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Domains and One-Parameter Semigroups

of Isometries of Bergman Spaces

William E. Hornor

1. Introduction

The study of composition operators on Banach spaces of functions holomorphic
in the unit disc has attracted considerable attention over the past few decades.
The monographs of Shapiro [17], Singh and Manhas [18], and Cowen and Mac-
Cluer [8] address a wide range of topics concerning properties of these operators
on classical Banach spaces of analytic functions and bear testament to the vital-
ity of the subject. Cowen and MacCluer also treat topics such as compactness and
boundedness of composition operators on the Hardy spaces of the unit ball. When
studying composition operators on Banach spaces of holomorphic function on do-
mains in higher-dimensional complex Euclidean space, it soon becomes clear that
the disc is an especially friendly environment for the study of composition oper-
ators. Even classical boundedness results in the context of the unit disc have no
analogue in the multivariable setting, though partial results have been obtained in
this setting. (See, for example, [6] and [22] or [8].) This has motivated us to inves-
tigate properties of composition operators on the natural Fréchet space of functions
holomorphic on domains in complex Euclidean space. Here continuity, and even
compactness, is automatic for composition operators, and a natural problem con-
sists of finding a necessary and sufficient condition for equicontinuity of families
of composition operators. Such a condition naturally involves the geometry of the
underlying domain and leads to yet another characterization of domains of holo-
morphy. This question occupies Section 2.

In Section 3, we turn our attention from arbitrary families of composition op-
erators to strongly continuous semigroups of operators. We again consider our
operators as linear transformations on the natural Fréchet space of holomorphic
functions on a domain in complexN -space. In this context, we are able to restate
problems concerning semigroups of (nonlinear) holomorphic self-maps of domains
in finite-dimensional complex space in terms of questions regarding semigroups
of linear mappings on an infinite-dimensional space. In particular, we employ re-
sults on infinitesimal generators of strongly continuous semigroups of operators
on Fréchet spaces to compute the infinitesimal generators of these nonlinear semi-
groups. We also derive several technical results that are used in Section 4.
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In the final section, we consider semigroups of weighted composition operators
on Bergman spaces of functions holomorphic on Runge domains. Employing a
characterization of the linear isometries of these spaces due to Kolaski [13], we
characterize the strongly continuous semigroups of isometries of non-Hilbertian
Bergman spaces over Runge domains. Here our results are complementary to those
of Berkson [3] and Berkson and Porta [4; 5] on the Hardy spaces of the unit disc. A
recurrent theme in the analysis of composition operators is an examination of the
relationships that exist between function-theoretic properties of the inducing maps
and operator-theoretic properties of their associated composition operators. We
conclude this section with a study of the connections between mapping properties
of a semigroup of holomorphic self-maps of a domain and symmetry properties of
the infinitesimal generator of an associated semigroup of weighted composition
operators on a canonical Hilbert space of holomorphic functions on the domain.

For eachN ∈ N, let | · |N denote the Euclidean norm onCN, and suppose�
is an open connected nonempty subset ofCN. Denote byH(�,CM) the Fréchet
space ofCM -valued holomorphic functions on� topologized by the collection of
norms

‖f ‖K := max{|f(z)|M : z∈K},
whereK ranges over all compact subsets of� (see e.g. [11]). We writeH(�)
for H(�,C1) and the customary| · | for | · |1. Furthermore, we writeH(�,�) for
the collection of all holomorphic self-maps of� with the (topological) subspace
topology inherited fromH(�,CN).

Before introducing the major objects of our interest, we tend to some notational
matters. First, we denote the open disc in the complex plane with centera and
radiusr byD(a; r). The open unit disc centered at the origin is simply denoted
byD. More generally, the open ball inCN centered ata and having (Euclidean)
radiusr is written asB(a; r). For anya ∈CN andN -tupler of positive real num-
bers, we denote byP(a; r) the polydisc

∏N
k=1D(ak; rk). As before,�will always

represent a domain in complex Euclidean space, andI� will denote the restriction
of the identity function to�. If X is a topological space, we writeS ⊂⊂ X to in-
dicate thatS is a precompact subset ofX. We denote byI the identity mapping
onH(�) and use the unappealing but concise notation{‖ ·‖K < ε} in place of
{f ∈ H(�,C) : ‖f ‖K < ε}. The notation 0 will play multiple roles as the zero
vector inCN and as the zero function inH(�), but what is intended should be
clear from the context. Finally,R+ denotes the set of nonnegative real numbers.

2. Equicontinuous Families of Composition Operators
and Domains of Holomorphy

For each8∈H(�,�) we define a linear operatorC8 : H(�)→ H(�) by

C8f = f B8.
Suchcomposition operatorshave been studied extensively in the setting of Hardy
or Bergman spaces onD and in more general domains. When the underlying do-
main� is the unit disc, the continuity ofC8 on both Hardy and Bergman spaces
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is assured. When� is a domain inCN (N ≥ 2), the question of continuity ofC8
on corresponding Banach spaces of analytic functions is a difficult one, and only
partial results have been obtained (see e.g. [6; 8; 22]). However, in our setting of
H(�), continuity of eachC8 is a near triviality.

For any familyF ⊂ H(�,�), let0F denote the associated family{C8}8∈F of
composition operators onH(�), and for each compact subsetK of�, letKF :=⋃
8∈F 8(K).

Proposition 1. For any familyF ⊂ H(�,�), the first two conditions listed be-
low are equivalent and imply the third, and the third condition implies the fourth.

1. KF ⊂⊂ � for every compactK ⊂ �.
2. F ⊂⊂ H(�,�).
3. 0F is an equicontinuous family.
4. KF ⊂⊂ CN for every compactK ⊂ �.

Proof. SupposeKF ⊂⊂ � wheneverK ⊂⊂ �. Then by Montel’s theorem, ap-
plied to the component functions of the members ofF, any sequence{8k} in F
has a subsequence{8nk } convergent to some8∈H(�,CN). For everyz∈� we
have{z}F ⊂⊂ �, and it follows that8∈H(�,�).

Next, suppose that the closurēF of F inH(�,�) is compact and consider any
compactK ⊂⊂ �. By the Arzela–Ascoli theorem,F is an equicontinuous fam-
ily and for eachz ∈� we have{z}F ⊂⊂ �. So, given anyz ∈�, there exists an
ε > 0 such that dist(8(z), ∂�) > 2ε holds for all8 ∈ F, and by the equiconti-
nuity ofF there is aδ > 0 such that|8(w)−8(z)|N < ε for everyw ∈B(z; δ)
and8 ∈ F. ThusB(z; δ)F is a bounded subset of� with positive distance from
∂�, and our setK can be covered by a finite collection of such balls. It follows at
once thatKF ⊂⊂ �.

