The Trace of an Automorphism on $H^{0}(J, \mathcal{O}(n \Theta))$

Israel Moreno Mejía

1. Introduction

Let X be a projective smooth complex curve with group of automorphisms G. Let J be the Jacobian of X and let Θ be the theta divisor of J. Then G acts on J and Θ is invariant under the action of G. Given $h \in G$, our goal is to compute the trace of h on $H^{0}(J, \mathcal{O}(n \Theta))$ in order to decompose this space into a sum of irreducible representations of G. Dolgachev computed the decomposition of $H^{0}(J, \mathcal{O}(2 \Theta))$ when X is the Klein quartic and used it to study some invariant vector bundles on this curve; see the proof of Corollary 6.3 in [4].

The strategy is as follows. Consider the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}(n \Theta) \rightarrow \mathcal{O}((n+1) \Theta) \rightarrow \mathcal{O}_{\Theta}((n+1) \Theta) \rightarrow 0 \tag{1}
\end{equation*}
$$

By the Kodaira vanishing theorem we have

$$
H^{0}(J, \mathcal{O}((n+1) \Theta))=H^{0}(J, \mathcal{O}(n \Theta)) \oplus H^{0}(\Theta, \mathcal{O}((n+1) \Theta))
$$

for $n \geq 1$. Then, all we need to do is to compute the decomposition for $H^{0}(\Theta, \mathcal{O}(n \Theta))$. The problem can be reduced to work with $H^{0}\left(S^{g-1} X, K_{S^{g-1} X}^{\otimes n}\right)$, where $S^{g-1} X$ is the $g-1$ symmetric product of X, g is the genus of X, and $K_{S^{g-1} X}$ is the canonical line bundle of $S^{g-1} X$ (see Lemma 2.3). Now, to compute the trace of $h \in G$, we use the holomorphic Lefschetz theorem. There is no problem in applying this theorem if $\langle h\rangle \backslash\{1\}$ is contained in a conjugacy class of G (see Proposition 3.2), and the problem in general is how to compute the characteristic classes required in the theorem. If the fixed point set of h in $S^{g-1} X$ is finite, then it is still possible to compute the trace of h. If the components of the fixed point set of h in $S^{g-1} X$ have dimension at most 1, then by studying the function field of X one could proceed as in the example of [14] to compute the characteristic classes. We do not need to do the last in our examples; in fact, we have written a Maple program to compute the trace of h on $H^{0}\left(S^{b} X, K_{S^{b} X}^{\otimes n}\right)$ when $\langle h\rangle \backslash\{1\}$ is contained in a conjugacy class of G. The program was used in our examples and can be obtained from me upon request. Our main results are Theorem 3.3 and the decomposition of $H^{0}(J, \mathcal{O}(n \Theta))$ for the Klein quartic, the Macbeath curve of genus 7, and the Bring curve of genus 4. This work is based on results from my thesis [13].

2. The Symmetric Products

The aim of this section is to prove Lemma 2.3, which will allow us to apply the holomorphic Lefschetz theorem on the symmetric products of X rather than on the Jacobian. We start by mentioning some facts about the symmetric products of curves (see [12] for more details). In the cohomology of $S^{b} X$ there are the classes $\eta, \vartheta, \sigma_{i}$ satisfying the following relations: $\vartheta=\sum_{i=1}^{g} \sigma_{i}, \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$, and $\sigma_{i}^{2}=$ 0 . For $b=a+d(a, d \geq 0)$ and distinct i_{1}, \ldots, i_{a}, we have $\sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{a}} \eta^{d}=\eta^{b}$. Then, if $a+d=b$,

$$
\begin{equation*}
\vartheta^{a} \eta^{d}=a!\binom{g}{a} \eta^{b} . \tag{2}
\end{equation*}
$$

In general, the total Chern class of the tangent bundle of $S^{b} X$ is given by

$$
\begin{equation*}
(1+\eta t)^{(b-g+1)} e^{-\vartheta t /(1+\eta t)} \tag{3}
\end{equation*}
$$

where g is the genus of X (see [1, p. 339]).
Let $\alpha: S^{g-1} X \rightarrow \Theta$ be the Abel-Jacobi map and let $K=\alpha^{*} \mathcal{O}_{\Theta}(\Theta)$.
Lemma 2.1. We have $K^{n}=K_{S^{8-1} X}^{\otimes n}$.
Proof. See [1, p. 258].
Lemma 2.2. $\quad \chi\left(K_{S^{g-1} X}^{\otimes n}\right)=n^{g}-(n-1)^{g}$.
Proof (see [15, Prop. 10.1(3)]). We have

$$
\begin{align*}
t d\left(S^{d} X\right) & =\left(\frac{\eta}{1-e^{-\eta}}\right)^{d-g+1} \prod_{i=1}^{g}\left(1+\sigma_{i} \tau\right) \\
& =\left(\frac{\eta}{1-e^{-\eta}}\right)^{d-g+1} \sum_{i=0}^{g} \frac{\tau^{i} \vartheta^{i}}{i!}, \tag{4}
\end{align*}
$$

where

$$
\tau=\frac{\eta e^{-\eta}+e^{-\eta}-1}{\eta\left(1-e^{-\eta}\right)}
$$

By formula (3), the Chern class of $K_{S^{g-1} X}^{\otimes n}$ is $1+n \vartheta$; hence the Chern character of $K_{S^{-1} X}^{\otimes n}$ is

$$
\operatorname{ch}\left(K_{S^{8}-1}^{\otimes n}\right)=e^{n \vartheta}=\prod_{i=1}^{g}\left(1+n \sigma_{i}\right) .
$$

So, by Hirzebruch-Riemann-Roch:

$$
\chi\left(K_{S^{B^{-1}} X}^{\otimes n}\right)=\operatorname{deg}\left\{\prod_{i=1}^{g}\left(1+\sigma_{i}(\tau+n)\right)\right\}_{g-1} .
$$

Notice that none of the terms in the expression

$$
\prod_{i=1}^{g}\left(1+\sigma_{i}(\tau+n)\right)
$$

is divisible by a square of any σ_{i}, so we can assume $\sigma_{1}=\cdots=\sigma_{g}=\eta$. Then what we want to compute is the coefficient of η^{g-1} in the following expression:

$$
(1+\eta(\tau+n))^{g}=\left(\frac{\eta}{1-e^{-\eta}}\right)^{g}\left(n-(n-1) e^{-\eta}\right)^{g}
$$

that is,

$$
\chi\left(K_{S^{g-1} X}^{\otimes n}\right)=\operatorname{Res}_{\eta=0}\left(\frac{n-(n-1) e^{-\eta}}{1-e^{-\eta}}\right)^{g} .
$$

