1) = P
Q,e ′
i ′,r ′ (E ′1 − M′

1, . . . , E ′n − M′
n) ∈

K◦(V ′); since the horizontal maps are flat, this implies that β∗([OVi,r ]) = β∗(1) =
P
Q,e ′
i ′,r ′ (E ′1 −M′

1, . . . , E ′n −M′
n)∈K◦(Vi1,r1). Proposition 6.7 finally shows that

π∗([OVi,r ]) = ρ∗(PQ,e ′
i ′,r ′ (E ′1 −M′

1, . . . , E ′n −M′
n))

= PQ,e
i,r (E1 −M1, . . . , En −Mn)∈K◦(V ),

as required.

Remark 6.8. For applications of our formula, it would be useful to know the re-
duced equations generating the ideal of an orbit closure � ⊂ V for a quiver Q of
Dynkin type. For example, such equations will result in a more explicit construc-
tion of the degeneracy loci �(E•) defined by �.

Let φ ∈V be a representation ofQ on the vector spaces E1, . . . ,En, and fix an-
other representationψ = (ψa)a∈Q1 on vector spacesF1, . . . ,Fn.A homomorphism
from ψ to φ is a collection β of linear maps βi : Fi → Ei such that φaβt(a) =
βh(a)ψa as a map from Ft(a) to Eh(a) for all a ∈ Q1. Let Hom(ψ,φ) denote the
vector space of all such homomorphisms. Bongartz has proved in [3, Prop. 3.2]
that φ ′ belongs to the orbit closure � = G.φ if and only if dim Hom(ψ,φ ′) ≥
dim Hom(ψ,φ) for all (indecomposable) representations ψ of Q. Set

A =
⊕
i∈Q0

Hom(Fi,Ei) and B =
⊕
a∈Q1

Hom(Ft(a),Eh(a)),

and letγψ,φ : A→B be the linear map given byγψ,φ(β)= (βh(a)ψa−φaβt(a))a∈Q1.

Define rankψ(φ) = rank(γψ,φ). We then have

� = {φ ′ ∈V | rankψ(φ
′) ≤ rankψ(φ)

for all indecomposable representations ψ of Q}. (13)

This description of the orbit closure� gives rise to set-theoretic equations for� in
terms of minors of the matrices γψ,φ. It is interesting to ask if these equations in fact
generate the ideal I(�) ⊂ k[V ]. This has been proved for equioriented quivers of
type A by Lakshmibai and Magyar [27], but reduced equations for orbit closures
appear to be unknown for quivers of other types. We have used Macaulay 2 [23]
to check that minors of the matrices γψ,φ in fact generate the ideal of the inbound
A3-orbit closure given by mij = 1 for 1≤ i < j ≤ 3 (see Example 5.2).
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If E• is a representation ofQ on vector bundles overX, then each fixed represen-
tation ψ of Q defines a vector bundle map from A = ⊕

i∈Q0
Hom(Fi ⊗ OX, Ei )

to B = ⊕
a∈Q1

Hom(Ft(a) ⊗OX, Eh(a)), and the degeneracy locus �(E•) is the set
of points x ∈X where the rank of this bundle map is at most rankψ(φ) for all ψ.
Assuming that (13) gives the reduced equations of �, this description of �(E•)

also captures its scheme structure.

7. Quiver Coefficients of Type A3

In this section we prove combinatorial formulas for the (nonequioriented) quiver
coefficients of type A3. These formulas are based on counting set-valued tableaux
and show that the coefficients have alternating signs.

7.1. Inbound A3 Quiver

Let Q = {1 → 2 ← 3} be the inbound quiver of type A3 from Example 5.2, and
let � ⊂ V be the orbit closure given by (mij ) ∈ NC+. For partitions λ, µ, and ν,
define the coefficient

cλ,µ,ν =
∑
σ,τ

d
(m33)

m12

λ,σ d (m11)
m23

τ,ν cµστ ,

where the sum is over all partitions σ and τ.

Proposition 7.1. The coefficient cλ,µ,ν is equal to (−1)|λ|+|µ|+|ν|−m33m12−m11m23

times the number of pairs (σ, T )—a partition σ contained in the rectangle (m33)
m12

withm12 rows andm33 columns, and a set-valued tableau T whose shape is a par-
tition contained in (m11)

m23 —that satisfy the following conditions.

