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w1 and —w| May Be the Only Minimal
Uncountable Linear Orders
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1. Introduction

In 1971 Laver proved the following result, confirming a long-standing conjecture
of Fraissé.

THEOREM 1.1 [10]. IfL; (i < w) isasequence of o-scattered linear orders, then
there existi < j suchthat L; is embeddable into L;. In particular, the o-scattered
orders are well-founded when given the quasi-order of embeddability.

Here a linear order is scattered if it does not contain a copy of the rationals; a lin-
ear order is o-scattered if it is a countable union of scattered suborders.

Around the same time, Baumgartner proved the following theorem. (As usual,
ZFC is used to denote “Zermelo—Fraenkel set theory with the axiom of choice”
and MA to denote “Martin’s axiom”.)

THEOREM 1.2 [3]. It is relatively consistent with ZFC—and follows from the
proper forcing axiom (PFA)—that any two Ni-dense sets of reals are order-
isomorphic. (A linear order is ¥;-dense if every proper interval contains R ele-
ments.) In particular, PFA implies that any subset of R of cardinality ¥y is minimal
with respect to not being o-scattered.

It is therefore consistent that Laver’s theorem is not sharp. However, it is unclear
whether ZFC alone implies that there is a linear order that is minimal with respect
to not being o-scattered.

QUESTION 1.3.  Is there a linear order that is not o-scattered and that is minimal
in this regard?

Two important classes of linear orders that are not o-scattered are the real types
and the Aronszajn types: the real types are those uncountable dense linear orders
that are separable; the Aronszajn types are those linear orders that are uncountable
and yet have no uncountable suborders that are scattered or real types. This latter
class was considered—and proved nonempty—long ago by Aronszajn and Kurepa
in the context of Souslin’s problem. (The existence of Aronszajn lines was later
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rediscovered by Specker and thus they are sometimes referred to as Specker types
in the literature; see [18, 5.15] for a historical discussion of this point.) Both
of these classes have the property that they are closed under taking uncountable
suborders. Hence a model of set theory in which Question 1.3 has a negative an-
swer cannot contain minimal real or Aronszajn types. This motivates the following
question.

QUESTION 1.4. s there a ZFC example of a minimal uncountable linear order
other than w; or —w?

Here —w; (often denoted w7 in the literature) signifies the reverse of w;. By the
following classical result of Sierpifiski, the continuum hypothesis (CH) implies
that there are no minimal real types.

THEOREM 1.5 [16]. If X € Rand |X| = |R|, then thereisa Y C X with |Y| =
[R| such that, if f € Y? is a monotonic function, then f differs from the identity
on a set whose cardinality is less than |R|.

The picture was less clear for Aronszajn lines. An important class of Aronszajn
lines considered by Countryman and proved nonempty by Shelah [14] consists of
the Countryman lines: uncountable linear orders C such that the coordinatewise
partial order on C? is the union of countably many nondecreasing relations. The
following theorem shows that, under a fairly mild set-theoretic assumption, such
linear orders are minimal. (It is not entirely clear when this was first known or
who discovered the proof; a weaker statement was conjectured in [14] and repeated
again in [4], and a proof can be obtained using techniques in [20].)

THEOREM 1.6. MA(R)) implies that every Countryman line is minimal.

In fact, this argument can be adapted to show that if a pair of Countryman lines
are Nj-dense then they are either isomorphic or reverse-isomorphic.

It is natural to suspect that there should be an analog of Sierpiniski’s result for
Aronszajn lines—that CH (or a stronger enumeration principle such as <) implies
that there are no minimal Aronszajn lines. In a somewhat surprising twist, how-
ever, Baumgartner proved the following result, which rules out the conventional
method for proving that Question 1.3 is independent.

THEOREM 1.7 [4]. <V implies that there is a minimal Aronszajn line.

Baumgartner also noted that his construction in Theorem 1.7 produces a Souslin
line and asked whether this is necessarily the case.

In this paper I will prove that the answer to Question 1.4 is negative. This can
be viewed as a companion to the following result.

THEOREM 1.8 [12]. PFA implies that the class of uncountable linear orders has
a five-element basis consisting of X, w1, —w1, C, and —C, where X is an arbitrary
set of reals of cardinality R and C is a Countryman line.
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The members of this basis are each minimal and canonical (assuming PFA). The
main result of this paper shows that some hypothesis is needed to draw this con-
clusion in all but the trivial cases.

The main ingredient in the proof is a variation on the notion of uniformizing a
ladder system coloring. A ladder system coloring is a sequence ( f, : « € lim(w)))
such that, for each « € lim(w), the domain of f, is aladder C, on « and the range
of f, is contained in w. Here a ladder on a countable limit ordinal « is a cofinal
subset of « that has ordertype w.

Whether all ladder system colorings can be uniformized—when there is a
¢: w; — o such that f, =" ¢ | C, for all relevant a—turns out to be of in-
terest both in pure combinatorial set theory and in applications. (The notation =*
will be explained shortly.) For instance, a variation on this theme played a crucial
role in the solution of Whitehead’s problem (see [13]).

Devlin and Shelah [6] have shown that the assertion

(U) all ladder system colorings can be uniformized

implies 2% = 2™ This is rather remarkable because, for any given ladder system
coloring, there is a proper forcing that uniformizes it yet does not introduce real
numbers. The obstruction to obtaining the consistency of (U) with CH is therefore
in the inability to iterate these forcings without introducing reals.

In this paper we will consider a weaker variant (A) of (U) that is consistent
with CH:

(A) every ladder system coloring can be T-uniformized for every Aronszajn tree T

(see Section 2). This variant is of interest because, in the presence of a mini-
mal Aronszajn line, it implies that 2% = 2™ Hence the conjunction of (A) and
CH implies that there are no minimal Aronszajn lines and so, by Sierpiriski’s re-
sult (Theorem 1.5), there are no minimal uncountable linear orders other than w;
and —w;.

The main results of this paper are as follows.

THEOREM 1.9. There is a proper forcing extension in which the continuum hy-
pothesis and (A) are both true.

THEOREM 1.10.  If(A)is true and there is a minimal Aronszajn line, then 280 = 281,

THEOREM 1.11. It is consistent that w| and —w1 are the only minimal uncount-
able linear orders.

