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Semigroups of Holomorphic Self-Maps of
Domains and One-Parameter Semigroups
of Isometries of Bergman Spaces

WiLrLiaM E. HORNOR

1. Introduction

The study of composition operators on Banach spaces of functions holomorphic
in the unit disc has attracted considerable attention over the past few decades.
The monographs of Shapiro [17], Singh and Manhas [18], and Cowen and Mac-
Cluer [8] address a wide range of topics concerning properties of these operators
on classical Banach spaces of analytic functions and bear testament to the vital-
ity of the subject. Cowen and MacCluer also treat topics such as compactness and
boundedness of composition operators on the Hardy spaces of the unit ball. When
studying composition operators on Banach spaces of holomorphic function on do-
mains in higher-dimensional complex Euclidean space, it soon becomes clear that
the disc is an especially friendly environment for the study of composition oper-
ators. Even classical boundedness results in the context of the unit disc have no
analogue in the multivariable setting, though partial results have been obtained in
this setting. (See, for example, [6] and [22] or [8].) This has motivated us to inves-
tigate properties of composition operators on the natural Fréchet space of functions
holomorphic on domains in complex Euclidean space. Here continuity, and even
compactness, is automatic for composition operators, and a natural problem con-
sists of finding a necessary and sufficient condition for equicontinuity of families
of composition operators. Such a condition naturally involves the geometry of the
underlying domain and leads to yet another characterization of domains of holo-
morphy. This question occupies Section 2.

In Section 3, we turn our attention from arbitrary families of composition op-
erators to strongly continuous semigroups of operators. We again consider our
operators as linear transformations on the natural Fréchet space of holomorphic
functions on a domain in compleX-space. In this context, we are able to restate
problems concerning semigroups of (nonlinear) holomorphic self-maps of domains
in finite-dimensional complex space in terms of questions regarding semigroups
of linear mappings on an infinite-dimensional space. In particular, we employ re-
sults on infinitesimal generators of strongly continuous semigroups of operators
on Fréchet spaces to compute the infinitesimal generators of these nonlinear semi-
groups. We also derive several technical results that are used in Section 4.
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In the final section, we consider semigroups of weighted composition operators
on Bergman spaces of functions holomorphic on Runge domains. Employing a
characterization of the linear isometries of these spaces due to Kolaski [13], we
characterize the strongly continuous semigroups of isometries of non-Hilbertian
Bergman spaces over Runge domains. Here our results are complementary to those
of Berkson [3] and Berkson and Porta [4; 5] on the Hardy spaces of the unit disc. A
recurrent theme in the analysis of composition operators is an examination of the
relationships that exist between function-theoretic properties of the inducing maps
and operator-theoretic properties of their associated composition operators. We
conclude this section with a study of the connections between mapping properties
of a semigroup of holomorphic self-maps of a domain and symmetry properties of
the infinitesimal generator of an associated semigroup of weighted composition
operators on a canonical Hilbert space of holomorphic functions on the domain.

For eachN € N, let ||y denote the Euclidean norm di", and suppos&
is an open connected nonempty subset &f Denote byH (2, CM) the Fréchet
space ofCM-valued holomorphic functions ai topologized by the collection of
norms

I fllx :=maX]|f(2)|m :z€K},

where K ranges over all compact subsetsof(see e.g. [11]). We writdd(2)
for H(Q2, CY) and the customarly | for |-|1. Furthermore, we writéd (22, Q) for
the collection of all holomorphic self-maps ©f with the (topological) subspace
topology inherited fromH (Q, CV).

Before introducing the major objects of our interest, we tend to some notational
matters. First, we denote the open disc in the complex plane with certed
radiusr by D(a; r). The open unit disc centered at the origin is simply denoted
by D. More generally, the open ball i@V centered at and having (Euclidean)
radiusr is written asB(a; r). For anya € CV andN-tupler of positive real num-
bers, we denote b®(a; r) the polydisc]'[fc\’=1 D(ay; ri). As before © will always
represent a domain in complex Euclidean space /amill denote the restriction
of the identity function tq2. If X is a topological space, we writeCcc X to in-
dicate thatS is a precompact subset &f. We denote byl the identity mapping
on H(2) and use the unappealing but concise notafiprix < ¢} in place of
{f e HKQ,C) : || fllx < €}. The notation O will play multiple roles as the zero
vector inC" and as the zero function i (), but what is intended should be
clear from the context. FinalllR™ denotes the set of nonnegative real numbers.

2. Equicontinuous Families of Composition Operators
and Domains of Holomorphy

For eachd € H(2, ) we define a linear operat@ly : H(Q2) — H(R2) by

Cof =fod.

Suchcomposition operatorkave been studied extensively in the setting of Hardy
or Bergman spaces ab and in more general domains. When the underlying do-
main 2 is the unit disc, the continuity af 3 on both Hardy and Bergman spaces



Semigroups of Holomorphic Self-Maps of Domains 307

is assured. Whefe is a domain inrCV (N > 2), the question of continuity of ¢
on corresponding Banach spaces of analytic functions is a difficult one, and only
partial results have been obtained (see e.g. [6; 8; 22]). However, in our setting of
H(R), continuity of eachC¢ is a near triviality.

For any familyF c H(R2, Q), letT"= denote the associated fam{i¢ s} ¢ # Of
composition operators oH (R2), and for each compact subgétof Q, let K :=

User (K.

ProrosiTioN 1. For any familyF c H(S2, 2), the first two conditions listed be-
low are equivalent and imply the third, and the third condition implies the fourth.

1. KF cC Q for every compacK C .
2. F CC HQ, Q).

3. 'z is an equicontinuous family.

4. Kr cc C" for every compack C Q.

Proof. Supposek » CcC Q wheneverKk cC 2. Then by Montel’s theorem, ap-
plied to the component functions of the membersFofany sequencéd,} in F
has a subsequen¢®,,, } convergent to somé € H(<2, CN). For everyz € Q we
have{z}r cc @, and it follows thatd € H(2, Q2).

