Propagation of Regularity and Global Hypoellipticity

A. Alexandrou Himonas \& Gerson Petronilho

1. Introduction

If $X=\left\{X_{1}, \ldots, X_{m}\right\}$ is a collection of real C^{∞} vector fields on a C^{∞} manifold \mathcal{M}, then the formulation of necessary and sufficient conditions for the global (or local) hypoellipticity of their sub-Laplacian $\Delta_{X} \doteq-\left(X_{1}^{2}+\cdots+X_{m}^{2}\right)$ is an open problem. We recall that an operator P is said to be globally hypoelliptic if, for any distribution u in \mathcal{M} such that $P u$ is in $C^{\infty}(\mathcal{M})$, we have that u is in $C^{\infty}(\mathcal{M})$. An operator P is said to be locally hypoelliptic if the last condition holds in any open subset of the manifold. Global and local analytic hypoellipticity are defined similarly. Also, we recall that a point in \mathcal{M} is said to be of finite type (or satisfies the bracket condition) if the Lie algebra generated by the vector fields X_{1}, \ldots, X_{m} spans the tangent space of \mathcal{M} at the given point. Otherwise, it is said to be of infinite type. By the celebrated theorem of Hörmander [Hö] (see also Kohn [K], Oleinik and Radkevic [OR], and Rothschild and Stein [RS]), the finite-type condition is sufficient for the local hypoellipticity of Δ_{X} and hence for its global hypoellipticity. In the analytic category, Derridj [D] proved that the finite-type condition is also necessary for hypoellipticity. Baouendi and Goulaouic [BG] proved that the finite-type condition is not sufficient for the analytic hypoellipticity of Δ_{X}. We shall not discuss here the problem of analytic hypoellipticity, for which we refer the reader to Bernadi, Bove, and Tartakoff [BBT], Christ [C2], Grigis and Sjöstrand [GS], Hanges and Himonas [HH2], Helffer [Hel], Metivier [M], Tartakoff [Ta], Treves [Tr], and the references therein.

Our first result here is about semi-local propagation of regularity for an operator that is the sum of a sub-Laplacian and lower-order terms: $P=\Delta_{X}+X_{0}+i b(t)$.

Theorem 1. On the torus $\mathbb{T}^{(n+1)+m}$ with variables (t, x) let P be the operator

$$
\begin{equation*}
P=-\Delta_{t}-\sum_{j=1}^{n} X_{j}^{2}+X_{0}+i b(t) \tag{1.1}
\end{equation*}
$$

where $X_{j}=\partial_{t_{j}}+\sum_{k=1}^{m} a_{j k}(t) \partial_{x_{k}}$ for $j=0, \ldots, n$ and with $a_{j k}(t)$ and $b(t)$ realvalued functions in $C^{\infty}\left(\mathbb{T}^{n+1}\right)$. If $u \in D^{\prime}\left(\mathbb{T}^{n+1+m}\right)$, $P u \in C^{\infty}\left(\mathbb{T}^{n+1+m}\right)$, and $u \in$ $C^{\infty}\left(U \times \mathbb{T}^{m}\right)$ for some open set $U \subset \mathbb{T}^{n+1}$, then $u \in C^{\infty}\left(\mathbb{T}^{n+1+m}\right)$.

[^0]In general, the operator P in (1.1) is not globally hypoelliptic, since if all $a_{j k}(t)$ and $b(t)$ are identically equal to zero then any function $u=u(x)$ will be a solution to $P u=0$. However, Theorem 1 implies the following result.

Corollary 1. Let P be as in (1.1). If there exists a point $\left(t^{0}, x^{0}\right) \in \mathbb{T}^{n+1+m}$ of finite type for the vector fields $\partial_{t_{0}}, \partial t_{1}, \ldots, \partial_{t_{n}}$ and $X_{0}, X_{1}, \ldots, X_{n}$, then P is globally hypoelliptic in \mathbb{T}^{n+1+m}.

In fact, since the finite type is an open condition, there exists an open set $U \subset$ \mathbb{T}^{n+1} such that $t^{0} \in U$ and all points of the set $U \times \mathbb{T}^{m}$ are of finite type. Thus, by Hörmander's theorem [Hö], the operator P is hypoelliptic in $U \times \mathbb{T}^{m}$. Therefore, if $u \in D^{\prime}\left(\mathbb{T}^{n+1+m}\right)$ is such that $P u \in C^{\infty}\left(\mathbb{T}^{n+1+m}\right)$, then Theorem 1 implies that $u \in C^{\infty}\left(\mathbb{T}^{n+1+m}\right)$ and hence P is globally hypoelliptic in \mathbb{T}^{n+1+m}.

