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Total Masses of Mixed Monge–Ampère Currents

Alexander Rashkovski i

1. Introduction

Our starting point is the classical problem on numeric characteristics for zero sets
of polynomial mappingsP : Cn → Cm. If m ≥ n andP has discrete zeros then
this is about the total number of zeros counted with multiplicities, and form < n

the characteristics are the projective volumes of the corresponding holomorphic
chainsZP . Whenm = 1 the volume equals the degree of the polynomialP, but
for m > 1 the situation becomes much more difficult. In particular, in the general
case no exact formulas can be obtained in terms of the exponents and the prob-
lem reduces to finding appropriate upper bounds. An example of such a bound is
given by Bezout’s theorem: Ifm = n andP has discrete zeros, then their number
does not exceed the product of the degrees of the components ofP. An alterna-
tive estimate is due to Kouchnirenko [11; 12]: The number of zeros is at most
n! times the volume of theNewton polyhedron ofP at infinity (the convex hull
of all exponents ofP and the origin). A refined version of the latter result was
obtained by Bernstein [3], who showed that the number of (discrete) zeros of a
Laurent polynomial mappingP on(C\{0})n is not greater thann! times the mixed
volume of theNewton polyhedra(the convex hulls of the exponents) of the com-
ponents ofP.

Here we put this problem into a wider context of pluripotential theory. This can
be done by considering plurisubharmonic functionsu = log|P | and studying the
Monge–Ampère operators(ddcu)p; we use the notationd = ∂ + ∂̄ anddc =
(∂ − ∂̄)/2πi. The key relation is the King–Demailly formula, which implies that
if the codimension of the zero set is at leastp then(ddcu)p ≥ ZP (with an equal-
ity if p = m ≤ n). The problem of estimating total masses of the Monge–Ampère
operators of plurisubharmonic functionsu of logarithmic growth was studied in
[22]. In particular, a relation was obtained in terms of the volume of a certain con-
vex set generated by the functionu, which in caseu = log|P | is just the Newton
polyhedron ofP at infinity.

On the other hand, we know that the holomorphic chainZP with m = p ≤ n
can be represented as the wedge product of the currents (divisors)ddc log|Pk|,
1≤ k ≤ m, which leads to consideration of themixedMonge–Ampère operators
ddcu1 ∧ · · · ∧ ddcum and estimating their total masses. Another motivation for
this problem are generalized degrees

∫
Cn T ∧ (ddcϕ)p of positive closed currents

T with respect to plurisubharmonic weightsϕ, due to Demailly [5].
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So, our main subject is mixed Monge–Ampère currents generated by arbitrary
plurisubharmonic functions of logarithmic growth. Using the approach developed
in [22], we obtain effective bounds for the masses of the currents. As a conse-
quence, this gives us a plurisubharmonic version of Bernstein’s theorem adapted,
in particular, for polynomial mappings ofCn. In addition, we get a representation
for the generalized degrees of(1,1)-currents.

2. Preliminaries and Description of Results

We consider plurisubharmonic functionsu of logarithmic growth inCn,

u(z) ≤ C1 log+|z| + C2

with some constantsCj = Cj(u). The collection of all such functions will be de-
noted byL(Cn) or simply byL. Various results on such functions are presented,
for example, in [1; 2; 15; 16; 23]. For general properties of plurisubharmonic func-
tions and the complex Monge–Ampère operators, we refer the reader to [9; 10;
14; 17].

The (logarithmic)typeof a functionu∈L is defined as

σ(u) = lim sup
|z|→∞

u(z)

log|z| ,

which can be viewed as the Lelong number ofu at infinity. The corresponding
counterpart for the directional (refined) Lelong numbers are directional types

σ(u, a) = lim sup
z→∞

u(z)

ϕa(z)
(2.1)

with
ϕa(z) = sup

k

a−1
k log|zk|, a = (a1, . . . , an)∈Rn

+; (2.2)

see[22]. One can also consider the typesσ(u, ϕ)with respect to arbitrary plurisub-
harmonic exhaustive functionsϕ ∈L,

σ(u, ϕ) = lim sup
z→∞

u(z)

ϕ(z)
. (2.3)

One more characteristic is thelogarithmic multitype(σ1(u), . . . , σn(u)),

σ1(u) = sup{σ̃1(u; z ′) : z ′ ∈Cn−1} (2.4)

(see [16]), wherẽσ1(u; z ′) is the logarithmic type of the functionu1,z ′(z1) =
u(z1, z

′)∈L(C) with z ′ ∈Cn−1 fixed, and similarly forσ2(u), . . . , σn(u). For ex-
ample, ifP is a polynomial of degreedk in zk, thenσk( log|P |) = dk.

Another (and original) definition for the Lelong numbers is in terms of the cur-
rentsddcu, which works for arbitrary positive closed currents. This leads to the
notion of degree of a current. LetD+p (�) be the collection of all closed positive
currents of bidimension(p, p) on a domain� ⊂ Cn. We will consider currents
T ∈D+p (Cn) with finite projective mass, ordegree
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δ(T ) =
∫

Cn

T ∧ ( 1
2dd

c log(1+ |z|2))p;
the set of all such currents is denoted byLD+p . The degree ofT ∈LD+p can also
be represented as

δ(T ) =
∫

Cn

T ∧ (ddc log|z|)p

and as the density of the trace measureσT = T ∧ 1
p!

