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1. Introduction

The starting point for constructing all known examples of compact manifolds with
positive (or even quasi-positive) curvature is the fact that bi-invariant metrics on
compact Lie groups are nonnegatively curved. In order to generalize this funda-
mental starting point, we address the following problem: Given a compact Lie
group G, classify the left-invariant metrics on G that have nonnegative curvature.
New examples could potentially, via familiar quotient constructions, lead to new
examples of quasi-positively curved spaces. On the other hand, proofs that there
are no new examples would serve as further evidence that the known constructions
are rigid and canonical.

The first two cases, G = SO(3) and U(2), were completely solved in [1]. For
G = U(2), all such metrics lie in the closure of those coming from Cheeger’s
method, which is essentially the only known construction of nonnegatively curved
left-invariant metrics. These classifications made use of techniques that work only
in low dimensions. For higher-dimensional groups, more tools are necessary to
approach the problem effectively. One important new tool is the following, which
implies in particular that the nonnegatively curved metrics form a path-connected
subset within the space of all left-invariant metrics.

Theorem1.1. If h is a left-invariant metric with nonnegative curvature on a com-
pact Lie group G, then the unique inverse-linear path from any fixed bi-invariant
metric h(0) to h(1) = h is through nonnegatively curved metrics.

Here, a path of inner products on g = TeG (or the induced path of left-invariant
metrics) is called inverse-linear if the inverses of the associated path of symmet-
ric matrices form a straight line. So to classify the left-invariant metrics on G

with nonnegative curvature, we can first classify the directions h′(0) in which one
can move away from a fixed bi-invariant metric h(0) such that the inverse-linear
path h(t) appears (up to derivative information at t = 0) to remain nonnegatively
curved. Then, for each candidate direction, we must check how far the nonnega-
tive curvature is maintained along that path.
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This is the approach we use for general G. In the case G = SO(4), our results
provide strong evidence that all left-invariant metrics lie in the closure of those
coming from Cheeger’s method; that is, there do not seem to be any new examples.
One of our stronger results toward the classification for SO(4) is the following.

Theorem 1.2. If h is a left-invariant metric with nonnegative curvature on SO(4)
and if the matrix of h has an eigenvector in one of the simple factors of so(4) =
so(3) ⊕ so(3), then h is a known example of a metric of nonnegative curvature.

The known examples come from Cheeger’s method via an action of T 2 or S3, as
explained in Section 7. Those from a T 2 action have a singular eigenvector, as in
Theorem 1.2.

The authors are pleased to thank Burkhard Wilking, Craig Sutton, Emily Proc-
tor, Zachary Madden, Nela Vukmirovic, Angela Doyle, Min Kim, and the referee
for numerous helpful discussions and comments on this work.

2. Cheeger’s Method

In this section, we review Cheeger’s method for altering a nonnegatively curved
metric via a group of isometries and then use it to prove Theorem 1.1.

Let (M,h0) be a nonnegatively curved manifold on which a compact Lie group
G acts by isometries. Let hR be a right-invariant metric on G with nonnegative
curvature (often chosen to be bi-invariant). Observe that G acts on M × G as
g � (p, a) = (g � p, ag−1). The orbit space is diffeomorphic to M via the map
[p, g] �→ g �p. Consider the 1-parameter family of induced nonnegatively curved
Riemannian submersion metrics, ht , on this orbit space:

(M,ht ) = (M × (G, (1/t)hR))/G.

This family extends smoothly at t = 0 to the original metric h0 on M. To describe
the metric variation at a fixed p ∈M, let {v1, . . . , vk} ⊂ TpM denote the values at
p of the Killing fields on M associated to an hR-orthonormal basis {e1, . . . , ek} of
the Lie algebra g of G. Cheeger’s formula in [2] implies that the path of matrices
At

ij = ht(vi, vj ) evolves according to

At = A0(I + tA0)−1. (2.1)

Several authors have derived curvature variation formulas, although they usu-
ally assume that hR is bi-invariant; see [5; 6; 8; 9]. For this, it is useful to consider
the bijection �t : TpM → TpM, which describes ht in terms of h0 in the sense
that, for all X,Y ∈ TpM,

ht(X,Y ) = h0(�t(X),Y ).

This family of inner products on TpM is inverse-linear. This means that the path
t �→ �−1

t is linear, so�t = (I−t�)−1 for some endomorphism� : TpM → TpM.

Cheeger mentioned that ht has no more zero-curvature planes than h0. A pre-
cise formulation of this comment, found for example in [6], is as follows.
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Lemma 2.1. If the plane σ = span{X,Y } has positive curvature with respect to
h0, then the plane �−1

t (σ) = span{�−1
t (X),�−1

t (Y )} has positive curvature with
respect to ht .

Hence the most natural variational approach is to differentiate the curvature with
respect to ht of the plane �−1

t (σ); this was systematically studied in [5]. In the
next section, we will borrow and generalize this idea.

Proof of Theorem 1.1. Let h be a left-invariant metric with nonnegative curvature
on the compact Lie group G. Let h0 be a fixed bi-invariant metric on G. Consider
the family ht of nonnegatively curved metrics on G defined by

(G,ht ) = ((G,h0) × (G, (1/t)h))/G,

where G acts diagonally on the right of both factors. In order for this action to
be isometric, h must be reconsidered as a right-invariant metric on G, which is no
problem because the left- and right-invariant metrics determined by an inner prod-
uct on g are isometric via the inversion map. Notice that each ht is a left-invariant
metric on G.

Let {E1, . . . ,Ek} be an h0-orthonormal basis of g that diagonalizes h. Let
{λ1, . . . , λk} be the corresponding eigenvalues of h, so that

{
ei = Ei/

√
λi

}
is

an h-orthonormal basis of g. In equation (2.1), vi = ei and A0 = diag(1/λi), so
At = diag(1/(λi + t)). Thus, in the basis {Ei}, the matrix for �t is

�t = diag(1 + (1/λi)t)
−1.

Therefore, �t = (I − t�)−1, where � = diag(−1/λi). We see that, as previously
mentioned, the path is inverse-linear.

There is no value of t for which ht = h. Instead we will show that the path
ht (for t ∈ [0, ∞)) visits scalings of all of the metrics along the unique inverse-
linear path h̃s between h̃0 = h0 and h̃1 = h. Let �̃s determine this path, so that
h̃s(X,Y ) = h0(�̃sX,Y ) for all X,Y ∈ g. We have that �̃s = (I − s�̃)−1, where
�̃ with respect to the basis {Ei} is given by

�̃ = I − �̃−1
1 = diag(1 − 1/λi).

It is easy to see that the paths �̃s (for s ∈ [0,1)) and �t (for t ∈ [0, ∞)) visit
the same family of metrics up to scaling. More precisely, c · �̃s = �t when t =
s/(1 − s) and c = 1 − s.

The method of the proof can be used to connect any two nonnegatively curved left-
invariant metrics h1 and h2 on G through a path of nonnegatively curved metrics.
The resultant path of inner products on g is inverse-linear, but this is largely irrel-
evant to the question at hand because the path is not through left-invariant metrics.