It is worth noting at this point that, although the major technical difficulty of this
paper is in proving Theorem 1.9, the key idea for proving the main result was the
realization that Theorem 1.10 is true. A more direct approach to Theorem 1.11
would be to introduce, for a given Aronszajn line L, a suborder X of L into which
L cannot embed and then argue that this procedure can be iterated while preserv-
ing that L does not embed into X. In fact, though hindsight will suggest that such
preservation may be possible, it still seems to be a daunting task. This is especially
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true if one wishes to obtain models satisfying Theorem 1.11 together with other
hypotheses (see the discussion in Section 6). Theorem 1.10 allows us to take a less
direct approach by linking the introduction of embeddings to the introduction of
real numbers, a phenomenon that has already been extensively studied and has a
relatively well-developed theory (see [15]).

In fact, the discovery of the proof is a direct consequence of studying the possi-
bility of maximizing IT,-sentences for H (Nf) in the presence of CH. An example
related to my original motivations is discussed in Section 6. I would like to thank
Ali Enayat for bringing Question 1.4 to my attention at just the right time. I have
also taken this paper as an opportunity to present a framework for showing that an
iteration of proper forcings does not introduce reals, which I feel makes the tasks
at hand more transparent. This is the content of Section 4.

Some attempt has been made to keep this paper fairly self-contained—provided
the reader is fluent in modern set-theoretic techniques. The reader is assumed to
have some knowledge of proper forcing in addition to the usual proficiency in set
theory. For the most part I will follow the notation in [9], to which the reader is re-
ferred for background in basic set theory and forcing. I will use the language from
category theory in parts of the paper; [11] will be used as the standard reference.
Further information on iterated proper forcing can be found in [15]. All ordinals
considered in this paper are von Neumann ordinals: they are the set of their pre-
decessors. In particular, w is the set of all finite ordinals and w is the set of all
countable ordinals. If two functions f and g have a common domain D and if
{x e D: f(x) # g(x)}is finite, then I will write f =* g; if f is constantly i ex-
cept on a finite set, then I will write f =* i. Throughout the paper, 6 will always
refer to an uncountable regular cardinal. For a given 6, H(8) will denote the col-
lection of all sets of hereditary cardinality less than 6; hence H(X]") consists of
all sets of hereditary cardinality at most 8. (The reader may be puzzled by the
use of R instead of ®,: the point is that H(R]") is more suggestive of the typical
cardinality of its members.) These structures are of interest since, for a given 6,
H(0) satisfies all of the axioms of ZFC except the power set axiom and is closed
under taking subsets. Such structures will always be tacitly equipped with a fixed
well-ordering that is used to generate Skolem functions for the structure.

One major departure from the norm will be the emphasis on countable transi-
tive set models. It will be convenient to utilize the following specialized notation.
If M is a set, then there is a unique transitive set M and a unique collapsing iso-
morphism from (M, ) to (M, €). (A set M is transitive if every element of M is
also a subset of M.) If an object is first named as M, then M will denote its tran-
sitive collapse. Furthermore, if X is an element of M, then XM will denote the
result of applying M’s collapsing isomorphism to X. If ¢ is a function and X is a
subset of the domain of &, then ¢ X will denote the image of X under €.

2. Background on Trees

In this section I will present some background on trees and fix some notation. The
reader who is familiar with trees may wish to skip this section and refer to it if any



The Only Minimal Uncountable Linear Orders 441

of the notation is unfamiliar. Further reading as well as some historical discussion
can be found in [18].

Recall that a tree is a partial ordering (7, <) in which every set of the form {s €
T :s < t}fortin T is well-ordered by <. The ordertype of this set is called the
height of t. All trees considered in this paper are, moreover, Hausdorff: if t # t’
and if both have limit height then each has a different set of predecessors.

The set of all elements of T of a given height § is denoted T; and is called the
oth level of T. This allows us to make the following definitions.

DEFINITION 2.1.  Iftisin T and if « is an ordinal, then ¢ | « is 7 if « is at least the
height of ¢; otherwise, ¢ | « is the element s of T such that s < ¢ and the height
of s is a.

DEeFINITION 2.2. If 5 and ¢ are incomparable elements of 7, then A(s,?) is the
greatest ordinal ¢ suchthats [ ¢ =1t [ ¢.

We can also use restriction to define an abstract notion of a lexicographical order-
ing on a tree.

DErFINITION 2.3, If (7, <) is a tree, then a linear ordering <ix on 7T is a lexico-
graphical ordering if, whenever s and ¢ are incomparable elements of T, s <jex ¢
isequivalenttos [ (¢ + 1) <ix t [ (¢ + 1), where { = A(s, 1).

Our interest in trees will be limited to Aronszajn trees—those that are uncountable
but have countable levels and branches.

THEOREM 2.4 (see [18,5.1]). Every Aronszajn line is embeddable into a lexico-
graphical ordering on an Aronszajn tree.

I will also need the notion of a subtree of an Aronszajn tree. (There is no universal
definition of the term “subtree”; the following is the most appropriate definition
for the discussion in this paper.)

DEFINITION 2.5. A subtree of T is an uncountable subset U of T that is down-
wards closed: if # is in U and ¢ < u, then ¢ is in U. If every element of U has
uncountably many extensions in U, then U is said to be pruned.

REMARK 2.6. If T is an Aronszajn tree and U is a subtree of 7, then it is well
known and readily verified that the set U’ of all # in U that have uncountably many
extensions in U is a pruned subtree of U. In particular, every subtree of an Arons-
zajn tree contains a pruned subtree.

Now we can formulateqthe statement (A) introduced in Section 1. Let 7 be an
Aronszajn tree and let f = (f,, : @ € lim(w;)) be a ladder system coloring.

DEFINITION 2.7.  The coloring f can be T-uniformized if there is a subtree U of
T and a function ¢: U — w such that, if u is an element of U of limit height «,
then f5s =™ ¢[u] | C,. Here ¢[u]: @« — wis defined by & — ¢(u | &).
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The statement (A) is then the assertion that every ladder system coloring can be
T-uniformized for every Aronszajn tree 7. Observe that this is a weaker statement
than (U); it becomes equivalent if we require that the upper bound on the error in
o[u] depend only on the height of u.