Next, suppose that the closufeof F in H(2, Q) is compact and consider any
compactk cc 2. By the Arzela—Ascoli theoreniF is an equicontinuous fam-
ily and for each; € Q we have{z} r CC Q. So, given any. € Q, there exists an
¢ > 0 such that digid(z), 9R2) > 2¢ holds for all® € F, and by the equiconti-
nuity of 7 there is & > 0 such that®(w) — ®(z)|ny < ¢ for everyw € B(z; 3)
and® € F. ThusB(z; §) r is a bounded subset 6f with positive distance from
9$2, and our seK can be covered by a finite collection of such balls. It follows at
once thatk » cC Q.

Suppose now that for eadh c C  the closurek ~ of K r is a compact subset
of @, and letV be an arbitrary open neighborhood of (Hii<2). Then there exists
acompactsek andare > Osuchthaf||-||x <&} C V. NowU = {|- ez < €}
is a neighborhood of 0 satisfyinGe (U) C V for every® € F, and we see that
[z is equicontinuous. Alternatively, we might note that for egch H(2) and
K cc Q we have

SURlICo flix - ®eF} = I flig; < o0,

and equicontinuity follows from the Banach—Steinhaus theorem.

Finally, suppose thak » is not bounded for som& cc Q. Then there exist a
sequencg®d,} in F and a sequendg ,,} of points of K such thaiz; ®,(z,)| —
oo asn — oo for one of the projection maps (w) := w;, and hencgCo 17} oc r
is unbounded i (2). If T'x were an equicontinuous family, th§@'e 7} e x
would of necessity be bounded, and we concludethais not equicontinuous.

O
CoroLLARY 2. For each® € H(L2, ©2), the composition operatafy is contin-
uous OnH(£2).
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We remark that (€2) is actually a Montel space, and consequently that any subset
G of H(2) which is bounded in the sense that §up|ix : f € G} < oo for every
K cc @ has compact closure iH(2). SinceH(2) is a Fréchet space, continu-
ous operators ol (2) are bounded (i.e., they map bounded sets to bounded sets),
and it follows thatC¢, maps bounded subsets@f2) onto precompact subsets of
H(L2). Thus every composition operat6, on H(2) is a compact operator.

In the one-dimensional setting, precompactneds pin 2 for everyK cc Q
is clearly a necessary condition for the equicontinuity'ef To see that this is
not the case in higher dimensions, fet= P(0; (1, 1)) \ {0}, for eachr > 0 de-
fine®d,: Q — Q by ®,(z) = ¢z, and takeF = {®,},>0. We note that for every
nonempty subsek’ of 2, the origin is an accumulation point & not in2, and
SOKr ¢ Q. Let V be an open neighborhood of 0 H(2) and choose an > 0
and a compact st ¢ Q such that{||- ||x < ¢} C V. For somer > 0 we have
®,(K) C Q, .= P(0, (r,r)) for all r > 0. By Riemann’s theorem on removable
singularities, anyf € H(Q2) extends to a function, which we shall also denote by
/. that is holomorphic on all oP(0; (1, 1)) [11, Cor. D5]. By the maximum mod-
ulus theorem, we have max |Cq, o f(z)| < MaX.eg, | f(z)| forallz > 0. Thus
U = {ll-llag, < ¢} satisfiexs,(U) C V and we conclude thdtr is an equicon-
tinuous family despite the fact th&tr cc < fails to hold for every nonempty
K cc Q.

Our next result generalizes this example and provides a characterization of do-
mains of holomorphy in terms of families of composition operators.

TueoreM 3. For any domair2 ¢ C¥, the following statements are equivalent.

1. Qis a domain of holomorphy.

2. ForanyF C H(L, Q), the familyT'x is equicontinuous if and only iF CcC
H(, Q).

3. For everyb € 9Q2, the setSo. (b) := {f € H(Q2) : limsup,_,,| f(w)| = oo} is
of second category i/ ($2).

Proof. Suppose&? is a domain of holomorphy and I C H(2, 2) be a family
for which there exists & cc Q such thatk  cc  fails to hold. If K~ is un-
bounded, thefCq¢ 7;} s £ is unbounded for some coordinate functigrand it fol-
lows thatl"~ is not equicontinuous. IK ~ is bounded, then there exists a sequence
{®,}.en In F and a sequende, },.cn in K for which lim,,_, o ®,(z,) = b € 0Q2.
By [11, Thm. G7], there exists afie H(2) for which lim sug f(®,(z,))| = oo,
from which we observe thdt=( /) is unbounded and hence thgt is not equicon-
tinuous. In light of Proposition 1, we conclude that for any domain of holomorphy
Q and familyF c H(L2, ©2), equicontinuity of the family"~ is equivalent to the
condition thatk » CC @ wheneverk CC Q.

Suppose&? is not a domain of holomorphy. Then, by [11, Thm. G8], there exists
a pointa € Q and a polydiscP(a; r) not wholly contained ire2 with the prop-
erty that, for everyf € H(SQ), the Taylor series folf centered at: converges
throughoutP(a; r). Choose a poink € (0Q2) N P(a; r), and letF = {®,},cn be
a sequence of holomorphic self-mapsoivith ®,(Q) cC P(b; n~Yr) N P(a; r)
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for eachn. For f € H(Q2) denote byf the element ofH (P(a; r)) defined by
the Taylor series expansion gfabouta. Now for some positive < 1 we have
Co, f(Q) C f(P(a; er)) for eachn, and we observe that the orbit gf under
the family 'z is a bounded subset & (Q2) for eachf € H(R2). It follows from
the Banach—Steinhaus theorem tAgtis an equicontinuous family of operators,
even thoughk » cc Q fails to hold for any nonemptK cc Q. We conclude
that if a domaire2 is not a domain of holomorphy, then there exists a farsily
H($2, Q) for which K » ccC < fails to hold for every nonempti cc 2 but for
which 'z is equicontinuous.

