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Bounds on the Average Bending of the
Convex Hull Boundary of a Kleinian Group

MARTIN BRIDGEMAN

1. Introduction

In this paper we consider hyperbolic manifolds with incompressible convex core
boundary. We show that total bending along a geodesic arc on the boundary of the
convex core is bounded above by a function of its length. Integrating this function
over the unit tangent bundle of the boundary of the convex core, we obtain a new
universal upper bound on the total bending of the convex core boundary. Further-
more, we produce a new universal upper bound on the Lipschitz constant for the
map from the convex core boundary to the hyperbolic structure at infinity. These
results improve on earlier bounds of Bridgeman and Canary.

Let N = H¥/T be an orientable hyperbolic manifold with domain of disconti-
nuity Q(I") and limit setLr. In this paper we restrict ourselves to the case when
all the components of2 (I") are simply connected. This is a natural restriction
to make and includes the set of quasi-Fuchsian groupsCH&L-) be the con-
vex hull of I and letBr be the bending lamination ciCH(Lr). Let C(N) =
CH(Lr)/T be the convex core and Igf, be the bending lamination &iC(N).

Then we observe thatC(N) is incompressible if and only if the components of
Q(T) are all simply connected.

If « is a geodesic arc iICH(Lr) then the average bendirRf«) is defined to

be the bending per unit length, or specifically

i(e, Br)
l(a)

wherei is the intersection number aid) is the length otx (see [2]).

In [2], Bridgeman considers bounds on the average bending for quasi-Fuchsian
groups and proves that, for a quasi-Fuchsian grbujf /(o) < log3 then
i(a, Br) < 2m. In [3], the geometry of the convex core bounday(N) is com-
pared with the geometry of the domain of discontin€ityl” for a general Kleinian
group. One outcome is an improvement of the bound just described on intersec-
tion number to prove that, for a Kleinian grouipsuch that the components of
Q(I") are simply connected, ifo) < 2 sintr*1 theni(a, Ar) < 2.

Both these bounds on the intersection number give universal upper bounds for
the average bending of geodesic arcs of a given fixed length. By considering
geodesics of lengthl (o) = 2 sinhr1, we obtainB(«) < 7r/sinhi 1.

B(a) =

3
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Bounds on the average bending imply a surprising number of results about the
geometry of the convex hull boundary. In particular, Bridgeman and Canary prove
the following.

THEOREM 1.1 [3; 4]. LetK = m/sinhi'l ~ 3.5644 and letT" be a Kleinian
group such that the components@QfI") are simply connected. Then

1. if [(By) is the length of the bending laminatigy, then
1(Bn) < K - 2| x(3C(N))];

2. if «is a closed geodesic in the boundary of the convex 86¥&V ), then

B(a) = i(?éf)[v) <K;

3. there exists &1+ K) Lipschitz map: dC(N) — Q(T')/T that is a homotopy
inverse of the retract map: Q(I")/T" — aC(N).

Epstein, Marden, and Markovic [6] consider convex pleated plartéd and prove
a number of important results. One part of their paper definesotirededness
of a convex pleated plane. Given a convex pleated pfaméth bending lamina-
tion Bp, the roundedness df is defined to be the supremumidéé, 8p) over all
geodesica of length 1. Epstein, Marden, and Markovic defi@igto be the supre-
mum of roundedness over all embedded convex pleated planes, and they note that
the upper bound on the intersection number in [2] applies in the absence of a group
structure and hendéw, Sp) < 27 for l(e) < log 3. Because Xk log 3, this im-
plies thatC; < 27 and, giving an example of an embedded convex pleated plane
with roundedness of + 1, the authors therefore prove thatt- 1 < C; < 27.

The main result of this paper is the following theorem.

MaIN THEOREM. There exists a monotonically increasing function
F: [0, 2sinb1] — [, 27]

such that, ifI" is a Kleinian group(where the components @ (I") are simply
connected and if « is a geodesic arc iIWCH (L) of lengthl(a) < 2sinh1,
then

i(a, Br) < F(l(a)).

In this paper we give an explicit formula fdt and use it to demonstrate the fol-
lowing improvement on Theorefnl.