(
i
2

∑
dzj ∧ dz̄j

)p
of the cur-

rentT :

δ(T ) = lim
r→∞

σT (|z| < r)

mes2p(|z| < r)
.

WhenT = [A] is the current of integration over an algebraic setA of pure dimen-
sionp, the degreeδ([A]) coincides with the degree of the setA defined as the num-
ber of sheets in the ramified covering mapA→ L to a genericp-codimensional
planeL. Note also that any currentT ∈LD+n−1 has the formT = ddcuwith u∈L,
andδ(ddcu) = σ(u) (see [17]).

Thegeneralized degrees

δ(T, ϕ) :=
∫

Cn

T ∧ (ddcϕ)p (2.5)

with respect to plurisubharmonic weightsϕ were introduced in [5] as a powerful
tool for studying polynomial mappings and algebraic sets.

We are concerned with the problem of evaluating

µ(T, u1, . . . , up) :=
∫

Cn

T ∧ ddcu1∧ · · · ∧ ddcup
for currentsT ∈ LD+p and functionsuj ∈ L in terms of the distribution ofT and
growth characteristics ofuk. The idea is to replace the functionsuk by certain
plurisubharmonic functionsvk with simpler asymptotic properties. A relation be-
tween the corresponding total masses is provided by Theorem 3.1, which shows
that the value ofµ(T, u1, . . . , up) is a function of the asymptotic behavior ofuk
at infinity. This comparison theorem is an extension of Taylor’s theorem [24] on
the total mass of(ddcu)n of u ∈ L ∩ L∞loc. At the same time, it is an analogue
for Demailly’s second comparison theorem [9, Thm. 5.9] on generalized Lelong
numbers.

Takingvk = log|z| yields a bound in terms of the types ofuk and the degree
of T (Corollary 3.1),

µ(T, u1, . . . , up) ≤ δ(T )σ(u1) . . . σ(up),

and the choicevk = ϕa leads to that in terms of the corresponding directional
characteristics (Corollary 3.3).

Sharper bounds are obtained withvk = 9uk,x, the indicatorsof uk, introduced
in [22] (see the definition and basic properties in Section 4). We have

µ(T, u1, . . . , up) ≤ µ(T,9+u1,x
, . . . , 9+up,x)



172 Alexander Rashkovski i

(Proposition 4.1), and the problem reduces to evaluating the right-hand side. This
can be done effectively in the casep = n−1, T = ddcun. Namely, foru∈L, the
convex functionψ+u,x(t) := 9+u,x(expt1, . . . ,exptn), t ∈ Rn, is the support func-
tion to the convex set

2u = {a ∈Rn : 〈a, t〉 ≤ ψ+u,x(t) ∀t ∈Rn},
and

µ(9+u1,x
, . . . , 9+un,x) = n! Vol (2u1, . . . , 2un), (2.6)

Minkowski’s mixed volume of the sets2uk (Theorem 4.1).
The foregoing considerations are applied in Section 5 to investigation of the

generalized degreesδ(T, ϕ) defined in (2.5). By Proposition 4.1, we are reduced
to the valuesδ(T,9ϕ,y). WhenT = ddcu, we prove the relationδ(ddcu,9ϕ,y) =
δ(ddc9u,x, 9ϕ,y) for all x, y ∈ Cn. We study the “swept out” Monge–Ampère
measures of indicator weights in Theorem 5.3. As a consequence, we derive a
representation forδ(ddcu,9ϕ,y) in terms of the sets2u and2ϕ and a relation be-
tweenσ(u, ϕ) andδ(ddcu, ϕ) in Corollary 5.2.

Finally, in Section 6 we specify our results for currents generated by polynomial
mappings. In particular, we observe that (2.6) implies the following analogue for
Bernstein’s inequality (Corollary 6.1): the projective volumeδ(ZP )of the holomor-
phic chainZP generated by a polynomial mappingP = (P1, . . . , Pp) in general
position, 1≤ p ≤ n, has the bound

δ(ZP ) ≤ n! Vol (G+1 , . . . , G
+
p ,1, . . . ,1),

whereG+j is the Newton polyhedron of the polynomialPj at infinity and1 =
{t ∈ Rn+ :

∑
tj ≤ 1} is the standard simplex inRn. We also derive a number of

other bounds (like Bezout’s and Tsikh’s theorems) as direct consequences of our
general results on mixed Monge–Ampère operators.

3. Comparison Theorem for Mixed Operators

A q-tuple of plurisubharmonic functionsu1, . . . , uq will be said to beproperly in-
tersected,or in general position,with respect to a currentT ∈D+p (p ≥ q) if their
unboundedness lociA1, . . . , Ap satisfy the following condition: For all choices of
indicesj1 < · · · < jk (k ≤ q), the(2q−2k+1)-dimensional Hausdorff measure
of the setAj1 ∩ · · · ∩Ajk ∩ suppT equals zero. If this is the case, then the current
T ∧ ddcu1∧ · · · ∧ ddcuq is well-defined and has locally finite mass [9, Thm. 2.5].

We recall that a functionu in Cn is called semi-exhaustiveon a setA if
{u < R} ∩ A ⊂⊂ Cn for some realR, andexhaustiveif this is valid for allR.