Then, setting $z=1-e^{-\eta}$ yields

$$
\operatorname{Res}_{z=0} \frac{((n-1) z+1)^{g}}{z^{g}(1-z)}=\sum_{i=0}^{g-1}\binom{g}{i}(n-1)^{i}=n^{g}-(n-1)^{g} .
$$

Lemma 2.3. For $n \geq 2$ we have $H^{i}(\Theta, \mathcal{O}(n \Theta)) \cong H^{i}\left(S^{g-1} X, K^{n}\right)$.
We need Theorem 2.4 to prove this lemma.
A line bundle λ on a variety X is called semi-ample if, for some $\mu>0$, the sheaf λ^{μ} is generated by global sections. Let X be a projective variety and let λ be an invertible sheaf on X. If $H^{0}\left(X, \lambda^{\mu}\right) \neq 0$, then the sections of λ^{μ} define a rational map

$$
\phi_{\mu}=\phi_{\lambda^{\mu}}: X \rightarrow \mathbb{P}\left(H^{0}\left(X, \lambda^{\mu}\right)^{*}\right)
$$

The Iitaka dimension $\kappa(\lambda)$ of λ is given by

$$
\kappa(\lambda)= \begin{cases}-\infty & \text { if } H^{0}\left(X, \lambda^{\mu}\right)=0 \forall \mu \\ \operatorname{Max}\left\{\operatorname{dim} \phi_{\mu}(X) \mid H^{0}\left(X, \lambda^{\mu}\right) \neq 0\right\} & \text { otherwise }\end{cases}
$$

Theorem 2.4. Let X be a projective manifold defined over a field K of characteristic 0 , and let λ be an invertible sheaf on X. If λ is semi-ample and $\kappa(\lambda)=$ $n=\operatorname{dim} X$, then

$$
H^{b}\left(X, \lambda^{-1}\right)=0 \quad \text { for } b<n .
$$

Proof. See [8, Cor. 5.6(b)].
Proof of Lemma 2.3. Notice that, since α is surjective, the natural map

$$
\alpha^{*}: H^{0}(\Theta, \mathcal{O}(n \Theta)) \rightarrow H^{0}\left(S^{g-1} X, \alpha^{*} \mathcal{O}(n \Theta)\right)
$$

is injective. From the exact sequence (1) we see that $h^{0}(\Theta, \mathcal{O}(n \Theta))=n^{g}-(n-1)^{g}$; thus, by Lemma 2.2, $\chi\left(K^{n}\right)=h^{0}(\Theta, \mathcal{O}(n \Theta))$. On the other hand, since $\mathcal{O}(n \Theta)$ is ample, $\alpha^{*} \mathcal{O}_{\Theta}(n \Theta)$ is semi-ample. Notice that the Iitaka dimension of K^{n} is $g-1=\operatorname{dim} S^{g-1} X$, because α is a birational map between $S^{g-1} X$ and Θ. Then, by Theorem 2.4 and the Serre duality theorem,

$$
H^{i}\left(S^{g-1} X, \alpha^{*} \mathcal{O}(n \Theta) \otimes K_{S^{g-1} X}\right)=0 \quad \text { for } i>0 \text { and } n \geq 1
$$

Hence α^{*} is an isomorphism for $n \geq 2$.

3. The Fixed Point Theorem

Let E be a vector bundle on a smooth variety X, and let G be a finite group acting on X. We say that G acts on E if, for each $g \in G$, there is an isomorphism of vector bundles $\phi_{g}: g^{*} E \rightarrow E$ such that, given $g, h \in G$, we have $\phi_{h \cdot g}=\phi_{g} \circ g^{*}\left(\phi_{h}\right)$ (see the definition of G-linearized vector bundle in [4]).

Suppose that X is a variety with a trivial action of a finite group G, that is, suppose every element of G acts as the identity. Let V_{1}, \ldots, V_{m} be the complex irreducible representations of G. Then any vector bundle E on X with action of G is isomorphic to a vector bundle of the form

$$
\bigoplus_{i} V_{i} \otimes E_{i}
$$

where E_{i} is a unique vector bundle (which, of course, depends on E) with trivial action of G. For $h \in G$ and E as before, define

$$
\begin{equation*}
\operatorname{ch}_{h}(E)=\sum_{i} \chi_{i}(h) \cdot \operatorname{ch}\left(E_{i}\right) \tag{5}
\end{equation*}
$$

where $\operatorname{ch}\left(E_{i}\right)$ is the Chern character of E_{i} and $\chi_{i}(h)$ represents the trace of $\left.h\right|_{V_{i}}$ (see definition of ch $u(g)$ in [2] just before 3.1).

If G acts on E and $h \in G$ acts trivially on X, then E has a decomposition $E=$ $\bigoplus_{i=0}^{p} E\left(v^{i}\right)$, where $E\left(v^{i}\right)$ is the subvector bundle of E on which h acts as $v^{j}(v=$ $\left.\mathbf{e}^{2 i \pi / p}\right)$ and p is the order of h. For each vector bundle $E\left(v^{i}\right)$, define the characteristic class

$$
\begin{equation*}
\mathcal{U}\left(E\left(v^{i}\right)\right)=\prod_{j}\left(\frac{1-e^{-x_{j}} / v^{i}}{1-1 / v^{i}}\right)^{-1} \tag{6}
\end{equation*}
$$

where $\left\{x_{j}\right\}_{j}$ are the Chern roots of $E\left(v^{i}\right)$; see [2, (4.5)].
Theorem 3.1 (Holomorphic Lefschetz Theorem; see [2, Thm. 4.6]). Let X be a compact complex manifold, V a holomorphic vector bundle over X, and h a finite-order automorphism of the pair (X, V). Let X^{h} denote the fixed point set of h and let $N^{h}=\bigoplus_{j=1}^{p-1} N\left(v^{j}\right)$ be the normal bundle of X^{h} decomposed according to the eigenvalues of h. Then

$$
\sum(-1)^{i} \operatorname{tr}\left(\left.h\right|_{H^{i}(X, V)}\right)=\int_{X^{h}} \frac{\operatorname{ch}_{h}\left(\left.V\right|_{X^{h}}\right) \cdot \prod_{j} \mathcal{U}\left(N\left(\nu^{j}\right)\right) \cdot t d\left(X^{h}\right)}{\operatorname{det}\left(1-\left(\left.h\right|_{\left.\left(N^{h}\right)^{v}\right)}\right)\right.}
$$

