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Local Lipschitz Numbers and Sobolev Spaces

Thomas Zürcher

1. Introduction

Given a metric space (X, d) and a continuous function f : X → R, following
the terminology in [BaC] we consider for each point x ∈ X the upper and lower
scaled oscillation functions of f as

Lf (x) := lim sup
r→0

supd(x,y)≤r |f(y) − f(x)|
r

,

lf (x) := lim inf
r→0

supd(x,y)≤r |f(y) − f(x)|
r

.

These quantities are also known as pointwise infinitesimal Lipschitz numbers (see
[H2]); for a Lipschitz function they are always finite, but for general functions they
can be infinite at many points. These functions, as shown by Keith [Ke2], play
an important role in the study of generalizations of the theorem of Rademacher to
metric measure spaces. The theorem of Rademacher states that a Lipschitz func-
tion between Euclidean spaces is differentiable almost everywhere (see e.g. [EG,
p. 81] or [H1, Thm. 6.15]). As shown by Stepanov, a function f : R

n → R with
Lf (x) < ∞ for x ∈ R

n is also differentiable almost everywhere (see [M] for a
simple proof ). A generalization of this theorem to metric measure spaces was re-
cently obtained in [BaRZ]. One may ask if it is possible to replace Lf by lf ; in
[BaC] it was shown that this is not the case. However, by putting additional re-
strictions on lf , Balogh and Csörnyei proved the following two regularity theorems
(for the definitions see Section 2).

Theorem 1.1. Let � ⊂ R
n be a domain and f : � → R a continuous function.

Assume that lf (x) < ∞ for x ∈ � \ E, where the exceptional set E has σ-finite
(n − 1)-dimensional Hausdorff measure. Assume that lf ∈L

p

loc(�) for some 1 ≤
p ≤ ∞. Then f is in the Sobolev space W 1,p

loc (�). If, in addition, p > n, then

lf (x) = Lf (x) = ‖∇f(x)‖ for Ln-a.e. x ∈�.

Theorem 1.2. Let (X, d,µ) be a Q-regular metric measure space and f : X →
R a continuous function. Assume that there exists a set E ⊂ X and an expo-
nent 1 ≤ p < Q such that lf ∈L

p

loc(X) and lf (x) < ∞ for x ∈ X \ E, where
HQ−p(E) = 0. Then it follows that f is in the Newtonian space N1,p

loc (X).
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The Newtonian space N1,p(X) is a natural generalization (due to [S]) of the
Sobolev space to the metric setting.

Note that in Theorem 1.2 the exceptional set E must be of dimension less than
or equal to Q− p. In contrast, in the Euclidean setting the corresponding dimen-
sion is Q − 1. Here we shall improve the size of the exceptional set in the metric
setting by imposing additional conditions on the space (X, d,µ). Our main result
is as follows.

Theorem 1.3. Let (X, d,µ) be a Q-regular and proper metric measure space,
where Q > 1. Suppose that 1 ≤ q ≤ p and that (X, d,µ) supports a (1, q)-
Poincaré inequality. Assume that f : X → R is continuous and that lf (x) < ∞
for x ∈X \ E, where E has σ-finite (Q − q)-dimensional Hausdorff measure. If
lf is in L

p

loc(X), then f is in the Newtonian space N1,p
loc (X).

There are many examples of spaces supporting a Poincaré inequality. Among
others, Carnot groups equipped with the Lebesgue measure and the Carnot–
Carathéodory metric as well as complete Riemannian manifolds with nonnega-
tive Ricci curvature admit a (1,1)-Poincaré inequality; see [HaK; H2]. Thus, for
q = 1 we obtain a generalization of Theorem 1.1.

To obtain Theorem 1.3, we use the method developed in [BaKR]. The tech-
nique therein is used to obtain regularity results for another class of mappings
(i.e., quasiconformal mappings). In fact these ideas work for Sobolev spaces as
well. However, we needed to sharpen some of the statements (with new proofs)
from [BaKR] and [BaC] in order to obtain our result. Before detailing the proof
of Theorem 1.3 at the beginning of Section 3, we list needed definitions and results
of a general nature in the next section.