Suppose now that for eachK ⊂⊂ � the closureKF ofKF is a compact subset
of�, and letV be an arbitrary open neighborhood of 0 inH(�). Then there exists
a compact setK and anε > 0 such that{‖ ·‖K < ε} ⊂ V. NowU := {‖·‖

KF
< ε}

is a neighborhood of 0 satisfyingC8(U) ⊂ V for every8 ∈ F, and we see that
0F is equicontinuous. Alternatively, we might note that for eachf ∈ H(�) and
K ⊂⊂ � we have

sup{‖C8f ‖K : 8∈F } ≤ ‖f ‖
KF

<∞,
and equicontinuity follows from the Banach–Steinhaus theorem.

Finally, suppose thatKF is not bounded for someK ⊂⊂ �. Then there exist a
sequence{8n} in F and a sequence{zn} of points ofK such that|πj8n(zn)| →
∞ asn→∞ for one of the projection mapsπj(w) := wj, and hence{C8πj}8∈F
is unbounded inH(�). If 0F were an equicontinuous family, then{C8πj}8∈F
would of necessity be bounded, and we conclude that0F is not equicontinuous.

Corollary 2. For each8∈H(�,�), the composition operatorC8 is contin-
uous onH(�).
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We remark thatH(�) is actually a Montel space, and consequently that any subset
G of H(�) which is bounded in the sense that sup{‖f ‖K : f ∈ G} <∞ for every
K ⊂⊂ � has compact closure inH(�). SinceH(�) is a Fréchet space, continu-
ous operators onH(�) are bounded (i.e., they map bounded sets to bounded sets),
and it follows thatC8 maps bounded subsets ofH(�) onto precompact subsets of
H(�). Thus every composition operatorC8 onH(�) is a compact operator.

In the one-dimensional setting, precompactness ofKF in� for everyK ⊂⊂ �
is clearly a necessary condition for the equicontinuity of0F . To see that this is
not the case in higher dimensions, let� = P(0; (1,1)) \ {0}, for eacht ≥ 0 de-
fine8t : �→ � by8t(z) = e−tz, and takeF = {8t }t≥0. We note that for every
nonempty subsetK of�, the origin is an accumulation point ofKF not in�, and
soKF * �. Let V be an open neighborhood of 0 inH(�) and choose anε > 0
and a compact setK ⊂ � such that{‖ ·‖K < ε} ⊂ V. For somer > 0 we have
8t(K) ⊂ Qr := P(0, (r, r)) for all t ≥ 0. By Riemann’s theorem on removable
singularities, anyf ∈H(�) extends to a function, which we shall also denote by
f, that is holomorphic on all ofP(0; (1,1)) [11, Cor. D5]. By the maximum mod-
ulus theorem, we have maxz∈K |C8t B f(z)| ≤ maxz∈∂Qr |f(z)| for all t ≥ 0. Thus
U := {‖·‖∂Qr < ε} satisfiesC8t (U) ⊂ V and we conclude that0F is an equicon-
tinuous family despite the fact thatKF ⊂⊂ � fails to hold for every nonempty
K ⊂⊂ �.

Our next result generalizes this example and provides a characterization of do-
mains of holomorphy in terms of families of composition operators.

Theorem 3. For any domain� ⊂ CN, the following statements are equivalent.

1. � is a domain of holomorphy.
2. For anyF ⊂ H(�,�), the family0F is equicontinuous if and only ifF ⊂⊂
H(�,�).

3. For everyb ∈ ∂�, the setS∞(b) := {f ∈H(�) : lim supw→b |f(w)| = ∞} is
of second category inH(�).

Proof. Suppose� is a domain of holomorphy and letF ⊂ H(�,�) be a family
for which there exists aK ⊂⊂ � such thatKF ⊂⊂ � fails to hold. IfKF is un-
bounded, then{C8πj}8∈F is unbounded for some coordinate functionπj and it fol-
lows that0F is not equicontinuous. IfKF is bounded, then there exists a sequence
{8n}n∈N in F and a sequence{zn}n∈N in K for which limn→∞8n(zn) = b ∈ ∂�.
By [11, Thm. G7], there exists anf ∈H(�) for which lim sup|f(8n(zn))| = ∞,
from which we observe that0F (f ) is unbounded and hence that0F is not equicon-
tinuous. In light of Proposition 1, we conclude that for any domain of holomorphy
� and familyF ⊂ H(�,�), equicontinuity of the family0F is equivalent to the
condition thatKF ⊂⊂ � wheneverK ⊂⊂ �.

Suppose� is not a domain of holomorphy. Then, by [11, Thm. G8], there exists
a pointa ∈ � and a polydiscP(a; r) not wholly contained in� with the prop-
erty that, for everyf ∈ H(�), the Taylor series forf centered ata converges
throughoutP(a; r). Choose a pointb ∈ (∂�)∩P(a; r), and letF := {8n}n∈N be
a sequence of holomorphic self-maps of� with8n(�) ⊂⊂ P(b; n−1r)∩ P(a; r)
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for eachn. For f ∈ H(�) denote byf̂ the element ofH(P(a; r)) defined by
the Taylor series expansion off abouta. Now for some positiveε < 1 we have
C8nf(�) ⊂ f̂

(
P(a; εr)) for eachn, and we observe that the orbit off under

the family0F is a bounded subset ofH(�) for eachf ∈ H(�). It follows from
the Banach–Steinhaus theorem that0F is an equicontinuous family of operators,
even thoughKF ⊂⊂ � fails to hold for any nonemptyK ⊂⊂ �. We conclude
that if a domain� is not a domain of holomorphy, then there exists a familyF ⊂
H(�,�) for whichKF ⊂⊂ � fails to hold for every nonemptyK ⊂⊂ � but for
which0F is equicontinuous.

Next, suppose there exists a pointb ∈ ∂� for which the setS∞(b) is of first cat-
egory inH(�). Choose a familyF = {8n}n∈N ⊂ H(�,�) for which8n(�) ⊂
P(b; n−1r) holds for someN -tuple r of positive numbers and eachn. For each
f ∈H(�) \ S∞(b) we have supz∈�|f B8n(z)| <∞ holding for alln sufficiently
large, and it follows that0F (f ) is bounded for eachf belonging to a set of sec-
ond category. It now follows from the Banach–Steinhaus theorem that0F is an
equicontinuous family while for every nonempty subsetK of � we haveb ∈KF .
From this we conclude that� is not a domain of holomorphy.