(i) If σ is placed in the upper left corner of the rectangle (m33)
m12 while the

180-degree rotation of λ is placed in the lower right corner, then their union
is the whole rectangle and their overlap is a rook-strip; that is, the overlap
contains at most one box in any row or column.

(ii) If T is placed in the upper left corner of the rectangle (m11)
m23 while the

180-degree rotation of ν is placed in the lower right corner, then their union
is the whole rectangle and their overlap is a rook-strip.

(iii) The composition w(T )u(σ) is a reverse lattice word with content µ (in the
terminology of Theorem 2.1).

Proof. This follows from Theorem 2.1 because d(m33)
m12

λ,σ is nonzero exactly when
condition (i) is satisfied, in which case d(m33)

m12

λ,σ = (−1)|λ|+|σ|−m33m12 . Notice also
that (i) and (ii) can be satisfied only if λ ⊂ (m33)

m12 and ν ⊂ (m11)
m23 .

Theorem 7.2. The quiver coefficients of the inbound quiver of type A3 are
given by

P� =
∑
λ,µ,ν

cλ,µ,νGλ ⊗ G(m11+m13+m33)m22,µ ⊗ Gν .
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Lemma 7.3. In the situation of Theorem 6.5, let λ be a partition such that λ1 =
λb = s, where b = rank(B). Then ρ∗(Gλ(ρ∗B − S )) = G(λq+1,λq+2,...)(B − F ).
Proof. The Grassmann bundle Gr(s, F ) of s-planes in F is identical to the bun-
dle Gr(q, F ∨) of q-planes in F ∨ with tautological exact sequence 0 → Q∨ →
ρ∗F ∨ → S∨ → 0. The lemma follows from Theorem 6.5 in light of the identity
Gλ(ρ∗B − S ) = Gλ′(S∨ − ρ∗B∨).

Proof of Theorem 7.2. LetX be a smooth variety with vector bundles E1, E2, E3 of
ranks e1, e2, e3, and let �̃ ⊂ V = Hom(E1, E2) ⊕ Hom(E3, E2) be the translated
degeneracy locus. Form the product of Grassmann bundles

P = Gr(m11, E1)×V Gr(e2 −m22, E2)×V Gr(m33, E3)
π−→ V

with tautological subbundles E ′i ⊂ Ei, 1 ≤ i ≤ 3. The desingularization of �̃ is
the iterated zero section Vi,r = Z(E ′1 ⊕ E ′3 → E ′2) ⊂ Z(E1 ⊕ E3 → E2/E ′2) ⊂ P.
The Thom–Porteous formula (Example 3.3) implies that the Grothendieck class
of this locus in K◦(P ) is given by

[OVi,r ] = G(m11)e2−m22(E ′2 − E ′1)G(m33)e2−m22(E ′2 − E ′3)G(e1+e2 )m22(E2/E ′2 − E1⊕ E3).

The pushforward of this class along the projection P → Gr(e2−m22, E2) is equal
to G(m11)m23(E ′2−E1)G(m33)m12(E ′2−E3)G(e1+e3)m22(E2/E ′2−E1⊕E3) by Lemma 7.3.
The first two factors of this product can be rewritten as

G(m11)m23(E ′2 − E1)G(m33)m12(E ′2 − E3)

=
∑
λ,σ,τ,ν

d
(m33)

m12

λ,σ d (m11)
m23

τ,ν Gλ(E1)Gσ(E ′2 − E1 ⊕ E3)Gτ(E ′2 − E1 ⊕ E3)Gν(E3)

=
∑
λ,µ,ν

cλ,µ,νGλ(E1)Gµ(E ′2 − E1 ⊕ E3)Gν(E3).

Theorem 6.5 applied to the bundle Gr(e2 −m22, E2)→ V therefore shows that

π∗([OVi,r ]) =
∑
λ,µ,ν

cλ,µ,νGλ(E1)G(m11+m13+m33)m22,µ(E2 − E1 ⊕ E3)Gν(E3)

in K◦(V ), as required.

