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1. Introduction

Let (Y, ξ) be a given (closed) contact 3-manifold. (For basic definitions regarding
contact structures the reader is advised to consult e.g. [Ae; Et2].) A 4-manifoldX

is called aStein fillingof (Y, ξ) if X is a sublevel set of a plurisubharmonic func-
tion on a Stein surface and if(Y, ξ) is contactomorphic to∂X (the contact structure
induced by the complex tangencies). For a more detailed account regarding Stein
fillings, see [LiMa].

Inspired by the geography problem of minimal surfaces of general type—that
is, the determination of pairs (signature, Euler characteristic)= (σ, χ) of such
4-manifolds—we are led to the following.

Problem 1.1. Describe characteristic numbers of Stein fillings of a given contact
3-manifold(Y, ξ).

This problem has been solved for particular 3-manifolds—such as the 3-sphere
S3, the Poincaré sphere6(2,3,5) (with both orientations), and lens spaces with
specific contact structures—in a much stronger sense: for these examples also, the
diffeomorphism classification of Stein fillings has been achieved (see [E1; Mc;
OO]). For related results concerning−6(2,3,11) and the 3-torusT 3, see [St1].
These examples led us to the following conjecture.

Conjecture 1.2. The set

CF(Y,ξ) = {b1(W ), σ(W ), χ(W ) | W is a Stein filling of(Y, ξ)}
of the characteristic numbers of Stein fillings of a given3-manifold(Y, ξ) is a fi-
nite set.

Remark 1.3. A related conjecture could be formulated by examining finiteness
properties of the set of diffeomorphism types of Stein fillings of a given contact
3-manifold(Y, ξ). In the light of a recent observation of I. Smith, this conjecture
is too ambitious in general.

Our main result in this paper makes a minor step for verifying Conjecture 1.2 in
general—and, in fact, proves the conjecture in some particular cases; see Corol-
laries 1.5 and 1.7.
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Theorem1.4. For a given contact3-manifold(Y, ξ) there exists a constantK(Y,ξ)
such that, ifW is a Stein filling of(Y, ξ), then3σ(W )+2χ(W ) ≥ K(Y,ξ). In other
words, the numberc(W ) = 3σ(W ) + 2χ(W ) for a Stein fillingW of (Y, ξ)—a
number that resembles thec2

1-invariant of a closed complex surface—is bounded
from below.

Corollary 1.5. If every Stein filling of(Y, ξ) has vanishingb+2 -invariant, then
CF(Y,ξ) is finite.

Proof. It is a standard fact thatb1(W ) of a Stein fillingW is bounded above
by b1(∂W ) = b1(Y ) (sinceW admits a handle decomposition with only 0-, 1-,
and 2-handles; see also [St1]). By assumption,b+2(W ) = 0 and hence the es-
timate ofσ(W ) andχ(W ) reduces to estimatingb−2 (W ). (Notice thatχ(W ) =
1− b1(W ) + b+2(W ) + b−2 (W ) + b0

2(W ) and, by the long exact sequence of
(W, ∂W ), the termb0

2(W ) is bounded byb1(∂W ) = b1(Y ).) Now the inequality
of Theorem 1.4 can be rewritten as 5b+2(W )−b−2 (W )+2−2b1(W )+2b0

2(W ) ≥
K(Y,ξ). This implies

5b+2(W )+ 2−K(Y,ξ) + 2b1(Y ) ≥ b−2 (W )
and, sinceb+2(W ) = 0 by assumption, we obtain the desired upper bound for
b−2 (W ) in terms of invariants of(Y, ξ).

Remark 1.6. Recall that the intersection formQW of the 4-manifoldW with
boundary isnot nondegenerate in general. In the preceding proof, the termb0

2(W )

denoted the dimension of a maximal subspace ofH2(W ;R) on whichQW van-
ishes. It is not hard to see thatb0

2(W ) ≤ b1(∂W ); there is no such trivial bound
for the invariantsb±2 (W ), though.