Finally, suppose again that� is a not domain of holomorphy. For any polydisc
P(a; r) chosen as before, there exists a positiveε < 1 such thatP(a; εr) " �. It
follows thatS∞(b) = ∅ for everyb ∈P(a; εr) ∩ ∂�.
We close this section with a brief discussion that serves to place the composition
operators onH(�) in their proper context. It turns out that, for any domain of
holomorphy�, the composition operators are theC-algebra homomorphisms of
the Fréchet algebraH(�). By the character theorem, a domain� ⊂ CN is a do-
main of holomorphy if and only if, for every multiplicative linear functionalχ on
H(�), there exists a pointz∈� such thatχ(f ) = f(z) for all f ∈H(�) (see [10,
p. 162]). Suppose that� ⊂ CN is a domain of holomorphy and thatα : H(�)→
H(�) is aC-algebra homomorphism. For each pointz∈�, letχz denote the point
evaluation atz. Then for eachz ∈� the mappingχz B α : H(�)→ C is a multi-
plicative linear functional, and hence there exists a8(z) ∈� such thatχz B α =
χ8(z). In particular, we haveπj(8(z)) = απj(z) for eachj, and consequently for
anyf ∈H(�) it follows that

αf(z) = f(8(z)) = f
( n∑
j=1

απj(z)ej

)
,

whereej denotes thej th member of the standard ordered basis forCN. We have
απj ∈H(�) for eachj, from which we conclude that8∈H(�,�) andα = C8.

3. One-Parameter Semigroups of Composition Operators

Definition 4. A one-parameter semigroup of holomorphic maps on a domain
� in CN is a continuous mapping8 : R+ → H(�,�) such that80 = I� and
8s+t = 8s B8t holds for alls, t ∈R+.
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We henceforth refer to one-parameter semigroups of holomorphic maps simply as
semigroups.Clearly we may regard a semigroup as a continuous mapping8 of
R+ × � into� with the properties thatz 7→ 8(t, z) is holomorphic for eacht ∈
R+ and8(s + t, z) = 8(t,8(s, z)) for s, t ∈ R+ andz ∈ �. Associated with
any semigroup8 on a domain� is the semigroup{C8t }t≥0 of composition oper-
ators. By Corollary 2, eachC8t is a continuous linear operator onH(�), and the
semigroup{C8t }t≥0 is strongly continuousaccording to the following result.

Proposition 5. For each semigroup8 and eachf ∈H(�), the mappingt 7→
C8t f of R+ intoH(�) is continuous.

Proof. For eachT > 0, the family{C8t }0≤t≤T is equicontinuous. It follows that,
for eachf ∈H(�), the family{C8t f }0≤t≤T is bounded inH(�) and thus is lo-
cally equicontinuous. The mappingt 7→ f(8(t, z)) is continuous for fixedz∈8,
and our result follows.

Definition 6. Supposeµ is a measure on a setQ, X is a topological vector
space on which the continuous dualX∗ separates points, andf : Q→ X is a func-
tion for which3f is µ-integrable for each3 ∈X∗. If there exists a vectory ∈X
such that

3y =
∫
Q

3f dµ

for every3∈X∗, then we define∫
Q

f dµ = y.

Now suppose that8 is a semigroup on a domain� ⊂ CN and thatf ∈ H(�).
For eacht > 0, the functions 7→ C8sf = f B8s from the compact spaceQt :=
[0, t ] to the Fréchet spaceH(�) is continuous and, by [16, Thm. 3.27], the integral
of this function with respect to the Borel probability measuredµt(s) := t−1ds on
Qt exists and lies in the closed convex hull of{f B8s}0≤s≤t . Denoting by3z the
evaluation functional atz, we have

Ft(z) := 3z

∫
Qt

C8sf dµt(s) =
∫
Qt

3zC8sf dµt(s) =
1

t

∫ t

0
f(8(s, z)) ds

andFt → f in H(�) ast → 0+. Also, for t ∈R+ we have

1

h

(
C8h

∫ t

0
C8sf ds −

∫ t

0
C8sf ds

)
= 1

h

∫ t+h

t

C8sf ds −
1

h

∫ h

0
C8sf ds

→ C8t f − f
ash→ 0+, since

1

h

∫ t+h

t

C8sf ds

lies in the closed convex hull of{f B 8s}t≤s≤t+h. We define an operatorA8 in
H(�), called theinfinitesimal generatorof the semigroup{C8t }, by
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A8f := lim
h→0+

h−1(C8h − I )f = lim
h→0+

h−1(C8hf − f ),
where the limit is taken inH(�). The domainD(A8) of A8 is just the set of
all f ∈ H(�) for which the indicated limit exists. We have demonstrated that,
for everyf ∈ H(�) and everyt > 0, the functionFt as defined previously is in
D(A8) andFt → f ast → 0+. ThusA8 is densely defined and

A8

∫ t

0
C8sf ds = C8t f − f

holds for eachf ∈ H(�). For everyf ∈ D(A8) and t > 0 we haveC8t f ∈
D(A8), and an easy calculation shows thatA8C8t f = C8tA8f.
Theorem 7. Suppose{C8t }t≥0 is a semigroup of composition operators on a
domain� in CN with infinitesimal generatorA8. ThenD(A8) = H(�) and

A8f =
N∑
k=1

Gk · ∂
∂zk

f

for everyf ∈H(�), whereG := lim h→0+ h
−1(8h − I�) andGk := πk BG.

Proof. Supposef ∈D(A8), and letK be a fixed but arbitrary compact subset of
�. Then givenε > 0, there exists a positiveδ = δ(K, ε) ≤ 1 such that both

|f B8h(z)− f(z)− hA8f(z)| < hε

and
|f B8h(z)− f(z)−Df(z) · (8h(z)− z)| < |8h(z)− z|Nε

hold wheneverz ∈K and 0< h < δ, whereDf(z) denotes the derivative off at
z. It follows that, for all suchh andz, we have

|Df(z) · h−1(8h(z)− z)− A8f(z)| < (1+ |h−1(8h(z)− z)|N)ε. (1)

We first establish that{h−1(8h− I�)}0<h<δ is uniformly bounded onK. Other-
wise, there exist a null sequence{hn} in (0, δ), a sequence{zn} in K, and a unit
vectorξ ∈CN such that

0< rn := |h−1
n (8hn(zn)− zn)|N →∞

and
ξn := r−1

n (h
−1
n (8hn(zn)− zn))→ ξ

asn→∞. SinceD(A8) is dense inH(�), for any integer1≤ k ≤ N there exists
a sequence{fj} inD(A8) converging inH(�) to the projection functionπk(w) =
wk. But then the sequence{Dfj} converges toπk (where we now think ofπk as
the 1×N matrix whose only nonzero entry is a 1 in thekth position) uniformly on
compact subsets of�, and we choosef ∈D(A8) satisfying

|(πk −Df(zn)) · w| < ε/2

for all w ∈BN and alln. Now, for all n sufficiently large, we have
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|Df(zn) · ξ −Df(zn) · ξn| + |Df(zn) · ξn − r−1
n A8f(zn)| + |r−1

n A8f(zn)| < ε/2

as well, and we conclude that|πk(ξ)| < ε. As ε > 0 was arbitrary, it follows
thatξ is the zero vector, a contradiction. SinceK ⊂⊂ � was arbitrary and since
{8h(K)}δ≤h≤1 is clearly bounded, we conclude that{h−1(8h − I�)}0<h≤1 is a
(bounded) normal family inH(�,CN).