THEOREM 1.2. There exist constant&, K1 < K with Kg < 2.8396and K; <
3.4502such that, ifI" is a Kleinian group where the components @fT") are
simply connected, then

1. if I(By) is the length of the bending laminati@y,, then
1(Bv) < Ko~ 7| x(dC(N))I;
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2. if o is a closed geodesic in the boundary of the convex &6¥&V ), then
e Py < Ki;
I(o)

3. there exists @1+ K3) Lipschitz map: dC(N) — Q(I')/T thatis a homotopy
inverse of the retract map: Q(I")/T — dC(N).

B(a) =

We define the constaiity by

1B
N RN

ThenBy can be interpreted as the average bending of the manifokhus, The-
orem 1.2 gives thaBy < 2.8396
EvaluatingF at 1, we obtain an improved upper bound on the consfant

THeorREM 1.3. The supremung’; of roundedness over embedded convex pleated
planes satisfies

C1<FQ) =27 — 2sin—1<L]) =4.8731
cosh
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2. Background

An orientable hyperbolic 3-manifold /T is the quotient of hyperbolic 3-space
H?3 by a discrete torsion-free subgroup of the group Is¢kh®) of orientation-
preserving isometries ¢f 2. We may identify Isom.(H ®) with the group PSk(C)

of M6bius transformations of. Thedomain of discontinuity2 (I') is the largest
open set irC on whichT" acts properly discontinuously, and the limit dgt is
its complement. In this paper we will consider only Kleinian groiipsuch that
the components a2 (I') are simply connected. We note that, in particular, i§
guasi-Fuchsian thef (I") has two simply connected components.

The main object of interest in this paper is the convex hull of a Kleinian group.
Theconvex hullCH (L) of L1 is the smallest convex subsetldf such that all
geodesics with both limit points ihr- are contained i€ H(Lr). Theconvex core
C(N) of N = H¥T is the quotient o H(L) by I, and it is the smallest convex
submanifold ofN such that the inclusion map is a homotopy equivalence. Each
component of the bounda®y (N ) of the convex core is a pleated surface; in other
words, there is a pathwise isometfy § — 9C(N) from a hyperbolic surfacé
onto N that is totally geodesic in the complement of a disjoint collecignof
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geodesics known as thmeating locus.For a complete description of the geome-
try of the convex hull, see Epstein and Marden [5].

The pleating locugy inherits a measure on arcs transversgjdhat records
the total amount of bending along any transverse ar@\ss a measured lami-
nation. Ameasured laminatioon a finite-area hyperbolic surfadeconsists of a
closed subset of S that is the disjoint union of geodesics, together with an in-
variant measure (with respect to projection alangn arcs transverse ta The
set of measured laminations whose support is a finite collection of simple closed
geodesics is dense in the spa¢e (S) of all measured laminations gh(see [7]).

3. Hyperbolic Geometry

We now state some elementary facts about hyperbolic geometry. For a reference
see either Thurston [9] or Beardon [1]. In the following we compadtifyusing
the sphere at infinitys;%.

Let g1, g2 be two geodesics ikl”. Theng,, g, areparallel if g1 N go = @.
Furthermore,g1, g are ultraparallel if g, N go = @. Note thatg, g» have a
unique commmon perpendicular if and only if they are ultraparallel.

The following lemma describes the shortest curve between a geodesic and a ray
in the hyperbolic plane. The proofis an elementary exercise and is omitted for the
sake of brevity.

LemmMa 3.1. Letg be a geodesic and letbe a ray inH?, with » having finite
endpointy, such thatg N7 = . Letg, be the unique geodesic such that g,.

If g andg, are ultraparallel, letp be the unique perpendicular betwegandg, .

If p exists and ifp N r # @, then the shortest curve fropto r is p; otherwise,
the shortest curve from to r is the unique perpendicular fromto g.