I will finish this section with a lemma relating the minimality of Aronszajn lines
to a more combinatorial notion of minimality that will be easier to work with. Re-
call the following definition.

DEFINITION 2.8. If S and T are two Aronszajn trees, then S is said to be club-
embeddable into T if there is a closed unbounded set £ C w; and an order-
preserving function from S [ Einto T [ E. Here S | E = [J;. Ss.

LEmMMA 2.9. Suppose that T is an Aronszajn tree and that X C T is dense in the
tree order that is a minimal Aronszajn line in some lexicographical order on T. (A
subset X of T is dense in T if every element of 7" has an extension in X.) If S is
a subtree of

T'={teT:3ty,t1 €Tt <tg,11) and (to L 1)},
then T’ club-embeds into S. In particular, if there is a minimal Aronszajn line,

then there is an Aronszajn tree that club-embeds into all of its subtrees.

I could not find this mentioned specifically in the literature, although a related dis-
cussion can be found in [4]. I will leave the proof to the interested reader.

3. Coding Using (A) and a Minimal Aronszajn Line

In this section I will prove Theorem 1.10. I will need the following theorem of
Devlin and Shelah.

THEOREM 3.1 [6]. The inequality 2*° < 28 implies the following statement.
For every F: 2<% — 2 thereisa g: wy — 2 such that, for every f: w; — 2,

{8 <wi:8(8) =F(f )
is stationary.

Applications of this theorem frequently involve some encoding and decoding of
countable structures as countable binary sequences. This involves a fairly standard
argument (cf. e.g. [9, 11, Exer. (51)]; see also the proof of Lemma 4.11 to follow),
but for concreteness I will state an equivalent formulation of Theorem 3.1.

THEOREM 3.2. The inequality 280 < 2% implies the following statement. For
every F: H(RY) — 2 there is a g: w; — 2 such that, for every 2 in H(R]),
there exists a countable elementary submodel M of H(R) with A in M such that
gl # FAM).

The following lemma, taken with Lemma 2.9, now completes Theorem 1.10.
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LEmMA 3.3.  Suppose there is an Aronszajn tree T with the following properties:

(i) T is club-embeddable into all of its subtrees, and
(ii) every ladder system coloring can be T-uniformized.

Then 280 = 2™,

Proof. Suppose that T satisfies the hypotheses of the lemma. By replacing T
with an isomorphic tree if necessary, we may assume for simplicity that the ele-
ments of T are in H(NB’). Fix a ladder system (C, : @ € lim(w;)) and a function
7: w; — T such that t(«) has height o for each « < w;. We will define a func-
tion F: H (Ng) — 2 that shows the conclusion of Theorem 3.2 to be false and
hence that 280 = 2%,

Suppose & is a club-endomorphism of 7, as evidenced by a club E C w;, and
suppose ¢ is a function (defined on the range of /) that takes values in w. If M
is a countable elementary submodel of H (Nfr) that contains 7, E, h, and ¢ and if
s=Mn w1, then

= U T(x,

a<d
(E,hyo)M = (ENS8,h | TY, o | TM).

If A = (E, h, ) for some E, h, ¢, and M as before, set F(AM) =i if and only if
(iff) ¢[h(8)] | Cs =* i. Notice that, since E is a club and 4 is an endomorphism
of T | E, this depends only on AM = (EN8,h | T, @ | TV). If F is defined in
this way then we will say that F' is defined nontrivially. On the rest of H (N}; ), set
F equal to 0.
In order to finish the proof, I will show that for every g: @, — 2 there is an
= (E, h, ¢) such that, if M is a countable elementary submodel of H(RX]") with
Ql in M, then F AMy = g(a) ). Toward this end, let g be given and define f by
letting f, be the function with domain C, that takes the constant value g(c). Now
apply (A) to find a subtree S of T and a function ¢: S — 2 that uniformizes f.
By assumption, there is a club E € w; and an order-preserving map h of T | E
intoS [ E. PutA = (E,h, ) and let M be a countable elementary submodel of
H (N]L) such that 2 is in M. It follows from our definitions and the choices made
previously that F(2AM) = g(w™). O

4. Iterating Proper Forcings without Adding Reals

In this section I will present the preservation lemmas to be used in Section 5. The
approach will seem different than that used in the literature but is equivalent for
our purposes. Part of my motivation for this departure is the hope that it makes
the tasks at hand more transparent.

First I review some definitions and theorems from [15]. Recall that a forcing is
a transitive relation < on a set Q that has a greatest element. Typically the same
letter is used to denote both the forcing and the underlying set. Elements of Q are
referred to as conditions and should be viewed as approximating a generic object
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that is being created by the forcing. In this paper, p < g will mean that p is an
extension of g; that is, p is a better approximation than q.

Shelah’s notion of a completeness system has served as a staple in proofs show-
ing that certain countable support iterations do not introduce reals.

DEeFINITION 4.1 [15,V.5.2]. A completeness system for a forcing Q is a function
D such that the following statements hold.

(1) For a sufficiently large 6, the domain of D consists of pairs (M, g), where M
is a countable elementary submodel of H(#) containing Q as an element and
qisin QN M.

(2) For every (M, g) in the domain of D, D(M, q) is a collection of subsets of

Gen(M,Q,q) ={G C QN M : G is an M-generic filter}.

DEFINITION 4.2 [15,V.5.2]. If XA is a cardinal, then D is a A-completeness sys-
tem if, for every (M, q) in the domain of DD, the intersection of fewer than 1 4+ X
elements is nonempty.

DEFINITION 4.3 [15,V.5.4]. A completeness system ID for Q is said to be simple
if there is a second-order formula v such that D(M, q) = {Gx : X € M}, where

Gx ={GeGen(M,q) : (M, €, QNM) = vI[G, X1}

(A second-order formula allows quantification over both elements and subsets.)

DEFINITION 4.4 [15,V.5.3]. Suppose that D is a simple completeness system for
a forcing Q. Then Q is said to be D-complete if, for every (M, g) in the domain
of D,

Gen™(M, Q,q) = {G € Gen(M, Q,q) : M = G has a lower bound}

contains an element of D(M, q).