In Section 3 we state a necessary and sufficient condition for the global hypoellipticity of the operator (1.1) (when $n=1, X_{0}=0$, and $b=0$) using Diophantine approximations (see Theorem 5). Here we state a result concerning semi-local propagation of regularity for our second family of operators.

Theorem 2. On \mathbb{T}^{n+1} with variables $\left(t_{1}, \ldots, t_{n}, x\right)$, let P be the operator defined by

$$
\begin{equation*}
P=-\left(\partial_{t_{1}}^{2}+\cdots+\partial_{t_{n-1}}^{2}\right)-\left(\partial_{t_{n}}+a\left(t_{1}, \ldots, t_{n}\right) \partial_{x}\right)^{2} \tag{1.2}
\end{equation*}
$$

where $a\left(t_{1}, \ldots, t_{n}\right)$ is a real-valued function in $C^{\infty}\left(\mathbb{T}^{n}\right)$. If $u \in D^{\prime}\left(\mathbb{T}^{n+1}\right), P u \in$ $C^{\infty}\left(\mathbb{T}^{n+1}\right)$, and $u \in C^{\infty}\left(U \times \mathbb{T}^{2}\right)$ for some open set $U \subset \mathbb{T}^{n-1}$, then $u \in C^{\infty}\left(\mathbb{T}^{n+1}\right)$.

Operator (1.2) is globally hypoelliptic when the finite-type condition holds on a "2-dimensional torus" set. More precisely, we have the following result.

Theorem 3. If there exists a point $\left(t_{1}^{0}, \ldots, t_{n-1}^{0}\right) \in \mathbb{T}^{n-1}$ such that all points in the set $\left\{\left(t_{1}^{0}, \ldots, t_{n-1}^{0}\right)\right\} \times \mathbb{T}^{2}$ are of finite type for the vector fields $X_{j}=\partial_{t_{j}}(j=$ $1, \ldots, n-1)$ and $X_{n}=\partial_{t_{n}}+a\left(t_{1}, \ldots, t_{n}\right) \partial_{x}$, then the operator P defined by (1.2) is globally hypoelliptic in \mathbb{T}^{n+1}.

If $n=2$ then the operator (1.2) takes the familiar form

$$
\begin{equation*}
\Delta_{X}=-\partial_{t_{1}}^{2}-\left[\partial_{t_{2}}+a\left(t_{1}, t_{2}\right) \partial_{x}\right]^{2} \tag{1.3}
\end{equation*}
$$

The analytic hypoellipticity of this operator has been considered by several authors (see [C1; HH1; PR]). If a is an analytic function, then Δ_{X} is globally analytic hypoelliptic if the bracket condition holds [CH]. If $a=a\left(t_{1}\right)$ and is analytic near the origin, then Δ_{X} is not locally analytic hypoelliptic if $a(0)=a^{\prime}(0)=0[\mathrm{Cl}]$. If $a=a\left(t_{1}\right)$ and is in $C^{\infty}(\mathbb{T})$, then Δ_{X} is globally hypoelliptic if and only if the range of a contains a non-Liouville number $[\mathrm{H}]$. As a consequence of Theorem 3 it follows that, if there exists a point $t_{1}^{0} \in \mathbb{T}$ such that all points in the set $\left\{t_{1}^{0}\right\} \times \mathbb{T}^{2}$ are of finite type, then the operator Δ_{X} is globally hypoelliptic in \mathbb{T}^{3}. Moreover, if every point in \mathbb{T}^{3} is of infinite type, then it is globally hypoelliptic if and only if the average of the function a is a non-Liouville number (see Theorem 4 in Section 3).

For more results on local and global hypoellipticity, we refer the reader to [A; BM; FO; GPY; GW; F; HP1; HP2; KS; T] and the references therein.

2. Proofs of Theorems 1-3

Proof of Theorem 1. Let $u \in D^{\prime}\left(\mathbb{T}^{n+1+m}\right)$ be such that

$$
\begin{equation*}
P u=f, \quad f \in C^{\infty}\left(\mathbb{T}^{n+1+m}\right), \tag{2.1}
\end{equation*}
$$

and let $u \in C^{\infty}\left(U \times \mathbb{T}^{m}\right)$ for some open set $U \subset \mathbb{T}^{n+1}$.
If, in (2.1), we take the partial Fourier transform with respect to $x \in \mathbb{T}^{m}$, then

$$
\begin{equation*}
\left[-\Delta_{t}-\sum_{j=1}^{n} Y_{j}^{2}+Y_{0}+i b(t)\right] \hat{u}(t, \xi)=\hat{f}(t, \xi) \quad \text { for all } \xi \in \mathbb{Z}^{m} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
Y_{j}=\partial_{t_{j}}+i \sum_{k=1}^{m} a_{j k}(t) \xi_{k}, \quad j=0, \ldots, n \tag{2.3}
\end{equation*}
$$