3. Curvature Variation of 0-Planes

In this section and the next, we derive a curvature variation formula for an inverse-
linear path of left-invariant metrics beginning at a bi-invariant metric.
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Let G be a compact Lie group. Let ht be an inverse-linear path of left-invariant
metrics onGbeginning at a bi-invariant metrich0. The value ofht at e is determined
in terms of h0 by some self-adjoint �t : g → g defined so that, for all X,Y ∈ g,

h(X,Y ) = h0(�t(X),Y ).

Recall that “inverse-linear” means that

�t = (I − t�)−1

for some endomorphism � : g → g. Observe that � = d
dt

∣∣
t=0�t and hence � is

h0-self-adjoint. For fixed X,Y ∈ g, define κ(t) to be the unnormalized sectional
curvature of {�−1

t X,�−1
t Y } with respect to the metric ht . The domain of κ(t) is

the open interval of t values for which �t represents a nondegenerate metric; this
interval depends on the eigenvalues of �.

Two important decisions here are inspired by properties of Cheeger’s method:
(1) restricting to inverse-linear paths, and (2) “twisting” the plane whose curvature
we are tracking. Even though we are considering general paths not necessarily
arising from Cheeger’s method, Theorem 1.1 and several results to follow indicate
that these decisions provide the correct approach.

IfZ1,Z2 ∈ g, we write 〈Z1,Z2〉 = h0(Z1,Z2), |Z1|2 = h0(Z1,Z1), and |Z1|2ht
=

ht(Z1,Z1) = 〈�tZ1,Z1〉. We first describe κ(t) in the important special case where
[X,Y ] = 0, so that κ(0) = 1

4 |[X,Y ]|2 = 0. In other words, we first study the
variation of curvature for an initially zero-curvature plane.

Proposition 3.1. If [X,Y ] = 0, then κ(0) = 0, κ ′(0) = 0, κ ′′(0) = 0, and
1
6κ

′′′(0) = 〈[X,�Y ] + [�X,Y ], [�X,�Y ]〉 + 〈[�X,X],�[�Y,Y ]〉
− 〈[X,�Y ],�[X,�Y ]〉 − 〈[X,�Y ],�[�X,Y ]〉
− 〈[�X,Y ],�[�X,Y ]〉.

Moreover, for all t in the domain of κ ,

κ(t) = t 3 · 1
6κ

′′′(0) − t 4 · 3
4 |[�X,�Y ] − �([�X,Y ] + [X,�Y ])|2ht

.

We will prove this proposition in the next section as a special case of a more gen-
eral formula that does not assume that X and Y commute.

In the Taylor series of κ(t) at 0, the first nonvanishing derivative is the third,
after which the remaining tail sums to a nonpositive term involving the norm with
respect to ht of the vector

D = [�X,�Y ] − �([�X,Y ] + [X,�Y ]).

In light of our formula for κ(t), we can assert the following definition.

Definition 3.2. We call � (or the variation �t) infinitesimally nonnegative if
the following equivalent conditions hold.

(1) For all X,Y ∈ g, there exists an ε > 0 such that κ(t) ≥ 0 for t ∈ [0, ε).
(2) For all commuting pairs X,Y ∈ g, κ ′′′(0) ≥ 0, and κ ′′′(0) = 0 implies that

D = 0.
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If in the first condition a single choice of ε > 0 works for all pairs X,Y, then
�t has nonnegative curvature for t ∈ [0, ε). In this case, we call the variation lo-
cally nonnegative. We do not know if infinitesimally nonnegative implies locally
nonnegative. In any case, the infinitesimally nonnegative � are the candidate di-
rections; the best available derivative information predicts that the paths in these
directions are through nonnegatively curved metrics.

It is significant that the tail of the power series for κ(t) is nonpositive. In addition
to demonstrating the equivalence of the two parts of Definition 3.2, this nonposi-
tivity property immediately implies the following weak version of Theorem 1.1: If
ht is nonnegatively curved for some t > 0, then � is infinitesimally nonnegative.
This is the only version of Theorem 1.1 we will need throughout the rest of the
paper. It states that one will locate all nonnegatively curved metrics by searching
only along the infinitesimally nonnegative paths.

If one omits the plane twisting and instead defines κ(t) as the unnormalized
sectional curvature of {X,Y }, then κ(0) = 0 implies that κ ′(0) = 0 and that
κ ′′(0) = |[X,�Y ] + [�X,Y ]|2. This statement is true without the assumption of
an inverse-linear path so long as � = d

dt

∣∣
t=0�t. It is interesting that κ ′′(0) ≥ 0,

but this means that the untwisted setup provides little help in deciding which vari-
ations remain nonnegatively curved. We will stick with the twisted version for the
remainder of the paper.

Example 3.3. Suppose H ⊂ G is a Lie subgroup with Lie algebra h ⊂ g. For
A ∈ g, let Ah and Ap denote the projections of A onto and orthogonal to h with
respect to h0. The variation �t(A) = 1

1+t
Ah + Ap is inverse-linear and has non-

negative curvature for t > 0. In this variation, vectors tangent to H are gradually
shrunk. The parameterization looks natural when re-described as a family of sub-
mersion metrics: (G,ht ) = ((G,h0) × (H, (1/t)h0))/H. The t = 0 derivative is
�A = −Ah. Proposition 3.1 yields:

1
6κ

′′′(0) = |[Xh,Y h]|2. (3.1)

Equation 3.1 (together with Lemma 2.1 and the nonpositivity of the tail of the
power series for κ(t)) re-proves Eschenburg’s formula from [3], which states that,
with respect to the metric ht (for fixed t > 0)), the plane spanned by �−1

t (X) and
�−1

t (Y ) has zero curvature if and only if [X,Y ] = 0 and [Xh,Y h] = 0.
The full domain of this variation is (−1, ∞). As t decreases from 0 toward −1,

vectors tangent to H are enlarged. Considering negative values of t for this varia-
tion is equivalent to considering positive values of t for the variation in the opposite
direction, −�. For this opposite variation, 1

6κ
′′′(0) = −|[Xh,Y h]|2. Therefore, ex-

panding h immediately creates some negative curvature unless [Xh,Y h] = 0 when-
ever [X,Y ] = 0. If h is abelian then κ ′′′(0) = 0 for all commuting X,Y, which
suggests that enlarging an abelian subalgebra might preserve nonnegative curva-
ture. Indeed, it is proven in [4] that enlarging an abelian subalgebra as far as 4

3
always preserves nonnegative curvature. In Section 6, we will study this variation
in greater depth to determine which subalgebras can be enlarged without losing
nonnegative curvature.
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Notice that, for a > 0, � and a� generate different parameterizations of the same
family of metrics. A slightly less obvious equivalence involves adding a multiple
of the identity to �.

Proposition 3.4. If � is infinitesimally nonnegative, then so is �̃ = � + a · I
for any a > 0.