Let T be a hyperbolic triangle with verticas, v,, vz and edgeg, ez, e3 such
thate; is oppositev;. A curvew in T joinse; t0 e3 via ey if @ has endpoints oy
andes (respectively) and contains a pointef

LemMma 3.2. LetT have angle at v; and letv, and vz both be ideal vertices.
Then the shortest curve A that joinse; to e3 via e, has lengthL (9), given by

Cosrr1<;> + coshl(zc—osg), 0 < z,
L6) = /3 —sed /3 —sed 3 )

shl<#) o> 2.

sin/2) )’ -3

Proof. We reflectl” in edgee, to obtain trianglel’” with verticesv; and edges;.
Because we reflected #p, we havee, = e, as well asv; = v; andvg = vs.
We consider the quadrilatergl = T U T'. The geodesie; is opposite the ray
e in the quadrilatera. Let o be the shortest curve from to e3, as described
in Lemma 3.1. Ifa C Q thena must intersect the diagona} of Q. Therefore,
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QuadrilateralQ

by reflectingT’ back ontoT, we obtain the shortest curve Ththat joinse; to ez
via e2. We will show thato is indeed always iQ and that the formula fof. is
correct.

We let p,, be the perpendicular fromy to vq. Then p,, bisectsT and meets
e5 in an angle 8/2. Let E} be the geodesic containing the rayand letp be
the perpendicular from; to EJ, if it exists. If p exists then botlp,, andp are
perpendicular t@;. Therefore, ifp exists then eithep = p,, or p does not in-
tersect withp,,. Sincep,, makes an angled3 2 with 3, it follows thatp = p,,
if and only if 36/2 = =/ 2. Furthermorep intersects the interior af; if and only
if 36/2 < w/2. Thus foré < 7/3 we have thap intersects the interior af; and
a = p. Otherwise, if¢0 > 7/3 thene = p,,. Therefore, by hyperbolic trigonom-

etry we have
) for 6 > z.
sin(6/2) -3

We now consideé < /3. Thena = p and intersectsy in an interior point.
SinceQ is convexg intersects the diagonaj in an interior poinic. We joinc to
each vertex of) and then drop a perpendicular franto each side of). This de-
composeg) into eight hyperbolic right-angled triangles. Lgte the angle at
betweerx ande; in this decomposition. By symmetry, all but two of the angles
atc are equal t@p. Hence, the other angles are bath- 3¢ (see figure).

We letl; be the length o& in T andl, the length ofx in 7’. Then inT we have
a right-angled triangle with one ideal vertex having one angle equabied one
side of length;. Thus, by hyperbolic trigonometry we have

1
sin(¢)
Also we have a right-angled triangle with one ideal vertex having one angle equal
tor — 3¢ and one side equal 1. Therefore,

1 1

sin(r — 3¢) _ sin3¢)’

L(O) = cosh‘l<

coshly) =

coshl,) =
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As aresult,

_ —1 1 1 1
L(6) = cosh <—sin(¢)> + cosh (sin(3¢)>' (2)

To relateg to 6, we note that we have a right-angled hyperbolic triangle with
anglesy and¢ and with side of lengtl, opposite anglé. Then it follows that
cosh
coshly) = m
Substituting in for costi,), we obtain
sing 1
T sin(3¢)  2c082¢) + 1
Solving for¢ in terms ofo, we obtain

= = Z(se® — 1
cos 2 2 cos 2 (se )
Thus 1 3 —sed
Sin‘ ¢ 2( COS 2p) 7
Therefore, we finally have the form éffor 6 < /3 given by
L®) = cosh‘l<;) + cosh‘l(zc—osg) O
B V33— sed V3—sed )

We now describe the behavior of the functibn

Lemma 3.3. The functionL: [0,7] — R is continuous and monotonically
decreasing.

Proof. By definition, L is a smooth function on each of the intervals93) and
[7/3, 7]. For® = /3 we haveL(r/3) = cosh(2). Also, limg_, /3- L(6) =
cosh}(2) 4+ coshri(1) = costr(2). ThusL is continuous.

To prove the remainder of the lemma, we consitléf) restricted to the inter-
vals [0, r/3) and [r/3, 7] separately. We note that jf(x) = coshr’(+-) then
the derivative satisfies

, —|tanx| +1
Flo = tanx sinx  sinx’
where the sign is determined by the sign-dfnx.
On the interval fr/3, =] we have

-1
2sin(9/2)°
ThusL is monotonically decreasing on the interval/B, n].