Corollary 1.7. If Y is a circle bundle over the Riemann surface6 (of genus
g(6))with Euler numbern satisfying|n| > 2g(6)−2, then Conjecture 1.2 holds
for (Y, ξ) with any contact structureξ.

Proof. For a Stein fillingW of (Y, ξ) there exists a minimal surfaceX of gen-
eral type and a Kähler embeddingf : W → X such thatb+2(X − intW) > 0 (see
[LiMa]; also cf. Theorem 2.1). By a result of Ozsváth and Szabó [OSz1], however,
Y cannot be embedded in a surface of general type such that both components of
its complement have nonvanishingb+2 -invariant. Thereforeb+2(W ) = 0 and so
Corollary 1.5 applies and provides the result.

Remarks 1.8. (a) Thatb+2(W ) = 0 for all Stein fillings of any(Y, ξ) examined
in Corollary 1.7 was first noticed by Akbulut and Ozbagci [AO2].

(b) Informally, the main idea in the proof of the result of [OSz1] is the realization
that certain Floer homology groups (called HFSW

red ) vanish for circle bundles of the
type just described. Now the standard generalization of Donaldson’s famous in-
decomposability theorem shows thatY cannot cut certain 4-manifolds into pieces
with nonvanishingb+2 . (Some care is needed, since forY not a homology sphere
the standard argument gives only a relation between invariants rather than their
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vanishing—as happens in the case of splitting alongS3.) Therefore, similar results
to Corollary 1.7 hold for 3-manifolds with vanishing HFSW

red invariants. More pre-
cisely, if s ∈ Spinc(Y ) is the spinc structure generated by the contact structureξ

(as the corresponding 2-plane field), then the vanishing of HFSW
red (Y, s) is enough

to show that all Stein fillings of(Y, ξ) have vanishingb+2 -invariant. For more such
examples, see [OSz2].

As the proof of Corollary 1.5 shows, once an upper bound on theb+2 -invariants of
the Stein fillings of(Y, ξ) is achieved, the finiteness ofCF(Y,ξ) follows easily from
Theorem 1.4. An upper bound forb+2 seems to be hard to get in general, but for
some particular 3-manifolds we can prove such a bound.

Theorem 1.9. If Y is the Seifert fibered3-manifold6(2,3,11) then a Stein
filling W of (Y, ξ) (with any contact structureξ) hasb+2(W ) ≤ 2; in particular,
CF(6(2,3,11),ξ) is finite. In addition,6(2,3,11) does admit a Stein filling with non-
vanishingb+2 .

Conjecture 1.2 (and so our partial solution to it) can be viewed from a different
perspective. Recall that a contact structure onY can be given as an open-book
decomposition of the 3-manifoldY (this decomposition is unique up to positive
stabilization/destabilization [Gi]), and a Stein filling corresponds to the factoriza-
tion of the monodromy of (some corresponding) open-book decomposition into
the product of right-handed Dehn twists [AO1; LP]. Now the finiteness in Conjec-
ture 1.2 asserts that the number of right-handed Dehn twists in such a decompo-
sition of a fixed element in the mapping class group of a surface with nonempty
boundary is bounded from above. This observation follows from the fact that if
h ∈ 0F decomposes astC1 · · · tCm then the Euler characteristic of the correspond-
ing Stein filling isχ(F )+m,whereF stands for the fiber of the open book. (Here
0F denotes the mapping class group of the surface-with-boundaryF ; for relations
between Stein domains, Lefschetz fibrations, contact structures, and open books,
see [AO1; Gi; LP].) Notice that such a bound obviously does not exist in the map-
ping class group of a closed surface: by fiber summing Lefschetz fibrations, we
find arbitrary long decompositions of the unit element 1. (Interesting to note: If
∂F 6= ∅ then 1 cannot be (nontrivially) decomposed as a product of right-handed
Dehn twists; see [St2].)

After recalling some background material in Section 2, we prove Theorem 1.4
in Section 3. The proof of Theorem 1.9 is given in Section 4.

Acknowledgment. We would like to thank Peter Ozsváth and Zoltán Szabó
for many helpful discussions. It is a pleasure to thank the referee for many useful
comments and suggestions. The author was partially supported by OTKA T34885.