Acknowledgments. My thanks go to my supervisor Zoltán Balogh for his many
suggestions. I would also like to express my gratitude to Kurt Falk, who suggested
improvements, to Pekka Pankka for his remarks, to Pekka Koskela for answering
one of my questions, to Simon Bünzli for his tool that made writing easier, and to
the referees for carefully reading the article and for their suggestions.

2. Preliminary Definitions and Facts

To start with, we fix some notation; the definitions can be found in [H1]. The stan-
dard Sobolev space for� ⊂ R

n is denoted byW 1,p(�) and the Hausdorff measure
by Hk. For the n-dimensional Lebesgue measure we will use the symbol Ln. We
say that a metric space is proper if closed balls are compact.

A set is of σ-finite measure if it can be written as a countable union of closed
subsets with finite measure. By a locally finite measure we mean a measure with
the property that every point has a neighborhood of finite measure.

By a path we denote a continuous map γ : I → X, where I is some real inter-
val; abusing notation we use “path” to refer to its image as well. We will use �rect

to denote all nonconstant paths in the space with finite length and compact domain
(“rect” = rectifiable). The symbol γa,b will denote a path with endpoints a and b.
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If we write λB for a ball B and a scaling factor λ > 0, we mean the ball with the
same center as B but with its radius scaled by a factor λ.

Before defining Newtonian spaces (as a generalization of the Sobolev spaces to
the metric setting), we need to recall the concept of the modulus of a path family
and the concept of a weak upper gradient.

Definition 2.1 (Modulus). Let � be a collection of paths in X. The p-modulus
of the family �, denoted modp(�), is defined to be the number

inf

{
‖ρ‖pLp : ρ : X → R Borel,

∫
γ

ρ ds ≥ 1

}
.

Such functions ρ used to define the p-modulus of � are said to be admissible for
the family �.

The modulus is an outer measure.

Definition 2.2 (Weak upper gradient). Assume that u is a real-valued function
on X and that ρ is a nonnegative Borel function on X. Suppose

|u(x) − u(y)| ≤
∫
γ

ρ ds (2.3)

holds for all points x, y ∈ X and for all paths γ ∈ �rect connecting them. Then ρ

is said to be an upper gradient of u. If there exists a family � ⊂ �rect such that
modp(�) = 0 and (2.3) holds for all points x, y ∈ X and all paths γ ∈ �rect \ �
connecting them, then ρ is said to be a p-weak upper gradient of u.

The definition of Newtonian spaces is due to Shanmugalingam [S]. A treatise on
Sobolev spaces in metric measure spaces can be found in [Ha].

Definition 2.4 (Newtonian space). The Newtonian space corresponding to the
index p (1 ≤ p < ∞), denoted N1,p(X), is defined to be the space of equivalence
classes of all real-valued p-integrable functions u on X that have a p-integrable
weak upper gradient. The equivalence classes are constructed with respect to the
semi-norm

‖u‖N1,p := ‖u‖Lp + infρ‖ρ‖Lp ,

where the infimum is taken over all p-integrable weak upper gradients of u.

Let us now fix our setting. The triple (X, d,µ) always denotes a metric measure
space—that is, a metric space equipped with a measure. We wish to consider met-
ric measure spaces that have some regularity. The following definition links the
measure and the metric.

Definition 2.5 (Q-regularity). Let (X, d,µ) be given with µ a locally finite
Radon measure in X. We say that (X, d,µ) is Ahlfors regular of dimension Q (or
Q-regular) if

arQ ≤ µ(B(x, r)) ≤ ArQ for any ball B(x, r) ⊂ X with r < diamX

for suitable constants a,A > 0.
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The Q-regularity of a measure allows us to compare the measures of balls of
comparable size. The following fact is based on this; see [H1, Exer. 2.10] or [Bo,
Lemma 4.2].

Lemma 2.6 (Bojarski lemma). Let (X, d,µ) be a proper and Q-regular metric
measure space. Further, let B0 = B(x0, r0) and fix 1 ≤ p < ∞. Then there exist
positive constants δ and C such that, given any collection B1,B2, . . . , of balls in
B0 with radii of at most δ and any nonnegative numbers ai, we have the estimate∫

B0

(∑
i

aiχ6Bi

)p

dµ ≤ C

∫
B0

(∑
i

aiχBi/6

)p

dµ.

