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On the Geography of Stein Fillings
of Certain 3-Manifolds

ANDRAS I. STIPSICZ

1. Introduction

Let (Y, &) be a given (closed) contact 3-manifold. (For basic definitions regarding
contact structures the reader is advised to consult e.g. [Ae; Et2].) A 4-ma#ifold
is called aStein fillingof (Y, &) if X is a sublevel set of a plurisubharmonic func-
tion on a Stein surface and(¥, &) is contactomorphic t6X (the contact structure
induced by the complex tangencies). For a more detailed account regarding Stein
fillings, see [LiMa].

Inspired by the geography problem of minimal surfaces of general type—that
is, the determination of pairs (signature, Euler characteristid), x) of such
4-manifolds—we are led to the following.

ProBLEM 1.1. Describe characteristic numbers of Stein fillings of a given contact
3-manifold(Y, &).

This problem has been solved for particular 3-manifolds—such as the 3-sphere
$3, the Poincaré spherg(2, 3, 5) (with both orientations), and lens spaces with
specific contact structures—in a much stronger sense: for these examples also, the
diffeomorphism classification of Stein fillings has been achieved (see [E1; Mc;
0O0]). For related results concernirgz (2, 3, 11) and the 3-torug'3, see [St1].

These examples led us to the following conjecture.

CONJECTURE 1.2. The set
CFuye = {b1(W),0(W), x(W) | W is a Stein filling of(Y, &)}

of the characteristic numbers of Stein fillings of a gidemanifold (Y, &) is a fi-
nite set.

REMARK 1.3. A related conjecture could be formulated by examining finiteness
properties of the set of diffeomorphism types of Stein fillings of a given contact
3-manifold(Y, &). In the light of a recent observation of I. Smith, this conjecture
is too ambitious in general.

Our main result in this paper makes a minor step for verifying Conjecture 1.2 in
general—and, in fact, proves the conjecture in some particular cases; see Corol-
laries 1.5 and 1.7.
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THEOREM 1.4. For agiven contac8-manifold(Y, &) there exists a constaily, s
such that, ifW is a Stein filling of(Y, &), then3c (W) +2x(W) > Ky . In other
words, the numbes(W) = 30(W) + 2x(W) for a Stein fillingW of (Y, §)—a
number that resembles tké-invariant of a closed complex surface—is bounded
from below.

CoroLLARY L.5. If every Stein filling of(Y, &) has vanishing} -invariant, then
CFy.g is finite.

Proof. It is a standard fact that; (W) of a Stein filling W is bounded above
by b1(0W) = by(Y) (sinceW admits a handle decomposition with only 0-, 1-,
and 2-handles; see also [St1]). By assumptiofiW) = 0 and hence the es-
timate ofo(W) and x(W) reduces to estimating, (W). (Notice thaty(W) =
1—b(W) + b}’(W) + b5, (W) + bg(W) and, by the long exact sequence of
(W, W), the termbg(W) is bounded by (0W) = b1(Y).) Now the inequality
of Theorem 1.4 can be rewritten asgW) — b, (W) +2—2by(W) + 2b2(W) >
K¢ This implies

Bb3(W) +2 — Kiye) + 2b1(Y) = by (W)

and, sinceb3(W) = 0 by assumption, we obtain the desired upper bound for
b5 (W) in terms of invariants ofY, &). O

ReMaRK 1.6. Recall that the intersection for@y, of the 4-manifoldW with
boundary isiot nondegenerate in general. In the preceding proof, the#&¢#i )
denoted the dimension of a maximal subspacé/gfW; R) on which Qy van-
ishes. It is not hard to see thlag(W) < by(dW); there is no such trivial bound
for the invariants (W), though.

CoroLLARY 1.7. If Y is a circle bundle over the Riemann surfage(of genus
g(X)) with Euler number: satisfyingin| > 2g(X) — 2, then Conjecture 1.2 holds
for (Y, &) with any contact structureé.

Proof. For a Stein fillingW of (Y, &) there exists a minimal surface of gen-

eral type and a K&hler embeddiffg W — X such thab}(X —int W) > 0 (see
[LiMa]; also cf. Theorem 2.1). By aresult of Ozsvath and Szabé [0Sz1], however,

Y cannot be embedded in a surface of general type such that both components of
its complement have nonvanishibg-invariant. Therefore}(W) = 0 and so
Corollary 1.5 applies and provides the result. O

REMARKS 1.8. (@) That(W) = O for all Stein fillings of any(Y, &) examined
in Corollary 1.7 was first noticed by Akbulut and Ozbagci [AO2].

