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On Homaloidal Polynomials

Andrea Bruno

Let P
n be the projective space over a field k. If F is a homogeneous polynomial,

we say that F is homaloidal if the polar map ∂F defined by the partial derivatives
of F is a birational selfmap of P

n. Although the problem of determining homa-
loidal polynomials has a classical flavor, the theme was only recently raised in an
algebro-geometric context by Dolgachev [Do] following suggestions stemming
from the theory of prehomogeneous varieties: the relative invariants of prehomo-
geneous spaces are, in fact, homaloidal polynomials [EKP; KiSa]. Dolgachev
classifies square free homaloidal polynomials in P

2 (see also [D]) and character-
izes square free homaloidal polynomials in P

3 that are products of four indepen-
dent linear forms. Dolgachev also raises the following question: Is it true that a
non–square free product of linear forms is homaloidal if and only if the product of
its factors with multiplicity 1 is? This question has been given a positive answer in
a specific case (see [KrS]) and in full generality (see [DP]) in a topological con-
text. We will give an algebraic proof of the following result.

Theorem A. Suppose that k is of characteristic 0. Let L0, . . . , Lr be linear
forms and let m0, . . . , mr be positive integers. Then F = ∏r

i=0 L
mi

i is a homa-
loidal polynomial if and only if (i) Fred = ∏r

i=0 Li is homaloidal and (ii) r = n

and the linear forms L0, . . . , Ln are independent. (Here the subscript “red” de-
notes “reduced”.)

In particular, square free homaloidal polynomials that split as the product of lin-
ear forms all induce, up to a projectivity, standard Cremona transformations. The
hypothesis on the characteristic of the ground field is essential because we need
resolution of singularities. When this is possible, we obtain the following result.

Theorem B. Assume that resolution of singularities holds in characteristic p

and dimension n (e.g., if n = 2 or n = 3 and p ≥ 7). Then F = ∏r
i=0 L

mi

i is
a homaloidal polynomial if and only if (i) p does not divide mi for each i and
(ii) Fred = ∏r

i=0 Li is homaloidal if and only if p does not divide mi for each i

and r = n and the linear forms L0, . . . , Ln are independent.
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1. Preliminaries

We start with the following classical definition.

Definition 1. If F ∈ H 0(P
n, OP n(d )) is a homogeneous polynomial, then the

polar map defined by F is the rational map

P
n ∂F ��������

P
n∨

defined by

∂F(p) =
[

∂F

∂X0
(p), . . . ,

∂F

∂Xn

(p)

]
,

while the polar system defined by F is the linear system

|∂F | :=
∣∣∣∣
〈

∂F

∂X0
, . . . ,

∂F

∂Xn

〉∣∣∣∣ ⊂ |OP n(d − 1)|.

It follows from the definition that, if ZF ⊂ P
n is the hypersurface defined by F,

then the base locus of the polar map defined by F is the singular locus of ZF .

Moreover, since ZF is a hypersurface, it follows that ZF is not reduced if and only
if F is not square free. If F is square free then the polar map ∂F is free of base
divisors; if ZF is smooth then the polar map ∂F is a morphism and the image of
ZF by ∂F is the dual variety Z∨

F ⊂ P
n∨ of ZF .

If F is not square free, we write

F =
r∏

i=0

F
mi

i ,

with d = ∑r
i=0 mi deg(Fi). Then the divisorial components of the base locus of

the polar system |∂F | are given by the hypersurface defined by the polynomial

F ′ =
r∏

i=0

F
mi−1

i .

We will indicate by Fred the polynomial F/F ′.
The polar system defined by F is naturally split into a fixed and a moving part,

as follows.

Definition 2. The moving part of the polar system defined by a homogeneous
polynomial F is the linear system |M(∂F )| obtained by removing all base com-
ponents from the polar system |∂F |. In particular, we have that

|M(∂F )| ⊂ |OP n(d − 1 − deg F ′)|.
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Notice that Definition 2 makes perfect sense when F is square free, in which case
F ′ is a constant.