Next, suppose there exists a pairg 92 for which the sefS, (b) is of first cat-
egory inH(2). Choose a familyF = {®,},eny C H(2, ) for which ®,(Q) C
P(b; n~%r) holds for someN-tuple r of positive numbers and eaeh For each
f e H(Q)\ Sw(b) we have sup.q|f o ®,(z)| < oo holding for alln sufficiently
large, and it follows thal' = (f) is bounded for eaclf belonging to a set of sec-
ond category. It now follows from the Banach—Steinhaus theorenmithas an
equicontinuous family while for every nonempty subketf Q2 we haveb € K r.
From this we conclude tha&t is not a domain of holomorphy.

Finally, suppose again th& is a not domain of holomorphy. For any polydisc
P(a; r) chosen as before, there exists a positive 1 such thatP(a; er) g Q. It
follows thatS.. (b) = @ for everyb € P(a; er) N 0Q2. O

We close this section with a brief discussion that serves to place the composition
operators ond (R2) in their proper context. It turns out that, for any domain of
holomorphy<2, the composition operators are tGealgebra homomorphisms of
the Fréchet algebr& (R2). By the character theorem, a dom&nc C" is a do-
main of holomorphy if and only if, for every multiplicative linear functionabn
H(R2), there exists a pointe @ such thaty(f) = f(z) forall f € H(2) (see [10,

p. 162]). Suppose th& c CV is a domain of holomorphy and that H(Q) —
H(Q) is aC-algebra homomorphism. For each pairt 2, let x, denote the point
evaluation at. Then for each € Q the mappingy; c «: H(R2) — C is a multi-
plicative linear functional, and hence there existb@) € 2 such thaty, o« =
Xo(- In particular, we haver; (®(z)) = am;(z) for eachj, and consequently for
any f € H(Q) it follows that

af(z) = f(P(2)) = f( ZO”T_/(Z)@)’
j=1

wheree; denotes thgth member of the standard ordered basisddr. We have
an; € H(Q) for eachj, from which we conclude thab € H(Q2, ) anda = Co.

3. One-Parameter Semigroups of Compaosition Operators

DEFINITION 4. A one-parameter semigroup of holomorphic maps on a domain
Q in CV is a continuous mapping: R* — H(Q, Q) such thatdy, = I and
®,,; = &, o @, holds for alls, r e RY.
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We henceforth refer to one-parameter semigroups of holomorphic maps simply as
semigroups.Clearly we may regard a semigroup as a continuous mappinf

R* x Q into © with the properties that — ®(z, z) is holomorphic for each e

RT and®(s +t,z) = O, ®(s,z)) fors,r € RT andz € Q. Associated with

any semigroupb on a domairt2 is the semigrougCs, },>0 0f composition oper-
ators. By Corollary 2, eacliy, is a continuous linear operator éf(2), and the
semigroup{Cq, },>0 is strongly continuousiccording to the following result.

ProrosiTiON 5. For each semigrou® and eachf € H(R2), the mapping —
Cq, f Of Rt into H(2) is continuous.

Proof. For eachl’ > 0, the family{Cq, }o<,<7 IS equicontinuous. It follows that,
for eachf € H(2), the family {Co, f}0</<7 is bounded inH(£2) and thus is lo-
cally equicontinuous. The mapping~ f(®(z, z)) is continuous for fixed € @,
and our result follows. O

DEFINITION 6. Suppose: is a measure on a sél, X is a topological vector
space on which the continuous du&l separates points, afid Q — X is a func-
tion for which Af is u-integrable for eaclh € X*. If there exists a vectoy € X
such that

Ay = / Afdu
Q

for every A € X* then we define

/Qfdu:y'

Now suppose thad is a semigroup on a domaid? ¢ C" and thatf € H(R).
For eachr > 0, the functions — Cqo, f = f o ®, from the compact spaa@, :=

[0, r] to the Fréchet spack(2) is continuous and, by [16, Thm. 3.27], the integral
of this function with respect to the Borel probability measdg(s) := ¢t ds on

0, exists and lies in the closed convex hull{gfo ®,}o<;<,. Denoting byA , the
evaluation functional at, we have

Fi(2) = A, / Co f dyus(s) = /
o

o

l t
A Co, fdu,(s) = ;/O f(@(s,z)ds

andF; — fin H(Q) ast — 0*. Also, fort e R™ we have

1 t t 1 t+h 1 h
—<Cc]>h/ Cq%_fds—/‘ Ccp&fds):—/ Cq;.xfds——/ Co, fds
h 0 0 h J; hJo

= Co, f— f

1 t+h
z/ C@des
t

lies in the closed convex hull dff o &,},<s<;+,. We define an operatof ¢ in
H(2), called thenfinitesimal generatoof the semigrougCe, }, by

ash — 07, since
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T -1 _ T -1 _
Aof = lim h"X(Co, —I)f = lim h™Ca, [ = f),

where the limit is taken inH(2). The domainD(A¢) of Ag is just the set of

all f € H(Q) for which the indicated limit exists. We have demonstrated that,
for every f € H(Q2) and everyr > O, the functionF; as defined previously is in
D(Agp) andF; — f ast — 0T. ThusAe is densely defined and

t
qu/ Cofds = Co f— f
0

holds for eachf € H(2). For everyf € D(Ag) andt > 0 we haveCq, f €
D(Aq), and an easy calculation shows tHa§Cq, f = Co, Ao f.

THEOREM 7. Suppos€Cq,};>0 IS @ Semigroup of composition operators on a
domaing in C¥ with infinitesimal generatoA . ThenD(Aq) = H(Q) and

N 3
Aof =Y Gi-—f
k=1 92k

for everyf € H(Q), whereG = lim,_ o+ h~(®;, — Iq) andGy := m; o G.