2. Background

One of the main ingredients in our proof of Theorem 1.4 is the following theorem.

Theorem 2.1 [LiMa]. LetW be a Stein filling. Then there exist a minimal com-
plex surfaceX of general type and af :W → X that is a Kähler embedding. In
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addition, we can assume thatb+2(X − intW) > 1. (With a slight abuse of nota-
tion we will always conflate the Stein fillingW and its embedded imagef(W ) ⊂
X, denoting both simply byW.)

The next ingredient we need consists of (generalized) surgeries, usually called
cut-and-paste operations. It turns out that, under favorable circumstances, these
operations can be performed symplectically. For a more general setup the reader
may refer to [Et1]; the version we present here can be found in [LiMa].

Theorem 2.2. Suppose thatW1,W2 are two Stein fillings of the given contact
3-manifold(Y, ξ) and thatf : W1→ X1 is the Kähler embedding ofW1 into the
minimal complex surfaceX1 of general type guaranteed by Theorem 2.1. Then the
4-manifold(X1− intW1) ∪Y W2 admits a symplectic structure.

In understanding basic topological properties of Stein fillings, we will use gauge-
theoretic arguments—in particular, we will carry out (partial) computations of
Seiberg–Witten invariants of certain 4-manifolds. For a detailed discussion of the
Seiberg–Witten equations and invariants we advise the reader to consult [F; M;
W]; here we restrict ourselves to highlighting those properties and facts concern-
ing these invariants that we will use in our subsequent discussions.

The Seiberg–Witten function SWX : Spinc(X)→ Z is a diffeomorphism invari-
ant of the smooth, closed, oriented 4-manifoldX with b+2(X) > 1. It is defined as
a suitable count of the solutions (up to symmetry) of a system of partial differential
equations defined using a metric and a spinc structure onX. A cohomology class
K ∈ H 2(X;Z) is called abasic classif there is a spinc structures ∈ Spinc(X)
such thatc1(s) = K and SWX(s) 6= 0. If X is a symplectic 4-manifold then it
admits a canonical spinc structures0 (with c1(s0) = −c1(X)), and it has been
shown by Taubes that SWX takes values±1 both ons0 and on its conjugatēs0

(with c1(s̄0) = c1(X)). Furthermore, ifX is a minimal surface of general type
then these are the only spinc structures with nonzero invariants. Using deep ana-
lytic arguments, Taubes managed to show a relation between Seiberg–Witten and
Gromov–Witten invariants of symplectic 4-manifolds, and as a consequence of
this theory he proved thatc2

1(X) = 3σ(X)+ 2χ(X)∈Z of a minimal symplectic
4-manifoldX with b+2(X) > 1 is always nonnegative.

By studying translation-invariant solutions of the aforementioned equations on
the productN × R for a closed, oriented 3-manifoldN, a related theory for 3-
manifolds has been developed. In [F] it was shown (among other things) that ifN

is an integral homology sphere then, for a generic metricg and exact perturbation
µ, the Seiberg–Witten equations admit (up to gauge equivalence) finitely many
irreducible solutions{γ1, . . . , γk}. (Here irreducible means that the spinor field
of the solution is not identically zero.) Now the standard pull-apart argument to-
gether with the gluing construction shows that ifX = X1∪N X2 is a decomposition
of X along the integral homology sphereN with b+2(Xi) > 0 (i = 1,2) then, for
appropriate extended metricg̃, perturbationµ̃, and spinc structures∈Spinc(X),
the moduli spaceMX,g̃,µ̃(s) of solutions of the Seiberg–Witten equations (modulo
symmetry) is diffeomorphic to the union

⋃k
j=1MX1(s|X1)[γj ] ×MX2(s|X2 )[γj ].
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(HereMXi (s|Xi )[γj ] denotes the moduli space of those solutions of the Seiberg–
Witten equations onXi that converge toγj . To set this theory up, we consider a
metric with cylindrical end onXi—for more details see [F], and for a related the-
ory consult [MMrR].) Notice that, sinceN is assumed to be an integral homology
sphere, the spinc structures∈Spinc(X) is determined by its restrictionss|X1 and
s|X2. This product formula enables us to relate Seiberg–Witten invariants of vari-
ous 4-manifolds constructed by cut-and-paste techniques.