Definition 3. A homaloidal polynomial of degree d is a homogeneous polyno-
mial F ∈ H 0(P

n, OP n(d )) such that the moving part |M(∂F )| of the polar system
defined by F induces a birational map.

Well-known examples of homaloidal polynomials in P
n are those defining smooth

quadrics. A remarkable result in [EKP] is the classification of homaloidal poly-
nomials of degree d = 3: the irreducible ones define the secant varieties of the
four Severi varieties and a classification seems at hand, at least in degree d = 4.

Probably the best-known and most important example of a homaloidal polynomial
is the polynomial F = X0 · · · Xn, which has degree d = n + 1 and whose associ-
ated polar map is a standard Cremona transformation. An infinite class of exam-
ples of homaloidal polynomials in characteristic 0 is given by the polynomials

F(m0, . . . , mn) := X
m0
0 · · · Xmn

n ,

with mi ≥ 1 for all i = 0, . . . , n, of arbitrarily large degree d = ∑n
i=0 mi. The

base locus of ∂F has a divisorial component defined by the polynomial F ′ =∏n
i=0 X

mi−1
i . Once we remove it, we simply compute that

|M(∂F )| =
∣∣∣∣
〈
m0

n∏
i=1

Xi, . . . , mj

∏
i �=j

Xi, . . . , mn

n−1∏
i=0

Xi

〉∣∣∣∣.
Hence ∂F induces the same map as a composition of a (diagonal) projectivity and
∂Fred = ∂

∏n
i=0 Xi, so that it is homaloidal. If the characteristic of k is p, then

from our previous list we need to remove only the polynomials F(m0, . . . , mn) in
which some mi is divisible by p.

We always assume that resolution of indeterminacies is possible over the ground
field k. Under this hypothesis, to say that F is homaloidal is equivalent to saying
that ∂F is dominant and that there exists a resolution of singularities

X
f

����
��

��
�� g

����
��

��
��

P
n ∂F ���������

P
n∨

such that, if Y is a general member of |M(∂F )| and if Ȳ denotes its strict transform
on X, then

(Ȳ )n = 1,

because in fact Ȳ ∈ |g∗OP n∨(1)|.
We next state an important property of homaloidal polynomials.

Proposition 4. If F is a homaloidal polynomial then ZF is not a cone. In par-
ticular, if F = ∏r

i=0 L
mi

i is homaloidal then 〈L0, . . . , Lr〉 = H 0(P
n, OP n(1)), so

that r ≥ n.
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Proof. If ZF is a cone, then the image of the polar map defined by F is contained
in the linear space dual to the vertex of the cone of ZF . If F is a product of linear
forms, then ZF is a cone if and only if 〈L0, . . . , Lr〉 �= H 0(P

n, OP n(1)).

In fact (see [R]), in characteristic 0 even more is true: ZF is a cone if and only if
the image of the polar map associated to F lies in a hyperplane. This is false in
characteristic p, as shown by the polynomial F(p,1, . . . ,1) = X

p

0 X1 · · · Xn.

2. Products of Linear Forms

In this section we will prove Theorems A and B. We will always assume that F is
a homaloidal polynomial that splits as the product of linear forms. Suppose first
that F is square free, so that ∂F is a linear system free of base components. We
will fix a minimal resolution of singularities:

X
f

����
��

��
�� g

����
��

��
��

P
n ∂F ���������

P
n∨.

By definition, if Y is a general member of the polar system |∂F | and if Ȳ is its
strict transform on X, then Ȳ ∈ |g∗OP n∨(1)|.

Let us write

F =
r∏

i=0

Li.

Up to a projectivity we can assume that L0 = X0. We will denote by H0 the hy-
perplane defined by X0 = 0. Let us define the polynomial

G := F

X0
=

r∏
i=1

Li.

