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The Trace of an Automorphism
on H 0(J, O(n�))

I srael Moreno Mejía

1. Introduction

Let X be a projective smooth complex curve with group of automorphisms G. Let
J be the Jacobian of X and let � be the theta divisor of J. Then G acts on J and
� is invariant under the action of G. Given h∈G, our goal is to compute the trace
of h on H 0(J, O(n�)) in order to decompose this space into a sum of irreducible
representations of G. Dolgachev computed the decomposition of H 0(J, O(2�))
when X is the Klein quartic and used it to study some invariant vector bundles on
this curve; see the proof of Corollary 6.3 in [4].

The strategy is as follows. Consider the exact sequence

0 → O(n�) → O((n+ 1)�) → O�((n+ 1)�) → 0. (1)

By the Kodaira vanishing theorem we have

H 0(J, O((n+ 1)�)) = H 0(J, O(n�))⊕H 0(�, O((n+ 1)�))

for n ≥ 1. Then, all we need to do is to compute the decomposition for
H 0(�, O(n�)). The problem can be reduced to work with H 0(Sg−1X,K⊗n

Sg−1X),
where Sg−1X is the g−1 symmetric product of X, g is the genus of X, and KSg−1X

is the canonical line bundle of Sg−1X (see Lemma 2.3). Now, to compute the
trace of h ∈G, we use the holomorphic Lefschetz theorem. There is no problem
in applying this theorem if 〈h〉 \ {1} is contained in a conjugacy class of G (see
Proposition 3.2), and the problem in general is how to compute the characteris-
tic classes required in the theorem. If the fixed point set of h in Sg−1X is finite,
then it is still possible to compute the trace of h. If the components of the fixed
point set of h in Sg−1X have dimension at most 1, then by studying the function
field of X one could proceed as in the example of [14] to compute the characteris-
tic classes. We do not need to do the last in our examples; in fact, we have written
a Maple program to compute the trace of h on H 0(S bX,K⊗n

S bX
) when 〈h〉 \ {1} is

contained in a conjugacy class of G. The program was used in our examples and
can be obtained from me upon request. Our main results are Theorem 3.3 and
the decomposition of H 0(J, O(n�)) for the Klein quartic, the Macbeath curve of
genus 7, and the Bring curve of genus 4. This work is based on results from my
thesis [13].
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2. The Symmetric Products

The aim of this section is to prove Lemma 2.3, which will allow us to apply the
holomorphic Lefschetz theorem on the symmetric products of X rather than on
the Jacobian. We start by mentioning some facts about the symmetric products of
curves (see [12] for more details). In the cohomology of S bX there are the classes
η,ϑ, σi satisfying the following relations: ϑ = ∑g

i=1 σi, σiσj = σjσi, and σ 2
i =

0. For b = a + d (a, d ≥ 0) and distinct i1, . . . , ia , we have σi1σi2 · · · σiaηd = ηb.

Then, if a + d = b,

ϑaηd = a!

(
g

a

)
ηb. (2)

In general, the total Chern class of the tangent bundle of S bX is given by

(1 + ηt)(b−g+1)e−ϑt/(1+ηt), (3)

where g is the genus of X (see [1, p. 339]).
Let α : Sg−1X → � be the Abel–Jacobi map and let K = α∗O�(�).

Lemma 2.1. We have Kn = K⊗n
Sg−1X.

Proof. See [1, p. 258].

Lemma 2.2. χ(K⊗n
Sg−1X) = ng − (n− 1)g.

Proof (see [15, Prop. 10.1(3)]). We have

td(S dX) =
(

η

1 − e−η

)d−g+1 g∏
i=1

(1 + σiτ )

=
(

η

1 − e−η

)d−g+1 g∑
i=0

τ iϑi

i!
, (4)

where

τ = ηe−η + e−η − 1

η(1 − e−η)
.

By formula (3), the Chern class of K⊗n
Sg−1X is 1+ nϑ; hence the Chern character of

K⊗n
Sg−1X is

ch(K⊗n
Sg−1X) = enϑ =

g∏
i=1

(1 + nσi).