Theorem 3.1 (Comparison Theorem).Let T ∈ LD+p and u1, . . . , up ∈ L be
properly intersected with respect toT, and letv1, . . . , vp ∈ L be semi-exhaustive
on suppT . If, for anyη > 0,

lim sup
|z|→∞, z∈suppT

uj(z)

vj(z)+ η log|z| ≤ lj, 1≤ j ≤ p,

thenµ(T, u1, . . . , up) ≤ l1 . . . lpµ(T, v1, . . . , vp).
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Proof. It suffices to show that the conditions

lim sup
|z|→∞, z∈suppT

uj(z)

vj(z)+ η log|z| < 1 ∀η > 0, 1≤ j ≤ p, (3.1)

imply
µ(T, u1, . . . , up) ≤ µ(T, v1, . . . , vp). (3.2)

Without loss of generality, we can also takeϕ > 0 onCn.

For anyN > 0, the functionsuj,N := max{uj,−N} still satisfy (3.1). Then, for
anyη > 0 andC > 0, the set

Ej(C) = {z∈ suppT : vj(z)+ η log|z| − C < uj,N(z)}
is compactly supported in the ballBαj for someαj = αj(C, η, uj,N, vj ). Putα =
maxj αj, E(C) =⋃j Ej(C), F(C) =

⋂
j Ej(C), and

wj,C = max{vj(z)+ η log|z| − C, uj,N}.
Sincewj,C = vj(z)+ η log|z| − C near∂Bα ∩ suppT, we have∫

Bα

T
∧

1≤j≤p
ddcwj,C =

∫
Bα

T
∧

1≤j≤p
ddc(vj + η log|z|)

≤
∫

Cn

T
∧

1≤j≤p
ddc(vj + η log|z|).

Note that, for any compact subsetK of suppT, one can findCK such thatK ⊂
F(C) for all C > CK; hence∫

BR

T
∧

1≤j≤p
ddcwj,C ≤

∫
Cn

T
∧

1≤j≤p
ddc(vj + η log|z|)

for anyR > 0 and allC > CR. In addition,

T
∧

1≤j≤p
ddcwj,C → T

∧
1≤j≤p

ddcuj,N

asC →+∞ (the functionswj,C decrease touj,N) and therefore∫
BR

T
∧

1≤j≤p
ddcuj,N ≤ lim sup

C→∞

∫
BR

T
∧

1≤j≤p
ddcwj,C

≤
∫

Cn

T
∧

1≤j≤p
ddc(vj + η log|z|).

Sinceη is arbitrary, we derive the inequality∫
BR

T
∧

1≤j≤p
ddcuj,N ≤

∫
Cn

T
∧

1≤j≤p
ddcvj ;

finally, lettingN →∞, we have
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BR

T
∧

1≤j≤p
ddcuj ≤

∫
Cn

T
∧

1≤j≤p
ddcvj

for anyR > 0, which gives us (3.2) and thus completes the proof.

Remark. As follows from the theorem,

µ(T, u1, . . . , up) ≤ µ(T,max{u1, α1}, . . . ,max{up, αp})
for anyα ∈ Rp, and the right-hand side is independent ofα. The inequality here
can be strict, which follows from the consideration of the functionu(z1, z2) =
log(|z1|2+|z1z2+1|2).We haveµ(u, u) = 0 whileµ(u+, u+) = 4, the latter rela-
tion verified by comparingu+ with the function max{ log|z1|, log|z1z2|,0},whose
total Monge–Ampère mass can be calculated by Proposition 4.2. This shows that
the condition on the functionsvj in Theorem 3.1 to be semi-exhaustive is essential.

An immediate application of Theorem 3.1 is the following bound for the total mass
of the currentT ∧ ddcu1∧ · · · ∧ ddcup in terms of the degreeδ(T ) of T and log-
arithmic typesσ(uj ) of uj .

Corollary 3.1. If T ∈ LD+p andu1, . . . , up ∈ L are properly intersected with
respect toT, then

µ(T, u1, . . . , up) ≤ δ(T )σ(u1) . . . σ(up).

In particular, T ∧ ddcu1∧ · · · ∧ ddcup−k ∈LD+k for 0 ≤ k ≤ p.
Moreover, we have the following refined bound via the generalized characteristics
σ(u, ϕ) andδ(T, ϕ) (see (2.3) and (2.5), respectively) with regard to plurisubhar-
monic weightsϕ.

Corollary 3.2. LetT, u1, . . . , up satisfy the conditions of Corollary 3.1 and let
ϕ ∈L be an exhaustive weight. Then

µ(T, u1, . . . , up) ≤ δ(T, ϕ)σ(u1, ϕ) . . . σ(up, ϕ).

For the specified case ofT = 1, p = n, andϕ = ϕa, this gives us the following
bound in terms of the directional typesσ(uj, a) of uj (cf. (2.1)).

Corollary 3.3. If the functionsu1, . . . , un ∈L are properly intersected, then

µ(u1, . . . , un) ≤ inf
a∈Rn+

σ(u1, a) . . . σ(un, a)

a1 . . . an
.

4. Bounds in Terms of Indicators

More precise bounds can be obtained by means of indicators of functions from the
classL.