Proof. Supposef € D(As), and letK be a fixed but arbitrary compact subset of
Q. Then givere > 0, there exists a positive = §(K, ¢) < 1 such that both

|fo®,(z) — f(2) —hAe f(2)| < he
and
|f o ®4(2) — f(2) — Df(2) - (Pp(2) — 2)| < |Pn(2) — z|ne

hold whenevet € K and O< h < §, whereDf(z) denotes the derivative gof at
z. It follows that, for all suchk andz, we have

IDf(2) - X (@p(2) — 2) — Aa f(2)| < A+ [hHDL(2) — DIw)e. (1)

We first establish thath ~%(®), — 1)} o< <5 iS uniformly bounded oik. Other-
wise, there exist a null sequenge,} in (0, §), a sequencéz,} in K, and a unit
vectoré € C¥ such that

0 < ry 1= |l (P, (20) — 20)ly — 00
and
& =1 (N (@, (20) — 20) — &
asn — o0. SinceD(Ag) is dense irH (2), for any integer 1< k < N there exists
asequencgf;} in D(Aq) converging inH (2) to the projection functiom; (w) =
wg. But then the sequend®f;} converges tor, (where we now think ofr, as

the 1x N matrix whose only nonzero entry is a1 in thi& position) uniformly on
compact subsets @t, and we choos¢ € D(Ag) satisfying

|7t — Df (z)) - w| < ¢/2
for all w € By and alln. Now, for all n sufficiently large, we have
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|Df(22) -& — Df(2) - &l + |DF(20) - &n — 17 A0 f(20)| + 11 A0 f(20)] < €/2

as well, and we conclude that, (§)| < €. As ¢ > 0 was arbitrary, it follows
that¢ is the zero vector, a contradiction. Sinkecc  was arbitrary and since
{®,,(K)}s<n<1 is clearly bounded, we conclude thgt=X(®;, — Iq)}o-n<1 is @
(bounded) normal family i (2, CV).

Next, supposéh,} is a null sequence if0, 1] for which

h i@, —Iq) — G
in H(2, CY). Then, by inequality (1), we have
Df -G =Aqsf
forall f € D(A¢). Choosing a sequendg;} as before yields
T oG :jli_)ngoA¢fj
in H(RQ), so0G := lim_ o+ h X&), — Ig) exists inH (2, CN).

For the last step in our proof, it is convenient to employ Landau’s “lidtle
notation. Forf € H(2) and.z > 0 we have demonstrated that

hG = (&) — Ig) + h - o(h)
uniformly on compact subsets ©f. Thus

(fo®p—f)—hDf -G=(fo®)—f)—Df - (P —Iq) +h-o(h)
—h-o(h)

in H(2), and the theorem follows. O

The holomorphic mapping whose existence is assured by the preceding theo-
rem is called thenfinitesimal generatoof the semigrougp. In the following we
denote byd, the derivative ofd (¢, z) with respect ta.

CoroLLARY 8. Let ® be a semigroup of holomorphic self-maps of a dongain
in CV with infinitesimal generato6. Then for each € 2, the semigroup is the
solution of the initial value problem

Y(t,2) = G(Y(1,2)); Y(0,2) =z @
Also, @ is the solution of the initial value problem
Z=(DZ)-G; Z(0,) = Iq.
Proof. Note that
d(t,7) = hli)rrg+ XDt + h, 2) — O, 2))

= hlir’r& R @ (h, ®(1,2)) — D(t, 2)) = G(P(t, 2))

forallz > 0, so )
b, = G(®,) (3
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as claimed an@, = I by assumption. We also have

N
d
ApCo,mtj = E Gy - g(ﬂj 0 ®) =m;(DP; - G)
k
=1

and
N 9
Co,Aomj = Co, E Gy - inj =7 (G(®,)),
k
=1

from which we conclude that
&, = G(®,) = DD, - G. O

CoroLLARY 9. If ® is a semigroup of holomorphic self-maps of a dom@im
CV, then eachd, is univalent.

Proof. We first note that the smoothness of the associated generagmisures
the uniqueness of solutions of initial value problems. Now suppose that for some
t* > 0 and distinct pointg, w € Q2 we haved,«(z) = ®,+«(w). Then there exists a
minimalzg > 0 such thatb,,(z) = ®,,(w), and it follows thatb,(z) # ,(w) for
all r € [0, #p). This contradicts the uniqueness of the solution (3) thraagt).

O
Alternatively, Abate [1] provides an elementary proof of the univalence of éach
without reference to the infinitesimal generator.

CoroLLARY 10. Any semigroupb = ®(t, z) of holomorphic self-maps of a do-
main Q in CV is jointly C* in the arguments and z, real analytic inz, and
holomorphic inz.

Proof. See [12, Thm. 9.1]. O

The following proposition will be used in the next section, where we characterize
the semigroups of isometries on certain Banach spaces of analytic functions. In
its proof we make use of the differential operatdrs), andd, whose definitions

and elementary properties are found in any modern reference on several complex
variables.

ProposiTION 11. Supposeb is a semigroup on a simply connected dom@im
CN. Then there exists a continuous mappingR* x @ — C such that, for each
t € R*, the functionz — L,(z) := L(t, z) is holomorphic,L is the zero func-
tion, and

exp(L,) = detD®,

Proof. For a semigrou® on 2, each mapping +— detD®,(z) is both holomor-
phic and nonvanishing; hence
u, .= log|detD®,|

is pluriharmonic for alk € R*. Eachdu; is therefore al-closed form on the sim-
ply connected domaite, and it follows that for each € R* there exists &>
function F, on  such that
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dF, = du,.
Fixing a pointa € 2, for anyz € Q and any rectifiable patp: [0, 1] —  with
y(0) = a andy (1) = z we have
[ ou =0 - F@. (4)
Y

By adding an appropriate constant to e&thwe can assume thaét(a) = 0 holds
for all t. For anyz € Q andh € C such that; + he, € Q, wheree, is thekth
element of the standard ordered basis@ét we have

z+hey
hE (2 + hey) — Fi(2) = ht / o
= h_1/ Z <—u,>(z + shey)djxh ds

:/(iu,>(z+shek)ds
0zk

wheresj, is the Kronecker delta. Hence
. 0
lim h™(F,(z + hey) — Fi(2)) = —u(2),
h—0 0Zk
and it follows thatF;, € H(Q) with 0F, = du, for everys > 0. Now dF;, =
oF, + 0F, = 0F, and
d(Ft+F}_Mt):sz+dIFt_dut
= 0F, + dF, — (Ou; + du,)
=3uf+a_u,—3u,—éu,
=0.