We now consider the monotonicity df on the interval [0x/3). Since¢ €
(r/6, /4], it follows by equation (2) that

L'®) =

3

L@r= MJF sin3p’
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Since sin® = sing (2 cos 2 + 1) we have
~3—(2cosPH+1) = 2(1-cosp)
" sing(2cosp +1)  sing(2cosp +1)’

and since sifip = (1 — cos 26) we have

L'(¢)

_ 4 sirt ¢ _ 4sing
~ sing(2cos +1) (2cosp+1)°

As ¢ € (r/6, /4], both the numerator and denominator are greater than zero and
henceL’(¢) > 0. Since¢ is monotonicaly decreasing as a functiordpive con-
clude thatZ is monotonically decreasing on,[8/3).

Finally we observe that, sinck is continuous on [0r] and monotonically
decreasing on both [Gr/3) and [z/3, ], it follows that L is monotonically de-
creasing on the interval [Gr]. O

L'(¢)

Evaluating the endpoints yields
L(0) = 2cosh(v/2) = 2sinh™1, L(w) = 0.

Thus,L maps the interval [Qr] on to the interval [02 sinhr11].
We define® to be the inverse function af. BecauselL when restricted to
[7/3, 7] has a simple inverse function, we have

. 1
Ox) = 23|n‘1<—> for 0 < x < cosh2 = 13169
coshx

We define the functiorF : [0, 2sintt1] — [x, 27] by F(x) = 27 — O(x).
In particular, we note that % costr!2 entails

1
FQQ =2m -2 sin‘l(—J) =4.8731
cosh
A direct corollary of the description df is the following description of-.

CoroLLARY 3.4. The functionF: [0, 2sinfr*1] — [x, 27] is continuous and
monotonically increasing.

0.2 0.5 075 1 1.25 1.5 1.75
2.5

Graph of functionF
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We now consider a configuration of planesHn. Let H,, H», Hs be three closed
half-spaces i3 and setP; = 3H;. We consider the convex s€t= H23 - H?
obtained by taking the complements of the interiors of the half-spges curve
a: [0,1] — C joins Py to P3via P, if «(0) € P1, a(1) € P3, anda(t) € P, for
somet € [0, 1].

Lemma 3.5 [3]. LetHy, H,, Hzbe disjoint half-spacesid ®and leta : [0, 1] —
C be a curve joiningP; to P3 via P». Thenl(a) > 2sinhrt1. Furthermore, if
I(¢) = 2sintt1thenH,N H, = {a}, HoN Hs = {b}, and H1N H3 = {c}, where
a, b, c are three distinct points i82 .

We now consider a configuration that arises in the proof of the main theorem.

LemMma 3.6. Let Hy, H,, H3 be half-spaces such that, N H, = @, Hy N Hz =
@, and Hy N Hy = {a} for a € S2.. If there exists a curve: [0, 1] — C of length
I < 2sinfirt1joining P, to P3 via P,, then the interior dihedral anglé between
H> and H; satisfies

0 > 0O().

Proof. Sincel < 2sini*1, by Lemma 3.5 we can assume tlgtN Hs # ¢ and
hence the interior dihedral angle is well-defined. T@ke be the unique plane
perpendicular taP;, P», and P3; henceP must pass through the poiat We let
L; = P;N PandletQ = Cn P. ThenQ is a (possibly infinite-area) quadrilat-
eral with vertexv given byv = L, N L3. BecauseP is perpendicular t?; and
P3, the angle at in Q is the dihedral angle betwedfy, and H3. Orthogonal pro-
jection mapsx onto the regionQ and decreases distance. Therefore, projecting
« onto Q yields a curvex’: [0, 1] — Q of length!’ < [ that joinsL; to L3 via
L,. Leta’'(r) € Ly; then we letg be the geodesic arc joining(0) to «'(z). We
replace the ara’([0, 7]) by g to obtaina” = g U &'([¢, 1]), and hence length’
of o” satisfied” < I’ < 1. We truncateQ to form a finite-area triangl& by let-
ting L5 be the diagonal irQ containingv. TriangleT is bounded by_,, L,, and
L5. The angled” atv in T satisfiesd’ < 6. By definition of g, we haveg C T.
Therefore, ad’; separate€ 3 from L, in Q, a subarc of” must joinLq to L}
via L,. We thus have > [” > L(6’). Sinced’ < 6 andL is monotonically de-
creasing,L(6’) > L(0). Therefore]/ > L(#) and again, a4 is monotonically
decreasingL (/) < 6. Thus, finally,d > @(I). O

4. Support Planes

We first need to recall some background material on convex hulls. For a full de-
scription of convex hulls, see [5].