For any fixed $\xi \in \mathbb{Z}^{m}$, we have that $\hat{u}(t, \xi)$ is in $C^{\infty}\left(\mathbb{T}^{n+1}\right)$ because (2.2) is elliptic in t. Therefore, if we multiply (2.2) with $\overline{\hat{u}}$, integrate by parts with respect to $t \in \mathbb{T}^{n+1}$, and use (2.3), then

$$
\begin{aligned}
& \sum_{j=0}^{n}\left\|\hat{u}_{t_{j}}(\cdot, \xi)\right\|_{L^{2}\left(\mathbb{T}^{n+1}\right)}^{2}+\sum_{j=1}^{n}\left\|Y_{j} \hat{u}(\cdot, \xi)\right\|_{L^{2}\left(\mathbb{T}^{n+1}\right)}^{2} \\
& +i\left[\operatorname{Im} \int_{\mathbb{T}^{n+1}}\left(\partial_{t_{0}} \hat{u}(t, \xi)\right) \overline{\hat{u}} d t+\int_{\mathbb{T}^{n+1}} \sum_{k=1}^{m} a_{0 k}(t) \xi_{k}|\hat{u}(t, \xi)|^{2} d t\right. \\
& \left.\quad+\int_{\mathbb{T}^{n+1}} b(t)|\hat{u}(t, \xi)|^{2} d t\right] \\
& =\int_{\mathbb{T}^{n+1}} \hat{f}(t, \xi) \overline{\hat{u}}(t, \xi) d t
\end{aligned}
$$

Taking the real part in the last relation, we obtain

$$
\begin{align*}
& \sum_{j=0}^{n}\left\|\hat{u}_{t_{j}}(\cdot, \xi)\right\|_{L^{2}\left(\mathbb{T}^{n+1}\right)}^{2}+\sum_{j=1}^{n}\left\|Y_{j} \hat{u}(\cdot, \xi)\right\|_{L^{2}\left(\mathbb{T}^{n+1}\right)}^{2} \\
&=\operatorname{Re} \int_{\mathbb{T}^{n+1}} \hat{f}(t, \xi) \overline{\hat{u}}(t, \xi) d t \tag{2.4}
\end{align*}
$$

Using the Cauchy-Schwarz inequality, relation (2.4) gives

$$
\begin{equation*}
\sum_{j=0}^{n}\left\|\hat{u}_{t_{j}}(\cdot, \xi)\right\|_{L^{2}\left(\mathbb{T}^{n+1}\right)}^{2} \leq\|\hat{f}(\cdot, \xi)\|_{L^{2}\left(\mathbb{T}^{n+1}\right)}\|\hat{u}(\cdot, \xi)\|_{L^{2}\left(\mathbb{T}^{n+1}\right)} \tag{2.5}
\end{equation*}
$$

Furthermore, using the fundamental theorem of calculus yields

$$
\begin{equation*}
\|\hat{u}(\cdot, \xi)\|_{L^{2}\left(\mathbb{T}^{n+1}\right)}^{2} \leq C\left(\int_{V}|\hat{u}(s, \xi)|^{2} d s+\sum_{j=0}^{n}\left\|\hat{u}_{t_{j}}(\cdot, \xi)\right\|_{L^{2}\left(\mathbb{T}^{n+1}\right)}^{2}\right) \tag{2.6}
\end{equation*}
$$

where $V \subset \bar{V} \subset U$ and \bar{V} is a compact set.
From now on we shall use the letter C to represent a constant, which may change a finite number of times. Since $u \in C^{\infty}\left(U \times \mathbb{T}^{m}\right)$ for a given $N \in \mathbb{N}$, there exists a $C_{N}>0$ such that

$$
\begin{equation*}
|\hat{u}(s, \xi)| \leq C_{N}|\xi|^{-2 N} \quad \forall s \in V \text { and } \forall \xi \in \mathbb{Z}^{m}-\{0\} \tag{2.7}
\end{equation*}
$$