Next, suppose{hn} is a null sequence in(0,1] for which

h−1
n (8hn − I�)→ G

in H(�,CN). Then, by inequality (1), we have

Df ·G = A8f
for all f ∈D(A8). Choosing a sequence{fj} as before yields

πk BG = lim
j→∞A8fj

in H(�), soG := lim h→0+ h
−1(8h − I�) exists inH(�,CN).

For the last step in our proof, it is convenient to employ Landau’s “littleo”
notation. Forf ∈H(�) andh > 0 we have demonstrated that

hG = (8h − I�)+ h · o(h)
uniformly on compact subsets of�. Thus

(f B8h − f )− hDf ·G = (f B8h − f )−Df · (8h − I�)+ h · o(h)
= h · o(h)

in H(�), and the theorem follows.

The holomorphic mappingG whose existence is assured by the preceding theo-
rem is called theinfinitesimal generatorof the semigroup8. In the following we
denote by8̇t the derivative of8(t, z) with respect tot.

Corollary 8. Let8 be a semigroup of holomorphic self-maps of a domain�

in CN with infinitesimal generatorG. Then for eachz ∈�, the semigroup is the
solution of the initial value problem

Ẏ(t, z) = G(Y(t, z)); Y(0, z) = z. (2)

Also,8 is the solution of the initial value problem

Ż = (DZ) ·G; Z(0, ·) = I�.
Proof. Note that

8̇(t, z) = lim
h→0+

h−1(8(t + h, z)−8(t, z))
= lim

h→0+
h−1(8(h,8(t, z))−8(t, z)) = G(8(t, z))

for all t ≥ 0, so
8̇t = G(8t) (3)
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as claimed and80 = I� by assumption. We also have

A8C8t πj =
N∑
k=1

Gk · ∂
∂zk

(πj B8t) = πj(D8t ·G)
and

C8tA8πj = C8t
N∑
k=1

Gk · ∂
∂zk

πj = πj(G(8t)),

from which we conclude that

8̇t = G(8t) = D8t ·G.
Corollary 9. If 8 is a semigroup of holomorphic self-maps of a domain� in
CN, then each8t is univalent.

Proof. We first note that the smoothness of the associated generatorG ensures
the uniqueness of solutions of initial value problems. Now suppose that for some
t∗ > 0 and distinct pointsz,w ∈�we have8t∗(z) = 8t∗(w). Then there exists a
minimal t0 > 0 such that8t0(z) = 8t0(w), and it follows that8t(z) 6= 8t(w) for
all t ∈ [0, t0). This contradicts the uniqueness of the solution (3) through(t0, z).

Alternatively, Abate [1] provides an elementary proof of the univalence of each8t

without reference to the infinitesimal generator.

Corollary 10. Any semigroup8 = 8(t, z) of holomorphic self-maps of a do-
main� in CN is jointly C∞ in the argumentst and z, real analytic in t, and
holomorphic inz.

Proof. See [12, Thm. 9.1].

The following proposition will be used in the next section, where we characterize
the semigroups of isometries on certain Banach spaces of analytic functions. In
its proof we make use of the differential operatorsd, ∂, and∂̄, whose definitions
and elementary properties are found in any modern reference on several complex
variables.

Proposition 11. Suppose8 is a semigroup on a simply connected domain� in
CN. Then there exists a continuous mappingL : R+×�→ C such that, for each
t ∈ R+, the functionz 7→ Lt(z) := L(t, z) is holomorphic,L0 is the zero func-
tion, and

exp(Lt ) = detD8t

Proof. For a semigroup8 on�, each mappingz 7→ detD8t(z) is both holomor-
phic and nonvanishing; hence

ut := log|detD8t |
is pluriharmonic for allt ∈R+. Each∂ut is therefore ad-closed form on the sim-
ply connected domain�, and it follows that for eacht ∈ R+ there exists aC∞
functionFt on� such that
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dFt = ∂ut .
Fixing a pointa ∈�, for anyz ∈� and any rectifiable pathγ : [0,1]→ � with
γ (0) = a andγ (1) = z we have∫

γ

∂ut = Ft(z)− Ft(a). (4)

By adding an appropriate constant to eachFt ,we can assume thatFt(a) = 0 holds
for all t. For anyz ∈ � andh ∈ C such thatz + hek ∈ �, whereek is thekth
element of the standard ordered basis forCN, we have

h−1(Ft(z+ hek)− Ft(z)) = h−1
∫ z+hek

z

∂ut

= h−1
∫ 1

0

N∑
j=1

(
∂

∂zj
ut

)
(z+ shek)δjkh ds

=
∫ 1

0

(
∂

∂zk
ut

)
(z+ shek) ds,

whereδjk is the Kronecker delta. Hence

lim
h→0

h−1(Ft(z+ hek)− Ft(z)) = ∂

∂zk
ut(z),

and it follows thatFt ∈ H(�) with ∂Ft = ∂ut for every t ≥ 0. Now dFt =
∂Ft + ∂̄Ft = ∂Ft and

d(Ft + Ft − ut ) = dFt + dFt − dut
= ∂Ft + dFt − (∂ut + ∂̄ut )
= ∂ut + ∂ut − ∂ut − ∂̄ut
= 0.