(b) Informally, the main idea in the proof of the result of [0Sz1] is the realization
that certain Floer homology groups (called £} vanish for circle bundles of the
type just described. Now the standard generalization of Donaldson’s famous in-
decomposability theorem shows thi¥atannot cut certain 4-manifolds into pieces
with nonvanishingy}. (Some care is needed, since fonot a homology sphere
the standard argument gives only a relation between invariants rather than their
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vanishing—as happens in the case of splitting al&hig Therefore, similar results
to Corollary 1.7 hold for 3-manifolds with vanishing K invariants. More pre-
cisely, if s € Spirf(Y) is the spif structure generated by the contact structure
(as the corresponding 2-plane field), then the vanishing giHF, s) is enough
to show that all Stein fillings ofY, £) have vanishing}-invariant. For more such
examples, see [0Sz2].

As the proof of Corollary 1.5 shows, once an upper bound o 3hvariants of
the Stein fillings of(Y, £) is achieved, the finiteness 6y ¢, follows easily from
Theorem 1.4. An upper bound féi, seems to be hard to get in general, but for
some particular 3-manifolds we can prove such a bound.

THEOREM 1.9. If Y is the Seifert fibere®@-manifold X (2, 3, 11) then a Stein
filling W of (Y, &) (with any contact structuré) hasb“z“(W) < 2; in particular,
CFz,31,5 Is finite. In addition, X (2, 3, 11) does admit a Stein filling with non-
vanishingb3.

Conjecture 1.2 (and so our partial solution to it) can be viewed from a different
perspective. Recall that a contact structureYonan be given as an open-book
decomposition of the 3-manifold (this decomposition is unique up to positive
stabilization/destabilization [Gi]), and a Stein filling corresponds to the factoriza-
tion of the monodromy of (some corresponding) open-book decomposition into
the product of right-handed Dehn twists [AO1; LP]. Now the finiteness in Conjec-
ture 1.2 asserts that the number of right-handed Dehn twists in such a decompo-
sition of a fixed element in the mapping class group of a surface with nonempty
boundary is bounded from above. This observation follows from the fact that if
h € T'r decomposes ag, - - - 1¢,, then the Euler characteristic of the correspond-
ing Stein filling isy(F) +m, whereF stands for the fiber of the open book. (Here
I'r denotes the mapping class group of the surface-with-bourfdafigr relations
between Stein domains, Lefschetz fibrations, contact structures, and open books,
see [AOL; Gi; LP].) Notice that such a bound obviously does not exist in the map-
ping class group of a closed surface: by fiber summing Lefschetz fibrations, we
find arbitrary long decompositions of the unit element 1. (Interesting to note: If
dF # ¢ then 1 cannot be (nontrivially) decomposed as a product of right-handed
Dehn twists; see [St2].)

After recalling some background material in Section 2, we prove Theorem 1.4
in Section 3. The proof of Theorem 1.9 is given in Section 4.
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2. Background

One of the main ingredients in our proof of Theorem 1.4 is the following theorem.

THeOREM 2.1 [LiMa]. LetW be a Stein filling. Then there exist a minimal com-
plex surfaceX of general type and &: W — X that is a Ké&hler embedding. In
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addition, we can assume thaf(X — int W) > 1 (With a slight abuse of nota-
tion we will always conflate the Stein fillingf and its embedded imag& W) C
X, denoting both simply biy.)

The next ingredient we need consists of (generalized) surgeries, usually called

cut-and-paste operations. It turns out that, under favorable circumstances, these
operations can be performed symplectically. For a more general setup the reader
may refer to [Etl]; the version we present here can be found in [LiMa].

THEOREM 2.2. Suppose thaw,, W, are two Stein fillings of the given contact
3-manifold (Y, &) and thatf: W, — X; is the Kéhler embedding o¥; into the
minimal complex surfac&; of general type guaranteed by Theorem 2.1. Then the
4-manifold (X; — int W) Uy W, admits a symplectic structure.

In understanding basic topological properties of Stein fillings, we will use gauge-
theoretic arguments—in particular, we will carry out (partial) computations of
Seiberg—Witten invariants of certain 4-manifolds. For a detailed discussion of the
Seiberg-Witten equations and invariants we advise the reader to consult [F; M;
W]; here we restrict ourselves to highlighting those properties and facts concern-
ing these invariants that we will use in our subsequent discussions.