Developing the notion of local indicator introduced in [18], the (global)indica-
tor of a functionu∈L atx ∈Cn was defined in [22] as
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9u,x(y) = lim
R→+∞R

−1 sup{u(z) : |zk − xk| ≤ |yk|R, 1≤ k ≤ n}
for y1 . . . yn 6= 0,

and it extends to a plurisubharmonic function of the classL depending only on
|z1|, . . . , |zn| and satisfying9u,x(|z1|c, . . . , |zn|c) = c9u,x(|z1|, . . . , |zn|) for all
c > 0. The indicator controls the behavior ofu in the wholeCn,

u(z) ≤ 9u,x(z− x)+ Cx ∀z∈Cn (4.1)

[22, Thm. 1], withCx equal the supremum ofu on the unit polydisk centered atx.
Besides, the indicator is a (unique) logarithmic tangent tou atx, that is, the weak
limit in L1

loc(C
n) of the functions

um(y) = m−1u(x1+ ym1 , . . . , xn + ymn ) (4.2)

asm→∞ [22, Thm. 2].
Note that the indicator of log|z| at x equals maxk log|yk| if x = 0 and equals

maxk log+|yk| for any other pointx.
The asymptotic characteristics (types) ofu can be easily expressed in terms

either of its indicator or (more conveniently) of the conveximage

ψu,x(t) = 9u,x(et1, . . . , etn ), t ∈Rn,

of the indicator [22, Prop. 3]: For eachx ∈Cn,

σ(u) = σ(u, (1, . . . ,1)) = ψu,x(1, . . . ,1),
σ(u, a) = ψu,x(a) ∀a ∈Rn

+, (4.3)

σk(u) = ψu,x(ek), 1≤ k ≤ n, (4.4)

with e1, . . . , en the standard basis ofRn. Note that the restriction ofψu,x to Rn+ is
independent ofx ∈Cn [22, Prop. 7].

By (4.1), Theorem 3.1 implies the following.

Proposition 4.1. LetT ∈LD+p andu1, . . . , up ∈L be properly intersected with
respect toT, and letx ∈Cn. Then

µ(T, u1, . . . , up) ≤ µ(T,9+u1,x
, . . . , 9+up,x).

Corollary 4.1. Letu1, . . . , un ∈L be properly intersected and letxk ∈Cn (1≤
k ≤ n). Then

µ(u1, . . . , un) ≤ µ(u1, . . . , un−1, 9
+
un,xn

) ≤ µ(u1, . . . , 9
+
un−1,xn−1, 9

+
un,xn

) . . .

≤ µ(u1, 9
+
u1,x1, . . . , 9

+
un,xn

) ≤ µ(9+
u1,x1, . . . , 9

+
un,xn

).

Remark. The choice ofx ∈Cn can affect the value of the total Monge–Ampère
mass of the indicators. For example, letu(z1, z2) = 1

2 log(1+ |z1z2|2); then
9u,0(y)= log+|y1y2|has zero mass,while the mass of9u,(1,1)(y)=max{ log+|y1|,
log+|y2|, log+|y1y2|} equals 2 (see Proposition 4.2).
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To get an interpretation for the masses of indicators, we proceed as in [22]. Let
8 be an abstract indicator inCn, that is, a plurisubharmonic function depending
only on|z1|, . . . , |zn| and satisfying the homogeneity condition

8(|z1|c, . . . , |zn|c) = c8(|z1|, . . . , |zn|) ∀c > 0. (4.5)

The functionsϕa (see (2.2)) are particular examples of the indicators. It is clear
that8 ≤ 0 in the unit polydiskD and is strictly positive on

D−1= {z∈Cn : |zk| > 1, 1≤ k ≤ n}
unless8 ≡ 0.

Let us assume8 ≥ 0 onCn. In this case,(ddc8)n is supported by the distin-
guished boundaryT of D [22, Thm. 6]. Denote

ϕ(t) = 8(et1, . . . , etn ), t ∈Rn, (4.6)

the convex image of8 in Rn, and

28 = {a ∈Rn : 〈a, t〉 ≤ ϕ(t) ∀t ∈Rn}. (4.7)

It is easy to see that28 is a convex compact subset ofRn+. By the construction,
ϕ is the support function of28. The real Monge–Ampère operator applied toϕ
gives us theδ-functionδ0 with mass Vol(28). By comparing the real and complex
Monge–Ampère operators we obtain

µ(8, . . . , 8) = n! Vol (28) (4.8)

(see the details in [22, Thm. 6]).
This can be extended to the mixed Monge–Ampère operators of indicators as

follows.

Proposition 4.2. Let81, . . . , 8n be nonnegative indicators. Then

ddc81∧ · · · ∧ ddc8n = µdm,
wheredm is the normalized Lebesgue measure onT, and

µ = µ(81, . . . , 8n) = n! Vol (281, . . . , 28n).

Proof. By the polarization formula for the complex Monge–Ampère operator,∧
k

ddc8k = (−1)n

n!

n∑
j=1

(−1)j
∑

1≤i1<···<ij≤n

(
ddc

j∑
k=1

8jk

)n
. (4.9)

Because the sum of indicators is itself an indicator, the support of
∧

k dd
c8k is

a subset ofT. In view of the translation invariance of this measure, it has the form
µ(2π)−n dθ1 . . . dθn with a nonnegative constantµ.