Given the definition of Newtonian spaces, we can prevent N1,p(X) from becom-
ing trivial by requiring the existence of many paths in X. A condition that imposes
this is the Poincaré inequality (see [Ke1] for more details on this relationship).
There are several different definitions of the Poincaré inequality. We will use the
following one (see [HaK]).

Definition 2.7 (Poincaré inequality). The metric measure space (X, d,µ) is
said to support a (1, q)-Poincaré inequality if there exist constants C, λ > 0 such
that, for all open balls B in X and all pairs of functions f and ρ defined on B,
if f is continuous and if ρ is an upper gradient of f on B and f is integrable on
B, then ∫

B

|f − fB | dµ ≤ C diam(B)

(∫
λB

ρq dµ

)1/q

,

where, for a measurable function u on X,

uB := 1

µ(B)

∫
B

u dµ =:
∫
B

u dµ.

If a Q-regular metric measure space admits a Poincaré inequality, then it allows
for first-order differential calculus similar to that in Euclidean space; see [H2].

As pointed out to the author by P. Koskela, a space satisfying a (1, q)-Poincaré
inequality for upper gradients fulfills also a (1, q)-Poincaré inequality for q-weak
upper gradients. See [KMac, Lemma 2.4] for a proof.

Lemma 2.8. Assume that (X, d,µ) is a metric measure space supporting a (1, q)-
Poincaré inequality for some q ≥ 1 and constants C and λ. Suppose that ρ is a
q-weak upper gradient of the function u : X → R. Then the pair (u, ρ) also sat-
isfies a (1, q)-Poincaré inequality with the same constants.

3. Proof of Theorem 1.3

Because our statement is local, we may assume without loss of generality that X
is compact.
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Sketch of the Proof. A necessary condition for a function f to be inN1,p(X) is that
it be absolutely continuous on a p-a.e. rectifiable path. (This means that f must
be absolutely continuous on all rectifiable paths except a path family of p-modulus
0.) Assume that E is the set where lf is infinite. Having in mind the Cantor func-
tion (see e.g. [GeO, p. 95]), we see that a path γ with H1(f(γ ∩E)) > 0 may be
a path on which f is not absolutely continuous. Thus our first goal is to show that

modp({γ ∈�rect : H1(f(γ ∩ E)) > 0}) = 0.

However, we are only able to prove that

modq({γ ∈�rect : H1(f(γ ∩ E)) > 0}) = 0. (3.1)

It is the dimension of the set E that plays an important role here. After proving
(3.1), we show that f is absolutely continuous on paths γ with H1(f(γ ∩ E)) =
0. This enables us then to prove that lf is a q-weak upper gradient. If p = q then
we are done. Otherwise, we use the Poincaré inequality to show that f is in the
Hajłasz space M1,p(X). We define M1,p(X) later but note here that a continuous
function in M1,p(X) is also in N1,p(X), which allows us to conclude the proof.

Let us start now with the proof of Theorem 1.3. We begin with a proposition,
an improvement of [BaKR, Lemma 3.5] that validates (3.1).

Proposition 3.2. Let f : X → Y be a continuous mapping between metric
spaces, and assume that X is proper and supports a Q-regular measure µ. Let
E ⊂ X have σ-finite HQ−q-measure for some 1 ≤ q ≤ Q. Then

modq({γ ∈�rect : H1(f(γ ∩ E)) > 0}) = 0.

Proof. In light of the subadditivity of modq , it suffices to consider the case where
HQ−q(E) < ∞. Fix ε > 0 and let

�ε := {γ ∈�rect : H1(f(γ ∩ E)) > ε}.
We want to show that this set has q-modulus 0; the claim will then follow, again
by the subadditivity of the modulus. We will construct admissible functions by
means of collections of balls that cover the exceptional set E. Here we use our
assumption that E has finite HQ−q-measure.