This implies that, for each> 0, we have 2 R&, = u, + ¢, for some constant;;
sinceF;(a) = 0, we havec, = —u,(a). Thus

I:\t = 2F; +u;(a)

is @ holomorphic function of for fixed? e R*, and by equation (4) the mapping
(t,z) — L,(z) is continuous oiR™ x Q. We have

lexpL;(2)| = expReL,(z) = |detD®,(z)|
for all (¢, z) e Rt x Q, from which it follows that
detD®,; = «; expf,,

wherea, = detDth(a)/expLA,(a) = detD®,(a)/|detD®,(a)|. Denoting by
argo, the continuous function oR™ for which exi arga;) = «, and argrg =
0, we setIdetD®,(a)) := u,(a) + i arge, and

4
L,:=L,+iarga, = 2[ dlog|detD®;| + In(detD®,(a)). O

a



Semigroups of Holomorphic Self-Maps of Domains 315

With L, as just defined, we note that
expo Ly, =detDd,, 4,
= detD(D]l . (deth)[z) o CD[]_ = eXpO (Ltl + LfZ o (Dtl)s

and it follows that there exists an integesuch that_,,,, — L;;, + L, o ®,, =
2km for all 11, 2 > 0. But L is the zero function o2, and we conclude that

Ly, =Ly + Liyo®y )
holds for allzq, 12 > 0.
If ® has a fixed point € €2 (i.e., a pointz such thaid,(a) = a for all r e RY),
then we are of course free to choose it as our “base point” for the integral in (4),
and it follows that
detD®,,,(a)  detDd,,(®,(a)) detDd, (a)
|detD®,, 1,(a)]  |detD®,,(D;,(a))| |detDd, (a)|

for all 11, 1, > 0. Hence there exist € R such that

Ui+ = = U0y

¥4
L,(z) = log|detD®;(a)| + iat + 2/ dlog|detD®,|.

The mapping& € H(2, CV) that generate semigroups on complete hyperbolic
domains c CV are characterized in [1]. Actually, Abate’s work is concerned
with any complex manifoldl equipped with a complete continuous Finsler metric
H and characterizes infinitesimal generatorgletontractions. As a corollary to
his more general result he notes that, in particula® it C" is complete hyper-
bolic thenG € H(2, C") generates a semigroup if and only if

d(x@°G)-G =0,

wherexq: CY — R* is the Kobayashi pseudometric. In an earlier paper [5],
Berkson and Porta characterized the infinitesimal generators of semigrodps on

4. Semigroups of Isometries on Bergman Spaces

Although strongly continuous semigroups of bounded composition operators on
Banach spaces of holomorphic functions are of interest and though questions con-
cerning their infinitesimal generators can be addressed employing methods similar
to those used here, we choose instead to investigate a special class of semigroups
of weighted composition operatoos a particular Banach space of holomorphic
functions. We recall that the strongly continuous semigroups of homomorphisms
of H(Q2) are precisely the semigroups of composition operators. In this final sec-
tion we show that the strongly continuous semigroups of linear isometries of an
important Banach space of analytic functions are semigroups of weighted compo-
sition operators. Our results are strongly related to those of Berkson [3] character-
izing the semigroups of isometries on the Hardy spdéeof D, where as usual

we require 1< p < oo, p # 2. We note that the paper of Siskakis [19] on semi-
groups of composition operators on weighted Bergman spaces on the unit disc and
his survey paper [20] are particularly relevant to several topics in this paper.
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A bounded domain of holomorph c C¥ is called aRunge domairif the
polynomials are dense iH(S2). For p > 1 we denote by.”(Q2) the Lebesgue
space o2, where the underlying measure is Lebesgue measyraormalized
so thatmq(R2) = 1. The Bergman spack} () consists of allf € H(2) with fi-
nite L?-norm| f1l,,. If { £} is a sequence i (£2) converging tof € L7() in the
L?-norm, thenf € H(2) and the sequence convergegtm H(2). Consequently
we can identifyL? () with a closed subspace 6 (2). Our aim is to investigate
the structure of strongly continuous semigroups of linear isometrie€ @) for
1< p < o0, p # 2. For these spaces, Kolaski [13] has provided us with a char-
acterization of the linear isometries.

THEOREM 12. Let Q be a Runge domain with < p < oo, p # 2, and let
T:LY(Q) — L5(Q) be a linear isometry. Then there exidte H(Q, Q) and
w € LE() such that

(TF)(2) = w(2) f o P(2)

forall ze Q and f € LL(Q2). Moreover,® () is dense ire2 and

[ (gl dng = [ gama
Q Q
for every bounded Borel functignon Q2.

We note thatv = T'1 so thatw, and consequentlg, are uniquely determined by
T. Settingg = 1— xe(q), We have

/ (L= o) dmo = f (L= xow@) © Dol dmg = O,
Q Q

and we see thad is full (i.e.,mq (2 \ ®(R)) = 0). If we further assume thab
is injective, which will prove to be the case of interest to us, then Kolaski’s result
and the change-of-variable formula ensure that

/kgOQMdemgzz/' gdmgzz/ngOQMeUﬂmzde
Q ®(Q) Q

for every bounded Borel functiopon 2, where deth ® denotes the determinant
of the complex Jacobian d@$. Letting S represent an arbitrary Borel subsetf
and setting; := xa(s), it follows that

lw|? = |detD®|?. (6)

THEOREM 13. Supposd < p < oo (p # 2) and thatQ is a simply connected
Runge domainift™. If {7}, is a strongly continuous one-parameter semigroup
of linear isometries ofL5(Q) into L5(Q), then there exist a unique semigro®p

of full analytic self-mappings of2, a continuous functioi.: R* x @ — C sat-
isfying exp(%L(t, -)) = detD®,, and a real numbet: such that