THEOREM 4.5 [15, VII1.4.5]. A countable support iteration of forcings that are
a-proper for all o« < w; and D-complete with respect to a simple 2-completeness
system does not introduce reals.

REMARK 4.6. The concept of a-properness is defined in [15, V.3.1]. An equivalent
formulation for forcings that do not introduce reals will be given in Definition 4.15.

I will now define an abstract completeness system and argue that it captures much
of the generality of the foregoing definitions. It will be useful to define a certain
category to facilitate the discussion. First, expand the language of ZFC to add
a predicate Q for a distinguished forcing. Let ZFC¢ be the axioms of ZFC but
with the power set axiom replaced by “P(P(Q)) exists”. The objects of the cate-
gory I are those countable transitive sets, together with a distinguished element
QM. that satisfy ZFC? when Q is interpreted as QM. Note that if Q is a set and
P(P(Q)) isin H() for some O, then H(6) would be an element of 9t except that
it is not countable.
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An arrow MN in 9 is an elementary embedding e : M — N with the property
that ¢ is in N and N satisfies “M = dom(e) is countable”. The notation M —
N will be used to denote W and also to assert the statement “M_>N is an arrow
in 991, Observe that arrows fix hereditarily countable sets. Also, notation such as
M — N is meaningful even if N is uncountable.

We will mostly consider commutative diagrams in 21, so there will be at most
one arrow between two given objects. If M — N and if X is a subset of OM then
X will simultaneously viewed as a subset of o,

DEFINITION 4.7.  Suppose that N is a model of ZFC2 and that M is an elemen-
tary submodel of N such that M is in N and N satisfies “M is countable”. Then
there is a unique induced arrow M — N that commutes with the collapsing maps.

I am now ready to define the simple completeness system of interest. Suppose that
Q is a given forcing.

DEFINITION 4.8. If 0 is a regular cardinal, then a (Q, 6)-diagram is a diagram
in 971 such that there exist (i) a minimum M in the order induced from the arrows
and (ii) an elementary embedding x +> X from M into H(#) that sends Q™ to Q.
The range of this embedding is a countable elementary submodel of H(6), which
will be denoted M. A diagram is a Q-diagram if itis a (Q, 0)-diagram for some 6.

DEFINITION 4.9. Let M — N be a Q-diagram. If G C OM then we will say
H ~ ~ ~

that G is MN -prebounded if, whenever N — N and G isin N, N satisfies “G is

bounded in QN

DEeFINITION 4.10. A forcing Q is completely proper if there is a 6 such that, for
every (Q, 0)-diagram of the form M — N; (i < 2) and ¢ in OM_ there exists a

G C QM thatis M -generic, contains ¢, and is mi -prebounded for both i < 2.

LeEmMA 4.11.  Every completely proper forcing is 2-complete with respect to some
simple completeness system D.

REMARK 4.12.  Of course, there is a canonical definition of A-completely proper
for each A < Ry. The results in the remainder of this section are easily adapted to
this greater generality, but at present I see no reason to seek such generality. The
terminology completely proper is sometimes given the same meaning as fotally
proper. 1 have chosen the present usage since it is more closely tied to Shelah’s
usage of “completeness” and since “totally proper” seems more established in the
literature.

Proof of Lemma 4.11. Let Q be a completely proper forcing and let 6 be large
enough to exhibit this. Suppose M is a countable elementary submodel of H(6)
that has Q as an element. If M — N, define g—> to be the set of all G €
Gen(M, Q, q) such that 7G is MN- -prebounded. Here 7 is the collapsing isomor-
phism for M the image of M under its embedding into H(#). Define ]D)(M, q) to
be the collection of all G as MN ranges over the arrows in 91.
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Clearly D is a completeness system and Q is 2-complete with respect to it; hence
it suffices to show that D is simple. Though we are not allowed explicit quantifica-
tion over arrows in the definition of “simple”, this can be achieved by appropriate
coding. For instance, there is a second-order formula vy such that, if X € M and

(M, €,QM) = yolX]

and we define Ry = {peM : (0,p) e X}andix = {pe M : (1, p) € X}, then
(w, Ry, Q) is a well-founded model of ZFC€ and tx is an elementary embedding
from (M, €, QM) into (w, Ry, Q). This takes care of the assertion that N is in 9t
and M — N; one can similarly handle the quantification over N — N. U

It is also worth noting that it is possible to prove a partial converse to Lemma 4.11.

DEerINITION 4.13.  Q is said to have the effective bounding property if, whenever
Qo is a countable subset of Q, the set of all G € Q( such that G has a lower
bound in Q is a Borel subset of P(Qy).

Many forcings (including those in the next section) have this property, and this
condition is readily verified by inspection.

LEMMA 4.14. If Q has the effective bounding property and is D-complete with
respect to some simple 2-completeness system D, then Q is completely proper.

Proof. Let ¢ be the formula used to define D and let 6, be the sufficiently large
regular cardinal witnessing that D is a 2-completeness system. Let 6 be such that
H(9y) is in H(#). Now suppose that M — N; (i < 2) is a given (Q, 0)-diagram
and that ¢ is in @M. Notice that, for a giveni < 2, N; satisfies “y defines a simple
2-completeness system witnessing that Q is D-complete”. In particular, if MV
is the image of M under the embedding M — N;, then Gen*([\;[, Q,q)N" con-
tains an element YV of D(M, ¢)" as a subset. Furthermore, Gen™(M, Q, ¢)": is
a Borel subset of (Q N M )Vi because N; satisfies “Q™ has the effective bounding
property”.

There are two sets in H(0) that correspond to Gen+(M ,Q,q)Ni. Oneis a (count-
able) subset of N; and the other is a (typically uncountable) Borel set X'V obtained
by interpreting N;’s Borel code for Gen™(M, Q, Vi, Lete;: MY — M fori <
2 be the unique elementary isomorphisms, and put X; = {¢;H : H € X"} and
YV; = {g;H : H € YNi}. Observe that ; is in D(M,q) by the elementarity of ¢;
applied to ¥. Since D is a 2-completeness system, it follows that )}y N Y| contains
an element H C QN M. Let G € QM be the image of H under M’s collapsing
isomorphism.