If T is a Kleinian group with convex hullH (L), then asupport planeto
CH(Lr) is a hyperbolic planeP in H3 that bounds a half-spadé, such that
Hp NOCH(Lr) C P. The half-space{p is considered to be implicit, s@ is
naturally oriented by taking the normal to point toward the interioHgf
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Intersection ofH,, H,, H3 with unique perpendicular plane

Thus, a support plan® to a convex hullCH(Lr) does not pass through
dCH (L) but does have a glancing intersection with it. In general, the intersection
of P anddCH(Lr) can either be a single geodesic, calldzeading lineor a flat
piece of the convex hull boundary bounded by a set of disjoint geodesics, called
aflat. If P; and P, are support planes with; N P, # @ and P, # P,, then the
liner = P.N P is called aridge line.

If x € 9CH(Lr) then either lies in the interior of a flat ox is on some bending
line. If x is in the interior of a flat then there is a unique support plBrentain-
ing x. If x € b, whereb is a bending line, leE (b) be the set of support planes to
b. The setS(b) of oriented planes containirigis a circle andz (b) € S(b). Since
3 (b) is connected, it is either a closed arc or a point. WePlesind P, be the two
extreme planes of (b). If b is oriented then we can refer to the extreme planes
as the left and right extreme planes. Thending angleat s is defined to be the
angle betweerP; and P,. Thus, the bending angle is the exterior dihedral angle
between the extreme planesatf x is on a bending liné, we defines(x) to be
the bending angle &; otherwise we defin@(x) = 0.

The union of the bending lines iINCH(Lr) is denotedBr and is called the
bending lamination.Thurston defined &ransverse measuren 8 that assigns,
to every arax transverse t@r, a valuei(o, Sr) that corresponds to the amount
of bending alongr (see [8]). Thereforedr is a measured lamination. In partic-
ular, the bending measure is a countable additive measure on the set of transverse
arcs (see [5]); that is, i& is subdivided into subarcs, ..., «,} transverse to
Br, then

n

(o, Br) =Y _ile, Br).

i=1



372 MARTIN BRIDGEMAN

If the arca is a closed arc with endpoints y whose interio? is transverse to
Br, then we define

i(a, Br) = B(x) +i(’, Br) + B(y).

The bending laminatio8r on dCH(Ly) projects to the pleating locu8y of
AC(N).

In [3], the definition of the intersection form is modified to allow the subarcs to
have endpoints ofir and keep track of support planes. LRand Q be support
planes atc andy, respectively. Ifx intersects a bending ling then an orienta-
tion ona gives an orientation on the bending liheThus we orientr from x to
y, and we letP be the rightmost support planeatand Q the leftmost support
plane aty. Let6p be the exterior dihedral angle betwekrand P, and letdy be
the exterior dihedral angle between the support plahesd Q. Then we define

i(e, Br)S = 6p +i(@®, Br) + 6.

Observe that ifx has unique support planes at its endpoints tﬂenﬂp)g =
i(er, Br).

Leta: [0,1] — dCH(Lr) be a path whose interior is transverses{oand let
{0=t9<t <--- <t, =1} be asubdivision of [01]. Let; be the closed sub-
arc obtained by restricting to the interval ;_1, ¢;]. Let P; be a support plane at
a(t;) with Pp = P and P, = Q. Then it follows from the additivity of the stan-
dard intersection number that

n

i, Br)f =Y ilei. Br)j’ .

i=1

This is the key additivity property for our modified intersection number.