This proposition gives the correct equivalence modulo which one should classify
the infinitesimally nonnegative endomorphisms �.

Proof of Proposition 3.4. The endomorphisms � and �̃ yield the same values for
κ ′′′(0) and D in Proposition 3.1. To verify this, it is convenient to use Equation 4.4.

An alternative proof is to observe that the inverse-linear paths�(t) = (I−t�)−1

and �̃(s) = (I − s�̃)−1 visit the same family of metrics modulo scalings and re-
parameterizations. More precisely, c · �(t) = �̃(s) provided c = 1−s ·a and t =
s/(1 − s · a). Note that this idea was used previously in the proof of Theorem 1.1.

4. Curvature Variation of General Planes

In this section we state and prove a generalization of Proposition 3.1 that does not
assume X and Y commute. We use this result to prove the proposition.

Certain elements of g will appear frequently in what follows, so to simplify the
exposition we introduce the Lie algebra elements

A = [�X,Y ] + [X,�Y ],

B = [�X,�Y ],

C = [�X,Y ] + [�Y,X],

D = �2[X,Y ] − �A + B.

The definition of D given here coincides with the definition in Section 3 when X

and Y commute.

Theorem 4.1. For any t in the domain of κ ,

κ(t) = α + βt + γ t 2 + δt 3 − 3
4 t

4 · |D|2ht
, (4.1)

where

α = 1
4 |[X,Y ]|2,

β = − 3
4 〈�[X,Y ], [X,Y ]〉,

γ = − 3
4 |�[X,Y ]|2 + 3

2 〈�[X,Y ],A〉 − 1
2 〈[X,Y ],B〉

− 1
4 |A|2 + 1

4 |C|2 − 〈[�X,X], [�Y,Y ]〉,
δ = − 3

4 〈�3[X,Y ], [X,Y ]〉 + 3
2 〈�2[X,Y ],A〉 − 3

2 〈�[X,Y ],B〉
− 3

4 〈�A,A〉 − 1
4 〈�C,C〉 + 〈�[�X,X], [�Y,Y ]〉 + 〈A,B〉.
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There are two steps to the proof of this theorem: first we prove that equation (4.1)
holds for all sufficiently small t, and then we show that each side of the equa-
tion is analytic. This allows us to invoke the well-known identity theorem that, if
f , g: I → R are analytic on an open interval I and if f and g agree on a subinter-
val of I, then f = g. We therefore conclude that (4.1) holds for all t. To accomplish
the first step, we calculate the Taylor series of κ(t) at t = 0. This calculation will
also serve as the foundation for our analyticity arguments.

Proposition 4.2. The Taylor series of κ(t) at 0 is given by

κ(t) = α + βt + γ t 2 + δt 3 − 3

4

∞∑
n=4

t n〈�n−4D,D〉,

with convergence for |t | < ‖�‖−1, where ‖�‖ = sup|X|=1|�X| is the operator
norm of �.

Proof. In [7], Püttmann shows that the unnormalized sectional curvature of vec-
tors Z1,Z2 ∈ g with respect to a left-invariant metric h whose matrix with respect
to h0 is � is given by

kh(Z1,Z2) = 1
2 〈[�Z1,Z2 ] + [Z1,�Z2 ], [Z1,Z2 ]〉 − 3

4 |[Z1,Z2 ]|2h
+ 1

4 〈[Z1,�Z2 ] + [Z2,�Z1],�−1([Z1,�Z2 ] + [Z2,�Z1])〉
− 〈[Z1,�Z1],�−1[Z2,�Z2 ]〉. (4.2)

It follows that

κ(t) = kht
(�−1

t X,�−1
t Y )

= 1
2 〈[X,�−1

t Y ] + [�−1
t X,Y ], [�−1

t X,�−1
t Y ]〉

− 3
4 〈�t [�

−1
t X,�−1

t Y ], [�−1
t X,�−1

t Y ]〉
+ 1

4 〈[�−1
t X,Y ] + [�−1

t Y,X],�−1
t ([�−1

t X,Y ] + [�−1
t Y,X])〉

− 〈[�−1
t X,X],�−1

t [�−1
t Y,Y ]〉

= I1 − I2 + I3 − I4.

Using the expression �−1
t = I − t�, we can easily simplify I1, I3, and I4:

I1 = |[X,Y ]|2 − 3t

2
〈[X,Y ],A〉 + t 2

(
〈[X,Y ],B〉 + 1

2
|A|2

)
− t 3

2
〈A,B〉,

I3 = t 2

4
|C|2 − t 3

4
〈C,�C〉,

I4 = t 2〈[�X,X], [�Y,Y ]〉 − t 3〈[�X,X],�[�Y,Y ]〉.
To calculate I2, observe that if |t | < ‖�‖−1 then

�t =
∞∑
n=0

t n�n,
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with convergence in the space of endomorphisms of g with the operator norm.
From this formula we calculate

4

3
I2 = 〈�t([X,Y ] − tA + t 2B), [X,Y ] − tA + t 2B〉

=
∞∑
n=0

t n〈�n[X,Y ] − t�nA + t 2�nB, [X,Y ] − tA + t 2B〉

=
∞∑
n=0

t n
(〈�n[X,Y ], [X,Y ]〉 − 2t〈�n[X,Y ],A〉
+ t 2(〈�nA,A〉 + 2〈�n[X,Y ],B〉)
− 2t 3〈�nA,B〉 + t 4〈�nB,B〉)

= |[X,Y ]|2 + t(〈�[X,Y ], [X,Y ]〉 − 2〈[X,Y ],A〉)
+ t 2(〈�2[X,Y ], [X,Y ]〉 − 2〈�[X,Y ],A〉 + |A|2 + 2〈[X,Y ],B〉)
+ t 3(〈�3[X,Y ], [X,Y ]〉 − 2〈�2[X,Y ],A〉 + 〈�A,A〉

+ 2〈�[X,Y ],B〉 − 2〈A,B〉)
+

∞∑
n=4

t n〈�n−4D,D〉.

Combining the different terms proves the result.

The power series of κ(t) would have been much messier if we were considering
the unnormalized sectional curvature of X and Y with respect to ht instead of the
unnormalized sectional curvature of �−1

t X and �−1
t Y. The value of twisting is ap-

parent even at a purely computational level.
When |t | < ‖�‖−1, we observe that

−3

4

∞∑
n=4

t n〈�n−4D,D〉 = −3

4
t 4〈�tD,D〉 = −3

4
t 4 · |D|2ht

.

This proves that equation (4.1) holds for small t. Hence, to complete the proof of
Theorem 4.1, we need only prove that κ(t) and |D|2ht

are analytic.

Lemma 4.3. The function κ(t) is analytic on its domain of definition.

Proof. Assume that t0 is such that �t0 corresponds to a metric on G. We show
that κ is locally a power series at t0. By (4.2) (Püttmann’s formula), we clearly
need only prove that |[�−1

t X,�−1
t Y ]|2ht

can be expressed as a power series near t0.

Because � is h0-self-adjoint, it can be diagonalized; say, � = diag(a1, . . . , ad).