Remark 2.3. The vectors6k
i=j#(MXi (s|Xi )[γj ]) · γi are expected to give rise

to “relative invariants”, in some metric independent Floer homology group of the
boundaryN, that satisfy a product formula analogous to the one just described.
However, this theory is not yet fully developed.

3. The Proof

Recall that, since the cobordism group�3 vanishes, any oriented 3-manifold is
cobordant toS3. Moreover, by surgering out the possible 1- and 3-handles of such
cobordisms, for any (closed, oriented) 3-manifoldY we can find a cobordismV
fromY toS3 built onY× [0,1] by adding only 2-handles. A theorem of Eliashberg
[E2] (see also [G; GSt]) shows that cobordisms built on contact 3-manifolds by
attaching 2-handles along a Legendrian link with appropriate framings eventually
support Stein structures. (The framing should be tb(Ki)−1for each componentKi
of the Legendrian linkL.) Such cobordisms are usually calledStein cobordisms;
for additional discussion, see [EtH].

We begin the proof of Theorem 1.4 with a lemma.

Lemma 3.1. Let (Y, ξ) be a given contact3-manifold. Then there exists a Stein
cobordismW from (Y, ξ) to some(N, ξ ′) such thatb+2(W ) > 1 andH1(N;Z) =
H1(S

3;Z) = 0 (i.e.,N is an integral homology sphere).

Proof. Let us take a cobordismV betweenY andS3, and suppose it is built on
Y × [0,1] by adding 2-handles only. Put the attaching circles of these two handles
into Legendrian position with respect to the given contact structureξ onY. If the
resulting Thurston–Bennequin invariant tb(K) of a componentK is larger than the
framing coefficient fr(K) of the knotK in V, then by adding zigzags to the Leg-
endrian knotK we obtainKnew with tb(Knew)−1= fr(K), and without changing
the diffeomorphism type ofV. In case fr(K) ≥ tb(K), change the knot in a small
Darboux neighborhood of a pointp ∈K (disjoint from all other attaching circles)
by connecting it to a Legendrian knot with high enough Thurston–Bennequin in-
variant. (This can be done because there are Legendrian knots with arbitrarily
high Thurston–Bennequin invariants.) Notice that in this way we change the dif-
feomorphism type of both the cobordismV and its positive endS3, but we leave
their homologies unchanged: the chain complex computing the CW-homology of
V reads only homological properties of the attaching circles (like their position
in Y, their linkings and framings), but since our change is homologically invisi-
ble we never change either the homology ofV or the homologies of its boundary
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components. At the end of this process we are left with a Stein cobordism from
(Y, ξ) to a contact 3-manifold(N1, ξ

′
1) with the homology of the 3-sphereS3.

By adding some extra 2-handles attached to knots lying in a Darboux chart (dis-
joint from the other attaching circles) with Thurston–Bennequin numbers 2 (as
described in [LiMa, Thm. 3.2]), we can easily arrangeb+2(W ) > 1.

Next we collect the necessary constructions for the proof of Theorem 1.4. For the
given contact 3-manifold(Y, ξ), fix a cobordismW provided by Lemma 3.1 and
consider the set of irreducible solutions{γ1, . . . , γk} of the Seiberg–Witten equa-
tions onN for a generic metricg and a generic (exact) perturbationµ. (Notice
that, sinceN is an integral homology sphere, it admits a unique spinc structure.)

Suppose thatW1, . . . ,Wn, . . . are the diffeomorphism types of the Stein fillings
of (Y, ξ). (This list might be empty, in which case the proof of the theorem is
trivial.) Consider the Stein fillingsSi = Wi ∪W of ∂Si = (N, ξ ′), and fix min-
imal surfacesXi of general type with Kähler embeddingsSi → Xi such that
b+2(Xi − int Si) > 1. (Such complex surfaces exist by Theorem 2.1.)