T,f = expliat) exp(2L,) - f o @, (7)

forall f e LE (), whereL, := L(t, -). Conversely, given a one-parameter semi-
group of @ of full analytic self-mapping®, the function. constructed in Propo-
sition 11, and any real numbey, it follows that the family{7;},>0 as defined by
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(7)is a strongly continuous one-parameter semigroup of isometrigs ¢®) into
L) forall p > 1

Proof. SupposéT;},>o is a strongly continuous semigroup of linear isometries on
LE(Q) withl < p < 0o, p # 2. Then, by Theorem 12, for each> 0 there exist
anw; € L1 (Q) and a full holomorphic mapping, : Q — < such that

Tif =w - fod
for eachf e L4(2). Taking f = 1, we obtain
Oty = Ty, =T T:,1 = Thwo = w4y - @, 0 Py
for all 11, 1, > 0. For everyf € L5(Q) and for allz1, t» > 0, we have
Wy 0 0 Ppy - f oD@y, = Tyr, f = Ty(wr, - f o Pypy)

= 0, 0Dy - f oDy 0Dy

Since H(2) is an integral domain, we conclude that eitlagt o &, = 0 or
fo®uin, = fod, o d, holds for everyf € LE(Q). The former condition
yields the contradictiof;,;,,1 = 0, and sincel.;($2) separates points &t, we
conclude that

cbt1+t2 = q)tz © chl

for all 71, t, > 0. The strong continuity of7;},-0 implies that
o, =T1— T)1=w,

ast — toin L5(Q) for all 1o > 0, and this in turn implies thab, — w,, uni-
formly on compact subsets 6f. From this we readily deduce that the mapping
w: Rt x @ — Cgiven byw(t, z) = w,(z) is continuous. Similarly, taking to

be thekth projection functionr;, we have

w; -7 0 @ =Ty — Tiymp = Wy - 7 0 Dy

ast — toin LE(Q) for all 1o > 0, and it follows thatw,®, — w,,®,, in
H(2, CV). Chooserg € 2 andR > 0 such thaty,, has no zero in the closed ball
B(zo; R), and suppose thdt,} is a sequence iR converging targ for which
{®,, } converges to som& € H(Q2, CV). Now for all n sufficiently large we have
wy, (z) # Oforallz € B(zo; R), and we conclude thalt = ®,, on B(0; R). Since
Q is bounded, the family®, },-¢ is normal inH(2, CV), and in light of Vitali’'s
theorem we conclude thg®, } converges tab,, in H(Q2, ) whenever{s,} is
a sequence ifik* converging torg. Thus the mapping — @, is a continuous
(semigroup) homomorphism froR™ into H($2, ).

Next, letL: RT x Q — C be as given in Proposition 11 withy = 0. Now for
any p > 1landr > 0 it follows from (6) that

lw;| = |detD®,|>? = |expo L,|*/? = exp(l% ReL,) = |exp(§L,)|

and hence that for everye R™ there exists a unimodular complex numbesuch
thatw, = o, exp(%L,). By the continuity ofw and L, we see thaty, depends
continuously orr. We note that
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2 —
) eXdELll-Hz) = W1+t

=y - 00 Py

= o, 0, XP(2 L) eXp(2 L, 0 Dyy)
= 0,0, @XP(2(Lyy + Liy 0 )

= 0,0, eXp(%L,l_HZ)

for all 1, 1, € R*, where we have used (5) in the final equality. It now follows that
for somex € R we havex, = exp(iat) and consequently that

w, = expiat) exp(%Ll).
Thus, for each e R* and f € L5(Q2) we have
T,f = exp(iat)exp(%L,) - fod,.

Next, supposeb and L are as in the statement of the theorem. We show that
the family of operatorg7;},-o defined by (7) constitutes a strongly continuous
semigroup of isometries ab¥’(2). That eacly; is an isometry of.”(2) is anim-
mediate consequence of the change-of-variables theorem. In light of Corollary 8,
for eachz € Q2 there exists a maximal, € (0, oo] such that®(-, z) extends to
a solution of the initial value problem (2) on the intervale,, co) (see e.g. [2,
Thm. 7.6]). Set

Q(G) ={(t,2) 1t € ((—&;, ), z€ R}

and defined: Q(G) - Q(G) by ®(1,z) = (1, d(1,2)). It follows from [2,
Thm. 8.3] thatQ(G) is open inR x 2, and using Corollary 10 we conclude
that & is a diffeomorphism of2(G) into itself. Suppose thak is a compact
subset of2 and thatrg > 0. If z € db;l(K) for somer € [0, t¢], thenz €
72(d7X(0, 0] x K)) CC Q. For each continuous function: 2 — C, denote
by o(g) the support ok and letC.(2) represent the collection of all continuous
complex-valued functions of2 having compact support with the supremum norm
|- FOreveryg € C.(2) andr > 0 we have

o(T;g) C ;X0 (g))
and .
Ti(@) = |J o(Tig) C mA@7X[0, 10] x 0(g))) CC Q.

O<t<rto

Thus

sup(|7;g(2)| : 1 €[0, 0]} < lIgllxo - sup{exp(%Ls(w)) :s€[0,10]. w e T4p(8)}
forall z € ©, and it follows from Lebesgue’s dominated convergence theorem that

lim 1 Tig — gll, = 0.