The Seiberg-Witten function SYV Spirf (X ) — Z is a diffeomorphism invari-
ant of the smooth, closed, oriented 4-manif&ldvith bg(X) > 1 Itis defined as
a suitable count of the solutions (up to symmetry) of a system of partial differential
equations defined using a metric and a $gitnucture onX. A cohomology class
K € H?(X;Z) is called abasic classf there is a spifi structures € Spirf(X)
such thatc;(s) = K and SW(s) # 0. If X is a symplectic 4-manifold then it
admits a canonical spirstructuresg (with c1(sg) = —c1(X)), and it has been
shown by Taubes that S\akes valuest1 both onsg and on its conjugateg
(with ¢1(50) = c1(X)). Furthermore, ifX is a minimal surface of general type
then these are the only spistructures with nonzero invariants. Using deep ana-
lytic arguments, Taubes managed to show a relation between Seiberg-Witten and
Gromov-Witten invariants of symplectic 4-manifolds, and as a consequence of
this theory he proved thaf(X) = 30(X) + 2x(X) € Z of a minimal symplectic
4-manifold X with b3(X) > 1is always nonnegative.

By studying translation-invariant solutions of the aforementioned equations on
the productN x R for a closed, oriented 3-manifold, a related theory for 3-
manifolds has been developed. In [F] it was shown (among other things) fat if
is an integral homology sphere then, for a generic megteod exact perturbation
u, the Seiberg-Witten equations admit (up to gauge equivalence) finitely many
irreducible solutiondys, ..., y«}. (Hereirreducible means that the spinor field
of the solution is not identically zero.) Now the standard pull-apart argument to-
gether with the gluing construction shows thati= X; Uy X» is a decomposition
of X along the integral homology spherewith b3(X;) > 0 (i = 1, 2) then, for
appropriate extended metgc perturbationyi, and spil structures € Spirf(X),
the moduli spacéx ; ;(s) of solutions of the Seiberg-Witten equations (modulo

symmetry) is diffeomorphic to the uni(irj‘;‘zl/\/lxl(5|x1)[yj] X Mx,(slx,)[v;]
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(HereMy, (s|x,)[y;] denotes the moduli space of those solutions of the Seiberg—
Witten equations orX; that converge tg;. To set this theory up, we consider a
metric with cylindrical end orX;—for more details see [F], and for a related the-
ory consult [MMrR].) Notice that, sinc# is assumed to be an integral homology
sphere, the spinstructures € Spirf(X) is determined by its restrictionsgy, and

s|x,. This product formula enables us to relate Seiberg-Witten invariants of vari-
ous 4-manifolds constructed by cut-and-paste techniques.

REMARK 2.3. The vectoré:f.‘:j#(/\/lx,. (slx)[y;]) - vi are expected to give rise

to “relative invariants”, in some metric independent Floer homology group of the
boundaryN, that satisfy a product formula analogous to the one just described.
However, this theory is not yet fully developed.

3. The Proof

Recall that, since the cobordism grofy vanishes, any oriented 3-manifold is
cobordant tas3. Moreover, by surgering out the possible 1- and 3-handles of such
cobordisms, for any (closed, oriented) 3-maniféfldve can find a cobordisi
fromY to S builtonY x [0, 1] by adding only 2-handles. A theorem of Eliashberg
[E2] (see also [G; GSt]) shows that cobordisms built on contact 3-manifolds by
attaching 2-handles along a Legendrian link with appropriate framings eventually
support Stein structures. (The framing should l&thb—1 for each componerk;
of the Legendrian link..) Such cobordisms are usually call§tein cobordisms
for additional discussion, see [EtH].

We begin the proof of Theorem 1.4 with a lemma.