Since for every rectifiable path we can find a ball that contains this path, it suf-
fices (by the subadditivity of the modulus) to assume that E ⊂ 1

2B0 for a ball B0

with radius bounded by the diameter of X. Since X is proper, the closed ball B̄0 is
compact, and since f is continuous, its restriction to B̄0 is uniformly continuous.
Hence for k ∈ N there exists a δk > 0 such that, for all x, x ′ ∈ B̄0,

dX(x, x ′) < δk �⇒ dY (f(x), f(x
′)) <

ε

2k+3
. (3.3)

We can assume that (δk)k is a sequence of positive numbers decreasing to zero.
Fix ε̃ > 0. Using the definition of the Hausdorff measure and applying the 5r-
covering theorem (see [H1, Thm. 1.2]), we find a sequence of balls (Bk

i )i such that
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• 2Bk
i ⊂ B0,

• Bk
i ∩ Bk

j = ∅ for i �= j,
• diam(Bk

i ) < δk/5,
• E ⊂ ⋃

i 5Bk
i , and

•
∑

k(diam(Bk
i ))

Q−q < HQ−q(E) + ε̃.

Let γ ∈�ε, and note that H1(f(γ ∩E)) > ε. This implies that, for all sufficiently
large integers k, there exist points y1, . . . , y2k−2 ∈ f(γ ∩ E) such that

dY (yi, yj ) >
ε

2k+2
for i �= j. (3.4)

By inequalities (3.3) and (3.4), we see that at least 2k−2 sets f(5Bk
i ) will be

needed to cover f(γ ∩E). Hence there are at least 2k−2 balls 5Bk
i that hit γ. We

define the following sequences (ρk)k and (ρ̂k)k of Borel functions:

ρk(x) = 4

2k

∑
i

1

diam(Bk
i )
χ12Bk

i
(x),

ρ̂k(x) =
∞∑
j=k

ρj(x).

Next we want to show that the functions ρ̂k are admissible for the modulus. For
any γ ∈ �ε and any j ∈ N, we find k ≥ j such that γ is not entirely contained in
any ball 12Bk

i and there exist 2k−2 points ym such that (3.4) holds. Then∫
γ

ρ̂j ds ≥
∫
γ

ρk ds = 4

2k

∑
i

∫
γ

χ12Bk
i

diam(Bk
i )

ds

≥ 4

2k

∑
5Bk

i
∩γ �=∅

diam(Bk
i )

diam(Bk
i )

≥ 4

2k
· 2k−2 ≥ 1,

where we have used the estimated number of balls intersecting γ and the fact that
γ is not entirely contained in any ball 12Bk

i .

We now use Lemma 2.6 to estimate the modulus from above. The constant C
may vary from line to line, but it depends only on the regularity constants and on
q. We obtain for k with δk < δ, where δ is the constant from Lemma 2.6,∫

X

ρ
q

k dµ = 4q

2kq

∫
X

(∑
i

χ12Bk
i

diam(Bk
i )

)q
dµ ≤ C

2kq

∑
i

∫
X

( χBk
i

diam(Bk
i )

)q
dµ

≤ C

2kq

∑
i

µ(Bk
i )

diam(Bk
i )

q
.

By the Q-regularity of µ, we finally conclude that∫
X

ρ
q

k dµ ≤ C

2kq

∑
i

(diam(Bk
i ))

Q−q ≤ C

2kq
(HQ−q(E) + ε̃). (3.5)

Consequently
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(∫
X

ρ̂j
q dµ

)1/q

=
(∫

X

( ∞∑
k=j

ρk

)q
dµ

)1/q

≤
∞∑
k=j

(∫
X

ρ
q

k dµ

)1/q

≤
∞∑
k=j

(
C

2kq
(HQ−q(E) + ε̃)

)1/q

≤ C(HQ−q(E) + ε̃)1/q 1

2j−1
.

Raising to the power q and letting j → ∞ finishes the proof.

The next result will be needed to show that lf is a q-weak upper gradient. It is a
stronger version of [BaC, Lemma 1.1].