With this choice, a basis of the polar system |∂F | defined by F is given by:

|∂F | =
∣∣∣∣
〈
G + X0

∂G

∂X0
, X0

∂G

∂X1
, . . . , X0

∂G

∂Xn

〉∣∣∣∣.
We first observe that if D ⊂ X is the strict transform of the hyperplane H0 then,
looking at the equations for ∂F, the map g contracts D because ∂F contracts H0

to its dual point U0 = [1 : 0 : · · · : 0].
Now define G0 ∈ H 0(H0, OH0(d − 1)) as the restriction of G to H0. Observe

that G0 does not need a priori to be reduced.

Lemma 5. The irreducible divisor D ⊂ X is the unique divisor contracting to the
point U0 ∈ P

n∨, and the map g : X → P
n∨ factors through the blowup h′ : Z →

P
n∨ of P

n∨ at U0.

Proof. Suppose that W �= D is a divisor in X that is g-exceptional and such that
g(W ) = g(D) = U0. By minimality of the resolution of the rational map ∂F,
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it follows that W is not f -exceptional and thus corresponds to a hypersurface
f(W ) ⊂ P

n that is distinct from H0. Let J be an equation of f(W ). The equa-
tions of ∂F imply that J must divide ∂G

∂Xi
for all i ≥ 1, but G is reduced and so this

is impossible. The irreducible divisor D then corresponds to the extraction of a
valuation centered at U0 ∈ P

n∨, and we must show that this valuation corresponds
to the whole maximal ideal MU0 of the point U0 ∈ P

n∨. We have already remarked
that the system

∣∣〈 ∂G
∂X1

, . . . , ∂G
∂Xn

〉∣∣ corresponds on X to the system |g∗OP n∨(1) − D|
and that it is of codimension 1 in |g∗OP n∨(1)|. Suppose that g∗OX(−D) = M′
with

√M′ = MU0; then, since

g∗g∗OP n∨(1) ⊗ OX(−D) = M′ ⊗ OP n∨(1),

we have that H 0(P
n∨, M′ ⊗ OP n∨(1)) = n and hence

MU0 = M′.

Therefore, D is the strict transform of the exceptional divisor under the blowup of
P

n∨ at U0, h′ : Z → P
n∨, and the result follows.

Consider now the diagram of maps

X
f

����
��

��
�� g

����
��

��
��

H0 ↪ ��
P

n ∂F ���������
P

n∨ π ����� P ,

where π is the projection from the point U0 to the hyperplane P. We can use
Lemma 5 to factorize the morphism g through the blowup Z of P

n∨ at U0. This
yields the diagram

X

h

��

Z

h′

����
��

��
��

t

��
��

��
��

�

P
n∨ π ��������� P

with g = h′h. Recall that we denote by Y a general element in |∂F | and by D the
strict transform of H0 in X.

Lemma 6. With notation as before, G0 is square free and homaloidal on H0.

Proof. Since it is a composition of morphisms, the map th is a morphism. This
implies that the linear system (th)∗OP (1) � Ȳ − D is base-point free. Moreover,
we have |Ȳ − D| = |(th)∗OP (1)| = |g∗OP n∨(1) − D|, so that th = πg is given
by the base-point free system associated to |∂G|. The morphism m is then a res-
olution of singularities of the map |∂G0|, since |(Ȳ − D)|D| is the pullback on D

of the system |∂G0|. Because m is a morphism, ∂G0 is free of base components;
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this means that G0 is reduced. The map ∂G0 is surjective because it is a compo-
sition of surjections. In order to show that G0 is homaloidal on H0, it suffices to
show that

D · ((th)∗OP (1) − D)n−1 = 1.

This follows from the fact that D is the strict transform of the exceptional divisor
under the blowup h′ : Z → P

n∨.

We now consider homaloidal polynomials that are products of linear forms with at
least a square factor. Quite surprisingly, there is a priori no relation between ∂F

and ∂Fred. Let us choose r +1 distinct linear forms L0, . . . , Lr in P
n together with

an identification X0 = L0 and consider the following polynomials, where H0 is
the hyperplane of equation X0 = 0:

F = X
m0
0

r∏
i=1

L
mi

i , F ′ = X
m0−1
0

r∏
i=1

L
mi−1
i , Fred = F

F ′ ;

G =
r∏

i=1

L
mi

i , G′ =
r∏

i=1

L
mi−1
i , Gred = G

G′ ;

G0 = G ∩ H0.