This implies that, for eacht ≥ 0, we have 2 ReFt = ut + ct for some constantct ;
sinceFt(a) = 0, we havect = −ut(a). Thus

L̂t := 2Ft + ut(a)
is a holomorphic function on� for fixed t ∈R+, and by equation (4) the mapping
(t, z) 7→ L̂t (z) is continuous onR+ ×�. We have

|expL̂t (z)| = exp ReL̂t (z) = |detD8t(z)|
for all (t, z)∈R+ ×�, from which it follows that

detD8t = αt expL̂t ,

whereαt := detD8t(a)/expL̂t (a) = detD8t(a)/|detD8t(a)|. Denoting by
argαt the continuous function onR+ for which exp(i argαt) = αt and argα0 =
0, we set ln(detD8t(a)) := ut(a)+ i argαt and

Lt := L̂t + i argαt = 2
∫ z

a

∂ log|detD8t | + ln(detD8t(a)).
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With Lt as just defined, we note that

exp B Lt1+t2 = detD8t1+t2
= detD8t1 · (detD8t2) B8t1 = expB (Lt1 + Lt2 B8t1),

and it follows that there exists an integerk such thatLt1+t2 − Lt1 + Lt2 B 8t1 =
2kπ for all t1, t2 ≥ 0. ButL0 is the zero function on�, and we conclude that

Lt1+t2 = Lt1 + Lt2 B8t1 (5)

holds for allt1, t2 ≥ 0.
If 8 has a fixed pointa ∈� (i.e., a pointa such that8t(a) = a for all t ∈R+),

then we are of course free to choose it as our “base point” for the integral in (4),
and it follows that

αt1+t2 =
detD8t1+t2(a)
|detD8t1+t2(a)|

= detD8t2(8t1(a))

|detD8t2(8t1(a))|
detD8t1(a)

|detD8t1(a)|
= αt2αt1

for all t1, t2 ≥ 0. Hence there existα ∈R such that

Lt(z) = log|detD8t(a)| + iαt + 2
∫ z

a

∂ log|detD8t |.

The mappingsG∈H(�,CN) that generate semigroups on complete hyperbolic
domains� ⊂ CN are characterized in [1]. Actually, Abate’s work is concerned
with any complex manifoldX equipped with a complete continuous Finsler metric
H and characterizes infinitesimal generators ofH -contractions. As a corollary to
his more general result he notes that, in particular, if� ⊂ CN is complete hyper-
bolic thenG∈H(�,CN) generates a semigroup if and only if

d(χ� BG) ·G ≤ 0,

whereχ� : CN → R+ is the Kobayashi pseudometric. In an earlier paper [5],
Berkson and Porta characterized the infinitesimal generators of semigroups onD.

4. Semigroups of Isometries on Bergman Spaces

Although strongly continuous semigroups of bounded composition operators on
Banach spaces of holomorphic functions are of interest and though questions con-
cerning their infinitesimal generators can be addressed employing methods similar
to those used here, we choose instead to investigate a special class of semigroups
of weighted composition operatorson a particular Banach space of holomorphic
functions. We recall that the strongly continuous semigroups of homomorphisms
of H(�) are precisely the semigroups of composition operators. In this final sec-
tion we show that the strongly continuous semigroups of linear isometries of an
important Banach space of analytic functions are semigroups of weighted compo-
sition operators. Our results are strongly related to those of Berkson [3] character-
izing the semigroups of isometries on the Hardy spaceHp of D, where as usual
we require 1≤ p <∞, p 6= 2. We note that the paper of Siskakis [19] on semi-
groups of composition operators on weighted Bergman spaces on the unit disc and
his survey paper [20] are particularly relevant to several topics in this paper.
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A bounded domain of holomorphy� ⊂ CN is called aRunge domainif the
polynomials are dense inH(�). For p ≥ 1 we denote byLp(�) the Lebesgue
space on�, where the underlying measure is Lebesgue measurem� normalized
so thatm�(�) = 1. The Bergman spaceLpa(�) consists of allf ∈H(�) with fi-
niteLp-norm‖f ‖p. If {fn} is a sequence inH(�) converging tof ∈Lp(�) in the
Lp-norm, thenf ∈H(�) and the sequence converges tof inH(�). Consequently
we can identifyLpa(�) with a closed subspace ofLp(�). Our aim is to investigate
the structure of strongly continuous semigroups of linear isometries ofL

p
a(�) for

1≤ p < ∞, p 6= 2. For these spaces, Kolaski [13] has provided us with a char-
acterization of the linear isometries.

Theorem 12. Let � be a Runge domain with1 ≤ p < ∞, p 6= 2, and let
T : Lpa(�) → L

p
a(�) be a linear isometry. Then there exist8 ∈ H(�,�) and

ω ∈Lpa(�) such that
(Tf )(z) = ω(z)f B8(z)

for all z∈� andf ∈Lpa(�). Moreover,8(�) is dense in� and∫
�

(g B8)|ω|p dm� =
∫
�

g dm�

for every bounded Borel functiong on�.

We note thatω = T1 so thatω, and consequently8, are uniquely determined by
T . Settingg = 1− χ8(�), we have∫

�

(1− χ8(�)) dm� =
∫
�

((1− χ8(�)) B8)|ω|p dm� = 0,

and we see that8 is full (i.e.,m�(� \8(�)) = 0). If we further assume that8
is injective, which will prove to be the case of interest to us, then Kolaski’s result
and the change-of-variable formula ensure that∫

�

(g B8)|ω|p dm� =
∫
8(�)

g dm� =
∫
�

g B8|detD8|2 dm�

for every bounded Borel functiong on�, where detD8 denotes the determinant
of the complex Jacobian of8. LettingS represent an arbitrary Borel subset of�

and settingg := χ8(S), it follows that

|ω|p = |detD8|2. (6)

Theorem 13. Suppose1 ≤ p < ∞ (p 6= 2) and that� is a simply connected
Runge domain inCN. If {Tt }t≥0 is a strongly continuous one-parameter semigroup
of linear isometries ofLpa(�) intoLpa(�), then there exist a unique semigroup8
of full analytic self-mappings of�, a continuous functionL : R+ ×�→ C sat-
isfyingexp

(
2
p
L(t, ·)) = detD8t, and a real numberα such that

Ttf = exp(iαt) exp
(

2
p
Lt
) · f B8t (7)

for all f ∈Lpa(�), whereLt := L(t, ·). Conversely, given a one-parameter semi-
group of8 of full analytic self-mappings�, the functionL constructed in Propo-
sition 11, and any real numberα, it follows that the family{Tt }t≥0 as defined by
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(7) is a strongly continuous one-parameter semigroup of isometries ofL
p
a(�) into

L
p
a(�) for all p ≥ 1.

Proof. Suppose{Tt }t≥0 is a strongly continuous semigroup of linear isometries on
L
p
a(�) with 1≤ p <∞, p 6= 2. Then, by Theorem 12, for eacht ≥ 0 there exist

anωt ∈Lpa(�) and a full holomorphic mapping8t : �→ � such that

Ttf = ωt · f B8t

for eachf ∈Lpa(�). Takingf ≡ 1, we obtain

ωt1+t2 = Tt1+t21= Tt1Tt21= Tt1ω2 = ωt1 · ωt2 B8t1

for all t1, t2 ≥ 0. For everyf ∈Lpa(�) and for allt1, t2 ≥ 0, we have

ωt1 · ωt2 B8t1 · f B8t1+t2 = Tt1+t2f = Tt1(ωt2 · f B8t2)

= ωt1 · ωt2 B8t1 · f B8t2 B8t1.