By (4.8), the right-hand side of (4.9) is the alternating sum of the corresponding
volumes. Hence, the definition of the mixed volume gives the desired expression
for µ and thus completes the proof.

Now Corollary 4.1and Proposition 4.2 easily give us the main result of the section.
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Theorem 4.1. Let functionsu1, . . . , un ∈L be properly intersected, and letxk ∈
Cn for 1≤ k ≤ n. Then

µ(u1, . . . , un) ≤ n! Vol (281, . . . , 28n),

where the sets28k are defined by(4.6)–(4.7)for 8 = 8k = 9+uk,xk .
As a consequence, we can derive a bound forµ(u1, . . . , un) in terms of the types
σk(uj ) of uj with respect tozk (cf. (2.4)).

Corollary 4.2. If u1, . . . , un ∈L are properly intersected, then

µ(u1, . . . , un) ≤ n! per(σk(uj ))
n
j,k=1,

whereperA denotes the permanent of the matrixA.

Proof. As follows from (4.4), the set28j is a subset of the rectangle [0, σ1(uj )]×
· · · × [0, σn(uj )], and the mixed volume of the rectangles [0, a1j ] × · · · × [0, anj ]
(1≤ j ≤ n) equals per(ajk)nj,k=1.

5. Degrees with Respect to Plurisubharmonic Weights

Given a subsetAof Cn,we denote byW(A) the collection of all functions (weights)
ϕ ∈L that are continuous as mappings to [−∞,+∞) and are exhaustive onA.

Let T ∈LD+p ; then the current (measure)T ∧ (ddcϕ)p ∈LD+0 is well-defined
for anyϕ ∈W(suppT ). Let

δ(T, ϕ) =
∫

Cn

T ∧ (ddcϕ)p

be the (generalized) degree ofT with respect to the weightϕ (see [5]).
Observe thatδ(T, ϕ) = δ(T, ϕ+) sinceϕ is assumed to be exhaustive on suppT .

Note also thatδ(T, ϕ) = δ(T ) if ϕ(z) = log|z|.
Generalized degrees of currents can be viewed as generalized Lelong numbers

at infinity, and we start here with two semicontinuity properties parallel to those
for the Lelong numbers (cf. [9]).

Proposition 5.1. LetTm, T ∈LD+p andTm→ T . Then, for any weightϕ from
W
(⋃

m suppTm
)
,

δ(T, ϕ) ≤ lim inf
m→∞ δ(Tm, ϕ).

Proof. This follows immediately from [9, Prop. 3.12].

Proposition 5.2. Let weightsϕk, ϕ ∈W(suppT ) be such that, for somet ∈R,
the functionsmax{ϕk, t} converge tomax{ϕ, t} uniformly on compact subsets of
Cn. Then

δ(T, ϕ) ≤ lim inf
m→∞ δ(T, ϕk).

Proof. Sinceδ(T,max{ϕ, t}) = δ(T, ϕ) for any weightϕ ∈ W(suppT ), we can
takeϕk → ϕ uniformly on compact subsets ofCn.
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For anyR > 0, considerη ∈C∞(Cn), 0 ≤ η ≤ 1, such that suppη ⊂ BR and
η ≡ 1 onBR/2. The relation

lim
k→∞

∫
ηT ∧ (ddcϕk)p =

∫
ηT ∧ (ddcϕ)p

implies that

lim inf
k→∞ δ(T, ϕk) ≥

∫
ηT ∧ (ddcϕ)p,

and the assertion follows.

Comparison Theorem 3.1 for the degrees reads as follows.

Proposition 5.3. If two weightsϕ,ψ ∈W(suppT ) for a currentT ∈LD+p and
if

lim sup
|z|→∞, z∈suppT

ϕ(z)

ψ(z)
≤ l,

thenδ(T, ϕ) ≤ lpδ(T, ψ).
When applied to indicators, this gives us the following corollary.

Corollary 5.1. For any currentT ∈ LD+p , any weightϕ ∈ W(suppT ), and
y ∈Cn, we haveδ(T, ϕ) ≤ δ(T,9+ϕ,y) = δ(T,9ϕ,y).
More can be said ifT = ddcu (u∈L). In this case, the generalized degrees can be
represented by means of the swept-out Monge–Ampère measures introduced by
Demailly [7]. Forϕ ∈W(Cn), let Br(ϕ) = {z : ϕ(z) < r}, Sr(ϕ) = {z : ϕ(z) =
r}, andϕr = max{ϕ, r}. Theswept-out Monge–Ampère measureµϕr is defined as

µ
ϕ
r = (ddcϕr)n − χr(ddcϕ)n,

whereχr is the characteristic function ofCn \ Br(ϕ). It is a positive measure
on Sr(ϕ) with the total massµϕr (Sr(ϕ)) = (ddcϕ)n(Br(ϕ)). If supp(ddcϕ)n ⊂
BR(ϕ), thenµϕr = (ddcϕr)n for all r > R.