Now suppose that i < 2. To see that G is MN prebounded let N; - N be
such that G is in N. For any X C (Q N M)N' that is in N, & X is in X; iff X is in
XNiiff N satisfies “X is in Gen*(M Q, q)N” Therefore, N satisfies “e; 'H is in
Gent(M, Q,q)"” and hence also that “G is bounded in OV . (In the latter quo-
tation I am identifying G with its image under the embedding of M into N; this is
not the case in the former quotation.) UJ
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Traditionally, completeness with respect to a simple completeness system needs
to be supplemented with < w;-properness in order to obtain preservation results
for not adding reals. While total < w;-properness is a standard notion in this con-
text [15, V.3.1], the following definition gives an equivalent formulation in terms
of diagrams.

DEFINITION 4.15. A forcing Q is totally < w;-proper if, whenever My — M,
(€ < n <y)is an amenable Q-diagram for y < w; and ¢ is in QM°, there exists
ag in Q suchthatg < g and q is totally (M, Q)-generic for all § < y—thatis, the
filter {p € QM . g < p}is Mg-generic. (Here, amenable means that, whenever
n < yisalimit, limg,, Mg = M, and (Mg : § <n)e M, ifn+1=<y.)

The following lemma is now an immediate consequence of the previous observa-
tions and [15, VIII.4.5].

LEmMA 4.16. A countable support iteration of completely proper, <wi-proper
forcings does not introduce reals.

I will now finish this section with a condition that is essentially a reformulation of
Shelah’s properness isomorphism condition. The condition is made useful by the
following theorem.

THEOREM 4.17 [15, VIII.2.4]. If P is a countable support iteration of length
at most wy whose iterands satisfy the properness isomorphism condition (p.i.c.),
then P satisfies the ¥,-chain condition.

Theorem VIII.2.4 of [15] states something stronger and more general; in partic-
ular, the R,-p.i.c. is a consequence of the conventional properness isomorphism
condition stated in Definition 4.18.

DEFINITION 4.18. A forcing Q satisfies the properness isomorphism condition if,
whenever

(1) M ; (i < 2) are countable elementary submodels of H(6) for 0 a sufficiently
large cardinal number,
(ii) ¢: My — M, is an isomorphism that fixes My N M; and Q in My N M;, and
(iii) g isin @ N My,
there is a g that extends both g and ¢(g) and that is (Mi, Q)-generic foreachi < 2.

The following condition is formally stronger than the properness isomorphism
condition, but it seems likely to be the same in practice.

DEFINITION 4.19. Q@ is said to have the strong chain condition (this is an ad hoc
name and not intended for long-term use) if (a) whenever M AN (i<?2)isa
Q-diagram and ¢ is in OM thereisa G € QM thatis M -generic and (b) when-
ever N — N is an arrow in 9t and G is in N, there is a ¢ in QN that is a lower
bound for ¢;G.
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REMARK 4.20. The difference between the strong chain condition and complete
properness is that in the strong chain condition only pairs of “top models” that are
equal are considered—but with the added requirement that, if this common model
is extended to pick up G, then there is a single bound for both images of G in this
extension.

LEMMA 4.21. The strong chain condition implies the properness isomorphism
condition.

Proof. This is similar to the arguments already given. I will leave the proof to the
interested reader. O

Combining Theorem 4.17 and Lemma 4.21, we now have the following lemma.

LEMMA 4.22. A countable support iteration of length w, of forcings with the
strong chain condition over a ground model that satisfies CH has the R, chain
condition and, in particular, preserves cardinals that are at least R;.

S. How to Uniformize Colorings Relative to an
Aronszajn Tree and Not Introduce Reals

In this section I will prove Theorem 1.9. For the moment, let T be a fixed Arons-
zajn tree, let (C, : o € lim(w;)) be a fixed ladder system, and let f =(fo:0€
lim(w))) be a coloring of (C, : « € lim(w;)). For simplicity we may and will as-
sume that 7 is a subtree of @<=, the collection of all countable length sequences
from w ordered by extension. This has the added benefit of causing elements of 7'
to be fixed by the arrows discussed in the previous section.

DEFINITION 5.1.  Ifn < w, let TU denote the subset of 7" of all o such that, for
alli < j < n, o(i) has the same height as o(j) and o(i) < o(j) in the lexico-
graphical ordering. If an element of 7" is one-to-one, then it will be identified
with its range without further mention. A finite power of T is a set of the form
T'™ for some n < .

DEFINITION 5.2. Let o be in a finite power of T and let X be a subset of T con-
sisting of elements of height at most & with X N T, # @. Then o is consistent with
X ifo | o is a subset of X. Also, we say that two functions f and g are consistent
if they agree on the intersection of their domains.

DEFINITION 5.3. Let Q = 9( f ; T) be the collection of all ¢ = (¢, ) such that
the following statements hold.

(1) There is a minimal o = «, such that the domain of ¢ (denoted X = X,) is a
downwards closed subset of T consisting of elements of height at most «.

(2) U is anonempty countable collection such that, if U is inl{, then U is a pruned
subtree of a finite power of 7.

(3) Forevery U in U, there is a o in U of height « that is consistent with X.

(4) ¢ is a function from the elements of X of height less than « into w such that,
if s is an element of X of limit height v, then f, =* ¢[s] | C,.
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NoraTION 5.4. If g is in Q, then (¢,,U,) will be used to denote g. Here Q is
made into a forcing notion by saying that g extends p if ¢, is an initial part of ¢,
andU, CU,.

LEMMA 5.5. Suppose that Misa countable elementary submodel of H (2R 1) and
let § = M N w,. For everyqin QN M, every dense open D C Q in M, and every
finite o C Tj that is consistent with q, there exists a ¢ < q in D such that o is
consistent with q.