By (2.5)-(2.7) it then follows that, for a given $N \in \mathbb{N}$, there are $C_{N}>0$ and $C>0$ such that

$$
\begin{aligned}
\|\hat{u}(\cdot, \xi)\|_{L^{2}\left(\mathbb{T}^{n+1}\right)}^{2} & \leq C\left(\int_{V}|\hat{u}(s, \xi)|^{2} d s+\sum_{j=0}^{n}\left\|\hat{u}_{t_{j}}(\cdot, \xi)\right\|_{L^{2}\left(\mathbb{T}^{n+1}\right)}^{2}\right) \\
& \leq C \int_{V}|\hat{u}(s, \xi)|^{2} d s+C\|\hat{f}(\cdot, \xi)\|_{L^{2}\left(\mathbb{T}^{n+1}\right)}\|\hat{u}(\cdot, \xi)\|_{L^{2}\left(\mathbb{T}^{n+1}\right)} \\
& \leq C_{N} \int_{V}|\xi|^{-2 N} d s+C\|\hat{f}(\cdot, \xi)\|_{L^{2}\left(\mathbb{T}^{n+1}\right)}\|\hat{u}(\cdot, \xi)\|_{L^{2}\left(\mathbb{T}^{n+1}\right)} \\
& \leq C_{N}|\xi|^{-2 N}+C\|\hat{f}(\cdot, \xi)\|_{L^{2}\left(\mathbb{T}^{n+1}\right)}\|\hat{u}(\cdot, \xi)\|_{L^{2}\left(\mathbb{T}^{n+1}\right)} \\
& \leq C_{N}|\xi|^{-2 N}+C\left[\frac{1}{2 \varepsilon^{2}}\|\hat{f}(\cdot, \xi)\|_{L^{2}\left(\mathbb{T}^{n+1}\right)}^{2}+\frac{\varepsilon^{2}}{2}\|\hat{u}(\cdot, \xi)\|_{L^{2}\left(\mathbb{T}^{n+1}\right)}^{2}\right]
\end{aligned}
$$

If we choose $\varepsilon>0$ such that $1-c \varepsilon^{2} / 2>1 / 2$, then

$$
\frac{1}{2}\|\hat{u}(\cdot, \xi)\|_{L^{2}\left(\mathbb{T}^{n+1}\right)}^{2} \leq C_{N}|\xi|^{-2 N}+\frac{C}{2 \varepsilon^{2}}\|\hat{f}(\cdot, \xi)\|_{L^{2}\left(\mathbb{T}^{n+1}\right)}^{2}
$$

which gives

$$
\begin{equation*}
\|\hat{u}(\cdot, \xi)\|_{L^{2}\left(\mathbb{T}^{n+1}\right)} \leq C_{N}|\xi|^{-N} \quad \forall \xi \in \mathbb{Z}^{m}-\{0\} \tag{2.8}
\end{equation*}
$$

since $f \in C^{\infty}\left(\mathbb{T}^{n+1+m}\right)$. Finally, using (2.8) and a standard microlocal analysis argument (see $[\mathrm{H}]$), we prove that $u \in C^{\infty}\left(\mathbb{T}^{n+1+m}\right)$.

Proof of Theorem 2. The proof of Theorem 2 is similar to that of Theorem 1, if one replaces inequality (2.6) with

$$
\begin{equation*}
\|\hat{u}(\cdot, \xi)\|_{L^{2}\left(\mathbb{T}^{n}\right)}^{2} \leq C\left(\int_{-\pi}^{\pi} \int_{I}\left|\hat{u}\left(s, t_{n}, \xi\right)\right|^{2} d s d t_{n}+\sum_{j=1}^{n-1}\left\|\hat{u}_{t_{j}}(\cdot, \xi)\right\|_{L^{2}\left(\mathbb{T}^{n}\right)}^{2}\right) \tag{2.9}
\end{equation*}
$$

where $I \subset[-\pi, \pi]^{n-1}$ and C is a constant independent of ξ. To verify inequality (2.9), let $\phi(t)=\hat{u}(\cdot, \xi), s \in I$, and $t \in[-\pi, \pi]^{n}$. Then, by the fundamental theorem of calculus, we have

$$
\phi(t)=\phi\left(s, t_{n}\right)+\sum_{j=1}^{n-1} \int_{s_{j}}^{t_{j}} \phi_{y_{j}}\left(s_{1}, \ldots, s_{j-1}, y_{j}, t_{j+1}, \ldots, t_{n}\right) d y_{j}
$$

Using the Cauchy-Schwarz inequality gives

$$
|\phi(t)|^{2} \leq C\left(\left|\phi\left(s, t_{n}\right)\right|^{2}+\sum_{j=1}^{n-1} \int_{-\pi}^{\pi}\left|\phi_{y_{j}}\left(s_{1}, \ldots, s_{j-1}, y_{j}, t_{j+1}, \ldots, t_{n}\right)\right|^{2} d y_{j}\right)
$$