Notice that Theorem 3.1 is a generalization of the Atiyah-Bott fixed point theorem.
Now let h be an automorphism of our curve X, and assume that h has order $p \neq 1$. Let b be a positive integer and choose integers m, l such that $b=m p+l$ with $m \geq 0$ and $0 \leq l<p$. From [14] we know that the components of the fixed
point set of h in $S^{b} X$ are isomorphic to $S^{k} Y$, where $Y \cong X /\langle h\rangle$ and $0 \leq k \leq m$. The components of dimension k are parameterized by a set A_{k} of invariant divisors of degree $d_{k}=b-p k$; namely, for each $D \in A_{k}$ we have an embedding

$$
\begin{equation*}
i_{D}: S^{k} Y \stackrel{i}{\hookrightarrow} S^{p k} X \xrightarrow{\mathcal{A}_{D}} S^{p k+d_{k}} X, \tag{7}
\end{equation*}
$$

where i sends $Z \in S^{k} Y$ to the divisor $f^{*} Z \in S^{p k} X(f: X \rightarrow Y=X /\langle h\rangle$ is the quotient map) and \mathcal{A}_{D} sends $Z \in S^{p k} X$ to $Z+D \in S^{p k+d_{k}} X$.

Let K denote the canonical line bundle of $S^{b} X$ and let N_{D} be the normal bundle of the component of the fixed point set of h in $S^{b} X$ corresponding to the divisor $D \in A_{k}$. Then

$$
L\left(h, K^{n}\right):=\sum(-1)^{i} \operatorname{tr}\left(\left.h\right|_{H^{i}\left(S^{b} X, K^{n}\right)}\right)=\sum_{k=0}^{m} \sum_{D \in A_{k}} \lambda(k, D),
$$

where

$$
\lambda(k, D)=\int_{S^{k} Y} \frac{\operatorname{ch}_{h}\left(i_{D}^{*} K^{n}\right) \cdot \prod_{j} \mathcal{U}\left(N_{D}\left(v^{j}\right)\right) \cdot t d\left(S^{k} Y\right)}{\operatorname{det}\left(1-\left.h\right|_{N_{D}^{\vee}}\right)}
$$

Let $N_{\mathcal{A}_{D}}$ be the normal bundle $N_{S^{k^{k} X / S^{b} X}}$ with respect to the embedding \mathcal{A}_{D} in (7). Given $D \in A_{k}$, define the class of D to be the vector $\left(r_{1}, \ldots, r_{p-1}\right)$, where r_{j} is the rank of $i^{*} N_{\mathcal{A}_{D}}\left(v^{j}\right)$.

Proposition 3.2. Let $\left(r_{1}, \ldots, r_{p-1}\right)$ be the class of the divisor $D \in A_{k}$. Then
(a) $\operatorname{det}\left(1-\left.h\right|_{N_{D}^{\vee}}\right)=p^{k} \prod_{j=1}^{p-1}\left(1-v^{p-j}\right)^{r_{j}}$ and
(b) $\operatorname{ch}_{h}\left(i_{D}^{*} K^{n}\right)=v^{n \alpha} e^{[(g-1-b) \eta+p \vartheta] n t}$,
where

$$
\alpha=-k \frac{p(p-1)}{2}-\sum_{j=1}^{p-1} j r_{j} .
$$

If $\langle h\rangle \backslash\{1\}$ is contained in a conjugacy class of $\operatorname{Aut}(X)$, then

$$
\prod_{j=1}^{p-1} \mathcal{U}\left(N_{D}\left(v^{j}\right)\right)=p^{A} m\left(e^{-\eta t}\right)^{-A} e^{t \vartheta q\left(e^{-\eta t}\right)} \prod_{j=1}^{p-1}\left(\frac{1-e^{-\eta t} / v^{j}}{1-1 / v^{j}}\right)^{-r_{j}}
$$

where $m(z)=\sum_{i=0}^{p-1} z^{i}, q(z)=-z m^{\prime}(z) / m(z), A=k+(\gamma-g) /(p-1)$, and γ is the genus of the quotient curve Y.

Proof. The action of h on $i_{D}^{*} K$ is multiplication by $\operatorname{det}\left(\left.h\right|_{i_{D}^{*} T_{S^{b} X}}\right)^{-1}$. By Remark 3.4 in [14] we have part (a) and $\operatorname{det}\left(\left.h\right|_{D} ^{*} T_{S^{b} X}\right)^{-1}=v^{\alpha}$. The Chern class of $K_{S^{b} X}$ is $1+[(g-1-b) \eta+\vartheta] t$ and so, using [14, Lemma 2.2], we see that $i_{D}^{*} K$ has Chern class $1+[(g-1-b) \eta+p \vartheta] t$. Thus the Chern character is given by $\operatorname{ch}\left(i_{D}^{*} K^{\otimes n}\right)=$ $e^{[(g-1-b) \eta+p \vartheta] n t}$ and now we can use formula (5). The last formula is just [14, Thm. 3.8].

Theorem 3.3. Let X be a hyperelliptic curve of genus g, and let h be the involution of X. Then, for $n \geq 1$, we have

$$
\operatorname{tr}\left(\left.h\right|_{H^{0}(J, \mathcal{O}(n \Theta))}\right)=1+2^{-g} \sum_{k=0}^{[(g-1) / 2]} B(n, k)\left(1-(-1)^{k+1}\right)\binom{2 g+2}{g-1-2 k}
$$

where

$$
B(n, k)=n \frac{(-1)^{g-k-1}+1}{2}+\frac{(-1)^{n(g-k-1)}-1}{2}+(-1)^{g-k} .
$$

Proof. In this case, the quotient curve is \mathbb{P}^{1} and h has $2 g+2$ fixed points on X. We assume $b=g-1$. Each set A_{k} has $\binom{2 g+2}{g-1-2 k}$ elements, and all the divisors have the same class because there is only one eigenvalue; in fact, $r_{1}=g-1-2 k=$ rank $i^{*} N_{A_{D}}(-1)$. Because \mathbb{P}^{1} has genus 0 , the ϑ class is 0 in the cohomology ring of $S^{k} \mathbb{P}^{1} \cong \mathbb{P}^{k}$ and η is the class of a hyperplane. We have

$$
\sum_{D \in A_{k}} \lambda(k, D)=\int_{S^{k} \mathbb{P}^{1}} 2^{-g}(-1)^{-n(g-1-k)}\binom{2 g+2}{g-1-2 k}\left(\frac{1+e^{-\eta}}{1-e^{-\eta}}\right)^{k+1} \eta^{k+1}
$$