We then have

�t = diag

(
1

1 − a1t
, . . . ,

1

1 − adt

)

= diag

(
1

1 − ait0

∞∑
n=0

(
ai

1 − ait0

)n
(t − t0)

n

)

= �t0

∞∑
n=0

�n
t0
�n(t − t0)

n, (4.3)
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with convergence whenever |t − t0| is sufficiently small. We can use this expres-
sion for �t together with the identity �−1

t = I − t0� − (t − t0)� in order to
expand |[�−1

t X,�−1
t Y ]|2ht

as a power series, as in the proof of Proposition 4.2.

Analyticity of |D|2ht
also follows from equation (4.3), which completes the proof

of Theorem 4.1.

Proof of Proposition 3.1. Assume X and Y commute. It is easy to see that α =
β = 0 and that δ equals 6 times the stated formula for κ ′′′(0). All that remains to
be shown is γ = 0. But the bi-invariance of h0 and the Jacobi identity give the
identity

〈[�X,Y ], [X,�Y ]〉
= −〈�X, [[X,�Y ],Y ]〉 = 〈�X, [[�Y,Y ],X] + [[Y,X],�Y ]〉
= 〈�X, [[�Y,Y ],X]〉 = −〈[�X,X], [�Y,Y ]〉, (4.4)

from which γ = 0 follows easily.

5. A General Rigidity Result

The next lemma is our primary tool for deriving rigidity statements about infinitesi-
mally nonnegative variations. It plays an important role in Section 7, where we give
a partial classification of the infinitesimally nonnegative endomorphisms of so(4).

Lemma 5.1. Assume that � is infinitesimally nonnegative. Let p0 be the eigen-
space of � corresponding to the smallest eigenvalue. If X ∈ p0, Y ∈ g, and
[X,Y ] = 0, then [X,�Y ] ∈ p0.

Proof. Proposition 3.1 applied to X and Y yields
1
6κ

′′′(0) = a0|[X,�Y ]|2 − 〈[X,�Y ],�[X,�Y ]〉,
where a0 is the smallest eigenvalue. This is negative unless [X,�Y ] ∈ p0.

The next proposition is a global version of Lemma 5.1. The argument used in its
proof serves as the prototype for how we transform rigidity statements about in-
finitesimally nonnegative endomorphisms into rigidity statements about nonneg-
atively curved metrics.

Proposition 5.2. Assume that � is the matrix of a nonnegatively curved met-
ric h. Let p0 be the eigenspace of � corresponding to the smallest eigenvalue. If
X ∈ p0, Y ∈ g, and [X,Y ] = 0, then [X,�−1Y ] ∈ p0.

Proof. Let � = I − �−1, so that �t = (I − t�)−1 is the unique inverse-linear
path from h0 to h1 = h. By Theorem 1.1, � must be infinitesimally nonnegative.
Observe that � and � have the same smallest eigenspace p0. Proposition 5.1 now
yields

[X,�Y ] = [X, (I − �−1)Y ] = −[X,�−1Y ] ∈ p0.

We note that this result can also be derived directly from Püttmann’s formula.
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6. Enlarging Subalgebras

Here we continue the discussion on enlarging subalgebras begun in Example 3.3.
Let H ⊂ G be a Lie subgroup of the Lie group G with Lie algebra h ⊂ g. For
Z ∈ g, denote by Zh and Zp the projections of Z onto h and its h0-orthogonal
complement p. Let �(Z) = Zh, so �t = (I − t�)−1 is the inverse-linear varia-
tion that gradually expands vectors in h as t increases from 0. If h is abelian, it is
easy to use the formulas for the coefficients of the power series of κ(t) in tandem
with the analyticity of κ to prove

κ(t) = 1

4
|[X,Y ]|2 − 3

4
|[X,Y ]h|2 · t

1 − t
(−∞ < t < 1). (6.1)

From this formula we can show that enlarging h by a factor of up to 4
3 always

preserves nonnegative curvature, a result that first appeared in [4]. In fact, the par-
ticularly nice form of κ(t) allows us to prove a stronger statement as follows.

Theorem 6.1. Scaling the abelian subalgebra h ⊂ g preserves nonnegative cur-
vature if and only if no vector in [g, g] has the square of its norm expanded by
more than 4

3 .

Proof. By equation (6.1), the metric ht is nonnegatively curved if and only if

|Zh|2 · t

1 − t
≤ 1

3
|Z|2 (6.2)

holds for all Z ∈ [g, g]. Since

|Z|2ht
= 〈�tZ,Z〉 =

〈
Z + t

1 − t
Zh,Z

〉
= |Z|2 + |Zh|2 · t

1 − t
,

it follows that inequality (6.2) is equivalent to requiring |Z|2ht
≤ 4

3 |Z|2 to hold for
all Z ∈ [g, g].

If [g, g] ∩ h �= {0}, then Theorem 6.1 means that h can be scaled up by a factor
of no more than 4

3 . At the other extreme, if [g, g] ⊥ h then h can be expanded up
by an arbitrary amount. This was already known, since if h is orthogonal to [g, g]
then h is contained in the center of g. This rescaling then stays within the family
of bi-invariant metrics on g.

When h is not abelian, things are not quite so simple. In this case the power
series simplifies to

κ(t) = 1

4
|[X,Y ]|2 − 3

4
|[X,Y ]h|2 t + 3

4
|B|2 t 2

− 1

4
|B|2 t 3 − 3

4
|[Xp,Y p]h|2 · t 2

1 − t
.

We can use this formula to classify exactly which subalgebras of g can be enlarged
a small amount while maintaining nonnegative curvature.

Theorem 6.2. Expanding the subalgebra h ⊂ g by a small amount preserves
nonnegative curvature if and only if there exists a constant c such that |[Xh,Y h]| ≤
c · |[X,Y ]| for all X,Y ∈ g.
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We omit the lengthy but easy proof for the reason that we do not know if there
are any interesting examples of subalgebras for which the latter condition holds.
It clearly holds when h is either abelian or an ideal of g (or the sum of an ideal and
an orthogonal abelian subalgebra), but it is already known that such subalgebras
can be enlarged while maintaining nonnegative curvature.

7. Known Metrics on SO(4) with Nonnegative Curvature

Each known example of a left-invariant metric h with nonnegative curvature on
G = SO(4) comes from Cheeger’s construction. In this section, we catalog
each known example in terms of the eigenvalue and eigenvector structure of the
map � representing it with respect to a fixed bi-invariant metric h0, meaning that
h(A,B) = h0(�A,B).

7.1. Product Metrics

The Lie algebra g = so(4) is a product g = g1 ⊕ g2, where each factor is isomor-
phic to so(3). The two factors are h0-orthogonal. If they are h-orthogonal, then h

is a product metric on SO(4)’s double cover S3 ×S3. The classification of product
metrics with nonnegative curvature reduces to the classification of left-invariant
metrics with nonnegative curvature on SO(3), which was solved in [1]. Observe
that, for any product metric, g decomposes into three 2-dimensional �-invariant
abelian subalgebras obtained by pairing eigenvectors from the two factors.