Leta: [0,1] — dCH(Lr) be a path whose interior is transversestoand let
P and Q be support planes t®CH (L) at «(0) anda(1). We travel alongx to
obtain a continuous one-parameter family of support pléRes: € [0, k]} along
o from P to Q (see [3] for a full description). Since a point amrmay not have a
unique support plane, there is a continuous monotonically increasing (piecewise
linear) functions: [0, k] — [0, 1] such thatP, is a support plane te(s(z)).

We say that P, Q) is aroof overc if, for all r € [0, k], P N P, # @ and the
interiors of the half-spaced, and Hp, also intersect. Furthermore, we say that
(P, Q)isan-roof if (P, P,)isaroofovew ([0, s(¢)]) forall0 < ¢ < k but(P, Q)
is not a roof overr. We will see that if( P, Q) is ax-roof thenHp N Hy = {a}
wherea € S2.

We now define monotonicity for geodesics in the hyperbolic plane{ ¢,¢te
a continuous family of geodesics in a hyperbolic plane that is indexed by an inter-
val J. We say that the family imonotonicon J if, givena, b € J such thatt < b
andg, N g, # ¥, we haveg, = g, forall 7 € [a, b].

The following lemma allows us to estimate the intersection number along a geo-
desic ordCH(Lr) by using support planes.
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Lemma 4.1 [3]. Letw: [0,1] — dCH(Lr) be a parameterized geodesic arc, let
(P, Q) be aroof overr, and let{ P, | t € [0, k]} be the continuous one-parameter
family of support planes over joining P to Q. Then

1. we have
i(a, fr)8 <6 <,

wheref is the exterior dihedral angle betwedhand Q; and
2. thereisa €[0, k] suchthatP, = Pifr [0, r] and theridge line§r, = PN P, |
t > 1} exist and form a monotonic family of geodesicsfon

The following corollary follows immediately from Lemma 4.1 by continuity.

COROLLARY 4.2 [3]. If (P, Q) is an-roof overa, theni(c, ﬁr)g < m and
Hp N Hyp = {a} wherea € Q(TI).

We now restate the main theorem before proving it.

MAaIN THEOREM. There exists a monotonically increasing function
F:[0,2sinh1] — [, 27]

such that, ifI" is a Kleinian group(where the components @t (I") are simply
connected and if « is a geodesic arc iIWCH(Lr) of lengthl(a) < 2sinh!1,
then

i(er, Br) < F(l(@)).

Proof. Letw: [0,1] — dCH(Lr) be a parameterized geodesic arc on the bound-
ary of the convex hull of". We letK be the corresponding component®(I).
Hence by hypothesik is open and simply connected. Also, by the description of
the convex hull, any bending line thatintersects has endpointsai (see [5]).

Let P be the leftmost support plane@t0) and Q the rightmost support plane
ata(1). Then by definition we havia, r) = i(a, r)2. Let{P, | t € [0, k]} be
the continuous one-parameter family of support planegtining P to Q, let H,
be the associated support planeRf and letD, be the closed disk i82, given
by D, = H, N Sgo. In particular,Po = P and P, = Q. We will make use of the
fact thatD? C K, whereD? is the interior ofD,.

If (P, Q) is aroof overa, then (by Lemma 4.1) the exterior angle of intersec-
tion 6 of P andQ is an upper bound fale, Br)?. Therefore;(a, fr)? < 6 <
n < F(l(a)).

Otherwise, we let; be the smallest value of> 0 such that P, P,) is not a roof
overa([0, s(»)]). We lets(t1) = s1 andos = aljo,5,]. Then(P, Py,) is am-roof
overay and so, by Corollary 4.2(as, ﬂr)}f’l < mandHoN H,, = {a} wherea €
S2.. If (P, Q) is a roof overu([sy, 1]), we leta, = o[y, 1. Hence the exterior
angle of intersectiofi; of P, andQ is an upper bound fai(az, ﬁr)gl. Thus we
have

i, Br)f = ilen, Br)p* + ilez, fr)f, <7 + 61,
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Case 1 (left) and Case 2 (right)

If Q N P # ¢ then we consider the sdt= S5 — (D§ U D; U D). Then we
have thabK c S. ThereforeS = T, U T, whereT are spherlcal triangles. Also
we have thaf’y N 7> = {a}, whereHyN H,1 {a}. Since(Py, P,) is ax-roof, it
follows thata € K. Also, by monotonicity of ridge lines, the bending line &n
thato intersects has one endpointdh and the other irf, (Case 1; see figure).
ThusoKk is disconnected, contradicting the fact tikats simply connected. We
therefore have tha® N P = ¢ and that the support planés P,;, O have the con-
figuration described in Lemma 3.6. Hence the interior dihedral angter — 64
betweenP,, and Q satisfiesd (1) < 6;, so

i(a, Br)€ < 4061 < 2w — O() = F(I).