Our aim is to control the topology ofSi, and the main idea is as follows. Fix a
Stein filling S1 and considerT1 = X1− int S1. Now for any other Stein fillingS
of (N, ξ ′) we can formZ = T1∪ S and, according to Theorem 2.2, this is a sym-
plectic 4-manifold withb+2(Z) > 1. Hence minimality ofZ would implyc2

1(Z) ≥
0, giving the desired lower bound for 3σ(S) + 2χ(S) in terms of invariants of
the fixed 4-manifoldT1. However, minimality ofZ is hard to prove—although it
seems to be true—so instead we use a larger (though still finite) set of test man-
ifoldsXi − int Si with which to compare the Stein fillingS. Also, we may relax
the minimality requirement by trying to prove that the number of blow-ups con-
tained by the symplectic 4-manifoldZ is bounded by some number depending
only on(Y, ξ). This is exactly the line of reasoning we will follow in our proof of
Theorem 1.4. To set the stage, we need a few definitions.

LetAk stand for the set of subsets of{1, . . . , k} with multiplicity ≤ 3, that is,

Ak = {(Ai)j | Ai ⊂ {1, . . . , k} andj ≤ 3}.
So a specific subsetA ⊂ {1, . . . , k} appears inAk asA, then with multiplicity 2
asA2, and finally asA3. For example,A1= {∅,∅2,∅3, {1}, {1}2, {1}3} and

A2 = {∅,∅2,∅3, {1}, {1}2, {1}3, {2}, {2}2, {2}3, {1,2}, {1,2}2, {1,2}3}.
Notice that allAk are finite sets. A Stein fillingSi determines a subset ofAk as fol-
lows. By extending the metricg and perturbationµ to Ti = Xi − int Si, for each
spinc structures ∈ Spinc(Ti) we obtain a vector SWTi(s) = (a1, . . . , ak), where
ai = #MTi,g̃,µ̃(s)[γj ]—the number of Seiberg–Witten solutions for the extended
(cylindrical) metricg̃, perturbationµ̃, boundary valueγj, and spinc structures.
Now we assignA ⊂ {1, . . . , k} to s ∈ Spinc(Ti) with the property thatm ∈ A iff
am ≡ 1 (mod 2); that is, we take the mod 2 reduction of(a1, . . . , ak) and identify
the sequence of zeros and ones with the corresponding subset of{1, . . . , k}. If s
runs through Spinc(Ti) then this assignment produces subsets of{1, . . . , k}, and if
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A ⊂ {1, . . . , k} appears more than three times then we keep only three copies of
it (and record the multiplicities as exponents). Consequently, each Stein fillingSi
determines an element in the power setP(Ak) of Ak. (Note that, sinceAk is fi-
nite, so is its power set.) Since the element associated in the manner just described
to Si uses Seiberg–Witten moduli spaces onTi, we denote the resulting element
asSWTi ∈ P(Ak). These elements are by no means (diffeomorphism) invariants
of eitherSi or Ti. The Stein fillingSi specifiesTi through the choice ofXi, and
thenSWTi is given by a count of certain Seiberg–Witten solutions overTi using
specific metrics and perturbations. The resulting element might depend on these
choices, but we do not intend to deal with such dependencies because we are using
SWTi only to learn something about the topology ofSi (in a quite roundabout
way).

Now partition the Stein fillingsSi by saying thatSi is equivalent toSj iff SWTi =
SWTj in P(Ak), and choose representativesSi1, . . . , SiN from each equivalence
class. (For choosingSij first we must fix theX into whichS embeds and deter-
mineSWX−int S = SWT .)

Remark 3.2. We have just showed that there are finitely many Stein fillings that
model all possible gauge-theoretic behavior—at least those of interest from our
present point of view. That is, we count solutions to the Seiberg–Witten equations
only mod 2 and with multiplicities at most 3. The reason for these simplifications
is to have finitely many choices forSWTi . That the information contained by the
SWTi so defined is enough for our purposes will be clear when discussing mini-
mality of glued-up manifolds.