Forϕ(z) = log|z − x|, µϕr is the normalized Lebesgue measure on the sphere
{z : |z− x| = er}, and forϕ = ϕa it is supported by the set

Tra = {z : zk = exp(rak + iθk), 0 ≤ θk ≤ 2π, 1≤ k ≤ n} (5.1)

and has the formµϕar = (a1 . . . an)
−1(2π)−n dθ1 . . . dθn (see [9]).

The role of the measuresµϕr is clarified by the Lelong–Jensen–Demailly for-
mula [7; 9]: For any functionu that is plurisubharmonic inBR(ϕ),

µ
ϕ
r (u)−

∫
Br (ϕ)

u(ddcϕ)n =
∫ r

−∞

∫
Bt(ϕ)

ddcu ∧ (ddcϕ)n−1dt ∀r < R.

Theorem 5.1 (cf. [7; 9]). Letu∈L andϕ ∈W(Cn). Then

lim sup
r→∞

µ
ϕ
r (u)

r
≤ δ(ddcu, ϕ) ≤ lim inf

r→∞
µ
ϕ
r (u
+)

r
. (5.2)
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If, in addition,
supp(ddcϕ)n ⊂ Br0(ϕ) (5.3)

for somer0, thenr 7→ µ
ϕ
r (u) is a convex function ofr ∈ (r0,∞) and

δ(ddcu, ϕ) = lim
r→+∞

µ
ϕ
r (u)

r
. (5.4)

Proof. From the Lelong–Jensen–Demailly formula, for anyr > r0 we have

µ
ϕ
r (u) =

∫
Br0(ϕ)

u(ddcϕ)n+
∫
Br (ϕ)\Br0(ϕ)

u(ddcϕ)n+
∫ r

−∞
δ(ddcu, ϕ, t) dt (5.5)

with

δ(ddcu, ϕ, t) =
∫
Bt(ϕ)

dd cu ∧ (ddcϕ)n−1.

If ϕ satisfies (5.3) then the right-hand side is a convex function ofr, and (5.4)
follows. When (5.3) is not assumed, take anyε > 0 and chooser0 such that
(ddcϕ)n(Cn \Br0(ϕ)) < ε andu(z) ≤ (σ(u, ϕ)+ ε)ϕ(z) for all z∈Cn \Br0(ϕ).
Then we have

µ
ϕ
r (u) ≤ Const+ (σ(u, ϕ)+ ε)rε +

∫ r

−∞
δ(ddcu, ϕ, t) dt,

which gives us the first inequality in (5.2). To get the second inequality, consider
the functionsuN(z) = max{u(z),−N} for N > 0. By Proposition 5.1, the num-
berN can be chosen such thatδ(ddcuN, ϕ) ≥ δ(u, ϕ)+ ε. Application of (5.5) to
the functionuN gives us

µ
ϕ
r (u
+) ≥ µϕr (uN) ≥ Const−Nε +

∫ r

−∞
δ(ddcu, ϕ, t) dt

and thus finishes the proof.

As follows from definition of the generalized type (2.3) and inequality (4.1),
σ(u, ϕ) ≥ σ(u,9ϕ,0) for every ϕ ∈ W(Cn), and Corollary 5.1 shows that
δ(ddcu, ϕ) ≤ δ(ddcu,9ϕ,y)with anyy ∈Cn. This motivates consideration ofho-
mogeneousweights, or (abstract) indicators,8 that depend only on|z1|, . . . , |zn|
and satisfy the homogeneity condition (4.5). Note that a homogeneous weight8

is exhaustive onCn if and only if8 > 0 onCn \ D.
It is easy to see that the typeσ(u,8) with respect to a homogeneous exhaustive

weight8 can be computed as

σ(u,8) = max{9u,0(z) : 8(z) = 1}.
It is interesting that the degreesδ(ddcu,8) can also be represented in terms of the
indicators.

Theorem 5.2. For any functionu ∈ L, any x ∈ Cn, and any homogeneous
weight8 ∈W(Cn), the equalityδ(ddcu,8) = δ(ddc9u,x,8) holds. In particu-
lar, δ(ddcu, ϕ) ≤ δ(ddcu,9ϕ,y) = δ(ddc9u,x, 9ϕ,y) for any weightϕ ∈W(Cn)

andy ∈Cn.
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Proof. Consider the family of functionsum defined by (4.2),x ∈ Cn. As men-
tioned in Section 4, theum converge (inL1

loc) to9u,x asm→ ∞, soddcum →
ddc9u,x. By Proposition 5.1,

δ(ddc9u,x,8) ≤ lim inf
m→∞ δ(ddcum,8).

However, the homogeneity of8 gives usδ(ddcum,8) = δ(ddcu,8) for eachm,
so δ(ddcu,8) ≥ δ(ddc9u,x,8); the desired equality then follows from Corol-
lary 5.1. The theorem is proved.

Remark. As mentioned in Section 2,σ(u) = δ(ddcu). It is not hard to see that,
more generally, the directional typeσ(u, a) as described in equation (2.1) is equal
to a1 . . . anδ(dd

cu, ϕa),where the weightsϕa are defined by (2.2); in other words,
δ(ddcu, ϕa) = σ(u, ϕa)µ(ϕa, . . . , ϕa). As can be seen from Corollary 5.2, a re-
lation between the type and the degree with respect to an arbitrary homogeneous
exhaustive weight8 is not so perfect:δ(ddcu,8) ≤ σ(u,8)µ(8, . . . , 8), and
an equality for allu implies that8+ = cϕ+a with somec > 0 anda ∈Rn+.