Now C.(2) is dense inL?(2) and{T;};>o is an equicontinuous family of op-
erators for which lim_ o+ ;g — g = 0 for all g € C.(2). We conclude that
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lim,o+ T f — f = 0 forall f € L?(R2) and hence thatT;},-o is a strongly
continuous semigroup of isometries HA(2). Clearly L% () is invariant under
{T:},>0, and our characterization of strongly continuous semigroups of isometries
LE(Q) is complete. O

LeEmMa 14. Let Q be a simply connected domain@" and & a semigroup on
Q with infinitesimal generatoG. Let L be a branch oflndetD®, as in Propo-
sition 11 and suppose € R. Define a family{S,};>¢ of linear operators from
C>(Q) into itself by

S, f = expliat) exp(%L,) - fod,,
whereC*(2) denotes the collection of complex-valued functiongathat are

infinitely differentiable with respect to each of tA¥ real variablesx; := Rezy,
vk ‘= Imz;. Define a mappin@ in C*°(2) by

Bf = lim, NS f = 1)

where the limit is taken in the pointwise sense and the domatistthe collec-
tion of all f € C*°(2) for which the indicated limit exists and defines a member
of C*°(2). Then the domain a8 is all of C*°(R2) and, for eachf € C*(Q2), we
have

N N

2 d ad -
Bf=f (za 2 ; asz"> + (;{Gkazk + G- })f
Proof. For any point; of Q and anyf € C*°(2), the functionH (¢) := f(®(t, z))
is well-defined and continuously differentiable on some intetvad, co) with
¢ > 0, and by the chain rule we have

N d -9

H'(0) = Z{Gka—fm + kaf(z)}.

— 2k 0Zk
Recall that ify is a smooth function defined on an open intervaRiand taking
on values among the invertible elements of the vector spadé »fN matrices
with complex entries, then

d
- dety (r) = dety (1) tr(y "X(t)y (1)),

where trA denotes the trace of a matrik Fix z € Q and consider the function
K(t) := expliat) exp(%L(t, z)). Now for somee > O the functionk is differen-
tiable on(—¢, o0), and

K'(t) = expliat) exp| —L(t, 2) || i + ——L(t, 2)
)4 ot p

2 2 detDa(t, z))

. 2 1
= expliat) exp(;L(t, Z)> <l“ + p detD®(, z)

. 2 ) 2 4 .
= exp(iat) exp<;L(t, z)) (la + ; tr((Dq>(t, 7)) - DO, z)))
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forall + > 0. In particular, we have
K'(0) = ia + 2tr DG (2).
Finally, for eachf € C*°(R2) andz € 2 we note that
1S f = (@) = explian) exp(5L(1, 2)) - 17 f(D (1, 2) — f(D(O, 2)))
+ tH(expliat) exp(%L(t, 2) -1 f(2)
and it follows, withH defined as before, that

1
!Lrn);(stf — @) =H'(0) +K'(0) - f(2). U

CoroLLARY 15. Suppose the hypotheses of Lemma 14 hold, ant fetp <
oo. Then the restriction of the famils, },~o to L4(R2) is a strongly continuous
contraction semigroup, with infinitesimal generator given by

2L Yooa
Af = F|ia+ = —G)+< G—). 8
f f< pgazk k ; kazkf 8
ReEMARK 16. Although the semigroup of Corollary 15 does not necessarily con-
sist of full self-maps of2, the strong continuity ofS;},>0 still follows as in the
proof of Theorem 13. Note the similarity in form afwith the generator of groups
of isometries of the Hardy space on the unit disc given in [4].

ProrosiTION 17. Suppose thatd is a semigroup of full self-maps of a simply
connected Runge domain @V and thatl < p < co. Define a strongly con-
tinuous one-parameter semigro{i},-o of isometries of.%(R2) as in(7) from
Theorem 13, and considdrdefined in(8) as a densely defined operatorfif ().
Then one of the following statements holds.

1. For eacht > 0: the mappingd, is nonsurjective
c(A)={1eC:Rexr <0}
and B
o(T)) = D.
2. Each mappingd, is an automorphism of2 and {7;} ;> extends to a strongly
continuous group of surjective isometries bf{Q); we have
o(A) C iR
and, for eaclhr > 0,
o(Tr) = explto (A)).

Proof. If ®, fails to be surjective for some > 0, thenT; fails to be invertible.
Forif T, f = w,f o ®, were invertible, its invers&_, would be an isometry of
L) and would consequently have the foffn, f = w_, f o ®_,;, wherew_, €
LE(Q) andd_, € H(Q, Q). But then for all f € Lf(22) we would have

=TT f =w_j0,0P_;f o (P 0d_)),
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from which it would follow that®, is an automorphism af2. Thus we find our-
selves in the first case of [9, Lemma IV.2.19] and, since each opefaieran
isometry of L2(€2), we have eithes(7;) = D or o(7T;) C 8D holding for each
t > 0. (See Exercise 7in [7, p. 218].) Since® (7;) for eachr > 0, we conclude
thato(7,) = D holds for all such.

Alternatively, ® is a semigroup of automorphisms @fand we can extend the
family {7;},>0 to include negative values oy setting

T, f = exp(—iat) exd—%Lt o ®t_1) - fo d)t—l (9)

for all t > 0. Regarded simply as a linear operator@(g2), it is clear that each

T, is injective, and for each> 0 we havef € LL(Q) ifand only if T, f € LE(Q).
Straightforward calculations show thBtI_, = T_,T; is the identity operator on
H(Q), and it follows thaff; is an isometric isomorphism @f, () for everyr € R.

It now follows from [15, Thm. 6.5] tha{T; },>, can be embedded in a strongly con-
tinuous group of surjective isometries with, defined as in (9) for each> 0.

Here we are in the second case of Lemma 1V.2.19 of [9], and the remainder of the
theorem follows directly from Theorem 1V.3.16 of the same reference. O

In our classification of strongly continuous semigroups of isometrigg @®), itis
necessary to exclude the cgse- 2 since, of course, in the (infinite-dimensional)
Hilbert space setting isometries exists in great profusion and Theorem 12 does not
apply. However, in the Hilbert space setting we can bypass the construction of a
branch of IndeD®,, and the family of operators defined by (7) assumes a simpler
form. Now any semigrou@® on €2 gives rise to a strongly continuous contraction
semigroup(S;};>o given by

S, f = expliat) detD®, - f o ®,, (10)

and here we make no assumptionstbheyond requiring that2(2) be nontriv-
ial. We end with several results relating properties of a semigitgpproperties
of operators associated with the infinitesimal generat¢sgdf-o.