Now, for a Stein fillingS of (N, ξ ′), considerSij (for somej ∈ {1, . . . , N}) from
the chosen representatives equivalent to it.

Proposition 3.3. The symplectic4-manifoldZ = Tij ∪ S satisfiesc2
1(Z) ≥ −1.

The proof of this proposition rests on the following simple observation.

Lemma 3.4. If a closed symplectic4-manifoldV with b+2(V ) > 1 has at most
twospinc structures with odd Seiberg–Witten invariants, thenc2

1(V ) ≥ −1.

Proof. Suppose thatc2
1(V ) = −k < −1. According to celebrated results of

Taubes, a minimal symplectic 4-manifold (withb+2 > 1) has nonnegativec2
1-

invariant. ThereforeV is at least ak-fold blow-up of another symplectic 4-
manifold; in particular, it can be written asV1#2CP2. Now the blow-up formula
asserts that SWV (±c1(V1) ± E1 ± E2) = ±SWV1(±c1(V1)), whereE1 andE2

denote the exceptional divisors of the blow-ups. SinceV1 is symplectic, another
result of Taubes implies that SWV1(±c1(V1)) = ±1. Hence, from the assumption
k < −1,we found at most four basic classes±c1(V1)±E1±E2 with odd Seiberg–
Witten invariants onV. (Actually this argument produces eight basic classes with
odd Seiberg–Witten invariants unlessc1(V1) = 0, in which case we found four:
±E1± E2.) This contradiction proves the stated inequality.
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Proof of Proposition 3.3.In view of Lemma 3.4, the proposition follows from
an appropriate estimate on the number of basic classes ofZ with odd Seiberg–
Witten invariant. Suppose there are three such classes corresponding to spinc

structuress1, s2, ands3. Consider the previous spinc structures restricted toTij ,
and denotesm|Tij by tm (m = 1,2,3). Suppose first that all threetm are different.
The corresponding vectors SWTij (tm) then give odd dot products with the vectors
SWS(sm|S), since the result of this dot product is the (mod 2) Seiberg–Witten value
of the corresponding spinc structures∈Spinc(X). On the other hand, by the defi-
nition of our equivalence relation we know that there is a surfaceX of general type
such thatX− int S andTij have identicalSW-invariants inP(Ak). This, however,
shows that there are three spinc structures onX with odd Seiberg–Witten values,
which contradicts that SWX(K) = 0 unlessK = ±c1(X). In the caset1= t2, the
same conclusion holds for the spinc structurest′#(sm|S) (m = 1,2) andt′3#(s3|S)
onX. (Heret′m stands for a spinc structure onX − int S with SWX−int S(t

′
m) =

SWTij
(tm).) Finally, if all three restricted spinc structures overTij are equal to

somet, then the three structurest′#(sm|S) (m = 1,2,3) will provide the same
contradiction. ThereforeZ has only two spinc structures with odd Seiberg–Witten
invariants, hence Lemma 3.4 shows thatc2

1(Z) ≥ −1. (Notice that, sinceN is
an integral homology sphere, spinc structures on the components of its comple-
ment simply add up (denoted by #) to give all the spinc structures of the closed
4-manifold.)

Proof of Theorem1.4.The foregoing arguments show that, for any Stein fillingS of
(N,ξ ′), there is somej ∈ {1, . . . ,N} such thatc2

1(Tij∪S)≥−1. Sinceχ(Tij∪S)=
χ(Tij ) + χ(S) and (by Novikov additivity)σ(Tij ∪ S) = σ(Tij ) + σ(S), we get
that 3σ(S)+ 2χ(S) ≥ −1− 3σ(Tij )− 2χ(Tij ). Therefore, by setting

C(N,ξ ′ ) = max{3σ(Tij )+ 2χ(Tij )+1 | j = 1, . . . , N},
we obtain 3σ(S) + 2χ(S) ≥ −C(N,ξ ′ ). Recall that initially we wanted to find an
estimate on Stein fillings of a contact 3-manifold(Y, ξ). Now there is a fixed Stein
cobordismW from (Y, ξ) to (N, ξ ′) and thus, for a Stein fillingWi of (Y, ξ), it
follows that 3σ(Wi ∪W)+ 2χ(Wi ∪W) ≥ −C(N,ξ ′ ). SinceW is fixed, if we set

K(Y,ξ) = −C(N,ξ ′ ) − (3σ(W )+ 2χ(W ))

then the preceding inequality verifiesc(Wi) = 3σ(Wi)+ 2χ(Wi) ≥ K(Y,ξ), so the
proof of Theorem 1.4 is complete.