7.2. Outbound A3 Quiver

Now letQ = {1← 2 → 3}be the quiver of typeA3 with both arrows pointing away
from the center, and let� ⊂ V be the orbit closure corresponding to the sequence
(mij )∈NC+, whereC+ = {αij | 1≤ i < j ≤ 3}. LetR = (m22)

m13 be the rectan-
gle withm13 rows andm22 columns. For partitions λ,µ, ν, we let dRλ,µ,ν denote the
2-fold coproduct coefficients defined by (2(GR) = ∑

λ,µ,ν d
R
λ,µ,νGλ ⊗ Gµ ⊗ Gν .

Proposition 7.4. The coefficient dRλ,µ,ν is zero unless λ, µ, and ν are contained
in R, in which case it is equal to (−1)|λ|+|µ|+|ν|−m22m13 times the number of triples
(σ, τ, T ), where σ and τ are partitions such that σ ⊂ τ ⊂ R and where T is a
set-valued tableau of skew shape τ/σ, that satisfy the following conditions.
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(i) The Young diagram σ is contained in λ, and λ/σ is a rook-strip.
(ii) If τ is placed in the upper left corner of R while the 180-degree rotation of

ν is placed in the lower right corner, then their union is R and their overlap
is a rook-strip.

(iii) The word w(T ) is a reverse lattice word with content µ.

Proof. It follows from [9, Lemma 6.1] that(2(GR) = ∑
(−1)|λ|+|τ/σ|+|ν|−|R|Gλ⊗

Gτ/σ ⊗ Gν , where the sum is over all partitions λ, σ, τ,µ ⊂ R satisfying (i) and
(ii). The coefficient of Gµ in Gτ/σ is equal to (−1)|µ|−|τ/σ| times the number of
set-valued tableaux T of shape τ/σ that satisfy (iii) by [9, Thm. 6.9].

Theorem 7.5. The quiver coefficients of the outbound quiver of type A3 are
given by

P� =
∑
λ,µ,ν

dRλ,µ,νG(m22+m23)m11,λ ⊗ Gµ ⊗ G(m22+m12 )m33,ν .

Proof. We use the directed partition C+ = {α11} ∪ {α33,α23,α13} ∪ {α22,α12}
and the resolution pair of i = (1, 2,1, 3, 2,1) and r = (m11,m23 + m13,m13, e3,
m22 +m12,m12). Given a nonsingular variety X with vector bundles E1, E2, E3 of
ranks e1, e2, e3, form the product

P = Fl(m12,m12 +m13; E1)×V Gr(m22 +m12, E2)→ V
with universal subbundles E ′′1 ⊂ E ′1 ⊂ E1 and E ′2 ⊂ E2. The desingularization of
�̃ ⊂ V corresponding to (i , r) is the iterated zero section

Vi,r = Z(E ′2 → E ′1/E ′′1 ⊕ E3) ⊂ Z(E2 → E1/E ′1) ⊂ P.
The Grothendieck class of this locus in K◦(P ) is

[OVi,r ] = G(e2 )m11(E1/E ′1 − E2)G(m22+m12 )m13(E ′1/E ′′1 − E ′2)G(m22+m12 )e3(E3 − E ′2),
and, by Theorem 6.5, the pushforward of this class along the projectionP → P ′ =
Gr(m12 +m13, E1)×V Gr(m22 +m12, E2) is equal to

G(e2 )m11(E1/E ′1 − E2)GR(E ′1 − E ′2)G(m22+m12 )e3(E3 − E ′2)
in K◦(P ′). After using the 3-fold coproduct identity

GR(E ′1 − E ′2) =
∑

dRλ,µ,νGλ(E ′1 − E2)Gµ(E2)Gν(−E ′2),
as well as the factorization identity

Gν(−E ′2)G(m22+m12 )e3(E3 − E ′2) = G(m22+m12 )e3,ν(E3 − E ′2),
it follows from Theorem 6.5 and Lemma 7.3 that the pushforward of the class in
K◦(P ′) along P ′ → V is equal to

π∗([OVi,r ]) =
∑
λ,µ,ν

dRλ,µ,νG(m22+m23)m11,λ(E1− E2)Gµ(E2)G(m22+m12 )m33,ν(E3 − E2),

as required.



Quiver Coefficients of Dynkin Type 119

References
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