So, by Hirzebruch–Riemann–Roch:

χ(K⊗n
Sg−1X) = deg

{ g∏
i=1

(1 + σi(τ + n))

}
g−1

.
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Notice that none of the terms in the expression
g∏
i=1

(1 + σi(τ + n))

is divisible by a square of any σi, so we can assume σ1 = · · · = σg = η. Then
what we want to compute is the coefficient of ηg−1 in the following expression:

(1 + η(τ + n))g =
(

η

1 − e−η

)g
(n− (n− 1)e−η)g;

that is,

χ(K⊗n
Sg−1X) = Res

η=0

(
n− (n− 1)e−η

1 − e−η

)g
.

Then, setting z = 1 − e−η yields

Res
z=0

((n− 1)z + 1)g

zg(1 − z)
=

g−1∑
i=0

(
g

i

)
(n− 1)i = ng − (n− 1)g.

Lemma 2.3. For n ≥ 2 we have H i(�, O(n�)) ∼= H i(Sg−1X,Kn).

We need Theorem 2.4 to prove this lemma.
A line bundle λ on a varietyX is called semi-ample if, for someµ > 0, the sheaf

λµ is generated by global sections. Let X be a projective variety and let λ be an
invertible sheaf on X. If H 0(X, λµ) �= 0, then the sections of λµ define a rational
map

φµ = φλµ : X → P(H 0(X, λµ)∗).

The Iitaka dimension κ(λ) of λ is given by

κ(λ) =
{ −∞ if H 0(X, λµ) = 0 ∀µ,

Max{dimφµ(X) | H 0(X, λµ) �= 0} otherwise.

Theorem 2.4. Let X be a projective manifold defined over a field K of charac-
teristic 0, and let λ be an invertible sheaf on X. If λ is semi-ample and κ(λ) =
n = dimX, then

Hb(X, λ−1) = 0 for b < n.

Proof. See [8, Cor. 5.6(b)].

Proof of Lemma 2.3. Notice that, since α is surjective, the natural map

α∗ : H 0(�, O(n�)) → H 0(Sg−1X,α∗O(n�))

is injective. From the exact sequence (1) we see thath0(�, O(n�)) = ng−(n−1)g;
thus, by Lemma 2.2, χ(Kn) = h0(�, O(n�)). On the other hand, since O(n�)

is ample, α∗O�(n�) is semi-ample. Notice that the Iitaka dimension of Kn is
g − 1 = dim Sg−1X, because α is a birational map between Sg−1X and �. Then,
by Theorem 2.4 and the Serre duality theorem,
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H i(Sg−1X,α∗O(n�)⊗KSg−1X) = 0 for i > 0 and n ≥ 1.

Hence α∗ is an isomorphism for n ≥ 2.

3. The Fixed Point Theorem

Let E be a vector bundle on a smooth variety X, and let G be a finite group acting
on X. We say that G acts on E if, for each g ∈G, there is an isomorphism of vec-
tor bundles φg : g∗E → E such that, given g,h∈G, we have φh·g = φg � g∗(φh)

(see the definition of G-linearized vector bundle in [4]).
Suppose that X is a variety with a trivial action of a finite group G, that is,

suppose every element of G acts as the identity. Let V1, . . . ,Vm be the complex ir-
reducible representations of G. Then any vector bundle E on X with action of G
is isomorphic to a vector bundle of the form⊕

i

Vi ⊗ Ei,

where Ei is a unique vector bundle (which, of course, depends on E) with trivial
action of G. For h∈G and E as before, define

chh(E) =
∑
i

χi(h) · ch(Ei), (5)

where ch(Ei) is the Chern character of Ei and χi(h) represents the trace of h|Vi
(see definition of ch u(g) in [2] just before 3.1).

If G acts on E and h∈G acts trivially on X, then E has a decomposition E =⊕p

i=0 E(ν
i), whereE(νi) is the subvector bundle ofE on which h acts as νj (ν =

e2iπ/p) and p is the order of h. For each vector bundle E(νi), define the character-
istic class

U(E(νi)) =
∏
j

(
1 − e−xj/ν i

1 − 1/νi

)−1

, (6)

where {xj}j are the Chern roots of E(νi); see [2, (4.5)].

Theorem 3.1 (Holomorphic Lefschetz Theorem; see [2, Thm. 4.6]). Let X be
a compact complex manifold, V a holomorphic vector bundle over X, and h a
finite-order automorphism of the pair (X,V ). Let Xh denote the fixed point set of
h and let Nh = ⊕p−1

j=1 N(ν
j ) be the normal bundle of Xh decomposed according

to the eigenvalues of h. Then

∑
(−1)i tr(h|H i(X,V )) =

∫
Xh

chh(V |Xh) · ∏
j U(N(νj )) · td(Xh)

det(1 − (h|(Nh)∨)
.