Lemma 3.6. Let f : [a, b] → R be a continuous function such that lf (x) < ∞
for x ∈ [a, b] \E, where L1(f(E)) = 0. Assume also that lf ∈L1([a, b]). Then f
is an absolutely continuous function and

|f ′(x)| = lf (x) for L1-a.e. x ∈ [a, b].

Proof. We first prove that f is absolutely continuous. For x ∈ [a, b] \E we define
the function l̃f (x) := max{lf (x),1}. It is clear that l̃f is also in L1([a, b]). The
absolute continuity follows essentially from (3.7).

Claim. For c, d ∈ [a, b] with c < d, we have

|f(d ) − f(c)| ≤ 8 ·
∫ d

c

l̃f dx. (3.7)

Proof of the claim. We fix c, d ∈ [a, b] with c < d. First we define sets where
l̃f is controlled from above and below. For k ∈ N ∪ {0}, we set

Ak := {x ∈ [c, d ] \ E : 2k ≤ l̃f (x) < 2k+1}.
Observe that the Ak are disjoint Borel sets (see [Ke2]) and that

[c, d ] \ E =
⋃
k

Ak.

The proof of the claim is based on a covering argument. First we approximate
the Borel sets Ak by open sets Uk as follows. Fix a small ε > 0 and choose, for
each k, an open set Uk such that Ak ⊂ Uk and

L1(Uk) ≤ L1(Ak) + ε

22k
.

For x ∈Ak with l̃f (x) = lf (x) we obtain

lim inf
r→0

L1(f(B(x, r)))

r
≤ 2 lim inf

r→0

sup|x−y|≤r |f(y) − f(x)|
r

= 2 lf (x) < 2k+2.

If l̃f (x) = 1 then, as before, we conclude that

lim inf
r→0

L1(f(B(x, r)))

r
≤ 2 lf (x) ≤ 2 < 2k+2.
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Thus we can find for each x ∈ Ak a radius rx > 0 such that the following two
properties are fulfilled:

(a) B(x, rx) ⊂ Uk;
(b) L1(f(B(x, rx))) ≤ 2k+2 · rx.

We denote by B the collection of balls with the properties (a) and (b) just ob-
tained. It is clear that

[c, d ] \ E =
⋃
k

Ak ⊂
⋃
B∈B

B.

We can choose a countable subcollection {Bi}i of B, Bi = B(xi, ri), that covers
the set [c, d ] \ E with overlap bounded by 2; that is,∑

i

χBi
(x) ≤ 2 for all x ∈ [c, d ] \ E. (3.8)

Using the continuity of f we conclude that

|f(d ) − f(c)| ≤ L1(f([c, d ] \ E)) ≤
∑
k

L1(f(Ak)) ≤
∑
k

∑
{i : xi∈Ak}

L1(f(Bi))

≤
∑
k

2k+2
∑

{i : xi∈Ak}
ri .

By (3.8) we finally obtain

|f(d ) − f(c)| ≤ 2
∑
k

2k+2

(
L1(Ak) + ε

22k

)
≤ 8

(∑
k

∫
Ak

l̃f dx + 2ε

)

≤ 8
∫ d

c

l̃f dx + 16ε.

Letting ε → 0 gives inequality (3.7) and thus the claim.
Now the claim—together with the fact that l̃f is in L1([a, b])—gives the abso-

lute continuity. By the general differentiability properties of absolutely continuous
functions, it follows that f is differentiable for L1-a.e. x ∈ [a, b]. A bit of calcu-
lation shows that, in points of differentiability of f , the equality

lf (x) = |f ′(x)|
holds.

The next lemma proves Theorem 1.3 in the case p = q.

Lemma 3.9. Let (X, d,µ) be a proper andQ-regular metric measure space,E ⊂
X. If E has σ-finite HQ−q-measure (where 1 ≤ q ≤ Q) and if f : X → R is con-
tinuous with lf (x) < ∞ for x ∈X \ E, then lf is a q-weak upper gradient of f.

Proof. Let
�E := {γ ∈�rect : H1(f(γ ∩ E)) > 0}.

By Proposition 3.2 we have that
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modq(�E) = 0.