Notice that we made heavy use of the actual contact structure onY in the proof
of Lemma 3.1, since the Legendrian position (and hence the Thurston–Bennequin
framing) of a knot depends on the chosen contact structure. Therefore, bothW

andN might be different for some other choice ofξ on Y. It seems to be quite
difficult to get a hold on an actual value ofK(Y,ξ), because it seems rather compli-
cated to see anything from the topology of the surface of general type in which a
Stein filling is embedded through Theorem 2.1.
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4. On Fillings of 6(2,3,11)

We conclude this paper with the proof of Theorem 1.9. It turns out that, by using
the methods of [St1], we can determine the intersection form of all Stein fillings
of 6(2,3,11) with positiveb+2 -invariant.

Proposition 4.1. If W is a Stein filling of6(2,3,11) and if b+2(W ) > 0, then
the intersection formQW of W is equal to2E8⊕ 2H. In particular,χ(W ) = 19,
σ(W ) = −16, andW is spin.

Proof. By embeddingW into a minimal surface of general type, we conclude that
the relative invariantSW(W ) (defined in [StSz] and used in [St1]) is equal to±1.
(This follows once we assume that the embedding ofW into X has the property
thatX− intW is nonspin and hasb+2(X− intW) > 0, which is easy to achieve.)
Notice that the product formula of [StSz] (as common in gauge theory) works only
if both sides in the decomposition have positiveb+2 -invariants. We can arrange this
to hold forX − intW but can only assume it forW. Now applying the product
formula of [StSz] again, we see thatSW(W ∪ N2) = SW(W ) · SW(N2) =
±1, whereN2 stands for the nucleus in the elliptic surfaceE(2) (which is the
K3-surface). This implies that SWW∪N2(0) = ±1; now a theorem of Morgan and
Szabó [MSz] (cf. [St1, Thm. 2.9]) gives thatW ∪ N2 is homeomorphic to the
K3-surface. SinceQK3 = 2E8⊕ 3H andQN2 = H, the proposition follows.

Proof of Theorem1.9.As the previous proof shows, for Stein fillings of6(2,3,11)
with b+2 6= 0 we haveb+2 = 2. Hence the theorem and consequently the finiteness
of CF(6(2,3,11),ξ) (for any contact structureξ) is proved.

Notice that, by deleting a nucleusN2 (the neighborhood of a cusp fiber and a
section) from an elliptic K3 surface, we are left with a Lefschetz fibrationX over
the diskD2 with T 2 − D2 as regular fiber. Such 4-manifolds, however, admit
Stein structures [AO1], and it is not hard to see that∂X = 6(2,3,11) (sinceX is
just the corresponding compactified Milnor fiber). This shows that K3− intN2

admits a Stein structure, providing a Stein filling of6(2,3,11) (with some con-
tact structure) withb+2 = 2.

Remark 4.2. Our construction of a Stein filling of6(2,3,11) corresponds to
the deformation of the singularity{x 2 + y3 + z11 = 0} in C3. By resolving this
singularity we get a complex surface with6(2,3,11) as its boundary. A detailed
analysis of the resolution (together with Eliashberg’s construction [E2]) shows
that the resolution carries a Stein structure withb+2 = 0. (For the Kirby diagram
of this resolution see [GhS]. In fact, the 3-manifold6(2,3,11) carries only two
(nonisotopic) tight contact structures [GhS], and both can be filled by some Stein
structure on the 4-manifold given by Figure 12 of [GhS].) It seems natural to con-
jecture that any Stein filling of6(2,3,11) is diffeomorphic either to this resolution
or to the Milnor fiber described above.
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