Now, $\int_{S^{k} \mathbb{P}^{1}}\left(\frac{1+e^{-\eta}}{1-e^{-\eta}}\right)^{k+1} \eta^{k+1}$ is the coefficient of η^{k} in $\left(\frac{1+e^{-\eta}}{1-e^{-\eta}}\right)^{k+1} \eta^{k+1}$. Hence

$$
\begin{aligned}
\int_{S^{k} \mathbb{P}^{1}}\left(\frac{1+e^{-\eta}}{1-e^{-\eta}}\right)^{k+1} \eta^{k+1} & =\operatorname{Res}_{\eta=0}\left(\frac{1+e^{-\eta}}{1-e^{-\eta}}\right)^{k+1} \\
& =\operatorname{Res}_{z=0}\left(\frac{2-z}{z}\right)^{k+1} \frac{d z}{1-z}=1-(-1)^{k+1}
\end{aligned}
$$

and thus we have

$$
L\left(h, K^{n}\right)=2^{-g} \sum_{k=0}^{[(g-1) / 2]}(-1)^{-n(g-1-k)}\left(1-(-1)^{k+1}\right)\binom{2 g+2}{g-1-2 k}
$$

Using the exact sequence (1) now yields $\operatorname{tr}\left(\left.h\right|_{H^{0}(J, \mathcal{O}(2 \Theta))}\right)=L\left(h, K^{2}\right)+1$, and the theorem follows by induction.

With respect to this involution, we have $H^{0}(J, \mathcal{O}(n \Theta))=\mathbb{C}^{\alpha(n)} \oplus V^{\beta(n)}$, where \mathbb{C} and V are the one-dimensional representations on which h acts as 1 and -1 (respectively) and where $\alpha(n)=\frac{1}{2}\left[n^{g}+\operatorname{tr}\left(\left.h\right|_{H^{0}(J, \mathcal{O}(n \Theta))}\right)\right]$ and $\beta(n)=$ $\frac{1}{2}\left[n^{g}-\operatorname{tr}\left(\left.h\right|_{H^{0}(J, \mathcal{O}(n \Theta))}\right)\right]$.

Next we compute the traces of automorphisms of specific curves-namely, the Klein quartic, the Macbeath curve of genus 7, and the Bring curve of genus 4. This will enable us to decompose $H^{0}(J, \mathcal{O}(n \Theta))$ into a sum of irreducible representations of the automorphism group of X.

Notice that, if $D \in A_{k}$ is supported on the fixed points of h in X, then the class of D can be computed using Remark 3.4 in [14]. So, if $\langle h\rangle \backslash\{1\}$ is contained in a conjugacy class of $\operatorname{Aut}(X)$, then $L\left(h, K^{n}\right)$ is completely determined by the following information:

- the dimension b of the symmetric product $S^{b} X$;
- the order p of the automorphism h;
- the genus g of the curve X;
- the number s of fixed points of h in the curve X; and
- a vector $\mathbf{u}_{h}=\left(a_{1}, \ldots, a_{s}\right)$ in which a_{i} is a positive integer such that the automorphism h acts as $\nu^{a_{i}}$ on the tangent space $T_{x_{i}}$ of the fixed point $x_{i} \in X$ $\left(\nu=e^{2 i \pi / p}\right)$.
This data is not enough in general; see, for instance, the example in [14].
Notation. If V is a representation of G and $h \in G$ belongs to the conjugacy class $* *$, then we will write $\operatorname{tr} * *$ to denote the trace of h on V. Notice that, if $V=$ $H^{0}(J, \mathcal{O}(n \Theta))$, then for $n \geq 1$ we have $\operatorname{tr} * *=\sum(-1)^{i} \operatorname{tr}\left(\left.h\right|_{H^{i}(J, \mathcal{O}(n \Theta))}\right)$.

4. The Klein Quartic

Let X be the Klein quartic curve (see [7] for more details). This is a genus- 3 curve with automorphism group $G=\mathbf{P S L}_{2}\left(\mathbb{F}_{7}\right)$. This group has six conjugacy classes: say $1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 4 \mathrm{~A}, 7 \mathrm{~A}, 7 \mathrm{~B}$. If $h \in G$, then we derive the following tabulation.

Conjugacy class of h	Number of fixed points	u_{h}
2A	4	$(1,1,1,1)$
3A	2	$(1,2)$
4A	0	-
7A	3	$(1,2,4)$
7B	3	$(3,5,6)$

For h in 4A, let p_{1}, \ldots, p_{4} be the four fixed points of h^{2} in X. We can assume that $p_{3}=h p_{1}$ and $p_{4}=h p_{2}$. Then the fixed points of h in $S^{2} X$ are $p_{1}+h p_{1}$ and $p_{2}+h p_{2}$. We have $\left(T_{S^{2} X}\right)_{p_{1}+h p_{1}}=\left(T_{X}\right)_{p_{1}} \oplus\left(T_{X}\right)_{h p_{1}}$, and h induces the two linear maps $\alpha:\left(T_{X}\right)_{p_{1}} \rightarrow\left(T_{X}\right)_{h p_{1}}$ and $\beta:\left(T_{X}\right)_{h p_{1}} \rightarrow\left(T_{X}\right)_{p_{1}}$. Then the automorphism induced on $\left(T_{S^{2} X}\right)_{p_{1}+h p_{1}}$ has a matrix conjugate to $A=\left(\begin{array}{cc}0 & a \\ b & 0\end{array}\right)$.

Since $p_{1}+h p_{1}$ is a fixed point of $h^{2} \in 2 \mathrm{~A}$, we see that $A^{2}=-\operatorname{Id}_{\left(T_{S^{2} X}\right)_{x}}$. Then we see that A is conjugate to $\left(\begin{array}{cc}i & * \\ 0 & -i\end{array}\right)$. That is, the divisors $p_{1}+h p_{1}$ and $p_{2}+h p_{2}$ have class $(1,0,1)$.

It is not hard to compute $L\left(h, K^{n}\right)$ for this curve. Let $\zeta=e^{2 \pi i / 7}$; then, by induction, we obtain the values in Table 1. The trace for $h \in 7 \mathrm{~B}$ is the complex conjugate of the trace of an automorphism in 7A.