Proof. Suppose this is not the case and let M, g, D, and o be counterexamples. Let
n denote the cardinality of o. Since Ty is countable, there is a function t: w; —
T'" in M such that 7(8) = o and 7(£) has height & for all § < w;. Let E be the
set of all £ < w, such that, if g < g, 51 isin D, and a; < &, then 7 (&) is not con-
sistent with g. Observe that E is in M. 1 now claim that § is in E. To see this,
suppose ¢ < g isin D and v = o; < 8. Then o is consistent with g iff o | v is.
Since o [ visin M, if o were consistent with g then we could find such a g in M.
But this would contradict our assumptions on M, q, D, and o.

Now let U be the set of all v such that, for uncountably many & in E, v < t(§).
It is routine to verify that U is uncountable, pruned, and downwards closed. I shall
obtain a contradiction by arguing that (¢,,4, U {U}) has no extension in D. If it
did, let g be such an extension and pick aco € X; N U of height ;. By construc-
tion, there is a £ in & such that o9 = 7(§) [ «;. But this would imply that 7 (&) is
consistent with g, contradicting the definition of E. UJ

DEFINITION 5.6.  Suppose that g and g are in Q. Then ¢ is said to be a conserva-
tive extension of q if § < g and, whenever o is a finite subset of 7 that is consistent
with g, o is consistent with g.

LEMMA 5.7.  Forevery B, every q in Q, and every finite partial function : T —

w that is consistent with @, there is a conservative extension q of q such that f <

ag and Y is consistent with ;. In particular, every condition in Q forces that:

(5) the union U of X, (g€ G) is uncountable and hence is a subtree of T; and

(6) the union ¢ of the first coordinates of elements of G is a uniformizing function
for f that is defined on U.

Proof. Let B and v be fixed and suppose that g is in Q. By making g larger if
necessary, we may assume that 8 is an upper bound on the heights of elements of
the domain of ¥. If 8 < «, then g = g works. Now suppose that o, < 8 and let
r: lim(B 4+ 1) — B be a regressive function such that

{Ce\r() - & elim(B + 1)}

is a pairwise disjoint family whose union does not contain the heights of any ele-
ment of the domain of . Let

g=1lseTpg:s aeX,},
U; =U,,
and define @; on those elements of X; of height less than 8 by
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(7) @3(s) = @4(s) if s is in X,,,
(8) @5(s) = f,(€) if € > a, is the height of s and if v satisfies & € C, \ r(v),
(9) @z(s) = ¥ (s) if s is in the domain of v, and

(10) ¢;(s) = 0 otherwise.

It is left to the reader to verify that g is a condition in Q and that it is a conserva-
tive extension of g. Observe, however, that this is where we need the requirement
that the elements of I/, be pruned. U

The following lemma will be useful in demonstrating that a given generic filter
has a lower bound in a larger model.

LEMMA 5.8. Suppo&that M — N is a Q-diagram and that G € QM is M-
generic. Then G is M N -prebounded if the following conditions are satisfied: for
every U in Ungup, there exist a o in UV of height § = w and a 8¢ < & such
that, for every p in G, o is consistent with p and ¢,(s | §) = (&) whenever s
isino and § is in Cgv with §g < & < a.

Proof. Let M, N, and G be as given in the statement of the lemma and suppose
that the conditions are satisfied by G. Suppose that N — N is given. Working in

N, set
x=Jx,. Uz=Jtp. 0s=Je

peG peG peG

Let X be the union of X with the set of all s in T; such that every predecessor of
s is in X and, for all but finitely many & in Cs, ¢(s [ §) = f5(5). If U isin U,
then, by assumption, there is a o in U of height § such that 0 C X;. Hence g is a

condition in Q’(’ that, moreover, is clearly a lower bound for G. O

Observe that the bound g produced by Lemma 5.8 has the following property:
whenever o is an element of a finite power of 7' that is consistent with every p in

G, then o is consistent with g provided that, for all but finitely many & in C}' \ 8,
vi(s 18) = £®)

for all s € o. If, moreover, o; = §, then g is unique and will be referred to as the
conservative bound for G.

The relevant properties of Q will be proved by iterating the following lemma
with appropriate “bookkeeping”.

LEMMA 5.9. Suppose that M — N; (i < k) is a Q-diagram, q is in QM™, U is in
Ué"’, D C Q is dense open and in M, and o; (i < k) and v; (i < k) satisfy the
following conditions:

. . . . N;
(11) foreachi < k, v; is an ordinal with w{” v <o)

(12) foreachi < k, o; is an element of a finite power of T™Ni of height v; that is
consistent with q; and
(13) {o; [ @y : i < k} is a pairwise disjoint family.
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Then there exist a oy and a § < q in D™ such that:

(14) oy is in UM and has height vy;

(15) foralli <k, o; is consistent with q;

(16) {o; | ag :i <k} is a pairwise disjoint family; and

(A7) ifi <k,&isin C\IX" with oy < & < ag, and s is in o;, then @z(s | §) =
FN).

Proof. Let M — N; (i <k),q,U, Daswellaso; (i <k)andv; (i <k)beas
given in the statement of the lemma, and let o denote Y- Select a P € M such
that M satisfies “P is an elementary submodel of H (2N 1) such that g and DM ar

in P”. Let F be the set of all s | & such that, for some i < k, s isin 0; and & is in
PN CS"‘ \ «. Let i denote the function with domain F defined by

sTE- [

if s is in 0;. Note that, by (13), ¥ is well-defined.
Applying Lemma 5.7 in P to ¥ and to a 8 that bounds the heights in F, there is
aq’ < q in P thatis a conservative extension of g such that ¢, extends . Putting

v = Uai (P Nwy),
i<k
we can apply Lemma 5.5 to obtain a ¢” < ¢’ in P such that ¢” is in D* N P and
v is consistent with g”.

I now need to construct oy. Let T be an element of U of height «,~ that is in
X,». Let n denote the cardinality of v. By [19, Lemma 5.9] applied in P, there
exist u; (j < n+1)in U N P such that (a) each extends t and (b) if j # j’ <
n + 1, then no element of v; is comparable with any element of v;,. Notice that if
s is in v then there is at most one j < n + 1 such that s is comparable with an ele-
ment of v;. Hence there is an / < n + 1 such that no element of v is compatible
with any element of v;. Since U is pruned, there is a o} in U, ,f\k'k that extends le L
Finally, use Lemma 5.7 to find a g in P that is a conservative extension of ¢” such
that o5 is greater than the height of v; and hence (16) holds. Since ¢,~ extends ¥
and since

CNP=Clinag

forall i < k, it follows that (17) holds. Since v is consistent with ¢”, so is each o;
(i < k). This finishes the proof. O

We will now see that O satisfies conditions that are sufficient to ensure it can be
iterated while preserving cardinality and not introducing reals.