Now letz, be the smallest value ofe [, k] such that(P,, P;) is not a roof
over a([s1, s(1)]), and lets(r,) = s,. Because(P,, P,,) is ax-roof, we have
H,,NH,, = {b}. Sincel(a) < 2sinti'1, by Lemma 3.5t follows thatoN H,, #
@. Then, lettingS = SZ — (D§ U D{, U Dy,), we havedk C S. As before,S =
T1 U T, whereT; are spherical triangles Also as befaep € K and the bend-
ing line on P, that« intersects has one endpoint Th and the other irfly. If
HoNH,, # 9, thenT1N T, = {a, b} (Case 2). HencéK is disconnected, giving
a contradiction taK' being simply connected.

We can therefore assume tHag N H,2 {c} wherec € 82 ThenT:N T, =
{a, b, c}. Also, by Lemma 3.5/(«([0, s2])) > 2sinir!1. Smcel(a) < 2sinhr'1
we have («([0, 52])) = 2 sinir’1 ands, = 1. Hence the support pland (1, <
t < k) intersectP,, along a bending ling with «(1) € y. Thus the plane®, (t, <
t < k) are obtained by rotating,, abouty. Because < K, we know tha® is not
an endpoint ofs. Also, by monotonicity of ridge lines at the poiht we obtainP,
(t > t2) by rotatingP,, away from#pP;,.

We first consider the case when the geodesit P,, separates the poinksand
c onthe boundary of,,. If y does separateandc then, rotatingP,, abouty, we
see that for > 1, eitherb € D orc e D;. As P,, is rotated away fronf,,, there
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Case 3 (left) and Case 4 (right)

is atz3 > 1z such thab ¢ D;, (Case 3); hencee D;, andc € K. ThereforedK is
disconnected, contradicting the fact th&is simply connected.

If  does not separateandc then, asP,, is rotated away fronP,, we can
choose a3z > 1, such thatd,, N H,, = ¥ and Ho N H,, = ¢ (Case 4). Note that
we cannot assumH, N H,, = , since the point may be an endpoint of. It
follows that the three half-spacék, H,,, H,, are disjoint, with a geodesic arc of
length 2 sinh1 joining Py to Py, via P,,. Then, by Lemma 3.5, the closures of
the half-spaceslo, H,,, H,, intersect pairwise in a point d&,. This contradicts
the fact thati,, N H,, = #. 0O

5. The Bending Lamination

Bridgeman and Canary [4] have shown that the length of the measured lamination
B on a finite-area hyperbolic surfadecan be evaluated by an integral over the
unit tangent bundle. Fgp € T1(S) we lete,: (0, L) — S be the parameterized
geodesic arc of length given by, (1) = g:(p), whereg,: T1(S) — Sis time+
geodesic flow. Then

1 .
I(B) = il /7'1(5) i(a,, B)dQ.

Let By be the bending lamination A@C(N), fix L = 2sinir'1, and letp
T1(dC(N)). Then, ifa, does not interse@ty, we letd(p) = L; otherwise, we
defined(p) to be the minimum number such thai(d(p)) € Bx. Thene, inter-
sectsBy only for length at mosL — d(p). Therefore,

i(ap, By) < F(L —d(p)).
Thus we have that

1
[ —_— F(L—-d dQ.
(B) = 57 /T RACEEI

To perform the integration, we decompose the complemegy af IC(N) into
ideal triangles by adding geodesics3 to obtain a geodesic laminatigiy such
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that By C By. If we letd(p) be the minimum number such thagg(d(p)) € By,
thenci(p) < d(p). Therefore, sincé& is monotonically increasindg;(L—d(p)) <
F(L —d(p)). Thus