Now let $\chi_{1}, \chi_{3}, \bar{\chi}_{3}, \chi_{6}, \chi_{7}, \chi_{8}$ be the irreducible representations of G. If $V=$ $\chi_{1}^{a} \oplus \chi_{3}^{b} \oplus \bar{\chi}_{3}^{c} \oplus \chi_{6}^{d} \oplus \chi_{7}^{e} \oplus \chi_{8}^{f}$ then, from the character table of G (see [3]), we have

$$
\begin{array}{rrrrrrl}
a & +3 b & +3 c & +6 d & +7 e & +8 f & =\operatorname{tr} 1 \mathrm{~A} \\
a & -b & -c & +2 d & -e & & =\operatorname{tr} 2 \mathrm{~A} \\
a & & & & +e & -f & =\operatorname{tr} 3 \mathrm{~A} \\
a & +b & +c & & -e & & \operatorname{tr} 4 \mathrm{~A} \\
a & +\alpha b & +\bar{\alpha} c & -d & & +f & =\operatorname{tr} 7 \mathrm{~A} \\
a & +\bar{\alpha} b & +\alpha c & -d & & +f & =\operatorname{tr} 7 \mathrm{~B}
\end{array}
$$

Table 1

Conjugacy class of h	$\sum(-1)^{i} \operatorname{tr}\left(\left.h\right\|_{H^{i}(J, \mathcal{O}(n \Theta))}\right)$
1 A	n^{3}
2A	$n\left(3+(-1)^{n}\right) / 2$
$3 \mathrm{~A}, 4 \mathrm{~A}$	n
7A	$\left(-\frac{2}{7} \zeta^{3}-\frac{4}{7} \zeta^{4}-\frac{4}{7} \zeta^{5}-\frac{4}{7}\right)\left(\zeta^{n+1}\right)^{4}$
	$+\left(\frac{2}{7} \zeta^{5}+\frac{4}{7} \zeta^{4}+\frac{4}{7} \zeta+\frac{4}{7} \zeta^{3}\right)\left(\zeta^{n+1}\right)^{2}$
	$+\left(-\frac{2}{7} \zeta+\frac{2}{7} \zeta^{5}-\frac{2}{7} \zeta^{3}+\frac{2}{7} \zeta^{4}+\frac{2}{7} \zeta^{2}-\frac{2}{7}\right) \zeta^{n+1}$
	$-\frac{2}{7} \zeta-\frac{1}{7}-\frac{2}{7} \zeta^{4}-\frac{2}{7} \zeta^{2}$

where $\alpha=(-1+i \sqrt{7}) / 2$. The general solution of this system of equations is given by

$$
\left(\begin{array}{l}
a \\
b \\
c \\
d \\
e \\
f
\end{array}\right)=\left(\begin{array}{c}
\frac{\operatorname{tr} 1 \mathrm{~A}}{168}+\frac{\operatorname{tr} 2 \mathrm{~A}}{8}+\frac{\operatorname{tr} 7 \mathrm{~B}}{7}+\frac{\operatorname{tr} 7 \mathrm{~A}}{7}+\frac{\operatorname{tr} 4 \mathrm{~A}}{4}+\frac{\operatorname{tr} 2 \mathrm{~A}}{3} \\
-\frac{\operatorname{tr} 2 \mathrm{~A}}{8}+\frac{\operatorname{tr} 1 \mathrm{~A}}{56}-\frac{i \sqrt{7} \operatorname{tr} 7 \mathrm{~A}}{14}+\frac{i \sqrt{7} \operatorname{tr} 7 \mathrm{~B}}{14}-\frac{\operatorname{tr} 7 \mathrm{~B}}{14}-\frac{\operatorname{tr} 7 \mathrm{~A}}{14}+\frac{\operatorname{tr} 4 \mathrm{~A}}{4} \\
\frac{\operatorname{tr} 4 \mathrm{~A}}{4}-\frac{\operatorname{tr} 7 \mathrm{~A}}{14}+\frac{i \sqrt{7} \operatorname{tr} 7 \mathrm{~A}}{14}-\frac{\operatorname{tr} 7 \mathrm{~B}}{14}-\frac{i \sqrt{7} \operatorname{tr} 7 \mathrm{~B}}{14}-\frac{\operatorname{tr} 2 \mathrm{~A}}{8}+\frac{\operatorname{tr} 1 \mathrm{~A}}{56} \\
\frac{\operatorname{tr} 1 \mathrm{~A}}{28}+\frac{\operatorname{tr} 2 \mathrm{~A}}{4}-\frac{\operatorname{tr} 7 \mathrm{~B}}{7}-\frac{\operatorname{tr} 7 \mathrm{~A}}{7} \\
\frac{\operatorname{tr} 2 \mathrm{~A}}{3}+\frac{\operatorname{tr} 1 \mathrm{~A}}{24}-\frac{\operatorname{tr} 2 \mathrm{~A}}{8}-\frac{\operatorname{tr} 4 \mathrm{~A}}{4} \\
\frac{\operatorname{tr} 7 \mathrm{~B}}{7}+\frac{\operatorname{tr} 1 \mathrm{~A}}{21}+\frac{\operatorname{tr} 7 \mathrm{~A}}{7}-\frac{\operatorname{tr} 2 \mathrm{~A}}{3}
\end{array}\right) .
$$

Then, if $H^{0}(J, \mathcal{O}(n \Theta))=\chi_{1}^{a(n)} \oplus \chi_{3}^{b(n)} \oplus \bar{\chi}_{3}^{c(n)} \oplus \chi_{6}^{d(n)} \oplus \chi_{7}^{e(n)} \oplus \chi_{8}^{f(n)}$, it follows that for $n=1, \ldots, 10$ we have

$$
\left(\begin{array}{l}
a(n) \\
b(n) \\
c(n) \\
d(n) \\
e(n) \\
f(n)
\end{array}\right)=\left(\begin{array}{rrrrrrrrrr}
1 & 2 & 2 & 4 & 4 & 6 & 7 & 10 & 11 & 14 \\
0 & 0 & 1 & 1 & 3 & 4 & 6 & 9 & 14 & 18 \\
0 & 0 & 1 & 1 & 3 & 4 & 8 & 9 & 14 & 18 \\
0 & 1 & 2 & 4 & 6 & 11 & 14 & 22 & 28 & 41 \\
0 & 0 & 1 & 2 & 5 & 8 & 14 & 20 & 30 & 40 \\
0 & 0 & 0 & 2 & 4 & 8 & 14 & 22 & 32 & 44
\end{array}\right) .
$$

5. The Macbeath Curve of Genus 7

There exists a Hurwitz curve of genus 7 with group of automorphisms $G=$ $\mathbf{P S L}_{2}\left(\mathbb{F}_{8}\right)$. Equations for this curve were first computed in [10] by Macbeath, and we refer to his paper for more details. The group G is simple and has 504 elements. There are 9 conjugacy classes: $1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 7 \mathrm{~A}, 7 \mathrm{~B} * 2,7 \mathrm{C} * 4,9 \mathrm{~A}, 9 \mathrm{~B} * 2$,

Table 2

Conjugacy class of h	$\sum(-1)^{i} \operatorname{tr}\left(\left.h\right\|_{H^{i}(J, \mathcal{O}(n \Theta))}\right)$
1 A	n^{7}
2A	$n^{3}\left(3+(-1)^{n}\right) / 2$
3 A	$\frac{8}{3} w^{n} n+\frac{8}{3}\left(w^{n}\right)^{2} n+\frac{11}{3} n$
7A, 7B, 7C, 9A, 9B, 9C	n

and $9 \mathrm{C} * 4$. An element in each class has order $1,2,3,7,7,7,9,9,9$ respectively. Letting $h \in G$ then yields the following tabulation.