SinceH(�) is an integral domain, we conclude that eitherωt2 B 8t1 ≡ 0 or
f B 8t1+t2 = f B 8t2 B 8t1 holds for everyf ∈ Lpa(�). The former condition
yields the contradictionTt1+t21≡ 0, and sinceLpa(�) separates points of�, we
conclude that

8t1+t2 = 8t2 B8t1

for all t1, t2 ≥ 0. The strong continuity of{Tt }t≥0 implies that

ωt = Tt1→ Tt01= ωt0
as t → t0 in Lpa(�) for all t0 ≥ 0, and this in turn implies thatωt → ωt0 uni-
formly on compact subsets of�. From this we readily deduce that the mapping
ω : R+ ×�→ C given byω(t, z) = ωt(z) is continuous. Similarly, takingf to
be thekth projection functionπk, we have

ωt · πk B8t = Ttπk → Tt0πk = ωt0 · πk B8t0

as t → t0 in L
p
a(�) for all t0 ≥ 0, and it follows thatωt8t → ωt08t0 in

H(�,CN). Choosez0 ∈� andR > 0 such thatωt0 has no zero in the closed ball
B(z0;R), and suppose that{tn} is a sequence inR+ converging tot0 for which
{8tn} converges to some9 ∈H(�,CN). Now for all n sufficiently large we have
ωtn(z) 6= 0 for all z∈B(z0;R), and we conclude that9 = 8t0 onB(0;R). Since
� is bounded, the family{8t }t≥0 is normal inH(�,CN), and in light of Vitali’s
theorem we conclude that{8tn} converges to8t0 in H(�,�) whenever{tn} is
a sequence inR+ converging tot0. Thus the mappingt → 8t is a continuous
(semigroup) homomorphism fromR+ intoH(�,�).

Next, letL : R+ ×�→ C be as given in Proposition 11 withL0 ≡ 0. Now for
anyp ≥ 1 andt ≥ 0 it follows from (6) that

|ωt | = |detD8t |2/p = |expB Lt |2/p = exp
(

2
p

ReLt
) = ∣∣exp

(
2
p
Lt
)∣∣

and hence that for everyt ∈R+ there exists a unimodular complex numberαt such
thatωt = αt exp

(
2
p
Lt
)
. By the continuity ofω andL, we see thatαt depends

continuously ont. We note that
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αt1+t2 exp
(

2
p
Lt1+t2

) = ωt1+t2
= ωt1 · ωt2 B8t1

= αt1αt2 exp
(

2
p
Lt1
)

exp
(

2
p
Lt2 B8t1

)
= αt1αt2 exp

(
2
p
(Lt1 + Lt2 B8t1)

)
= αt1αt2 exp

(
2
p
Lt1+t2

)
for all t1, t2 ∈R+,where we have used (5) in the final equality. It now follows that
for someα ∈R we haveαt = exp(iαt) and consequently that

ωt = exp(iαt) exp
(

2
p
Lt
)
.

Thus, for eacht ∈R+ andf ∈Lpa(�) we have

Ttf = exp(iαt) exp
(

2
p
Lt
) · f B8t.

Next, suppose8 andL are as in the statement of the theorem. We show that
the family of operators{Tt }t≥0 defined by (7) constitutes a strongly continuous
semigroup of isometries onLp(�). That eachTt is an isometry ofLp(�) is an im-
mediate consequence of the change-of-variables theorem. In light of Corollary 8,
for eachz ∈ � there exists a maximalεz ∈ (0,∞] such that8( ·, z) extends to
a solution of the initial value problem (2) on the interval(−εz,∞) (see e.g. [2,
Thm. 7.6]). Set

�(G) = {(t, z) : t ∈ ((−εz,∞)), z∈�}
and define8̂ : �(G)→ �(G) by 8̂(t, z) = (t,8(t, z)). It follows from [2,
Thm. 8.3] that�(G) is open inR × �, and using Corollary 10 we conclude
that 8̂ is a diffeomorphism of�(G) into itself. Suppose thatK is a compact
subset of� and thatt0 > 0. If z ∈ 8−1

t (K) for somet ∈ [0, t0], then z ∈
π2(8̂

−1([0, t0] ×K)) ⊂⊂ �. For each continuous functiong : � → C, denote
by σ(g) the support ofg and letCc(�) represent the collection of all continuous
complex-valued functions on� having compact support with the supremum norm
‖·‖∞. For everyg ∈Cc(�) andt ≥ 0 we have

σ(Ttg) ⊂ 8−1
t (σ(g))

and
6t0(g) :=

⋃
0≤t≤t0

σ(Ttg) ⊂ π2(8̂
−1([0, t0] × σ(g))) ⊂⊂ �.

Thus

sup{|Ttg(z)| : t ∈ [0, t0]} ≤ ‖g‖∞ · sup
{
exp

(
2
p
Ls(w)

)
: s ∈ [0, t0], w ∈6t0(g)

}
for all z∈�, and it follows from Lebesgue’s dominated convergence theorem that

lim
t→0+
‖Ttg − g‖p = 0.

Now Cc(�) is dense inLp(�) and {Tt }t≥0 is an equicontinuous family of op-
erators for which limt→0+ Ttg − g = 0 for all g ∈ Cc(�). We conclude that
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lim t→0+ Ttf − f = 0 for all f ∈ Lp(�) and hence that{Tt }t≥0 is a strongly
continuous semigroup of isometries onLp(�). ClearlyLpa(�) is invariant under
{Tt }t≥0, and our characterization of strongly continuous semigroups of isometries
L
p
a(�) is complete.

Lemma 14. Let� be a simply connected domain inCN and8 a semigroup on
� with infinitesimal generatorG. LetL be a branch ofln detD8t as in Propo-
sition 11 and supposeα ∈ R. Define a family{St }t≥0 of linear operators from
C∞(�) into itself by

Stf = exp(iαt) exp
(

2
p
Lt
) · f B8t,

whereC∞(�) denotes the collection of complex-valued functions on� that are
infinitely differentiable with respect to each of the2N real variablesxk := Rezk,
yk := Im zk. Define a mappingB in C∞(�) by

Bf := lim
t→0+

t−1(Stf − f ),
where the limit is taken in the pointwise sense and the domain ofB is the collec-
tion of all f ∈ C∞(�) for which the indicated limit exists and defines a member
ofC∞(�). Then the domain ofB is all ofC∞(�) and, for eachf ∈C∞(�), we
have

Bf = f ·
(
iα + 2

p

N∑
k=1

∂

∂zk
Gk

)
+
( N∑
k=1

{
Gk

∂

∂zk
+ Ḡk ∂

∂z̄k

})
f.