As for infinitesimal examples, if � is a product (meaning that �(g1) ⊂ g1 or
equivalently that �(g2) ⊂ g2) then the inverse-linear path �t = (I −t�)−1 it gen-
erates is through product metrics, which have nonnegative curvature for small t.

7.2. Torus Actions

Let {A1,A2,A3} and {B1,B2,B3} be h0-orthonormal bases of g1 and g2, respec-
tively. After scaling g1 and g2 by factors c and d (respectively), enlarging the
abelian subalgebra τ = span{A3,B1} by 4

3 , and then further altering the metric on
τ via the remaining T 2-action on G, one obtains a nonnegatively curved metric h

with matrix � of the form


c 0 0 0 0 0

0 c 0 0 0 0

0 0 a1 a3 0 0

0 0 a3 a2 0 0

0 0 0 0 d 0

0 0 0 0 0 d




(7.1)

with respect to the basis {A1,A2,A3,B1,B2,B3}. In the final alteration, any right-
invariant (and hence bi-invariant and flat) metric on T 2 can be used. The only re-
striction on �—which derives from this final alteration shrinking only vectors—is
that the norm on τ determined by the matrix

( a1 a3
a3 a2

)
is strictly bounded above by
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the norm determined by
(
(4/3)c 0

0 (4/3)d

)
. The limit points of such a metric are also

nonnegatively curved. That is, we must consider the closure of the known exam-
ples, which transforms the strict inequality into a nonstrict one.

Observe that g decomposes into three 2-dimensional �-invariant abelian subal-
gebras: one equals τ, and the other two are obtained by pairing vectors in g1 with
vectors in g2. Observe also that any endomorphism � with the matrix form of (7.1)
will generate an inverse-linear variation �t = (I − t�)−1. These metrics will be
nonnegatively curved for some interval t ∈ [0, ε). The parameters {c, d, a1, a2, a3}
defining � are unrestricted, although they do determine ε.

7.3. S3-Actions

Let h̃ denote the bi-invariant metric on S3 × S3 obtained from h0 by rescaling g1

and g2 by the factors a and b, respectively. Let gR denote a right-invariant metric
with nonnegative curvature on S3 with eigenvalues {λ1, λ2, λ3} and eigenvectors
{e1, e2, e3}. Define a metric h by

(S3 × S3,h) = ((S3 × S3, h̃) × (S3, gR))/S
3,

where S3 acts diagonally. Consider the basis

g = g1 ⊕ g2 = span{A1,A2,A3} ⊕ span{B1,B2,B3},
where Ai = (ei, 0) and Bi = (0, ei). Let Vi = span{Ai,Bi}, which for each i is a
2-dimensional abelian subalgebra of g. Notice that the three Vi are mutually or-
thogonal with respect to h0, h̃, and h. It therefore suffices to describe h in terms
of h0 separately on each Vi.

Thus, the matrix representing h̃ in terms of h0 onVi in the basis {Ai,Bi} is Mi =(
a 0
0 b

)
, and the matrix representing h in terms of h̃ in the basis {Ai +Bi, bAi −aBi}

is Ni = (
ti 0
0 1

)
, where ti = λi/(1+λi). If we let T = (

1 b
1 −a

)
be the change of basis

matrix, then the matrix we seek that represents h in terms of h0 on Vi in the basis
{Ai,Bi} is

�i = Mi(TNiT
−1) = 1

a + b

(
a(b + ati) ab(ti − 1)
ab(ti − 1) b(a + bti)

)
. (7.2)

In summary, g decomposes into the three �-invariant 2-dimensional abelian
subalgebras {V1,V2,V3}. However, with only the five parameters {a, b, t1, t2, t3}
under our control and with restrictions on the values of t, we do not attain the full 9-
parameter family of metrics for which the subalgebras {V1,V2,V3} are�-invariant.

Infinitesimal examples have the form � := I − �−1 with � in the form of
equation (7.2). A calculation shows that all such matrices have the form � =
diag(�1,�2,�3), where

�i =
(
α 0
0 β

)
− 1

2λi

(
1 1
1 1

)
. (7.3)

The parameters α,β are free, but the parameters {λ1, λ2, λ3} are restricted to be
eigenvalues of a nonnegatively curved metric on SO(3).
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8. Infinitesimal Rigidity for SO(4)

In this section, we assume that G = SO(4) and that � : g → g is infinitesimally
nonnegative, and we prove rigidity results for �. In the next section, we translate
these infinitesimal rigidity results into global theorems.

Recall that g = so(4) = g1 ⊕ g2 is a product; X ∈ g is called regular if it has
nonzero projections onto both g1 and g2 and is called singular otherwise. We give
G the most natural bi-invariant metric h0, so that any orthonormal bases of the fac-
tors g1 and g2 behave like the quaternions {i , j, k} with respect to their Lie bracket
structure. We will show in Section 10 that no loss of essential information results
from restricting ourselves to working only with this bi-invariant metric.

The previous section classified the known possibilities of � into three types
originating from (1) products, (2) torus actions, and (3) S3-actions. In the first two
cases, � has a nonzero singular eigenvector; in the third case, it does not.

Theorem 8.1. If � has a nonzero singular eigenvector, then either � is a prod-
uct or � has the form of (7.1). In either case, ht is a family of known examples
with nonnegative curvature for sufficiently small t.

If � has no nonzero singular eigenvectors, we hypothesize that � is a known ex-
ample coming from an S3-action. A first step in this direction is to locate three �-
invariant abelian subalgebras. The following theorem falls just short of this goal.

Theorem 8.2. There are orthonormal bases {A1,A2,A3} and {B1,B2,B3} of
the two factors of g = g1 ⊕ g2 such that, with respect to the basis {A1,B1,A2,
B2,A3,B3}, � has the form

� =




a1 a3 0 0 0 0

a3 a2 0 0 0 0

0 0 b1 b3 λ 0

0 0 b3 b2 0 µ

0 0 λ 0 c1 c3

0 0 0 µ c3 c2



.

We conjecture that λ = µ = 0, which means that g decomposes into three orthog-
onal �-invariant abelian subalgebras (as it should). Even granting this conjecture,
there remains the work of reducing this 9-parameter family to the 5-parameter
family of known examples from equation (7.3). This appears to be a computation-
ally difficult problem.

The remainder of this section is devoted to proving Theorems 8.1 and 8.2. We
begin with a weak version of Theorem 8.1. Recall that p0 denotes the eigenspace
corresponding to the smallest eigenvalue, a0, of �.

Lemma 8.3. If p0 contains a nonzero singular vector, then either � is a product
or � has the form of (7.1).
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Proof. Without loss of generality, assume there exists a nonzero vectorX1∈ g1∩p0.

Assume that � is not a product, so there exists a Ŷ ∈ g2 such that �Ŷ has a nonzero
projection, X2, onto g1. Observe that X1 and X2 are orthogonal because

〈X1,X2〉 = 〈X1,�Ŷ 〉 = 〈�X1, Ŷ 〉 = a0〈X1, Ŷ 〉 = 0.