The structure of the swept-out Monge–Ampère measures for homogeneous weights
is given by our next theorem.

Theorem 5.3. Let 8 ∈ W(Cn) be a homogeneous weight. For any functionu
that is plurisubharmonic inBR(8) forR > 0, the swept-out Monge–Ampère mea-
sureµ8r on the setSr(8), 0< r < R, is determined by the formula

µ8r (u) = n!
∫
E8
λ(u, rt) dγ 81 (t),

whereλ(u, rt) is the mean value ofu over the distinguished boundary of the poly-
disk {|zk| < exp{rtk}, 1 ≤ k ≤ n} and where the measureγ 81 on the setE8 of
extreme points of the convex set{t ∈ Rn : 8(et1, . . . , etn ) ≤ 1} is given by the
relation γ 81 (F ) = Vol28

F for compact subsetsF ofE8, with the set28
F defined

by relations(5.8), (5.9),and (5.6).

Corollary 5.2. For anyϕ ∈W(Cn), u∈L, andx, y ∈Cn,

δ(ddcu, ϕ) ≤ δ(ddcu,9ϕ,y) = n!
∫
E8
ψu,x(t) dγ

8
1 (t),

where8 = 9ϕ,y andψu,x is the convex image of the indicator9u,x. In particular,
δ(ddcu, ϕ) ≤ σ(u, ϕ)µ(9ϕ,0, . . . , 9ϕ,0).
Remark. A description for the swept-out Monge–Ampère measures for (nega-
tive) local indicatorswas given in [21]; the result was that the generalized Lelong
numbers with arbitrary homogeneous weight can be recovered from those with
respect to the weightsϕa (its directional Lelong numbers alonga ∈Rn+). As fol-
lows from Corollary 5.2, this is not always the case for the generalized degrees
(the measureγ 81 can chargeRn \ Rn+).
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Proof of Theorem 5.3.Since(ddc8)n = 0 on{8 > 0}, we haveµ8r = (ddc8r)
n

for eachr > 0. By the rotation invariance,

µ8r = (2π)−ndθ ⊗ dρ8r
with some measureρ8r supported bySr(8) ∩ Rn. Moreover, sinceµ8r has no
masses on the pluripolar setSr(8) ∩ {z : z1 . . . zn = 0}, we can pass to the coor-
dinateszk = exp{tk + iθk} (−∞ < tk <∞, 1≤ k ≤ n). The functions

ϕ(t) := 8(et1, . . . , etn ) and ϕr(t) = 8r(e
t1, . . . , etn ) = max{ϕ(t), r}

are convex inRn and increasing in eachtk. Simple calculations show that, in these
coordinates,ρ8r transforms into the measure

γ 8r = n!MA[ϕr ],

whereMA is the real Monge–Ampère operator (see e.g. [20] for details). We
recall that, for smooth functionsv,

MA[v] = det

(
∂2v

∂tj∂tk

)
dt,

and it can be extended as a positive measure to any convex function (see [19]).
Thus we have

µ8r (u) =
∫

Rn
(2π)−n

∫
[0,2π] n

u(z1e
iθ1, . . . , zne

iθn) dθ dρ8r (|z1|, . . . , |zn|)

= n!
∫

Rn
λ(u, t) dγ 8r (t) = n!

∫
Rn
λ(u, rt) dγ 81 (t)

sinceϕr(t) = rϕ1(t/r), and we need only to find an explicit expression for the
measureγ 81 supported in the level set

L8 = {t ∈Rn : ϕ(t) = 1}. (5.6)

As follows from properties of the real Monge–Ampère operator,∫
F

MA[ϕ1] = Vol(ω(F, ϕ1)) ∀F ⊂ L8, (5.7)

where

ω(F, ϕ1) =
⋃
t0∈F
{a ∈Rn : ϕ1(t) ≥ 1+ 〈a, t − t0〉 ∀t ∈Rn}

is the gradient image of the setF.
Given a subsetF of L8, we put

08F =
{
a ∈Rn

+ : sup
t∈F
〈a, t〉 = sup

t∈L8
〈a, t〉 = 1

}
(5.8)

and
28
F = {λa : 0 ≤ λ ≤ 1, a ∈08F }. (5.9)
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Note that28
L8

is a bounded convex subset ofRn+ and thatϕ is its support function.
We claim that,for any compact subsetF ofL8, 28

F = ω(F, ϕ1).

If a ∈ω(F, ϕ1) then, for somet0 ∈F,
〈a, t0〉 ≥ 〈a, t〉 − ϕ1(t)+1 ∀t ∈Rn. (5.10)

In particular,
〈a, t0〉 ≥ 〈a, t〉 ∀t ∈L8. (5.11)

Whent = ct0 with c > 1, (5.10) implies〈a, t0〉 ≤ 1. In view of (5.11) it follows
thata ∈28

F and thusω(F, ϕ1) ⊂ 28
F .

Let nowa ∈28
F , soa = λa0 for a0 ∈08F and 0≤ λ ≤ 1. Then there is a point

t0 ∈F such that
〈a, t0〉 = sup

t∈F
〈a, t〉 = sup

t∈L8
〈a, t〉 = λ.