Proof. For any pointz of� and anyf ∈C∞(�), the functionH(t) := f(8(t, z))
is well-defined and continuously differentiable on some interval(−ε,∞) with
ε > 0, and by the chain rule we have

H ′(0) =
N∑
k=1

{
Gk

∂

∂zk
f(z)+ Ḡk ∂

∂z̄k
f(z)

}
.

Recall that ifγ is a smooth function defined on an open interval inR and taking
on values among the invertible elements of the vector space ofN × N matrices
with complex entries, then

d

dt
detγ (t) = detγ (t) tr(γ−1(t)γ̇ (t)),

where trA denotes the trace of a matrixA. Fix z ∈ � and consider the function
K(t) := exp(iαt) exp

(
2
p
L(t, z)

)
. Now for someε > 0 the functionK is differen-

tiable on(−ε,∞), and

K ′(t) = exp(iαt) exp

(
2

p
L(t, z)

)(
iα + ∂

∂t

2

p
L(t, z)

)
= exp(iαt) exp

(
2

p
L(t, z)

)(
iα + 2

p

∂
∂t

detD8(t, z)

detD8(t, z)

)
= exp(iαt) exp

(
2

p
L(t, z)

)(
iα + 2

p
tr
(
(D8(t, z))−1 ·D8̇(t, z)))
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for all t ≥ 0. In particular, we have

K ′(0) = iα + 2
p

trDG(z).

Finally, for eachf ∈C∞(�) andz∈� we note that
1
t
(Stf − f )(z) = exp(iαt) exp

(
2
p
L(t, z)

) · t−1(f(8(t, z))− f(8(0, z)))
+ t−1

(
exp(iαt) exp

(
2
p
L(t, z)

)−1
)
f(z)

and it follows, withH defined as before, that

lim
t→0

1

t
(Stf − f )(z) = H ′(0)+K ′(0) · f(z).

Corollary 15. Suppose the hypotheses of Lemma 14 hold, and let1 ≤ p <

∞. Then the restriction of the family{St }t≥0 to Lpa(�) is a strongly continuous
contraction semigroup, with infinitesimal generator given by

Af := f ·
(
iα + 2

p

N∑
k=1

∂

∂zk
Gk

)
+
( N∑
k=1

Gk
∂

∂zk

)
f. (8)

Remark16. Although the semigroup8 of Corollary15 does not necessarily con-
sist of full self-maps of�, the strong continuity of{St }t≥0 still follows as in the
proof of Theorem13. Note the similarity in form ofAwith the generator of groups
of isometries of the Hardy space on the unit disc given in [4].

Proposition 17. Suppose that8 is a semigroup of full self-maps of a simply
connected Runge domain inCN and that1 ≤ p < ∞. Define a strongly con-
tinuous one-parameter semigroup{Tt }t≥0 of isometries ofLpa(�) as in (7) from
Theorem 13, and considerA defined in(8) as a densely defined operator inLpa(�).
Then one of the following statements holds.

1. For eacht > 0: the mapping8t is nonsurjective;

σ(A) = {λ∈C : Reλ ≤ 0};
and

σ(Tt ) = D̄.
2. Each mapping8t is an automorphism of� and {Tt }t≥0 extends to a strongly

continuous group of surjective isometries onLpa(�); we have

σ(A) ⊂ iR
and, for eacht > 0,

σ(Tt ) = exp(tσ(A)).

Proof. If 8t fails to be surjective for somet > 0, thenTt fails to be invertible.
For if Ttf = ωtf B 8t were invertible, its inverseT−t would be an isometry of
L
p
a(�) and would consequently have the formT−tf = ω−tf B8−t , whereω−t ∈

L
p
a(�) and8−t ∈H(�,�). But then for allf ∈Lpa(�) we would have

f = T−t Ttf = ω−t ωt B8−tf B (8t B8−t ),
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from which it would follow that8t is an automorphism of�. Thus we find our-
selves in the first case of [9, Lemma IV.2.19] and, since each operatorTt is an
isometry ofLpa(�), we have eitherσ(Tt ) = D̄ or σ(Tt ) ⊂ ∂D holding for each
t > 0. (See Exercise 7 in [7, p. 218].) Since 0∈ σ(Tt ) for eacht > 0,we conclude
thatσ(Tt ) = D̄ holds for all sucht.

Alternatively,8 is a semigroup of automorphisms of� and we can extend the
family {Tt }t≥0 to include negative values oft by setting

T−tf = exp(−iαt) exp
(− 2

p
Lt B8−1

t

) · f B8−1
t (9)

for all t ≥ 0. Regarded simply as a linear operator onH(�), it is clear that each
Tt is injective, and for eacht ≥ 0 we havef ∈Lpa(�) if and only if Ttf ∈Lpa(�).
Straightforward calculations show thatTtT−t = T−t Tt is the identity operator on
H(�), and it follows thatTt is an isometric isomorphism ofLpa(�) for everyt ∈R.
It now follows from [15, Thm. 6.5] that{Tt }t≥0 can be embedded in a strongly con-
tinuous group of surjective isometries withT−t defined as in (9) for eacht > 0.
Here we are in the second case of Lemma IV.2.19 of [9], and the remainder of the
theorem follows directly from Theorem IV.3.16 of the same reference.

In our classification of strongly continuous semigroups of isometries ofL
p
a(�), it is

necessary to exclude the casep = 2 since, of course, in the (infinite-dimensional)
Hilbert space setting isometries exists in great profusion and Theorem 12 does not
apply. However, in the Hilbert space setting we can bypass the construction of a
branch of ln detD8t, and the family of operators defined by (7) assumes a simpler
form. Now any semigroup8 on� gives rise to a strongly continuous contraction
semigroup{St }t≥0 given by

Stf = exp(iαt) detD8t · f B8t, (10)

and here we make no assumptions on� beyond requiring thatL2
a(�) be nontriv-

ial. We end with several results relating properties of a semigroup8 to properties
of operators associated with the infinitesimal generator of{St }t≥0.

Theorem 18. Suppose that� is a domain inCN for whichL2
a(�) is nontrivial

and that8 is a semigroup on� with infinitesimal generatorG. For eacht ≥ 0,
define the operatorSt : L2

a(�)→ L2
a(�) by

Stf = detD8t · f B8t.

Then the following statements are equivalent.