We may compute the moving parts of the polar systems defined by F and Fred as
follows:

|M(∂F )| =
∣∣∣∣
〈
m0Gred + X0

r∑
i=1

mi

∂Li

∂X0

∏
j �=i,0

Lj , . . . , X0

r∑
i=0

mi

∂Li

∂Xn

∏
j �=i,0

Lj

〉∣∣∣∣,

|M(∂Fred)| = |∂Fred| =
∣∣∣∣
〈
Gred + X0

r∑
i=1

∂Li

∂X0

∏
j �=i,0

Lj , . . . , X0

r∑
i=0

∂Li

∂Xn

∏
j �=i,0

Lj

〉∣∣∣∣.
Consider now the following diagram of maps, where f and g induce a minimal

resolution of the morphism induced by |M(∂F )|:
X

f

����
��

��
�� g

����
��

��
��

H0 ↪ ��
P

n
M(∂F )

���������
P

n∨ π ����� P.

We define D to be the strict transform of H0 in X; we denote by Y a general
member of |M(∂F )| and by Ȳ its strict transform on X. It turns out that all the
arguments used to prove Lemma 5 and Lemma 6 apply verbatim to prove the fol-
lowing lemma.

Lemma 7. With notation as before, the following statements hold.

(1) D is the strict transform on X of the exceptional divisor in the blowup h′ : Z →
P

n∨ of P
n∨ at U0.
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(2) The restriction of the linear system |(th)∗OP (1)| to D induces a morphism
m : D → P that is a resolution of singularities of the polar map defined by
G0 on H0; that is, |(Ȳ − D)|D| = |M(∂G0)|.

(3) The polynomial G0 is homaloidal in H0.

We are now able to prove Theorems A and B at once.

Theorem 8. Assume that resolution of singularities holds. Let L0, . . . , Lr be dis-
tinct linear forms, and let F = ∏r

i=0 Lmi with mi ≥ 1 for all i = 0, . . . , r. Then:

(i) Fred is homaloidal if and only if (a) r = n and (b) the Li are independent
linear forms; and

(ii) F is homaloidal if and only if (a) no mi is divisible by p and (b) Fred =∏r
i=0 Li is homaloidal.

Proof. The proof is by induction on n.

The starting point of the induction is the case n = 1, which is easy: if F =∏r
i=0 L

mi

i is homaloidal then the base-point free system |M(∂F )| must be of de-
gree 1, from which it follows easily that r = 1 and that L0 and L1 are in linear
general position (they are distinct by hypothesis). Up to a projectivity, the con-
verse has been proved by virtue of the examples following Definition 3. The same
argument works a fortiori if F is square free.

Let us then move to P
n (n > 1) and consider first the case of a square free

homaloidal polynomial F = ∏r
i=0 Li. Setting X0 = L0, we apply Lemma 6 and

so obtain a reduced homaloidal polynomial G0 = ∏r
i=1 Li,0 on H0. By induction

we have that r = n and the Li,0 = Li ∩ H0 are independent in H0, from which it
follows that X0, L1, . . . , Ln are independent in P

n.

Suppose now that F = ∏r
i=0 L

mi

i is nonreduced and homaloidal. We must
prove that Fred is homaloidal and that no mi is divisible by p (the converse is a
consequence of the first part of this proof and the examples following Definition 3).
If we are in characteristic p then we must ensure that there exists an index i for
which mi is not divisible by p; if this is not the case then F is a power of p, so that
its polar map is identically zero. We may then assume that m0 is not divisible by
p. Putting X0 = L0 and applying Lemma 7, we get that |M(∂F )| induces on H0

the homaloidal system defined by G0. By induction and by the same argument as
before, we obtain the thesis that r = n and the linear forms L0, . . . , Ln are inde-
pendent, so Fred is homaloidal, and that no exponent is divisible by p.
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