Let X3 = [X1,�Ŷ ] ∈ g1, which (by Lemma 5.1) lies in p0 and so span{X1,X3} ⊂
p0. Let Y2 be the projection of �X2 onto g2, which is a nonzero vector by the
self-adjoint property of �. Complete {Y2} to an orthogonal basis {Y1,Y2,Y3}
of g2, ordered so that their bracket structure is like that of {i , j, k}. Notice that
�(span{Y1,Y3}) ⊂ g2 (again by the self-adjoint property of �). In summary, after
scaling all the vectors to unit length, we have an orthonormal basis

g = g1 ⊕ g2 = span{X1,X2,X3} ⊕ span{Y1,Y2,Y3}
with span{X1,X3} ⊂ p0, and �X2 = cY2 + λX2 (for some c, λ ∈ R with c �= 0)
and �(span{Y1,Y3}) ⊂ g2.

Applying Proposition 3.1 to the vectors X2 and Y1 gives

κ ′′′(0) = 6〈[�X2,Y1], [�X2,�Y1]〉 − 6〈[�X2,Y1],�[�X2,Y1]〉
= 6〈[cY2,Y1], [cY2,�Y1]〉 − 6〈[cY2,Y1],�[cY2,Y1]〉
= −6c2〈Y3, [Y2,�Y1]〉 − 6c2〈Y3,�Y3〉 ≥ 0.

Observe that

〈Y3, [Y2,�Y1]〉 = 〈Y3, [Y2, projection of �Y1 onto Y1]〉
= 〈Y3, [Y2, 〈�Y1,Y1〉Y1]〉
= −〈�Y1,Y1〉,

from which we conclude

〈Y1,�Y1〉 ≥ 〈Y3,�Y3〉.
Similarly, applying Proposition 3.1 to the vectors X2 and Y3 yields the reverse in-
equality, so

〈Y1,�Y1〉 = 〈Y3,�Y3〉.
Replacing Y1 and Y3 with any other orthonormal basis of span{Y1,Y3} yields the

same conclusion. In other words, for any angle θ, if we set a = cos(θ) and b =
sin(θ) then

〈aY1 + bY3,�(aY1 + bY3)〉 = 〈bY1 − aY3,�(bY1 − aY3)〉.
This implies that 〈Y1,�Y3〉 = 〈�Y1,Y3〉 = 0. The linear map from span{Y1,Y3}
to R sending Y �→ 〈�Y,Y2〉 has a nonzero vector in its kernel. Assume without
loss of generality that Y1 is in this kernel, and note that Y1 is an eigenvector of �.
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In the ordered basis {X1,X2,X3,Y1,Y2,Y3}, we thus far have

� =




a0 0 0 0 0 0

0 λ 0 0 c 0

0 0 a0 0 0 0

0 0 0 β 0 0

0 c 0 0 γ s

0 0 0 0 s β



.

Applying our κ ′′′(0) formula to X = X2 and to Y = aY2 + bY3 gives

κ ′′′(0) = 6bc2(as + bβ) − 6b2c2β = 6bc2as.

Since κ ′′′(0) ≥ 0 for all choices of {a, b} and since c �= 0, it follows that s = 0.
After re-ordering the basis, � has the form of (7.1).

Theorem 8.4. The eigenspace p0 contains a nonzero vector that belongs to a
�-invariant 2-dimensional abelian subalgebra of g.

Proof. If p0 contains a nonzero singular vector then the conclusion follows easily
from Lemma 8.3, so we assume that this is not the case. When A = (A1,A2) ∈
g = g1 ⊕ g2 is regular, let

Ā =
( |A2|

|A1|A1, −|A1|
|A2|A2

)
,

which commutes with A, is orthogonal to A, and has the same norm as A.

The proof is indirect. We assume for each A ∈ p0 that span{A, Ā} is not �-
invariant, and we then derive a contradiction.

Let A∈ p0 be of unit length. Since � is self-adjoint, we know that �Ā is orthog-
onal to A. Observe that Ā is not an eigenvector of �; if it were, then span{A, Ā}
would be an invariant abelian subalgebra. Therefore, [A,�Ā] is nonzero. Let B be
the unit-length vector in the direction of [A,�Ā]. By Lemma 5.1, B ∈ p0. Notice
that B is orthogonal to A and to Ā.

So far we know that dim(p0) ≥ 2. Clearly dim(p0) ≤ 3, because it contains
no nonzero singular vectors and hence intersects g1 and g2 trivially. We wish to
prove dim(p0) = 2. Suppose to the contrary that dim(p0) = 3. Consider the map
from p0 to p0 defined as

Z �→ [Z,�Z̄].

By the foregoing arguments, this map sends each unit-length Z ∈ p0 to a nonzero
vector in p0 that is orthogonal to Z. This map therefore induces a smooth non-
vanishing vector field on the unit 2-sphere in p0, which is a contradiction. Thus,
dim(p0) = 2. Here A and B play symmetric roles in that [B,�B̄] is parallel to A

(because it lies in p0 and is perpendicular to B), and A is orthogonal to B and to B̄.

Choose unit-length vectors C1 ∈ g1 and C2 ∈ g2 such that {A, Ā,B, B̄,C1,C2}
is an orthonormal basis of g. For i = 1, 2, the gi-components of {A,B,Ci} form
an orthogonal basis of gi . The Ci can be chosen so that these orthogonal bases are
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oriented and so, after normalizing, they act like {i , j, k} with respect to their Lie
bracket structure. For purposes of calculating Lie brackets in this basis, we lose
no generality in assuming that, for some a, b ∈ (0,1),

A = (
a i ,
√

1 − a2 i
)
, B = (

bj,
√

1 − b2 j
)
, C1 = (k, 0);

Ā = (√
1 − a2 i , −a i

)
, B̄ = (√

1 − b2 j, −bj
)
, C2 = (0, k).

(8.1)

Notice that 〈�Ā, B̄〉 = 〈�B̄, Ā〉 = 0, because if �Ā had a nonzero B̄-component
then [A,�Ā] would have nonzero C1- and C2-components.

In the basis {A, Ā,B, B̄,C1,C2}, � has the form

� =




a0 0 0 0 0 0

0 p 0 0 α1 α2

0 0 a0 0 0 0

0 0 0 q β1 β2

0 α1 0 β1 f1 f2

0 α2 0 β2 f2 f3



. (8.2)

There are a few obvious restrictions among the variables determining �. For ex-
ample, since [A,�Ā] is parallel to B and since [B,�B̄] is parallel to A, we have

α1

α2
= β2

β1
= b

√
1 − a2

a
√

1 − b2
(8.3)

and obtain

� =




a0 0 0 0 0 0

0 p 0 0 α α · s
0 0 a0 0 0 0

0 0 0 q β · s β

0 α 0 β · s f1 f2

0 α · s 0 β f2 f3




, (8.4)

where s = a
√

1 − b2/b
√

1 − a2 > 0 and α,β �= 0.
Using Lemma 5.1, we can now prove that s = 1 and consequently a = b.