Consequently, for every rectifiable path γ ∈ �rect with H1(f(γ ∩ E)) = 0, we
want to show that

|f(p2) − f(p1)| ≤
∫
γ

lf ds,

where p1 and p2 denote the endpoints of γ. Let us fix a path γ ∈ �rect such that
H1(f(γ ∩E)) = 0. Without loss of generality, γ is parameterized by arc length.
Denote its domain by [a, b], and let

h := f � γ : [a, b] → R.

By the following claim we may apply Lemma 3.6 to h.

Claim. lh(t) ≤ lf (γ (t)) for all t ∈ [a, b].

Proof of the claim. Because γ is 1-Lipschitz, it follows that |t − t ′| ≤ r implies
d(γ (t), γ (t ′)) ≤ r for all t, t ′ ∈ [a, b] and all r ≥ 0. Then

lh(t) = lim inf
r→0

1

r
sup

|t−t ′|≤r

|h(t ′) − h(t)| = lim inf
r→0

1

r
sup

|t−t ′|≤r

|f(γ (t)) − f(γ (t ′))|

≤ lim inf
r→0

1

r
sup

d(γ (t),y)≤r

|f(γ (t)) − f(y)| = lf (γ (t)).

This proves the claim.
If lh is not in L1[a, b], then

|f(p2) − f(p1)| ≤ ∞ =
∫
γ

lf ds.

Otherwise we obtain by Lemma 3.6 that h is absolutely continuous and so, by the
foregoing claim,

|f(p2) − f(p1)| = |h(b) − h(a)| ≤
∫ b

a

|h′| ds =
∫ b

a

|lh| ds

≤
∫
γ

|lf | ds =
∫
γ

lf ds.

We introduce now the Hajłasz spaces (see e.g. [Ha]).

Definition 3.10 (Hajłasz space). Let (X, d,µ) be a metric measure space. For
1 ≤ p < ∞, the Hajłasz space M1,p(X) is the collection of Lp-equivalence
classes of functions u such that there exists a p-integrable nonnegative function g,
called a Hajłasz gradient of u, satisfying the inequality

|u(x) − u(y)| ≤ d(x, y)(g(x) + g(y))

for µ-almost all x, y in X. The corresponding norm for functions u in M1,p(X) is
given by

‖u‖M1,p := ‖u‖Lp + infg‖g‖Lp ,
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where the infimum is taken over all Hajłasz gradients g of u. With this norm,
M1,p(X) is a Banach space.

Lemma 4.7 in [S] relates M1,p(X) and N1,p(X). For further connections between
Hajłasz spaces and Newtonian spaces the reader may consult [KeZh].

Lemma 3.11. The set of all equivalence classes of continuous functions f in
M1,p(X) embeds into N1,p(X).

We will construct a Hajłasz upper gradient of f by applying the maximal operator
to l

q

f .

Definition 3.12 (Maximal operator). Assume that (X, d,µ) is a metric mea-
sure space and that u : X → R is a locally integrable real-valued function in X.

Define

Mu(x) := sup
0<r

∫
B(x,r)

|u| dµ and

MRu(x) := sup
0<r<R

∫
B(x,r)

|u| dµ

to be the maximal operator and the restricted maximal operator, respectively.

If the space supports a Poincaré inequality then we have the following estimate,
which is Theorem 3.2 in [HaK].

Proposition 3.13. Let (X, d,µ) be a Q-regular metric measure space. Assume
that the pair (u, ρ) satisfies a (1, q)-Poincaré inequality, u∈L1

loc(X), and q > 0.
Then, for a.e. x, y ∈X,

|u(x) − u(y)| ≤ Cd(x, y)((M2λd(x,y)ρ
q(x))1/q + (M2λd(x,y)ρ

q(y))1/q).

We are now ready to prove our main theorem.