Conjugacy class of h	Number of fixed points	u_{h}
2A	4	$(1,1,1,1)$
3A	6	$(1,1,1,2,2,2)$
7A	2	$(\alpha, 7-\alpha)$
7B	2	$(2 \alpha, 14-2 \alpha)$
7C	2	$(4 \alpha, 28-4 \alpha)$
9A, 9B, 9C	0	-

Suppose that $h \in G$ has order 7, and let $H=\langle h\rangle$. Since h has two fixed points in X, the normalizer $N(H)$ of H has order 14. Let $t \in N(H)$ be of order 2. We have $N(H)=\langle t, h\rangle$, so if p_{1} is a fixed point of h then the other fixed point is $t p_{1}$. Now $t h t=h^{k}$. Observe that $k \neq 1$, for otherwise $N(H)$ would be cyclic and there would be an element of order 14 in G. Hence $k \equiv-1 \bmod 7$. From this we see that, if h acts as $\zeta^{\alpha}\left(\zeta=e^{2 i \pi / 7}\right)$ on $T_{p_{1}}$, then h acts as $\zeta^{-\alpha}$ on $T_{t p_{1}}$. The value of $\alpha \in\{1,2,3,4,5,6\}$ depends on the conjugancy class of h, although in this case $L\left(h, K^{n}\right)$ is independent of the value of α.

Now suppose that $z \in G$ has order 9. The six fixed points of z^{3} in X have the form $p_{1}, z p_{1}, z^{2} p_{1}, p_{2}, z p_{2}, z^{2} p_{2}$, where z^{3} acts on $T_{p_{1}}$ as ω and as ω^{2} on $T_{p_{2}}$. The fixed point set of z in $S^{6} X$ consists of the three points $2 p_{1}+2 z p_{1}+2 z^{2} p_{1}$, $2 p_{2}+2 z p_{2}+2 z^{2} p_{2}$, and $p+z p+z^{2} p+p_{2}+z p_{2}+z^{2} p_{2}$. Similarly to the case 4A in the Klein quartic example (and to the proof of Lemma 3.1 in [14]), one can see that the matrix corresponding to the action of h on the tangent space of these divisors has characteristic polynomial $q(\lambda)=\left(\lambda^{3}-\omega\right)\left(\lambda^{3}-\omega^{2}\right)$. That is, the three divisors have class $(1,1,0,1,1,0,1,1)$.

Now we can compute $L\left(h, K^{n}\right)$ and use induction to obtain the values in Table 2.
Let $H^{0}(J, \mathcal{O}(n \Theta))=\mathbb{C}^{a_{1}(n)} \oplus V_{2}^{a_{2}(n)} \oplus V_{3}^{a_{3}(n)} \oplus \cdots \oplus V_{9}^{a_{9}(n)}$. From the character table of G (see [3]), we obtain a system of linear equations whose solutions are

Table 3 Character table of S_{5}

	1 a	2 a	2 b	3 a	6 a	4 a	5 a
χ_{1}	1	1	1	1	1	1	1
χ_{2}	1	-1	1	1	-1	-1	1
χ_{3}	4	-2	0	1	1	0	-1
χ_{4}	4	2	0	1	-1	0	-1
χ_{5}	5	1	1	-1	1	-1	0
χ_{6}	5	-1	1	-1	-1	1	0
χ_{7}	6	0	-2	0	0	0	1

$$
\begin{aligned}
& a_{1}(n)=\frac{16}{21} \operatorname{tr} 7 \mathrm{~A}+\frac{1}{9} \operatorname{tr} 3 \mathrm{~A}+\frac{1}{504} \operatorname{tr} 1 \mathrm{~A}+\frac{1}{8} \operatorname{tr} 2 \mathrm{~A}, \\
& a_{2}(n)=\frac{1}{72} \operatorname{tr} 1 \mathrm{~A}-\frac{1}{8} \operatorname{tr} 2 \mathrm{~A}+\frac{1}{3} \operatorname{tr} 7 \mathrm{~A}-\frac{2}{9} \operatorname{tr} 3 \mathrm{~A}, \\
& a_{3}(n)=a_{4}(n)=a_{5}(n)=\frac{1}{9} \operatorname{tr} 3 \mathrm{~A}+\frac{1}{72} \operatorname{tr} 1 \mathrm{~A}-\frac{1}{8} \operatorname{tr} 2 \mathrm{~A}, \\
& a_{6}(n)=\frac{2}{21} \operatorname{tr} 7 \mathrm{~A}+\frac{1}{63} \operatorname{tr} 1 \mathrm{~A}-\frac{1}{9} \operatorname{tr} 3 \mathrm{~A}, \\
& a_{7}(n)=a_{8}(n)=a_{9}(n)=-\frac{1}{7} \operatorname{tr} 7 \mathrm{~A}+\frac{1}{56} \operatorname{tr} 1 \mathrm{~A}+\frac{1}{8} \operatorname{tr} 2 \mathrm{~A} .
\end{aligned}
$$