Indeed, for every Z ∈ span{A,B}, we have [Z,�Z̄] ∈ span{A,B}. In particular,
let Zt = (cos t)A + (sin t)B, so

Z̄t = (
f(t)(a cos(t)i + b sin(t)j),

−(1/f(t))
(√

1 − a2 cos(t)i +
√

1 − b2 sin(t)j
))

,

where

f(t) =
√

(1 − a2) cos2(t) + (1 − b2) sin2(t)

a2 cos2(t) + b2 sin2(t)
.

We will use that the following vector lies in span{A,B}:
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Q = d

dt

∣∣∣
t=0

[Zt ,�Z̄t ]

= [B,�Ā] + [
A,�

(
f ′(0)a i + f(0)bj, −g ′(0)

√
1 − a2 i − g(0)

√
1 − b2 j

)]
= [B,�Ā] + [

A,�
(
f(0)bj, −g(0)

√
1 − b2 j

)]

= [B,�Ā] +
[
A,�

(
b
√

1 − a2

a
j, −a

√
1 − b2√

1 − a2
j
)]

= [B,�Ā] + [
A,�

(√
1 − b2 · s−1j, −b · sj

)]
.

In particular, Q is perpendicular to Ā and so

0 = 〈Q, Ā〉 = 〈[B,�Ā], Ā〉 + 〈[
A,�

(√
1 − b2 · s−1j, −b · sj

)]
, Ā
〉

= 〈[B,�Ā], Ā〉 = −〈�Ā, [B, Ā]〉
= −〈pĀ + (αk,αsk),

[(
bj,
√

1 − b2 j
)
,
(√

1 − a2 i , −a i
)]〉

= −〈pĀ + (αk,αsk),
(−b

√
1 − a2 k, a

√
1 − b2 k

)〉
= αb

√
1 − a2 − sαa

√
1 − b2,

which implies s = b
√

1 − a2/a
√

1 − b2 = s−1. It follows that s = 1 and hence
a = b. That the orthogonal projection of Q onto span{C1,C2} is zero is now equiv-
alent to

p
(−b

√
1 − a2 k, a

√
1 − b2 k

)+ q
(
a
√

1 − b2 k, −b
√

1 − a2 k
) = 0. (8.5)

Since a = b, this implies that q = p. Therefore,

� =




a0 0 0 0 0 0

0 p 0 0 α α

0 0 a0 0 0 0

0 0 0 p β β

0 α 0 β f1 f2

0 α 0 β f2 f3



. (8.6)

Since a = b, it is easy to see that [A, B̄] + [B, Ā] = 0. This implies that V1 =
βĀ − αB̄ commutes with V2 = βA − αB. Since V2 ∈ p0 and since V1 is an
eigenvector of � (with eigenvalue p), it follows that span{V1,V2} is a �-invariant
2-dimensional abelian subalgebra of g containing a nonzero vector in p0. This is
a contradiction.

Proof of Theorem 8.2. By Theorem 8.4, there exists a �-invariant abelian sub-
algebra of g that is spanned by some A1 ∈ g1 and some B1 ∈ g2. Let V1 denote the
orthogonal complement of A1 in g1 and let V2 denote the orthogonal complement
of B1 in g2.
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Let π1 : g → g1 and π2 : g → g2 denote the projections. Define T1 : V1 → V2

as T1 = π2 � �|V1 and define T2 : V2 → V1 as T2 = π1 � �|V2 . Observe that for
all A∈V1 and B ∈V2,

〈T1A,B〉 = 〈�A,B〉 = 〈A,�B〉 = 〈A, T2B〉.
Let S1 denote the circle of unit-length vectors inV1, and let R : S1 → S1 denote

a 90◦ rotation. Define F : S1 → R by F(A) = 〈T1(A), T1(R(A))〉. For all A∈ S1,

F(R(A)) = 〈T1(R(A)), T1(−A)〉 = −F(A).

This implies that there exists an A2 ∈ S1 such that F(A2) = 0. Let A3 = R(A2).

First supposeT1 (and hence alsoT2) is nonsingular. DefineB2 = T1(A2)/|T1(A2)|
and B3 = T1(A3)/|T1(A3)|. The equality F(A2) = 0 immediately implies that B2

and B3 are orthogonal and that T2(B2) ‖ A2 and T2(B3) ‖ A3. Thus, the basis
{A1,A2,A3,B1,B2,B3} satisfies the conclusion of the theorem.

If T1 (and hence also T2) is singular, then the arbitrary orthonormal bases
{A2,A3} of V1 and {B2,B3} of V2 work provided A2 ∈ ker(T1) and B2 ∈ ker(T2).

Our final proof in this section is due to Nela Vukmirovic and Zachary Madden.

Proof of Theorem 8.1. Choose bases {A1,A2,A3} of g1 and {B1,B2,B3} of g2

so that � has the matrix form of Theorem 8.2. With respect to the ordering
{A3,A2,A1,B1,B2,B3}, � then has the form

� =




c1 λ 0 0 0 c3

λ b1 0 0 b3 0

0 0 a1 a3 0 0

0 0 a3 a2 0 0

0 b3 0 0 b2 µ

c3 0 0 0 µ c2



.

If a3 = 0 then the result follows from Lemma 8.3, so we can assume a3 �= 0.
To complete the proof, we show that c1 = b1, b2 = c2, and λ = µ = b3 =
c3 = 0, which puts � into the form of (7.1). The hypothesis that � has a nonzero
singular eigenvector implies that b3 = 0 or c3 = 0. Without loss of general-
ity, assume b3 = 0. Henceforth, the value κ ′′′(0) with respect to the commuting
pair X = α1A1 + α2A2 + α3A3 and Y = β1B1 + β2B2 + β3B3 will be de-
noted by [α1,α2,α3,β1,β2,β3]. These 6-tuples are easily expanded using Maple
or Mathematica.

First,
[0, ±1,1,1, 0, 0] = c2

3(a2 − b2) ± 4a2
3λ ≥ 0.

However, since [0, 0,1, 0,1, 0] + [0, 0,1, 0, 0,1] = c2
3(b2 − a2) ≥ 0, we deduce

that λ = 0 and consequently c2
3(b2 − a2) = 0. Similarly,

[1, 0, 0, 0, ±1,1] = c2
3(a1 − b1) ± 4a2

3µ ≥ 0.

But [1, 0, 0, 0,1, 0] + [1, 0, 0, 0, 0,1] = c2
3(b1 − a1) ≥ 0, so it follows that µ = 0

and c2
3(b1 − a1) = 0.
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Furthermore, the inequalities [0,1, 0,1, 0, 0] ≥ 0 and [0, 0,1,1, 0, 0] ≥ 0 give
(respectively) the plus and minus versions of the inequality ±a2

3(b1 − c1) ≥ 0.
Analogously, after examining [1, 0, 0, 0,1, 0] and [1, 0, 0, 0, 0,1] we conclude that
±a2

3(b2 − c2) ≥ 0. Because a3 is nonzero, we obtain b1 = c1 and b2 = c2.