LemMA 3.1. Let (Y, &) be a given contac8-manifold. Then there exists a Stein
cobordismW from (Y, &) to some(N, £') such thaths (W) > Land Hi(N; Z) =
Hi(S%;,Z) =0 (i.e., N is an integral homology sphere

Proof. Let us take a cobordisVi betweeny and S3, and suppose it is built on

Y x [0, 1] by adding 2-handles only. Put the attaching circles of these two handles
into Legendrian position with respect to the given contact struétuneY. If the
resulting Thurston—Bennequin invarian{&) of a componenk is larger than the
framing coefficient ftK) of the knotK in V, then by adding zigzags to the Leg-
endrian knotk we obtainkK e With tb(Knew) — 1 = fr (K), and without changing

the diffeomorphism type of. In case fAK) > th(K), change the knot in a small
Darboux neighborhood of a poipte K (disjoint from all other attaching circles)

by connecting it to a Legendrian knot with high enough Thurston-Bennequin in-
variant. (This can be done because there are Legendrian knots with arbitrarily
high Thurston—Bennequin invariants.) Notice that in this way we change the dif-
feomorphism type of both the cobordisiand its positive end, but we leave
their homologies unchanged: the chain complex computing the CW-homology of
V reads only homological properties of the attaching circles (like their position
in Y, their linkings and framings), but since our change is homologically invisi-
ble we never change either the homologyobr the homologies of its boundary
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components. At the end of this process we are left with a Stein cobordism from
(7, &) to a contact 3-manifoldNy, £;) with the homology of the 3-spher¥.

By adding some extra 2-handles attached to knots lying in a Darboux chart (dis-
joint from the other attaching circles) with Thurston—-Bennequin numbers 2 (as
described in [LiMa, Thm. 3.2]), we can easily arrarigéW) > 1 O

Next we collect the necessary constructions for the proof of Theorem 1.4. For the
given contact 3-manifoldy;, &), fix a cobordismW provided by Lemma 3.1 and
consider the set of irreducible solutiofs, ..., yx} of the Seiberg—Witten equa-
tions onN for a generic metrig and a generic (exact) perturbation (Notice
that, sinceV is an integral homology sphere, it admits a unique Sptructure.)

Suppose thaWy, ..., W,, ... are the diffeomorphism types of the Stein fillings
of (Y, &). (This list might be empty, in which case the proof of the theorem is
trivial.) Consider the Stein fillings; = W; U W of 3S; = (&, &’), and fix min-
imal surfacesX; of general type with Kéhler embeddings — X; such that
b3(X; —intS;) > 1 (Such complex surfaces exist by Theorem 2.1.)

Our aim is to control the topology of;, and the main idea is as follows. Fix a
Stein filling S; and considefl; = X3 — int S;. Now for any other Stein fillingS
of (N, &) we can formZ = T, U S and, according to Theorem 2.2, this is a sym-
plectic 4-manifold withb%(Z) > 1. Hence minimality ofZ would implyc?(Z) >
0, giving the desired lower bound fore3S) + 2x(S) in terms of invariants of
the fixed 4-manifoldl';. However, minimality ofZ is hard to prove—although it
seems to be true—so instead we use a larger (though still finite) set of test man-
ifolds X; — int S; with which to compare the Stein fillin§. Also, we may relax
the minimality requirement by trying to prove that the number of blow-ups con-
tained by the symplectic 4-manifold is bounded by some number depending
only on(Y, &). This is exactly the line of reasoning we will follow in our proof of
Theorem 1.4. To set the stage, we need a few definitions.

Let A, stand for the set of subsets{df ..., k} with multiplicity < 3, that is,

Ap={(A)’ | A; c{L....k} andj < 3}.

So a specific subset C {1, ..., k} appears iM\; asA, then with multiplicity 2
asA? and finally asA®. For exampleA; = {@, 92 #°, {1}, {1}2 {1}°} and

Ay = {0,902 0%, (1, (1% (1°, {2}, {2)% (2%, {1, 2}, (1. 2)% {1, 2)%),

Notice that alld; are finite sets. A Steinfilling; determines a subset &f, as fol-
lows. By extending the metrig and perturbatiom to 7; = X; — int §;, for each
spirf structures € Spirf(7;) we obtain a vector SWs) = (ay, ..., ax), where

a; = #Mr, ; i(s)[y;]—the number of Seiberg-Witten solutions for the extended
(cylindrical) metricg, perturbationii, boundary valuey;, and spiri structures.
Now we assign C {1, ..., k} to s € Spirf(T;) with the property thatz € A iff

a, =1 (mod 2); that is, we take the mod 2 reduction&f, ..., a;) and identify
the sequence of zeros and ones with the corresponding subdet of k}. If s
runs through Spif{7;) then this assignment produces subsetdof ., k}, and if
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A C {1,..., k} appears more than three times then we keep only three copies of
it (and record the multiplicities as exponents). Consequently, each Stein §iJling
determines an element in the power Béh ;) of A;. (Note that, since\, is fi-
nite, so is its power set.) Since the element associated in the manner just described
to S; uses Seiberg—Witten moduli spaces®nwe denote the resulting element
asSWr, e P(Ay). These elements are by no means (diffeomorphism) invariants
of eitherS; or 7;. The Stein fillingS; specifiesT; through the choice ok;, and
thenSWr, is given by a count of certain Seiberg-Witten solutions @assing
specific metrics and perturbations. The resulting element might depend on these
choices, but we do not intend to deal with such dependencies because we are using
SWr, only to learn something about the topology $f(in a quite roundabout
way).