For the first ten values of n we have

$$
\left(\begin{array}{l}
a_{1}(n) \\
a_{2}(n) \\
a_{3}(n) \\
a_{4}(n) \\
a_{5}(n) \\
a_{6}(n) \\
a_{7}(n) \\
a_{8}(n) \\
a_{9}(n)
\end{array}\right)=\left(\begin{array}{rrrrrrrrrr}
1 & 4 & 13 & 52 & 175 & 620 & 1683 & 4296 & 9597 & 20100 \\
0 & 0 & 22 & 212 & 1070 & 3824 & 11396 & 29000 & 66324 & 138640 \\
0 & 0 & 30 & 212 & 1070 & 3840 & 11396 & 29000 & 66348 & 138640 \\
0 & 0 & 30 & 212 & 1070 & 3840 & 11396 & 29000 & 66348 & 138640 \\
0 & 0 & 30 & 212 & 1070 & 3840 & 11396 & 29000 & 66348 & 138640 \\
0 & 2 & 32 & 260 & 1240 & 4438 & 13072 & 33288 & 75912 & 158730 \\
0 & 4 & 42 & 308 & 1410 & 5052 & 14748 & 37576 & 85500 & 178820 \\
0 & 4 & 42 & 308 & 1410 & 5052 & 14748 & 37576 & 85500 & 178820 \\
0 & 4 & 42 & 308 & 1410 & 5052 & 14748 & 37576 & 85500 & 178820
\end{array}\right) .
$$

6. The Bring Curve of Genus 4

The Bring curve is the only genus-4 curve admitting the symmetric group $G=S_{5}$ as its group of automorphisms. Some information about this curve can be found in $[5 ; 6 ; 16]$. This curve can be defined in \mathbb{P}^{4} using the equations

$$
\sum_{i=1}^{5} x_{i}=0, \quad \sum_{i=1}^{5} x_{i}^{2}=0, \quad \sum_{i=1}^{5} x_{i}^{3}=0
$$

The group acts by permuting coordinates. One can use [9] to produce Table 3, the character table of S_{5}, and some information about its subgroups. There are seven conjugacy classes for $G: \overline{1}, \overline{(1,2)}, \overline{(1,2)(3,4)}, \overline{(1,2,3)}, \overline{(1,2,3)(4,5)}, \overline{(1,2,3,4)}$, $\overline{(1,2,3,4,5)}$ of orders $1,2,2,3,6,4,5$ and sizes $1,10,15,20,20,30,24$ respectively.

Denote by 1a, 2a, 2b, 3a, 6a, 4a, and 5a the conjugacy classes of G. The Fuchsian group that yields X and G has period partition $(2,4,5)$. Again letting $h \in G$, we have the following tabulation.

Conjugacy class of h	Number of fixed points	u_{h}
2 a	6	$(1,1,1,1,1,1)$
2 b	2	$(1,1)$
3 a	0	-
6 a	0	-
4 a	2	$(i,-i)$
5 a	4	$(1,2,3,4)$

The normalizer of $\langle(1,2)(3,4)\rangle$ is $H=\langle(3,4),(1,2),(1,3)(2,4)\rangle$ and has eight elements. An element in $2 b$ is the square of an element in $4 a$, so it is the image of an element in a maximal cyclic subgroup of order 4 of the Fuchsian group that yields S_{5} as the group of automorphisms of X. Then, by [11, Thm. 1], we see that there are two fixed points in X for an automorphism in 2 b .

The normalizer of $\langle(1,2,3,4)\rangle$ is $\langle(1,2,3,4),(2,4)\rangle$ and also has eight elements. So if $h \in 4$ a then the two fixed points p_{1}, p_{2} of h^{2} are the fixed points of h in X. Since h and h^{3} are conjugate to each other, we see that h acts as i and $-i$ on the tangent spaces of the two fixed points. The fixed points of h in $S^{3} X$ are $3 p_{1}$, $2 p_{1}+p_{2}, p_{1}+2 p_{2}$, and $3 p_{2}$. From Remark 3.4 in [14] we see that these divisors have class $(1,1,1)$.

An automorphism in 6a has no fixed points in X. If $h \in 6 \mathrm{a}$ then $h^{3} \in 2 \mathrm{a}$. Hence the fixed points of h^{3} in X are of the form $p_{1}, h p_{1}, h^{2} p_{1}, p_{2}, h p_{2}$, and $h^{2} p_{2}$; the fixed points of h in $S^{3} X$ are $p_{1}+h p_{1}+h^{2} p_{1}$ and $p_{2}+h p_{2}+h^{2} p_{2}$. The matrix corresponding to the action of h on the tangent spaces at these divisors has characteristic polynomial $q(\lambda)=\lambda^{3}+1$, that is, the three divisors have class $(1,0,1,0,1)$.

The normalizer of $\langle(1,2,3,4,5)\rangle$ is $\langle(1,2,3,4,5),(2,5)(3,4),(2,4,5,3)\rangle$ and has twenty elements. So there are four fixed points in X for an automorphism h in 5a, and since the four powers of h belong to this same class we see that h acts as $v^{1}, \ldots, v^{4}\left(v=e^{2 i \pi / 5}\right)$ on the tangent spaces of these points. Computing $L\left(h, K^{n}\right)$ and using induction, we obtain the values in Table 4.

Let $H^{0}(J, \mathcal{O}(n \Theta))=\mathbb{C}^{a_{1}(n)} \oplus V_{2}^{a_{2}(n)} \oplus V_{3}^{a_{3}(n)} \oplus \cdots \oplus V_{7}^{a_{7}(n)}$. Then, from the character table of G, we have