All that remains to be shown is that c3 = 0. If c3 �= 0, then a1 = b1 and
a2 = b2. By considering [1,1,1,1,1,1], [1,1,1, −1,1,1], [1,1,1,1, −1,1], and
[1,1,1,1,1, −1], we deduce that ±a2

3c3 ≥ 0, which implies c3 = 0. Thus, �

has the form of (7.1).

9. Global Rigidity for SO(4)

The previous section partially classified the infinitesimally nonnegative endomor-
phisms for G = SO(4). We now translate these infinitesimal results into a partial
classification of the nonnegatively curved left-invariant metrics on SO(4).

Assume G = SO(4). Let � be the matrix for a nonnegatively curved left-
invariant metric h on G. The variation �t = (I − t�)−1 satisfies �1 = � as
long as we choose � = I − �−1. By Theorem 1.1, this variation is through non-
negatively curved metrics and so � is infinitesimally nonnegative. We will apply
restrictions on � from Section 8 in order to prove rigidity theorems about �.

First, we prove a global analogue of Theorem 8.1. This theorem implies Theo-
rem 1.2.

Theorem 9.1. If � has a singular eigenvector, then either h is a product metric
or h comes from a torus action. In either case, h is a known example of a metric
of nonnegative curvature.

Proof. Since � has a singular eigenvector, so does �. According to Theorem 8.1,
either � is a product or � can be written in the form of (7.1). If � is a product
then � is a product, which means that h is a product metric. If instead � has the
form of (7.1), then so does �.

Assume � has the form of (7.1); we must prove that � satisfies the 4
3 -restriction

shared by all known examples. Permuting some basis vectors if necessary, we may
assume that A1,A2,A3 and B1,B2,B3 behave like the quaternions i , j, k with re-
spect to their Lie bracket structure. Denote by h̃ the metric on τ corresponding to
the matrix (

4
3 · c 0

0 4
3 · d

)
.

We must prove that
|αA3 + βB1|2h ≤ |αA3 + βB1|2h̃

holds for all α,β ∈ R.

Consider the unnormalized sectional curvature of the vectors αA1 + βB2 and
A2 + B3 with respect to h. We have

[�(αA1 + βB2),A2 + B3] = αcA3 + βdB1,

[αA1 + βB2,�(A2 + B3)] = αcA3 + βdB1,

[αA1 + βB2,A2 + B3] = αA3 + βB1;
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thus, by Püttmann’s formula,

kh(αA1 + βB2,A2 + B3) = 〈αcA3 + βdB1,αA3 + βB1〉 − 3
4 |αA3 + βB1|2h

= 3
4 (|αA3 + βB1|2h̃ − |αA3 + βB1|2h).

Since h is nonnegatively curved, this proves the required inequality.

Similarly, we obtain a global version of Theorem 8.2 as follows.

Theorem 9.2. There are orthonormal bases {A1,A2,A3} and {B1,B2,B3} of
the two factors of g = g1 ⊕ g2 such that, with respect to the basis {A1,B1,A2,
B2,A3,B3}, � has the form

� =




a1 a3 0 0 0 0

a3 a2 0 0 0 0

0 0 b1 b3 λ 0

0 0 b3 b2 0 µ

0 0 λ 0 c1 c3

0 0 0 µ c3 c2



.

In particular, g has a 2-dimensional �-invariant abelian subalgebra.

Proof. By Theorem 8.4, g has a 2-dimensional �-invariant abelian subalgebra.
This subalgebra is also �-invariant. The result follows by mimicking the proof of
Theorem 8.2.

10. Changing the Initial Bi-invariant Metric

Let h0 be a fixed bi-invariant metric, and consider a second bi-invariant metric h1.

If h is a nonnegatively curved left-invariant metric then, according to Theorem 1.1,
the unique inverse-linear paths from h0 to h and from h1 to h are through nonnega-
tively curved metrics. We can view this as saying that the inverse-linear path from
h0 to h is through nonnegatively curved metrics if and only if the inverse-linear
path from h1 to h is.

In light of this result, it is natural to ask whether the inverse-linear path from h0

to h is infinitesimally nonnegative if and only if the inverse-linear path from h1 to
h is. The main result of this section is an affirmative answer, which shows that the
concept of “infinitesimally nonnegative” is independent of the starting bi-invariant
metric. This means that, when classifying the infinitesimally nonnegative endo-
morphisms of g with respect to a bi-invariant metric, the choice of bi-invariant
metric is essentially irrelevant.

Theorem 10.1. The inverse-linear path from h0 to h is infinitesimally nonnega-
tive if and only if the inverse-linear path from h1 to h is.

For the proof of this theorem, let M be the matrix of h1 with respect to h0, let �
be the matrix of h with respect to h0, let ; be the matrix of h with respect to h1,
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and put � = I − �−1 and ϒ = I − ;−1. Theorem 10.1 is a consequence of the
following result.

Proposition 10.2. For any commuting vectors X and Y in g,

Dϒ
X,Y = D�

MX,MY and δ
ϒ,h1
X,Y = δ

�,h0
MX,MY ;

here, for instance, δϒ,h1
MX,MY denotes the coefficient δ in the power series of the func-

tion κ(t) defined with respect to the endomorphism �, the bi-invariant metric h0,
and the commuting pair of vectors MX,MY. Hence � is infinitesimally nonneg-
ative if and only if ϒ is.

Proof. Write
g = g1 ⊕ · · · ⊕ gr ⊕ Z(g),

where the gi are simple subalgebras and Z(g) is the center of g. The simple sub-
algebras have unique bi-invariant metrics up to a scalar multiple, any choice of
inner product on Z(g) is bi-invariant, and all bi-invariant metrics on g arise as
product metrics from this decomposition. We can diagonalize M with respect to
a basis respecting the decomposition, and M will have a single eigenvalue cor-
responding to each simple factor gi and arbitrary eigenvalues on basis vectors in
Z(g). This allows us to factor M = M1 · · ·Ms , where each Mi scales an ideal of
g and leaves its orthogonal complement fixed. By induction, it suffices to prove
the preceding formulas for M = M1, where M acts on g by Z �→ λZh + Zk for
some λ > 0 and where h, k are ideals of g with g = h ⊕ k. This special case fol-
lows from a long straightforward calculation using the definitions of D and δ.

We conjecture that the formulas of this proposition are a special case of a formula
relating κ

ϒ,h1
X,Y (t) to κ

�,h0
MX,MY (t). For instance, in the special case where M = λI is

a scalar multiple of the identity, the formula(
λ

1 − (1 − λ)t

)3

· κϒ,h1
X,Y (t) = κ

�,h0
MX,MY

(
λt

1 − (1 − λ)t

)
(0 ≤ t ≤ 1)

holds, even when X and Y do not commute, and can be demonstrated using the
techniques of Section 4.
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