Proof of Theorem 1.3. Since the case q = p is covered by Lemma 3.9, we may as-
sume that q < p. By Lemma 3.9 we know that lf is a q-weak upper gradient of f.
We shall first apply Proposition 3.13 to show that f ∈M1,p(X). By Lemma 2.8 we
know that the pair (f , lf ) satisfies a (1, q)-Poincaré inequality. Since lf ∈Lp(X),
it follows that lqf ∈Lp/q(X). Using the theorem of Hardy and Littlewood on Lp-
boundedness of maximal operators (see e.g. [H1, Thm. 2.2] or [AT, Thm. 5.2.10]),
we obtain that Ml

q

f ∈Lp/q(X). Applying Proposition 3.13 then yields

|f(x) − f(y)| ≤ Cd(x, y)((Ml
q

f (x))
1/q + (Ml

q

f (y))
1/q)

for a.e. x, y ∈ X. Since (Ml
q

f )
1/q ∈ Lp(X), we see that f ∈ M1,p(X). By

Lemma 3.11, we conclude that f ∈N1,p(X).

Using Theorem 1.3 and Corollary 4.3 in [BaRZ], we obtain the following result.
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Corollary 3.14. Let (X, d,µ) be a Q-regular and proper space, where Q >

1. Suppose that (X, d,µ) supports a (1, q)-Poincaré inequality for 1 ≤ q ≤ Q.

Assume further that f : X → R is continuous and that lf (x) < ∞ for x ∈X \E,
where E has σ-finite (Q− q)-dimensional Hausdorff measure. If, moreover, lf is
in Lp

loc(X) for a p with Q < p, then f is locally Hölder continuous and is differ-
entiable a.e. in the sense of Cheeger. (For the notion of Cheeger differentiability
see [BaRZ; Ch].)

Remark 3.15. According to [BBS, Prop. 1.2], in every metric measure space
(X, d,µ) wherein continuous functions are dense in N1,p(X), every u∈N1,p(X)

has a representative that is quasicontinuous. Quasicontinuity is a weaker notion
of continuity; see [BBS, Def. 2.7]. Therefore, our assumption that f needs to be
continuous is not as strong as it seems. However, it is not clear if we can replace
the continuity assumption by p-quasicontinuity in Theorem 1.3. The problem is
that we do not know if the Poincaré inequality still holds on the subspace where
f is continuous.

4. Examples

In this section we discuss examples and applications of Theorem 1.3.
The bound of the dimension of the exceptional set in Theorem 1.3 is important,

as the following example demonstrates.

Example 4.1. According to [BaC, Thm. 1.4], there exists a nowhere differen-
tiable and continuous function f : [0,1] → R such that lf (x) = 0 for L1-a.e. x ∈
[0,1]. We define a continuous function g : [0,1]n → R as follows:

g(x1, x2, . . . , xn) := f(x1).

We claim that g is not in N1,n([0,1]n) even though lg ∈Ln([0,1]n). Let us denote

Ef := {x ∈ [0,1] : lf (x) = ∞},
Eg := {x ∈ [0,1]n : lg(x) = ∞}.

Observe that
Eg = Ef × [0,1]n−1

and that lg(x) = 0 for Ln-a.e. x ∈ [0,1]n. Since g is not absolutely continuous
on n-almost every line parallel to the coordinate axis x1, it follows that g is not in
N1,n([0,1]n).

Next we consider a class of spaces that are constructed by gluing together two
spaces (see [HK, p. 43]). Assume that (X, dX,µX) and (Y, dY ,µY ) are two proper
Q-regular metric measure spaces. Suppose further that A is a closed subset of X
that has an isometric copy inside Y ; in other words, suppose there exists an iso-
metric embedding i : A → Y. We fix this embedding and consider A as subset of
both X and Y. The space

X ∪A Y
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is the disjoint union of X and Y with points in the two copies of A identified. It is
possible to extend the metrics from X and Y by defining a metric d on X ∪A Y :

d(x, y) = infa∈A{dX(x, a) + dY (a, y)} for x ∈X and y ∈ Y.

If x, y are contained in the same space, then we take the metric of this space. The
measures µX and µY add up to a Q-regular measure µ on X∪AY. For such spaces
we obtain the following corollary of Theorem 1.3.

Corollary 4.2. Let (X1, d1,µ1) and (X2, d2,µ2) be two Q-regular and proper
metric measure spaces, where Q > 1. Suppose that 1 ≤ q ≤ p and 1 < p < Q

and that both spaces support a (1, q)-Poincaré inequality. Assume that A is a
closed set with

HQ−p(A) < ∞.