Notice that Theorem 3.1 is a generalization of the Atiyah–Bott fixed point theorem.
Now let h be an automorphism of our curve X, and assume that h has order

p �= 1. Let b be a positive integer and choose integers m, l such that b = mp + l

with m ≥ 0 and 0 ≤ l < p. From [14] we know that the components of the fixed
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point set of h in S bX are isomorphic to S kY, where Y ∼= X/〈h〉 and 0 ≤ k ≤ m.

The components of dimension k are parameterized by a set Ak of invariant divi-
sors of degree dk = b − pk; namely, for each D ∈Ak we have an embedding

iD : S kY ↪
i �� SpkX ↪

AD �� Spk+dkX, (7)

where i sends Z ∈ S kY to the divisor f ∗Z ∈ SpkX (f : X → Y = X/〈h〉 is the
quotient map) and AD sends Z ∈ SpkX to Z +D ∈ Spk+dkX.

Let K denote the canonical line bundle of S bX and let ND be the normal bundle
of the component of the fixed point set of h in S bX corresponding to the divisor
D ∈Ak. Then

L(h,Kn) :=
∑

(−1)i tr(h|H i(S bX,Kn)) =
m∑
k=0

∑
D∈Ak

λ(k,D),

where

λ(k,D) =
∫
S kY

chh(i∗DKn) · ∏
j U(ND(ν

j )) · td(S kY )

det(1 − h|N∨
D
)

.

LetNAD
be the normal bundleNSpkX/S bX with respect to the embedding AD in (7).

Given D ∈Ak , define the class of D to be the vector (r1, . . . , rp−1), where rj is the
rank of i∗NAD

(νj ).

Proposition 3.2. Let (r1, . . . , rp−1) be the class of the divisor D ∈Ak. Then

(a) det(1 − h|N∨
D
) = pk

∏p−1
j=1(1 − νp−j )rj and

(b) chh(i∗DKn) = ν nαe [(g−1−b)η+pϑ]nt,

where

α = −kp(p − 1)

2
−

p−1∑
j=1

jrj .

If 〈h〉 \ {1} is contained in a conjugacy class of Aut(X), then

p−1∏
j=1

U(ND(ν
j )) = pAm(e−ηt )−Aetϑq(e

−ηt )

p−1∏
j=1

(
1 − e−ηt/νj

1 − 1/νj

)−rj
,

where m(z) = ∑p−1
i=0 z

i , q(z) = −zm′(z)/m(z), A = k + (γ − g)/(p − 1), and
γ is the genus of the quotient curve Y.

Proof. The action of h on i∗DK is multiplication by det(h|i∗
D
TS bX

)−1. By Remark 3.4
in [14] we have part (a) and det(h|i∗

D
TS bX

)−1 = να. The Chern class of KSbX is
1+ [(g−1−b)η+ϑ]t and so, using [14, Lemma 2.2], we see that i∗DK has Chern
class 1+ [(g−1−b)η+pϑ]t. Thus the Chern character is given by ch(i∗DK⊗n) =
e [(g−1−b)η+pϑ]nt and now we can use formula (5). The last formula is just [14,
Thm. 3.8].

Theorem 3.3. Let X be a hyperelliptic curve of genus g, and let h be the invo-
lution of X. Then, for n ≥ 1, we have
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tr(h|H 0(J,O(n�))) = 1 + 2−g
[(g−1)/2]∑

k=0

B(n, k)(1 − (−1)k+1)

(
2g + 2

g − 1 − 2k

)
,

where

B(n, k) = n
(−1)g−k−1 + 1

2
+ (−1)n(g−k−1) − 1

2
+ (−1)g−k.

Proof. In this case, the quotient curve is P
1 and h has 2g + 2 fixed points on X.

We assume b = g−1. Each setAk has
( 2g+2
g−1−2k

)
elements, and all the divisors have

the same class because there is only one eigenvalue; in fact, r1 = g − 1 − 2k =
rank i∗NAD

(−1). Because P
1 has genus 0, the ϑ class is 0 in the cohomology ring

of S k
P

1 ∼= P
k and η is the class of a hyperplane. We have

∑
D∈Ak

λ(k,D) =
∫
S kP1

2−g(−1)−n(g−1−k)

(
2g + 2

g − 1 − 2k

)(
1 + e−η

1 − e−η

)k+1

ηk+1.