1 ~
! — F(L —d(p))dS.
(Bv) = 47 /M) ( ()

The right-hand side of this integral is the same over the unit tangent bundle
of each ideal triangle. Since the areaddf(N) is 27| x(dC(N)|, it follows that
dC(N) — By consists of 2x(dC(N)| ideal triangles. We therefore 1&t ¢ H?2
be an ideal hyperbolic triangle and, for egete T1(U), define D(p) to be the
minimum number such that,(D(p)) € dU. Then

2| x(C(N)|

[(By) <
4L %

F(L — D(p))dS.

To perform the integration, we work in the upper half-space modetifoand
let

U={(.yn]-1sx<-1y=v1-2?}.

We denote the three sides Gfby ey, ey, e3, wheree; = {(—1,7) | t > 0}, e2 =

{@L 1) |t>0} andes = {(r, vV1—1?) | 1<t <1].

Letp € T1(U), wherep has basepoiritx, y) and tangent vectar. We drop per-
pendiculars fronix, y) to each of the sides, ¢,, ez and label them ag,, P,, P3
respectively. Let/;(x, y) denote the length aP;. We have

1+ x
JAF )2+ y?
1—x
x24+y2 -1
V2 +y2 =17+ 42
The geodesic ray in the directignintersects at most one side tf Let the
ray intersect side; and make an angle with P;. Then we have a right-angled

triangle with angled, hypotenuse of lengttD(p), and adjacent side of length
d;(x, y). Therefore,D(p) satisfies

tanhdy(x, y) =

tanhdy(x, y) =

tanhds(x, y) =

tanhd;(x, y)
cosh

SinceF (L — D(p)) = 0for D(p) > L, it follows that the domain over which we
integrate satisfies

tanhD(p) =

tanhd; (x,
cosh > ﬂ
tanhL

Thus we split the integral over (U) and obtain
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f F(L — D(p))d2
T1(U)

tanhd (x,y)

dx dy tanhL ) _.(tanhd;(x, y)
/ (Z/ i) (L — tanh l<—cose )d@ :

tanhL

We define the constaikfy by
Ko
tanhdi(x,)r))

3 1

1 dx d C0§( anhL tanhd;(x,

== / kel Z/ o F(L—tanh%ﬂ))de.
272l Jy oy — _Cos_l(‘a“ z<m>) cosf

tanhL

We then perform the integration using Mathematica and, rounding up to four dec-
imal places, obtaiky < 2.8396 We thus have the following improvement on the
bound on the length of the bending lamination.

THeoreM 1.2,parT 1. If T isaKleinian group such that the componentsdfl")
are simply connected, then

I(Bn) < Ko - T2 x(3C(N)|.

6. The Average Bending Function

In [2], Thurston’s description of the minimal Lipschitz constant between two hy-
perbolic surfaces (see [10]) is applied to prove the following: If the average bend-
ing satisfiesB(«) < k for all geodesic arca of a fixed length/, then there is a

(1+ k) Lipschitz map that is a homotopy inverse of the retract maf (I")/T" —
C(N). In particular, by using = 2 sinfr*1 we can choosk = K = m/sinhrt1

(see [3)]).

Graph of F(x)/x for x near 2 sinh*1

The Main Theorem states that fir) < 2 sinir*1 we haveB(a) < F(I(a))/
(). Hence we consider the functid®(x) = F(x)/x (see figure); the minimum
value of £ on the interval [02 sinfr*1] gives a better bound thaki in Theo-
rem 1.2. We letk; be the minimum value oK. Graphing/C(x), we see that
the minimum of/C(x) is obtained at approximately = 1.7063 Evaluating at
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x = 17063 then yieldk; < K(1.7063 < 3.4502 Thus we obtain the final two
parts of Theorem 1.2.

THEOREM 1.2,PART 2. If « is a closed geodesic aiC(N), then

B(x) < K.

THEOREM 1.2,PART 3. The retract map: Q(I')/T" — dC(N) has a homotopy
inverses: dC(N) — (I')/T" with Lipschitz constantl + K3).
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