1. 8 is a semigroup of automorphisms of�.
2. The operator

Af :=
N∑
k=1

∂

∂zk
(Gkf )

is skew-adjoint onL2
a(�), where the domain ofA is given by

domA = {f ∈L2
a(�) : lim t→0

1
t
(Stf − f ) exists inL2

a(�)
}
.
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3. The operatorA is skew-symmetric, and the operatorsA± I : domA→ L2
a(�)

are boundedly invertible.

Proof. By Proposition 17, the condition on8 is equivalent to the requirement that
each mappingSt be a unitary operator onL2

a(�). By Stone’s theorem, the infin-
itesimal generator of{St }t≥0 is skew-adjoint exactly when it is the generator of a
strongly continuous unitary group, and by Corollary 15 this generator is given by
A with the indicated domain. For the equivalence of the last two conditions, we
note thatA is skew-adjoint if and only ifiA is self-adjoint and then invoke [21,
Thm. 5.21].

We denote byC∞c (�) the subspace ofC∞(�) consisting of those functions whose
supports are compact subsets of� and recall thatC∞c (�) is a dense subspace of
L2(�). We denote by〈 ·, · 〉 the inner product onL2(�). For any closable opera-
torB in a complex Hilbert spaceH, we denote byB̄ the closure ofB. The range
of an operatorB will be denoted by ranB.

Theorem 19. Suppose� is a domain inCN and let8 be a semigroup on�with
infinitesimal generatorG. Regard the family{St }t≥0 given by

Stf = detD8t · f B8t

as a contraction semigroup onL2(�), and define an operatorA : C∞c (�) →
C∞c (�) by

Aϕ := ϕ ·
( N∑
k=1

∂

∂zk
Gk

)
+
( N∑
k=1

{
Gk

∂

∂zk
+ Ḡk ∂

∂z̄k

})
ϕ.

ThenA is a densely defined skew-symmetric operator inL2(�) andĀ is the infin-
itesimal generator of{St }t≥0. Also, the following statements are equivalent:

1. 8 is a semigroup of full self-maps of�;
2. A∗ = −Ā;
3. ran(A± I ) = ran(Ā± I ) = L2(�).

Proof. ClearlyAϕ ∈C∞c (�)wheneverϕ ∈C∞c (�), soA is a well-defined opera-
tor onC∞c (�). We first show thatC∞c (�) is a core for the infinitesimal generator
of {St }t≥0. Recalling that8̂ is a diffeomorphism of�(G) into itself, we note again
that for anyt0 > 0 andϕ ∈ C∞c (�) we have6t0(ϕ) ⊂⊂ �, so detD8 · ϕ B 8
satisfies a Lipschitz condition on every compact subset of�(G). It now follows
that{t−1(detD8t · ϕ B8t − ϕ) : 0< t < ε} is uniformly bounded on� for some
ε, and in light of Lemma 14 we conclude that

lim
t→0+

t−1(St ϕ − ϕ) = Aϕ

in L2(�). Now C∞c (�) is a dense subspace ofL2(�) that is invariant under
{St }t≥0, and it follows from [9, Prop. II.1.7] that̄A is the infinitesimal generator
of the semigroup.



Semigroups of Holomorphic Self-Maps of Domains 323

Forϕ,ψ ∈C∞c (�) andg ∈C∞(�) we have〈
g
∂

∂zk
ϕ, ψ

〉
=
〈
ϕ,− ∂

∂z̄k
(ḡψ)

〉
and 〈

ḡ
∂

∂z̄k
ϕ, ψ

〉
=
〈
ϕ,− ∂

∂zk
(gψ)

〉
for eachk, and it follows from routine calculations that

〈Aϕ,ψ〉 = 〈ϕ,−Aψ〉
for all ϕ,ψ ∈ C∞c (�). ThusA, and consequentlȳA, is a densely defined skew-
symmetric operator inL2(�). It now follows from [21, Thm. 5.21] that the last
two conditions of the theorem are equivalent.

Suppose that8 is a semigroup of full self-maps of�, so each8t is a diffeo-
morphism of� onto8t(�)withm�(�\8t(�)) = 0. By the change-of-variables
theorem, the mappingStf = detD8t ·f B8t is an isometry ofL2(�). Now sup-
pose that, for somet > 0, there exists ag ∈L2(�) with 〈Stf, g〉 = 0 holding for
all f ∈L2(�). Then

0=
∫
�

detD8t · f B8t · ḡ dm�

=
∫
�

(
(detD8t) B8−1

t · f · ḡ B8−1
t

|detD8t |2 B8−1
t

)
B8t · |detD8t |2 dm�

=
∫
8t(�)

detD8−1
t · ḡ B8−1

t · f dm�

holds for allf ∈L2(�), and since detD8−1
t vanishes nowhere on8t(�),we con-

clude thatḡ B8−1
t is the zero element inL2(8(�)) and consequently thatg is the

zero element inL2(�). It follows that ranSt is dense inL2(�) and, since isome-
tries are closed maps, that eachSt is a unitary operator onL2(�). By Stone’s
theorem, the generator̄A of {St }t≥0 is skew-adjoint and we have

A∗ = Ā∗ = −Ā.
Finally, we suppose that the second condition of the theorem holds and conse-

quently thatĀ is the generator of a unitary group{Tt }t∈R on L2(�). For every
t ≥ 0 andϕ ∈C∞c (�) we haveTt ϕ ∈ domĀ, and both

lim
h→0+

h−1[Tt+h − Tt ]ϕ = lim
h→0+

h−1[Th − I ]Tt ϕ = ĀTt ϕ
and

lim
h→0+

h−1[St+h − St ]ϕ = lim
h→0+

h−1[Sh − I ]St ϕ = AStϕ
hold where the limits are taken inL2(�).We note that these equalities hold for cor-
responding two-sided limits providedt > 0. Choosing an arbitraryϕ ∈ C∞c (�),
we define a functionH : R+ → L2(�) by

H(t) = St ϕ − Tt ϕ.
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Now for all t ≥ 0 we have

H ′(t) = AStϕ − ĀTt ϕ = ĀSt ϕ − ĀTt ϕ = Ā(St ϕ − Tt ϕ) = ĀH(t),
from which it follows that

lim
s→0

s−1‖[H(t + s)−H(t)]‖2 = lim
s→0
〈s−1[H(t + s)−H(t)], H(t + s)−H(t)〉

= 〈ĀH(t), 0〉 = 0.

Hence the mappingt 7→ ‖H(t)‖2 is constant onR+, and sinceH(0) = 0 we con-
clude thatSt ϕ = Tt ϕ for all t ≥ 0. It follows that eachSt is a unitary operator on
L2(�) and consequently that, for eacht ≥ 0, the mapping8t is full.
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