Now,
∫
S kP1

(1+e−η
1−e−η

)k+1
ηk+1 is the coefficient of ηk in

(1+e−η
1−e−η

)k+1
ηk+1. Hence∫

S kP1

(
1 + e−η

1 − e−η

)k+1

ηk+1 = Res
η=0

(
1 + e−η

1 − e−η

)k+1

= Res
z=0

(
2 − z

z

)k+1
dz

1 − z
= 1 − (−1)k+1,

and thus we have

L(h,Kn) = 2−g
[(g−1)/2]∑

k=0

(−1)−n(g−1−k)(1 − (−1)k+1)

(
2g + 2

g − 1 − 2k

)
.

Using the exact sequence (1) now yields tr(h|H 0(J,O(2�))) = L(h,K2)+1, and the
theorem follows by induction.

With respect to this involution, we have H 0(J, O(n�)) = C
α(n) ⊕ V β(n),

where C and V are the one-dimensional representations on which h acts as 1
and −1 (respectively) and where α(n) = 1

2 [ng + tr(h|H 0(J,O(n�)))] and β(n) =
1
2 [ng − tr(h|H 0(J,O(n�)))].

Next we compute the traces of automorphisms of specific curves—namely, the
Klein quartic, the Macbeath curve of genus 7, and the Bring curve of genus 4. This
will enable us to decompose H 0(J, O(n�)) into a sum of irreducible representa-
tions of the automorphism group of X.

Notice that, if D ∈Ak is supported on the fixed points of h in X, then the class
of D can be computed using Remark 3.4 in [14]. So, if 〈h〉 \ {1} is contained in
a conjugacy class of Aut(X), then L(h,Kn) is completely determined by the fol-
lowing information:

• the dimension b of the symmetric product S bX;
• the order p of the automorphism h;
• the genus g of the curve X;
• the number s of fixed points of h in the curve X; and
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• a vector uh = (a1, . . . , as) in which ai is a positive integer such that the auto-
morphism h acts as νai on the tangent space Txi of the fixed point xi ∈ X

(ν = e2iπ/p).

This data is not enough in general; see, for instance, the example in [14].

Notation. If V is a representation of G and h ∈ G belongs to the conjugacy
class ∗∗, then we will write tr∗∗ to denote the trace of h on V. Notice that, if V =
H 0(J, O(n�)), then for n ≥ 1 we have tr∗∗ = ∑

(−1)i tr(h|H i(J,O(n�))).

4. The Klein Quartic

Let X be the Klein quartic curve (see [7] for more details). This is a genus-3 curve
with automorphism group G = PSL2(F7). This group has six conjugacy classes:
say 1A, 2A, 3A, 4A, 7A, 7B. If h∈G, then we derive the following tabulation.

Conjugacy Number of
class of h fixed points uh

2A 4 (1,1, 1, 1)
3A 2 (1, 2)
4A 0 —
7A 3 (1, 2, 4)
7B 3 (3, 5, 6)

For h in 4A, let p1, . . . ,p4 be the four fixed points of h2 in X. We can assume
that p3 = hp1 and p4 = hp2. Then the fixed points of h in S2X are p1 + hp1 and
p2 +hp2. We have (TS2X)p1+hp1 = (TX)p1 ⊕ (TX)hp1 , and h induces the two linear
maps α : (TX)p1 → (TX)hp1 and β : (TX)hp1 → (TX)p1 . Then the automorphism
induced on (TS2X)p1+hp1 has a matrix conjugate to A = (

0 a
b 0

)
.

Since p1 + hp1 is a fixed point of h2 ∈ 2A, we see that A2 = −Id(T
S2X)x

. Then
we see that A is conjugate to

(
i ∗
0 −i

)
. That is, the divisors p1 + hp1 and p2 + hp2

have class (1, 0,1).
It is not hard to compute L(h,Kn) for this curve. Let ζ = e2πi/7; then, by in-

duction, we obtain the values in Table 1. The trace for h ∈ 7B is the complex
conjugate of the trace of an automorphism in 7A.