Now partition the Steinfillings; by saying thas; is equivalenttd; iff SWy, =
SWr, in P(A4), and choose representativgs, ..., S;, from each equivalence
class. (For choosing;; first we must fix theX into which § embeds and deter-
miHESWX_imS =SWr.)

REMARK 3.2.  We have just showed that there are finitely many Stein fillings that
model all possible gauge-theoretic behavior—at least those of interest from our
present point of view. That is, we count solutions to the Seiberg-Witten equations
only mod 2 and with multiplicities at most 3. The reason for these simplifications
is to have finitely many choices f&tWr.. That the information contained by the
SWry, so defined is enough for our purposes will be clear when discussing mini-
mality of glued-up manifolds.

Now, for a Stein fillingS of (N, §'), considers;, (for somej € {1, ..., N}) from
the chosen representatives equivalent to it.

ProrosiTioN 3.3.  The symplectid-manifoldZ = T7; U S satisfies?(Z) > —1.
The proof of this proposition rests on the following simple observation.

Lemma 3.4. If a closed symplectid-manifold V with »5(V) > 1 has at most
two spirf structures with odd Seiberg-Witten invariants, teéav ) > —1.

Proof. Suppose that?(V) = —k < —1 According to celebrated results of
Taubes, a minimal symplectic 4-manifold (witty > 1) has nonnegative?-
invariant. ThereforeV is at least ak-fold blow-up of another symplectic 4-
manifold; in particular, it can be written a§#2CP2 Now the blow-up formula
asserts that SW=c1(V1) + E1 + E) = £SW,(£c1(V1)), whereE; and E;
denote the exceptional divisors of the blow-ups. SiVicés symplectic, another
result of Taubes implies that S\¥=+c1(V1)) = £1 Hence, from the assumption
k < —1, we found at most four basic classes, (V) + E;1+ E, with odd Seiberg—
Witten invariants orV. (Actually this argument produces eight basic classes with
odd Seiberg-Witten invariants unlesgVi) = 0, in which case we found four:
+FE1+ E,.) This contradiction proves the stated inequality. O
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Proof of Proposition 3.3In view of Lemma 3.4, the proposition follows from
an appropriate estimate on the number of basic class&swaith odd Seiberg—
Witten invariant. Suppose there are three such classes corresponding‘to spin
structuress;, s, andss. Consider the previous spirstructures restricted o,
and denotem|T,‘j byt, (m =1, 2, 3). Suppose first that all three, are different.
The corresponding vectors SWE,,,) then give odd dot products with the vectors
SWs (s, |s), since the result of this dot product is the (mod 2) Seiberg-Witten value
of the corresponding spirstructures € Spirf(X). On the other hand, by the defi-
nition of our equivalence relation we know that there is a surfaoégeneral type
such thatX —int S and7;; have identicalsV-invariants inP (Ay). This, however,
shows that there are three spatructures orX with odd Seiberg-Witten values,
which contradicts that SWK) = 0 unlessk = +c1(X). Inthe casé; = t,, the
same conclusion holds for the spstructures’#(s,,|s) (m = 1, 2) andt;#(ss|s)

on X. (Heret/, stands for a spinstructure onX — int S with SWy_ins(t),) =
SW, (t).) Finally, if all three restricted spinstructures oveff;, are equal to
somet, then the three structuré&#(s,,|s) (m = 1, 2, 3) will provide the same
contradiction. Therefor& has only two spifistructures with odd Seiberg—\Witten
invariants, hence Lemma 3.4 shows thatZ) > —1. (Notice that, sinceV is

an integral homology sphere, spistructures on the components of its comple-
ment simply add up (denoted by $b give all the spifi structures of the closed
4-manifold.) O