Take anyt ∈ Rn. If ϕ(t) ≤ 1, then〈a, t0〉 ≥ 〈a, t〉 and thusϕ1(t) ≥ 1+ 〈a, t −
t0〉. If ϕ(t) = α > 1, thent/α ∈L8 and

〈a, t〉 − ϕ1(t)+1= α〈a, t/α〉 +1− α ≤ α sup
s∈L8
〈a, s〉 +1− α

= α〈a, t0〉 +1− α = αλ+1− α ≤ λ = 〈a, t0〉,
soa ∈ω(F, ϕ1). The claim is proved.

Finally, letE8 be the set of extreme points ofL8 (i.e., those not situated inside
intervals onL8). SinceL8 ⊂ {t ∈ Rn \ Rn− : tk ≤ bk, 1≤ k ≤ n} for someb ∈
Rn+, we have

sup
t∈L8
〈a, t〉 = sup

t∈E8
〈a, t〉 ∀a ∈Rn

+,

so that28
L8
= 28

E8
. Henceγ 81 (L

8) = γ 81 (E
8) and then suppγ 81 ⊂ E8. The

proof is complete.

6. Algebraic Case: Newton Polyhedra

Here we test our results for the case of currents generated by polynomial mappings.
Whenu = log|P | for a polynomialP, it follows thatσ(u) is the degree ofP,

σk(u) is its degree with respect tozk, andψu,x(t) = max{〈t, J 〉 : J ∈ ωx(P )},
where

ωx(P ) =
{
J ∈Zn

+ :
∂JP

∂zJ
(x) 6= 0

}
(see [22]). Note that the maximum is attained on the set of extreme pointsEx(P )

of the setωx(P ). In particular,E0(P ) coincides with the set of extreme points of
the convex hull of the exponents of the polynomialP. This means that the set28

with 8 = 9u,0 equals

G+(P ) = conv(E0(P ) ∪ {0}), (6.1)

theNewton polyhedron ofP at infinity as defined in [11].
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Let nowP = (P1, . . . , Pp) be a polynomial mapping; ifuj = log|Pj | thenZj =
ddcuj is the divisor ofPj . Let the zero setsAj of Pj be properly intersected—that
is, let codimAj1 ∩ · · · ∩ Ajm ≥ m for all choices of indicesj1, . . . , jm (m ≤ p).
Then the holomorphic chainZ of the mappingP is the intersection of the divisors
Zj : Z = Z1∧ · · · ∧ Zp [9, Prop. 2.12].

In this setting, Corollary 3.1 turns into the bound∫
Cn

T ∧ Z ≤ δ(T )δ1 . . . δp

via the degreesδj of Pj . ForT = 1 this gives Bezout’s inequality for the projec-
tive volume of the chainZ. The specification of Corollary 3.3 witha ∈ Zn+ gives
a bound by means of the degrees ofPj(z

a), a global counterpart for the Tsikh–
Yuzhakov theorem on multiplicity of holomorphic mappings in terms of the quasi-
homogeneous (or weighted homogeneous) initial polynomial terms [26] (see also
[4, Thm. 10.3.2′]). And Corollary 4.2 becomes exactly a result of Tsikh [25].

Theorem 4.1 now takes the following form.

Corollary 6.1. The degree( projective volume) δ(Z) of the holomorphic chain
Z generated by a polynomial mappingP = (P1, . . . , Pp), wherep ≤ n and the
zero sets of componentsPk are properly intersected, has the bound

δ(Z) ≤ n! Vol (G+1 , . . . , G
+
p ,1, . . . ,1).

HereG+j is the Newton polyhedron of the polynomialPj at infinity (defined by
(6.1)) and1 = {t ∈ Rn+ :

∑
tj ≤ 1}, the standard simplex inRn. In particular,

if p = n then the number of zeros ofP counted with their multiplicities does not
exceedn! Vol (G+1 , . . . , G+n ).

WhenPj(0) = 0, the setG+j is strictly greater than the convex hullE0(Pj ) of the
setω0(Pj ) appearing in Bernstein’s theorem. But in return we take care of all the
zeros whereas Bernstein’s theorem estimates only those in(C \ {0})n. Actually,
no bound for the total number is possible in terms of just the convex hulls of the
exponents (see e.g.f(z) ≡ z).

An algebraic specification of Theorem 5.3 and Corollary 5.2 is as follows. Let
8 be the indicator of log|P | for a polynomial mappingP : Cn → Cp (p ≥ n)
with discrete zeros. Then the set08

L8
is the Newton diagram forP and28

L8
=

G+(P ) is the Newton polyhedron forP at infinity—that is, the convex hull of the
setsG+(Pk), 1≤ k ≤ p. In this case, the setE8 = {t1, . . . , tN } is finite; it con-
sists simply of normals to the(n−1)-dimensional faces0j(P ) of the polyhedron
situated outside the coordinate planes, with the condition8(t j ) = 1. The measure
γ 81 chargest j with the volume of the convex hullG+j (P ) of the corresponding
face0j(P ) and 0, so

δ(ddcu, log|P |) ≤ δ(ddcu,9 log|P |,0) = n!
∑

1≤j≤N
ψu,0(t

j )Vol(G+j (P )).
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