Now let χ1,χ3, χ̄3,χ6,χ7,χ8 be the irreducible representations of G. If V =
χa

1 ⊕ χb
3 ⊕ χ̄ c

3 ⊕ χd
6 ⊕ χe

7 ⊕ χ
f

8 then, from the character table of G (see [3]),
we have

a +3b +3c +6d +7e +8f = tr1A
a −b −c +2d −e = tr 2A
a +e −f = tr 3A
a +b +c −e = tr 4A
a +αb +ᾱc −d +f = tr 7A
a +ᾱb +αc −d +f = tr 7B
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Table 1

Conjugacy
class of h

∑
(−1)i tr

(
h|H i(J,O(n�))

)
1A n3

2A n(3 + (−1)n)/2

3A, 4A n

7A
(− 2

7 ζ
3 − 4

7 ζ
4 − 4

7 ζ
5 − 4

7

)
(ζ n+1)4

+ (
2
7 ζ

5 + 4
7 ζ

4 + 4
7 ζ + 4

7 ζ
3
)
(ζ n+1)2

+ (− 2
7 ζ + 2

7 ζ
5 − 2

7 ζ
3 + 2

7 ζ
4 + 2

7 ζ
2 − 2

7

)
ζ n+1

− 2
7 ζ − 1

7 − 2
7 ζ

4 − 2
7 ζ

2

where α = (−1 + i
√

7
)
/2. The general solution of this system of equations is

given by




a

b

c

d

e

f




=




tr1A
168 + tr 2A

8 + tr 7B
7 + tr 7A

7 + tr 4A
4 + tr 2A

3

− tr 2A
8 + tr1A

56 − i
√

7 tr 7A
14 + i

√
7 tr 7B
14 − tr 7B

14 − tr 7A
14 + tr 4A

4

tr 4A
4 − tr 7A

14 + i
√

7 tr 7A
14 − tr 7B

14 − i
√

7 tr 7B
14 − tr 2A

8 + tr1A
56

tr1A
28 + tr 2A

4 − tr 7B
7 − tr 7A

7

tr 2A
3 + tr1A

24 − tr 2A
8 − tr 4A

4

tr 7B
7 + tr1A

21 + tr 7A
7 − tr 2A

3



.

Then, if H 0(J, O(n�)) = χ
a(n)
1 ⊕χ

b(n)
3 ⊕ χ̄

c(n)
3 ⊕χ

d(n)
6 ⊕χ

e(n)
7 ⊕χ

f(n)

8 , it follows
that for n = 1, . . . ,10 we have




a(n)

b(n)

c(n)

d(n)

e(n)

f(n)




=




1 2 2 4 4 6 7 10 11 14

0 0 1 1 3 4 6 9 14 18

0 0 1 1 3 4 8 9 14 18

0 1 2 4 6 11 14 22 28 41

0 0 1 2 5 8 14 20 30 40

0 0 0 2 4 8 14 22 32 44



.

5. The Macbeath Curve of Genus 7

There exists a Hurwitz curve of genus 7 with group of automorphisms G =
PSL2(F8). Equations for this curve were first computed in [10] by Macbeath,
and we refer to his paper for more details. The group G is simple and has 504
elements. There are 9 conjugacy classes: 1A, 2A, 3A, 7A, 7B*2, 7C*4, 9A, 9B*2,



The Trace of an Automorphism on H 0(J, O(n�)) 65

Table 2

Conjugacy
class of h

∑
(−1)i tr

(
h|H i(J,O(n�))

)
1A n7

2A n3(3 + (−1)n)/2

3A 8
3w

nn+ 8
3 (w

n)2n+ 11
3 n

7A, 7B, 7C, 9A, 9B, 9C n

and 9C*4. An element in each class has order 1, 2, 3, 7, 7, 7, 9, 9, 9 respectively.
Letting h∈G then yields the following tabulation.

Conjugacy Number of
class of h fixed points uh

2A 4 (1,1, 1, 1)
3A 6 (1,1, 1, 2, 2, 2)
7A 2 (α, 7 − α)

7B 2 (2α, 14 − 2α)
7C 2 (4α, 28 − 4α)

9A, 9B, 9C 0 —

Suppose that h ∈ G has order 7, and let H = 〈h〉. Since h has two fixed points
in X, the normalizer N(H ) of H has order 14. Let t ∈ N(H ) be of order 2. We
have N(H ) = 〈t,h〉, so if p1 is a fixed point of h then the other fixed point is tp1.