Proof of Theorem 1.4The foregoing arguments show that, for any Stein fillfraf
(N,&'), thereissomge {1, ..., N} such thatlz(Tij US) > -1 Sincex(T;US) =
x(T;;)) + x(S) and (by Novikov additivity)o (7;, U S) = o(T;,) + o(S), we get
that 3 (S) + 2x(S) > —1— 30(T};) — 2x(T;;). Therefore, by setting

Civeny = maX{3o(T;) +2x(T;) +1| j=1,..., N},

we obtain & (S) + 2x(S) > —C,¢. Recall that initially we wanted to find an
estimate on Stein fillings of a contact 3-manifgld £). Now there is a fixed Stein
cobordismW from (Y, &) to (N, &) and thus, for a Stein fillingV; of (Y, &), it
follows that 3r(W; U W) + 2x(W; U W) > —Cy,¢y. SinceW is fixed, if we set

Ky =—Cwgy— Ba(W) +2x(W))

then the preceding inequality verifie€W;) = 3c(W;) + 2x(W;) > K(v,¢), SO the
proof of Theorem 1.4 is complete. O

Notice that we made heavy use of the actual contact structui€iorthe proof

of Lemma 3.1, since the Legendrian position (and hence the Thurston—-Bennequin
framing) of a knot depends on the chosen contact structure. ThereforeWboth
and N might be different for some other choice ®fon Y. It seems to be quite
difficult to get a hold on an actual value &fy ), because it seems rather compli-
cated to see anything from the topology of the surface of general type in which a
Stein filling is embedded through Theorem 2.1.
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4. On Fillings of X(2, 3,11)

We conclude this paper with the proof of Theorem 1.9. It turns out that, by using
the methods of [St1], we can determine the intersection form of all Stein fillings
of (2, 3,11) with positiveb}f-invariant.

ProrosiTioN 4.1. If W is a Stein filling of (2, 3, 11) and ibezf(W) > 0, then
the intersection fornQy, of W is equal to2Eg @ 2H. In particular, x(W) = 19,
o(W) = —16, and W is spin.

Proof. By embeddingV into a minimal surface of general type, we conclude that
the relative invarianS W (W) (defined in [StSz] and used in [St1]) is equaktd.
(This follows once we assume that the embeddingyoihto X has the property
thatX — int W is nonspin and hais; (X — int W) > 0, which is easy to achieve.)
Notice that the product formula of [StSz] (as common in gauge theory) works only
if both sides in the decomposition have positieinvariants. We can arrange this
to hold for X — int W but can only assume it fdi. Now applying the product
formula of [StSz] again, we see th&WV(W U Ny) = SW(W) - SW(Nz) =

41, where N, stands for the nucleus in the elliptic surfaE€2) (which is the
K3-surface). This implies that S\, ,(0) = £1, now a theorem of Morgan and
Szab6 [MSz] (cf. [Stl, Thm. 2.9]) gives th&t U N, is homeomorphic to the
K3-surface. Sinc&xs = 2Eg @ 3H andQy, = H, the proposition follows. [

Proof of Theorem 1.9As the previous proof shows, for Stein fillingsBi2, 3, 11)
with b} # 0 we haveb} = 2. Hence the theorem and consequently the finiteness
of CFi=2,311,5 (for any contact structurg) is proved.

Notice that, by deleting a nuclew (the neighborhood of a cusp fiber and a
section) from an elliptic K3 surface, we are left with a Lefschetz fibrakoover
the disk D? with T2 — D? as regular fiber. Such 4-manifolds, however, admit
Stein structures [AO1], and it is not hard to see that= X (2, 3, 11) (sinceX is
just the corresponding compactified Milnor fiber). This shows thatKi@t N,
admits a Stein structure, providing a Stein fillingBf2, 3, 11) (with some con-
tact structure) wittb = 2. O

REMARK 4.2. Our construction of a Stein filling af (2, 3, 11) corresponds to

the deformation of the singularityc? + y2 + z%* = 0} in C3. By resolving this
singularity we get a complex surface will(2, 3, 11) as its boundary. A detailed
analysis of the resolution (together with Eliashberg’s construction [E2]) shows
that the resolution carries a Stein structure with= 0. (For the Kirby diagram

of this resolution see [GhS]. In fact, the 3-manifald2, 3, 11) carries only two
(nonisotopic) tight contact structures [GhS], and both can be filled by some Stein
structure on the 4-manifold given by Figure 12 of [GhS].) It seems natural to con-
jecture that any Stein filling of (2, 3, 11) is diffeomorphic either to this resolution

or to the Milnor fiber described above.
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