$$
\left(\begin{array}{l}
a_{1}(n) \\
a_{2}(n) \\
a_{3}(n) \\
a_{4}(n) \\
a_{5}(n) \\
a_{6}(n) \\
a_{7}(n)
\end{array}\right)=\left(\begin{array}{c}
\frac{\operatorname{tr} 1 \mathrm{a}}{120}+\frac{\operatorname{tr} 6 \mathrm{a}}{6}+\frac{\operatorname{tr} 5 \mathrm{a}}{5}+\frac{\operatorname{tr} 4 \mathrm{a}}{4}+\frac{\operatorname{tr} 2 \mathrm{~b}}{8}+\frac{\operatorname{tr} 2 \mathrm{a}}{12}+\frac{\operatorname{tr} 3 \mathrm{a}}{6} \\
-\frac{\operatorname{tr} 2 \mathrm{a}}{12}+\frac{\operatorname{tr} 1 \mathrm{a}}{120}-\frac{\operatorname{tr} 6 \mathrm{a}}{6}+\frac{\operatorname{tr} 5 \mathrm{a}}{5}-\frac{\operatorname{tr} 4 \mathrm{a}}{4}+\frac{\operatorname{tr} 2 \mathrm{~b}}{8}+\frac{\operatorname{tr} 3 \mathrm{a}}{6} \\
\frac{\operatorname{tr} 1 \mathrm{a}}{30}+\frac{\operatorname{tr} 6 \mathrm{a}}{6}-\frac{\operatorname{tr} 2 \mathrm{a}}{6}+\frac{\operatorname{tr} 3 \mathrm{a}}{6}-\frac{\operatorname{tr} 5 \mathrm{a}}{5} \\
-\frac{\operatorname{tr} 6 \mathrm{a}}{6}+\frac{\operatorname{tr} 1 \mathrm{a}}{30}+\frac{\operatorname{tr} 2 \mathrm{a}}{6}+\frac{\operatorname{tr} 3 \mathrm{a}}{6}-\frac{\operatorname{tr} 5 \mathrm{a}}{5} \\
-\frac{\operatorname{tr} 3 \mathrm{a}}{6}+\frac{\operatorname{tr} 1 \mathrm{a}}{24}+\frac{\operatorname{tr} 2 \mathrm{~b}}{8}-\frac{\operatorname{tr} 4 \mathrm{a}}{4}+\frac{\operatorname{tr} 2 \mathrm{a}}{12}+\frac{\operatorname{tr} 6 \mathrm{a}}{6} \\
\frac{\operatorname{tr} 4 \mathrm{a}}{4}+\frac{\operatorname{tr} 1 \mathrm{a}}{24}-\frac{\operatorname{tr} 2 \mathrm{a}}{12}+\frac{\operatorname{tr} 2 \mathrm{~b}}{8}-\frac{\operatorname{tr} 6 \mathrm{a}}{6}-\frac{\operatorname{tr} 3 \mathrm{a}}{6} \\
\frac{\operatorname{tr} 5 \mathrm{a}}{5}+\frac{\operatorname{tr} 1 \mathrm{a}}{20}-\frac{\operatorname{tr} 2 \mathrm{~b}}{4}
\end{array}\right) .
$$

Table 4
\(\left.$$
\begin{array}{cc}\hline \hline \begin{array}{l}\text { Conjugacy } \\
\text { class of } h\end{array}
$$ \& \sum(-1)^{i} \operatorname{tr}\left(\left.h\right|_{H^{i}(J, \mathcal{O}(n \Theta))}\right)

\hline 1 \mathrm{a} \& n^{4}

2 \mathrm{a} \& \frac{3}{4}+\frac{5(-1)^{n}}{4}+\frac{3 n^{2}}{2}

2 \mathrm{n}, 3 \mathrm{a}

4 \mathrm{a}, 6 \mathrm{a}\end{array}\right]\)\begin{tabular}{c}
$\frac{3}{2}+\frac{(-1)^{n}}{2}$

5 a

$\frac{9}{5}+\frac{4\left(v^{n}\right)^{4}}{5}+\frac{4\left(\nu^{n}\right)^{3}}{5}+\frac{4\left(\nu^{n}\right)^{2}}{5}$

$+\left(-\frac{4}{5} v^{4}-\frac{4}{5} v-\frac{4}{5} v^{2}-\frac{4}{5} v^{3}\right) v^{n}$

\hline
\end{tabular}

For $n=1, \ldots, 10$ we have

$$
\left(\begin{array}{l}
a_{1}(n) \\
a_{2}(n) \\
a_{3}(n) \\
a_{4}(n) \\
a_{5}(n) \\
a_{6}(n) \\
a_{7}(n)
\end{array}\right)=\left(\begin{array}{rrrrrrrrrr}
1 & 3 & 5 & 10 & 17 & 27 & 41 & 62 & 89 & 127 \\
0 & 0 & 2 & 4 & 10 & 16 & 28 & 44 & 68 & 100 \\
0 & 0 & 2 & 7 & 18 & 40 & 76 & 131 & 212 & 324 \\
0 & 2 & 6 & 15 & 30 & 58 & 100 & 163 & 252 & 374 \\
0 & 1 & 4 & 12 & 28 & 57 & 104 & 176 & 280 & 425 \\
0 & 0 & 2 & 8 & 22 & 48 & 92 & 160 & 260 & 400 \\
0 & 0 & 2 & 9 & 26 & 56 & 108 & 189 & 308 & 476
\end{array}\right) .
$$

Acknowledgments. I would like to thank my supervisor, Dr. W. Oxbury, for suggesting this problem and for his advice. I am also grateful to Dr. W. Hoffmann for an important observation and to Dr. C. Pauly for his suggestions.

References

[1] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves I, Springer-Verlag, New York, 1985.
[2] M. F. Atiyah and I. M. Singer, The index of elliptic operators III, Ann. of Math. (2) 87 (1968), 547-604.
[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups, Oxford Univ. Press, Oxford, 1985.
[4] I. V. Dolgachev, Invariant stable bundles over modular curves $X(P)$, Recent progress in algebra (Taejon/Seoul, 1997), Contemp. Math., 224, pp. 65-99, Amer. Math. Soc., Providence, RI, 1999.
[5] W. L. Edge, Bring's curve, J. London Math. Soc. (2) 18 (1978), 539-545.
[6] -_, Tritangent planes of Bring's curve, J. London Math. Soc. (2) 23 (1981), 215-222.
[7] N. D. Elkies, The Klein quartic in number theory, The eightfold way, Math. Sci. Res. Inst. Publ., 35, pp. 51-101, Cambridge Univ. Press, Cambridge, 1999.
[8] H. Esnault and E. Viehweg, Lectures on vanishing theorems, Birkhäuser, Basel, 1992.
[9] The GAP Group, GAP-Groups, Algorithms, and Programming, version 4.3, 2002〈http://www.gap-system.org〉.
[10] A. M. Macbeath, On a curve of genus 7, Proc. London Math. Soc. (3) 15 (1965), 527-542.
[11] ——, Action of automorphisms of a compact Riemann surface on the first homology group, Bull. London Math. Soc. 5 (1973), 103-108.
[12] I. G. Macdonald, Symmetric products of an algebraic curve, Topology 1 (1962), 319-343.
[13] I. Moreno Mejía, Representations of the space of n-theta functions, Ph.D. thesis, University of Durham, 2003.
[14] -, Characteristic classes on symmetric products of curves, Glasgow Math. J. 46 (2004), 477-488.
[15] W. Oxbury and C. Pauly, Heisenberg invariant quartics and $\mathcal{S U}_{C}(2)$ for a curve of genus four, Math. Proc. Cambridge Philos. Soc. 125 (1999), 295-319.
[16] G. Riera and R. E. Rodríguez, The period matrix of Bring's curve, Pacific J. Math. 154 (1992), 179-200.

Department of Mathematical Sciences
Science Laboratories, South Road
Durham DH1 3LE
United Kingdom

Current address

Department of Mathematics and Computer Science
Bar-Ilan University
52900 Ramat-Gan
Israel
imm@dunelm.org.uk