THEOREM 18. Suppose tha® is a domain inC" for which L2(€) is nontrivial
and that® is a semigroup o2 with infinitesimal generato6. For eachr > 0,
define the operato$, : L2(Q) — L?(Q) by

S, f =detD®, - fod,.

Then the following statements are equivalent.

1. @ is a semigroup of automorphisms .
2. The operator

N
Af = — (G f)
; 0Zx

is skew-adjoint or.2(Q2), where the domain o is given by

domA = {f € L2() : im0 (S, f — f) exists inL2(Q)}.
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3. The operatorA is skew-symmetric, and the operatars: 7: domA — L2(Q)
are boundedly invertible.

Proof. By Proposition 17, the condition ch is equivalent to the requirement that
each mapping, be a unitary operator oh?(2). By Stone’s theorem, the infin-
itesimal generator ofS, },>o is skew-adjoint exactly when it is the generator of a
strongly continuous unitary group, and by Corollary 15 this generator is given by
A with the indicated domain. For the equivalence of the last two conditions, we
note thatA is skew-adjoint if and only ifA is self-adjoint and then invoke [21,
Thm. 5.21]. O

We denote by">°(€2) the subspace @f *°(2) consisting of those functions whose
supports are compact subsetspand recall thaC > (2) is a dense subspace of
L?(RQ). We denote by -, -) the inner product oi.?(Q). For any closable opera-
tor B in a complex Hilbert spac#, we denote byB the closure of8. The range
of an operatoB will be denoted by ram.

THEOREM 19. Suppose? is a domain inC" and let® be a semigroup of with
infinitesimal generatoG. Regard the familyS,},-0 given by

S, f =detD®, - fo®,

as a contraction semigroup oh?($2), and define an operatoA : CX(Q) —
C>(Q) by

soimo- (Y L6)+ (fol 6l
PN ) T\ T T e )Y

ThenA is a densely defined skew-symmetric operatdri¢e) and A is the infin-
itesimal generator of S, },>0. Also, the following statements are equivatent

1. @ is a semigroup of full self-maps &t;
2. A*=—A; .
.ranfAx1)=ran(A £ 1) = L%(Q).

Proof. ClearlyAg € C2(2) wheneverp € CX (), soA is a well-defined opera-
tor onC2°(€2). We first show that>°(2) is a core for the infinitesimal generator
of {S;};>0. Recalling thatb is a diffeomorphism of2 (G) into itself, we note again
that for anyrg > 0 andg € C°(2) we haveX,,(¢) CC @2, sodetDd - g o ®
satisfies a Lipschitz condition on every compact subs& @). It now follows
that{zr~X(detD®, - ¢ o &, — ¢) : 0 < ¢ < &} is uniformly bounded o152 for some
g, and in light of Lemma 14 we conclude that

lim, 1S — @) = Ag
t—
in L2(2). Now C>*(Q) is a dense subspace 6f(Q) that is invariant under

{S:}i=0, and it follows from [9, Prop. 11.1.7] that is the infinitesimal generator
of the semigroup.
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Fore, ¢ € C°(2) andg € C*(2) we have
(0.0} = (o, ~2-a)
gazk% =\¢, PED 8

_ 0 0
<g—_ @, 1/f> = <<p, ——(g¢)>
0Zk 0z
for eachk, and it follows from routine calculations that

(Ap, ) = (¢, —AY)

for all ¢, ¥ € C*(2). Thus A, and consequently, is a densely defined skew-
symmetric operator i.2($2). It now follows from [21, Thm. 5.21] that the last
two conditions of the theorem are equivalent.

Suppose tha® is a semigroup of full self-maps &t, so eachd, is a diffeo-
morphism ofQ2 onto ®,(2) with mo (2 \ ®,(2)) = 0. By the change-of-variables
theorem, the mappin§, f = detD®, - f o ®, is an isometry of.?($2). Now sup-
pose that, for some> 0, there exists g € L?(Q2) with (S, f, g) = 0 holding for
all f e L>(Q). Then

and

O:/deth),-fodD,~gde
Q

detD®,)o d 1. f.god 1
=/<( t)o t f io t )O©,~|detD®,|2de
Q |detD®,|2 o ®,

:/ detD®; 1 go® 1. fdmg
()

holds for all f € L?(2), and since deb ®!vanishes nowhere ob, (£2), we con-
clude thatz o ®; 1 is the zero element ih?(d(2)) and consequently thatis the
zero element irL.2(S2). It follows that rans, is dense in.?(2) and, since isome-
tries are closed maps, that eaghis a unitary operator oi.?(Q2). By Stone’s
theorem, the generatar of {S:}:>0 is skew-adjoint and we have

Af= A" = —A.

Finally, we suppose that the second condition of the theorem holds and conse-
quently thatA is the generator of a unitary groyf; };cg on L?(Q). For every
t > 0 andy € C>(2) we haveT;¢ € domA, and both
H -1 I -1 _ A
,,an3+h [Tixn — Ti]le = h'LfT(}+h [Th — I1T;¢ = AT1¢
and
. —1, _ . —1 _ _
h'Ln&h [Sivn — Silo = han(]*h [Sh —I]S:¢ = AS,0

hold where the limits are taken It?($2). We note that these equalities hold for cor-
responding two-sided limits provided> 0. Choosing an arbitrary € C>°(2),
we define a functior : Rt — L2(Q) by

H(t) =S¢ — Tio.
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Now for all > 0 we have
H'(t) = AS;¢ — AT,p = AS,¢ — AT,p = A(S,¢ — Typ) = AH(1),
from which it follows that
lim sHIH( +5) = HOJI? = im(s™{H(t +5) = HOL H@ +5) — H®)

= (AH(1),0) = 0.

Hence the mapping— ||H(?)||? is constant oiR*, and sinceH (0) = 0 we con-
clude thatS, ¢ = T;¢ for all + > 0. It follows that eachs, is a unitary operator on
L?(R) and consequently that, for each- 0, the mappingb, is full. O
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