LEMMA 5.10. The forcing Q is completely proper and satisfies the strong chain
condition.

Proof. First I will show that Q is completely proper. Let M — N (k < 2) be
a Q-diagram andA let ¢ € QY. Fix an enumeration D; (i < ) of all dense open
subsets of Q in M and an enumeration with infinite repetition (U;, k;) (i < w) of
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all pairs (U, k) such that U is a subtree of a finite power of T, U is in M, and k <

2. Using Lemma 5.9, construct a decreasing sequence ¢ (i) (i < w) of conditions

in QM that are below ¢ and a sequence of o (i) (i < w) such that, for all j < w:

(18) g(j)isin DM,

(19) if U; isin Uy ), then o(j) is in Uij.f and of height § = a)f"’;

(20) {o(i) I gy 11 < j}is apairwise disjoint family;

(21) ifi < w, then (i) is consistent with g(j); and

(22) ifi < j,sisino(i), and £ is in Cgka with o) < & < oy, then we have
@q(s | &) = fMu(E).

Let G be the set of all p in QM such that there is an i < o with g(i) < p.

Clearly G is M-generic. Now suppose that k < 2 is given. To see that G is mk-
prebounded, it is sufficient to verify the hypotheses of Lemma 5.8. Toward this
end, suppose that U is in | J,.; U, Pick ani < o such that U is in Uy, U; =
U, and k; = k. Set 89 = ay(;) and let p be any element of G. Pick a j > i such
that g(j) < p. By construction, g (j) is consistent with o and hence so is p. If s
isino, §) < & <, < a,(), and & is in C{t, then

0p(s T &) = @uj(s 1 &) = £().

By Lemma 5.8, I am now finished.

To see that Q has the strong chain condition, proceed as before with Ng = N =
N in order to construct G € QM. Now let N — N be given such that G is in N
and let &; denote the arrows witnessing M — N;. Let g; be the conservative lower
bound of ;G and observe that ¢z, = ¢g,; let 5 = ¢z, = ¢z,. Similarly, if U is
inUg;, then there is a U’ in U, _,, which are equal when restricted to their elements
of height less than 6; let U = Uz, UU;,. Itis easily verified that g is now the de-
sired bound. O

LEmMA 5.11.  Q is totally < w;-proper.

Proof. Let y < ) be given and fix an amenable Q-diagram M, — M, (n <
¢ < y). Following the methods of Lemma 5.10, we will construct a decreasing
sequence ¢, (¢ < y) in Q by recursion in such a way that, if ¢ is a limit, then ¢,
is the conservative lower bound for g, (n < ¢).

For now, let us focus on the successor stages. Fix an enumeration D; (i < w)
of all dense open subsets of Q in My and an enumeration (U;, ;) (i < w) with
infinite repetition such that, for each i, U; is a subtree of a finite power of T’ corre-
sponding to an element of M, and {; < y is a limit ordinal. Also fix a well-order
<of H(X]) thatis in My and that well-orders y in type w. If £ < , let m; be the
number of n < y such that n < ¢.

Now suppose that ¢, is given. Using Lemma 5.9, construct a decreasing se-
quence g, (i) (i < ) of conditions in Q™:+! that are below ¢, and a sequence of
0:(i) (i < w) such that the following conditions hold.

(23) g.(i) =g, ifi <m;.
(24) If DM+ is in M4y, then g, (m, + i) is in DM+,
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(25) If U; is in Uy, ;) and ¢ < &, then o, (i) is in UM+ and of height v; = w |

(26) Forall k < w, {oz(i) [ ag. ) : i <k} is a pairwise disjoint family.

(27) Foralli, j, o,(i) is consistent with g, (j).

(28) Ifi < k,sisinog(i), and & isin C)/ with oty i) < & < &g, (1), then we have
o(s [ &) = f15(®).

(29) Given that the construction has been carried out for all i < k, it follows that
q; (k) and o, (k) are the <-least objects satisfying conditions (23)—(28).
Arguing as in Lemma 5.10, the sequence g, (i) (i < w) generates an M, -generic
filter. Note that (g,(i) : i < w) is in M,y by the recursion theorem (see [9,
II1.5.6]), so applying Lemma 5.8 shows that the conservative lower bound g,

of this sequence is in M.

Now suppose that ¢ is a limit ordinal. It is clear that {g, : n < {} generates an
M, -generic filter. There are two obstacles to overcome: we need to show that this
filter is in M, 1 and that it has a lower bound in M, 1. The first claim follows from
the recursion theorem and the fact that, at each point of the recursion, we chose
<-minimal witnesses.

Now it remains to verify the hypothesis of Lemma 5.8. The key observation is
as follows.

CLamm 5.12. If my, < m, whenever §y < n < &, then 0,(i) = oy, (i) for all
I < myg,.

Proof. Suppose this is not the case and let (n,i) be the lexicographically least
counterexample. Observe that g, is consistent with o, (i) because g, is the con-
servative lower bound for ¢,/ (k) (n" < n and k < ). By the minimality of i,
oy (i") = o¢,(i’) for all i’ < i and so it is easily checked that o, (i) satisfies the
conditions of the recursion (except possibly its <-minimality). Notice, however,
that if o satisfies the conditions for o, (i) then it does also for o, (i), since the
conditions g, (k) (k < w) are stronger than any of the conditions g, (k) (k < w).
Since o, (i) was taken to be <-minimal, it must be that o, (i) = oy, (7). O

In order to verify the hypotheses of Lemma 5.8, let U be an element of Un< Ug,-
Leti be suchthat U; = U and {; = ¢, and find a {y < ¢ suchthati < m,, if {) <
n < ¢; thenmy, < m,.