Now tht = hk. Observe that k �= 1, for otherwiseN(H )would be cyclic and there
would be an element of order 14 in G. Hence k ≡ −1 mod 7. From this we see
that, if h acts as ζ α (ζ = e2iπ/7) on Tp1 , then h acts as ζ−α on Ttp1 . The value
of α ∈ {1, 2, 3, 4, 5, 6} depends on the conjugancy class of h, although in this case
L(h,Kn) is independent of the value of α.

Now suppose that z ∈ G has order 9. The six fixed points of z3 in X have
the form p1, zp1, z2p1,p2 , zp2 , z2p2 , where z3 acts on Tp1 as ω and as ω2 on Tp2 .

The fixed point set of z in S 6X consists of the three points 2p1 + 2zp1 + 2z2p1,
2p2 + 2zp2 + 2z2p2 , and p+ zp+ z2p+p2 + zp2 + z2p2. Similarly to the case
4A in the Klein quartic example (and to the proof of Lemma 3.1 in [14]), one can
see that the matrix corresponding to the action of h on the tangent space of these
divisors has characteristic polynomial q(λ) = (λ3 −ω)(λ3 −ω2). That is, the three
divisors have class (1,1, 0,1,1, 0,1,1).

Now we can computeL(h,Kn) and use induction to obtain the values in Table 2.
Let H 0(J, O(n�)) = C

a1(n) ⊕ V
a2(n)
2 ⊕ V

a3(n)
3 ⊕ · · · ⊕ V

a9(n)
9 . From the char-

acter table of G (see [3]), we obtain a system of linear equations whose solu-
tions are
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Table 3 Character table of S5

1a 2a 2b 3a 6a 4a 5a

χ1 1 1 1 1 1 1 1
χ2 1 −1 1 1 −1 −1 1
χ3 4 −2 0 1 1 0 −1
χ4 4 2 0 1 −1 0 −1
χ5 5 1 1 −1 1 −1 0
χ6 5 −1 1 −1 −1 1 0
χ7 6 0 −2 0 0 0 1

a1(n) = 16
21 tr 7A + 1

9 tr 3A + 1
504 tr1A + 1

8 tr 2A,

a2(n) = 1
72 tr1A − 1

8 tr 2A + 1
3 tr 7A − 2

9 tr 3A,

a3(n) = a4(n) = a5(n) = 1
9 tr 3A + 1

72 tr1A − 1
8 tr 2A,

a6(n) = 2
21 tr 7A + 1

63 tr1A − 1
9 tr 3A,

a7(n) = a8(n) = a9(n) = − 1
7 tr 7A + 1

56 tr1A + 1
8 tr 2A.

For the first ten values of n we have


a1(n)

a2(n)

a3(n)

a4(n)

a5(n)

a6(n)

a7(n)

a8(n)

a9(n)




=




1 4 13 52 175 620 1683 4296 9597 20100

0 0 22 212 1070 3824 11396 29000 66324 138640

0 0 30 212 1070 3840 11396 29000 66348 138640

0 0 30 212 1070 3840 11396 29000 66348 138640

0 0 30 212 1070 3840 11396 29000 66348 138640

0 2 32 260 1240 4438 13072 33288 75912 158730

0 4 42 308 1410 5052 14748 37576 85500 178820

0 4 42 308 1410 5052 14748 37576 85500 178820

0 4 42 308 1410 5052 14748 37576 85500 178820




.

6. The Bring Curve of Genus 4

The Bring curve is the only genus-4 curve admitting the symmetric group G = S5

as its group of automorphisms. Some information about this curve can be found
in [5; 6; 16]. This curve can be defined in P

4 using the equations

5∑
i=1

xi = 0,
5∑
i=1

x 2
i = 0,

5∑
i=1

x3
i = 0.

The group acts by permuting coordinates. One can use [9] to produce Table 3, the
character table of S5, and some information about its subgroups. There are seven
conjugacy classes for G: 1, (1, 2), (1, 2)(3, 4), (1, 2, 3), (1, 2, 3)(4, 5), (1, 2, 3, 4),
(1, 2, 3, 4, 5) of orders 1, 2, 2, 3, 6, 4, 5 and sizes 1,10,15, 20, 20, 30, 24 respectively.
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Denote by 1a, 2a, 2b, 3a, 6a, 4a, and 5a the conjugacy classes of G. The Fuchsian
group that yields X and G has period partition (2, 4, 5). Again letting h ∈G, we
have the following tabulation.