Then we construct X := X1 ∪AX2 as described previously with metric d and mea-
sure µ. Let us further assume that f : X → R is continuous and that lf (x) < ∞
for x ∈X \ E, where E has σ-finite (Q − q)-dimensional Hausdorff measure. If
lf is in L

p

loc(X), then f is in N1,p
loc (X).

Proof. We assume without loss of generality that X is compact. The idea of the
proof is to split a given path in X into its components in X1 and X2 and then to
apply Theorem 1.3 on the individual components.

We define f1 : X1 → R and f2 : X2 → R as restrictions of f to X1 and X2,
respectively. By applying Theorem 1.3 on f1 and f2, we obtain p-weak upper gra-
dients ρ1 and ρ2 of f1 and f2 that are in Lp(X1) and Lp(X2) respectively. Set

�̃(X) := {γ ∈�rect(X) : the cardinality of γ ∩ A is infinite}.
By [BaKR, Lemma 3.4], we see that

modp(�̃(X)) = 0.

Take γ ∈ �rect(X) \ �̃(X), γ : [0, l] → X. Without loss of generality, we can
assume that γ is parameterized by arc length. We set

{a1, a2, . . . , am} = γ ∩ A,

δ := min{d(ai, aj ), i �= j},
T := {t ∈ [0, l] : γ (t)∈A}.

We assume that m ≥ 2 and leave the case m = 1 as an exercise for the reader. If T
were infinite then, for every natural N, we could extract a subset with N elements.
But for each N we would then have (N − 1)δ as lower bound for the length of γ,
contradicting the rectifiability. In conclusion, we can write γ as a finite union of
subpaths each lying entirely in one of the spaces X1 or X2. For every γ ∈�rect(X)

we fix such a representation as a finite union: γ = ⋃
i∈I γi, where γi ⊂ X1 or

γi ⊂ X2. We define

� := {γ ∈�rect(X) \ �̃(X) :

there is a γi on which f is not absolutely continuous}.
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We also define ρ := ρ1χX1 + ρ2χX2 ∈Lp(X). Our goal is to show that

modp(�) = 0 (4.3)
and

|f(b) − f(a)| ≤
∫
γ

ρ ds (4.4)

for all γ ∈�rect(X)\� connecting a and b. From (4.3) and (4.4) it will then follow
that f ∈N1,p

loc (X).

To show (4.3), we define

�1 := {γ ∈�rect(X1) : f1 is not absolutely continuous on γ },
�2 := {γ ∈�rect(X2) : f2 is not absolutely continuous on γ }.

By Theorem 1.3 and Proposition 3.1 in [S] (note that the measures µi are compa-
rable to µ and so we can take the moduli with respect to the space (X, d,µ)), we
obtain

modp(�1) = modp(�2) = 0;
since every path in � has a subpath in �1 ∪ �2, we obtain equation (4.3):

modp(�) ≤ modp(�1 ∪ �2) ≤ modp(�1) + modp(�2) = 0.

Let us now take γ = ⋃
i∈I γi ∈�rect(X) \ �. We denote by ai and bi the start-

ing point and endpoint of γi, respectively. Observe that if bi �= b then there is a
aj with bi = aj , and if ai �= a then there is a bj such that ai = bj . Consequently,

|f(b) − f(a)| ≤
∑
i∈I

|f(bi) − f(ai)| ≤
∑
i∈I

∫
γi

ρ ds ≤
∫
γ

ρ ds.

This concludes the proof.

Remark 4.5. Note that in Corollary 4.2 there is no Poincaré inequality required
for the spaceX. In [HK, pp. 43–45], the authors glue together spaces with a (1, q)-
Poincaré inequality such that the resulting space does admit a (weaker) Poincaré
inequality.

Remark 4.6. Assume that in Theorem1.2 we additionally requireX to be proper.
Then, by Lemma 3.9, we can replace the condition that HQ−p(E) = 0 with the re-
quirement that E have σ-finite HQ−p-measure; then the statement of the theorem
still holds.
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