Now suppose that & is in C; \ o, and let s be in 0;. Let 1 be the least ordinal
such that§ < oy, ,,, noting that then &, < §. By arrangement, i < m, and there-
fore oy, (m,—1) < §, since g, = q,(m, —1). Because there exists a k < w such that
§ < ag, k), (28) implies that

@g, (s [ &) = fe(8)

as desired. Lemma 5.8 now implies that g, (n < ¢) has a unique conservative
lower bound g, in M, ;. O

We are now ready to finish the proof of Theorem 1.9. Let V be a given ground
model. By doing a preliminary proper forcing if necessary, we may assume that V
satisfies 280 = 8, and 28! = R,. In V, build a countable support iteration of length
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w> such that all of the iterands are forced to be of the form O( f ; T) and, following
[17] (or [9, VIIL.6]), in such a way that, by the end of the iteration, Q(f; T) has
been forced with at some initial stage whenever f and T are appropriate elements
of the final generic extension (this is possible by the ground model assumptions
and Lemma 4.22). By Lemma 5.7, Q( f ; T) forces that the coloring f can be
T-uniformized. Hence the final model satisfies (A). It follows from Lemmas 4.16
and 4.22 that the resulting iteration preserves cardinals and does not introduce
reals. The latter consequence implies that the final extension satisfies CH.

6. Closing Remarks

I will finish this paper with some remarks and further consequences of the results
so far. In Section 1 it was noted that, in hindsight, a more conventional approach
to the main result should work. In particular, if we let Q(7T") be the forcing that
consists of the pairs ¢ = (X,,U,), as in the definition of Q(T'; f), then Q(T) in-
troduces a subtree U of T into which 7' does not club-embed. Moreover, Q(T)
can be iterated without adding reals. It seems likely that countable support itera-
tions of forcings of this type preserve that U does not club-embed into 7, though
this probably involves a rather tedious argument if proved directly. This method
would also not be as “portable” to future applications; see the further discussion
at the end of this section.
Now consider the following theorem in relation to Theorem 1.7.

THEOREM 6.1. Let C be a fixed Countryman line. The assertion that C is mini-
mal can be made either true or false by proper forcing but cannot be changed by
o-closed forcing.

In particular, <> does not imply that all minimal Aronszajn lines are Souslin. This
partially addresses Baumgartner’s question of whether his construction necessar-
ily produces Souslin lines. The invariance of the minimality of C under o-closed
forcing is essentially due to Baumgartner [5]. Since MA(R) can always be forced
by a proper (even countable chain condition) forcing [17], any Countryman line
can be made minimal by proper forcing. On the other hand, Theorem 1.9 asserts
that the conjunction of (A) and CH can be made true by proper forcing; by the
subsequent theorems, this conjunction implies that C is not minimal.

We also have an example related to the following problem of Woodin. The
reader is referred to [22] for undefined terminology.

QUESTION 6.2 [22]. Are there I1,-sentences ¢; and ¢, such that
(HRT), © ECHA¢; and
(H(®)), € = CH A ¢
are each Q2-consistent but whose conjunction Q2-implies the negation of CH?

This question is motivated by Woodin’s celebrated result of [22] that the answer
is negative if CH is replaced by ZFC. This offers an explanation of the observed
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phenomenon that every forcible IT,-sentence about H(RX]") can be proved if one
assumes a strong enough forcing axiom and, in particular, that all such sentences
are mutually consistent. Whether the same can be said about the stronger theory
ZFC + CH is the content of this question.

Let CC be the expansion of the usual language £ of set theory to include a pred-
icate C, and add an axiom asserting that CisaC- -sequence of length w;—that is,
C, is a cofinal subset of « for every @ < w1, and if y < o then C, N y is finite.
Such an extension of the language is not entirely contrived, since the analysis of
minimal walks on w is based around a fixed C-sequence that is used to construct
a number of 2-place “p-functions”. These have served as a unified approach to
combinatorial constructions at this level (see [21]).

THEOREM 6.3.  There are two I1,-sentences 1 and ¢, in £ and LC, respectively,

such that
(H(NT), e E=CHA¢@;, and

(H(XD), €,C) = CH A ¢
are each Q-consistent but @1 A @, implies 220 = 2™,

Theorem 6.1 also yields the following result, which is related to Steel’s question
on the £3-completeness of <> and attendant assertions.

THEOREM 6.4. There is a %,-sentence V in L£C such that

(HR), €,C) =y

is Q-independent although  is invariant under o-closed forcing.

QUESTION 6.5. Is there a ¥y-sentence v in the language of (H(R{), €) that is
Q-independent but invariant under o-closed forcing?

Arguing as in [1, 2.3], Larson has noted that there exist 7, and subtrees S, C T
indexed by 2! such that: (i) each T, C <! is coherent, is closed under finite
changes, and consists of finite-to-one functions; and (ii) if x 7% y and if ¢ is the
least ordinal such that x(¢) # y(¢), then
(T = (Ty)e,
(Sy)e N (Sy) = 0.

This can be used with Lemma 2.9, Theorem 3.1, and [19, Thm. 3.4] to show that
if 2% < 2% then there is a Countryman line that is not minimal. Hence it is not
possible to remove the predicate in the previous examples by quantifying over all
such C-sequences.

Finally, let us finish with the following question.

QUESTION 6.6. s the forcing axiom for completely proper forcings (CPFA) con-
sistent with CH relative to a large cardinal assumption?

The example of [15, XVIII.1] shows that some care needs to be taken in any ap-
proach to this question but does not suggest a negative answer. A positive answer
would suggest a negative answer to Question 6.2.
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While the conjunction of CPFA and CH is not known to be consistent, substan-
tial fragments of CPFA are consistent with CH and there is a considerable body
of literature surrounding this (see [2; 7; 15]). Observe that we have accomplished
two tasks in this paper:

(1) the demonstration that the conjunction of CPFA and CH implies that w; and
—w are the only minimal uncountable ordertypes; and

(2) that this conclusion requires only the fragment of CPFA that is known to be
consistent with CH.

In recent joint work with Ishiu, Question 1.3 has been essentially reduced to Ques-
tion 6.6.

THEOREM 6.7 [8]. The conjunction of CPFA™ and CH implies that there are no
minimal non-o-scattered ordertypes.
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