Conjugacy Number of
class of h fixed points uh

2a 6 (1,1, 1, 1, 1, 1)
2b 2 (1,1)
3a 0 —
6a 0 —
4a 2 (i, −i)
5a 4 (1, 2, 3, 4)

The normalizer of 〈(1, 2)(3, 4)〉 is H = 〈(3, 4), (1, 2), (1, 3)(2, 4)〉 and has eight
elements. An element in 2b is the square of an element in 4a, so it is the image
of an element in a maximal cyclic subgroup of order 4 of the Fuchsian group that
yields S5 as the group of automorphisms of X. Then, by [11, Thm. 1], we see that
there are two fixed points in X for an automorphism in 2b.

The normalizer of 〈(1, 2, 3, 4)〉 is 〈(1, 2, 3, 4), (2, 4)〉 and also has eight elements.
So if h ∈ 4a then the two fixed points p1,p2 of h2 are the fixed points of h in X.
Since h and h3 are conjugate to each other, we see that h acts as i and −i on
the tangent spaces of the two fixed points. The fixed points of h in S3X are 3p1,
2p1 + p2 , p1 + 2p2 , and 3p2. From Remark 3.4 in [14] we see that these divisors
have class (1,1,1).

An automorphism in 6a has no fixed points in X. If h∈ 6a then h3 ∈ 2a. Hence
the fixed points of h3 in X are of the form p1, hp1, h2p1, p2 , hp2 , and h2p2; the
fixed points of h in S3X are p1 + hp1 + h2p1 and p2 + hp2 + h2p2. The matrix
corresponding to the action of h on the tangent spaces at these divisors has charac-
teristic polynomial q(λ) = λ3 +1, that is, the three divisors have class (1, 0,1, 0,1).

The normalizer of 〈(1, 2, 3, 4, 5)〉 is 〈(1, 2, 3, 4, 5), (2, 5)(3, 4), (2, 4, 5, 3)〉 and
has twenty elements. So there are four fixed points in X for an automorphism h in
5a, and since the four powers of h belong to this same class we see that h acts as
ν1, . . . , ν 4 (ν = e2iπ/5) on the tangent spaces of these points. ComputingL(h,Kn)

and using induction, we obtain the values in Table 4.
Let H 0(J, O(n�)) = C

a1(n) ⊕ V
a2(n)
2 ⊕ V

a3(n)
3 ⊕ · · · ⊕ V

a7(n)
7 . Then, from the

character table of G, we have




a1(n)

a2(n)

a3(n)

a4(n)

a5(n)

a6(n)

a7(n)




=




tr1a
120 + tr 6a

6 + tr 5a
5 + tr 4a

4 + tr 2b
8 + tr 2a

12 + tr 3a
6

− tr 2a
12 + tr1a

120 − tr 6a
6 + tr 5a

5 − tr 4a
4 + tr 2b

8 + tr 3a
6

tr1a
30 + tr 6a

6 − tr 2a
6 + tr 3a

6 − tr 5a
5

− tr 6a
6 + tr1a

30 + tr 2a
6 + tr 3a

6 − tr 5a
5

− tr 3a
6 + tr1a

24 + tr 2b
8 − tr 4a

4 + tr 2a
12 + tr 6a

6
tr 4a

4 + tr1a
24 − tr 2a

12 + tr 2b
8 − tr 6a

6 − tr 3a
6

tr 5a
5 + tr1a

20 − tr 2b
4



.
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Table 4

Conjugacy
class of h

∑
(−1)i tr

(
h|H i(J,O(n�))

)
1a n4

2a 3
4 + 5(−1)n

4 + 3n2

2

2b, 3a n2

4a, 6a 3
2 + (−1)n

2

5a 9
5 + 4(ν n)4

5 + 4(ν n)3

5 + 4(ν n)2

5

+ (− 4
5ν

4 − 4
5ν − 4

5ν
2 − 4

5ν
3
)
ν n

For n = 1, . . . ,10 we have


a1(n)

a2(n)

a3(n)

a4(n)

a5(n)

a6(n)

a7(n)




=




1 3 5 10 17 27 41 62 89 127

0 0 2 4 10 16 28 44 68 100

0 0 2 7 18 40 76 131 212 324

0 2 6 15 30 58 100 163 252 374

0 1 4 12 28 57 104 176 280 425

0 0 2 8 22 48 92 160 260 400

0 0 2 9 26 56 108 189 308 476



.
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