Finally, integrating this inequality for $s \in I$ and $t \in[-\pi, \pi]^{n}$ yields (2.9).
Proof of Theorem 3. For simplicity we may assume that $\left(t_{1}^{0}, \ldots, t_{n-1}^{0}\right)$ is the origin in \mathbb{T}^{n-1}. We will show that there exist $\delta(0<\delta \leq \pi)$, functions $c_{\ell}(t) \in$ $C^{\infty}\left([-\delta, \delta]^{n-1} \times \mathbb{T}\right)$ for $\ell=1, \ldots, M$, and $J_{1}, \ldots, J_{M} \in \mathcal{J}$ with $|J| \geq 2$ such that

$$
\begin{equation*}
\partial_{x}=\sum_{\ell=1}^{M} c_{\ell}(t) X_{J_{\ell}} \text { on }[-\delta, \delta]^{n-1} \times \mathbb{T} \tag{2.10}
\end{equation*}
$$

where for $J=\left(j_{1}, \ldots, j_{p}\right) \in \mathcal{J}=\bigcup_{\gamma=1}^{\infty}\{1, \ldots, n\}^{\gamma}$ we define

$$
X_{J}=\left[X_{j_{1}},\left[X_{j_{2}},\left[X_{j_{3}}, \ldots, X_{j_{p}}\right]\right]\right]
$$

Also, we define $|J|=p$. By the finite-type assumption, if $\left(0, t_{n}, x\right) \in \mathbb{T}^{n+1}$ then there are $J_{1}, \ldots, J_{n+1} \in \mathcal{J}$ such that $X_{J_{1}}, \ldots, X_{J_{n+1}}$ span the tangent space of \mathbb{T}^{n+1} at $\left(0, t_{n}, x\right)$. Since either $X_{J}=0$ or $X_{J}=C_{J}(t) \partial_{x}$ for all $J \in \mathcal{J}$, where $C_{J}(t)=$ $\partial_{t}^{\alpha} a(t)$ for some $\alpha \in \mathbb{N}^{n}$, it follows that the list $X_{J_{1}}, \ldots, X_{J_{n+1}}$ just displayed necessarily must contain the vector fields X_{1}, \ldots, X_{n}. Now, using the assumption that all points in the set $\{0\} \times \mathbb{T}^{2}$ are of finite type, for each point $t_{n} \in \mathbb{T}$ there exist an open set $V_{t_{n}}$ containing 0 and an open interval $U_{t_{n}}$ containing t_{n} such that, for some $|J| \geq 2$,

$$
\partial_{x}=C_{J}^{-1}(t) X_{J}, \quad C_{J}^{-1}(t) \in C^{\infty}\left(V_{t_{n}} \times U_{t_{n}}\right)
$$

Since the family of the intervals $\left\{U_{t_{n}}\right\}_{t_{n} \in \mathbb{T}}$ cover \mathbb{T}, by the compactness of \mathbb{T} there exist finitely many intervals U_{1}, \ldots, U_{M} covering \mathbb{T}. If we define V to be the intersection of the corresponding sets V_{1}, \ldots, V_{M}, then

$$
\partial_{x}=C_{\ell}^{-1}(t) X_{J_{\ell}}, \quad C_{\ell}^{-1}(t) \in C^{\infty}\left(V \times U_{\ell}\right),\left|J_{\ell}\right| \geq 2, \quad \ell=1, \ldots, M
$$

If we choose $\delta>0$ such that $[-\delta, \delta]^{n-1} \subset V$, then the open sets $V \times U_{\ell}$ cover the compact set $[-\delta, \delta]^{n-1} \times \mathbb{T}$. Now, taking a partition of unity $\left\{\psi_{\ell}\right\}$ subordinate to this covering and letting $c_{\ell}(t)=\psi_{\ell}(t) C_{\ell}^{-1}(t)$, we obtain the desired relation (2.10).

Applying Hörmander's theorem [Hö], we find that the operator P is hypoelliptic in $U \times \mathbb{T}^{2}$, where $U \subset[-\delta, \delta]^{n-1}$ is an open set. Therefore, if $u \in D^{\prime}\left(\mathbb{T}^{n+1}\right)$ is such that $P u \in C^{\infty}\left(\mathbb{T}^{n+1}\right)$, then $u \in C^{\infty}\left(U \times \mathbb{T}^{2}\right)$. Using Theorem 2, we conclude that $u \in C^{\infty}\left(\mathbb{T}^{n+1}\right)$ and hence P is globally hypoelliptic in \mathbb{T}^{n+1}.

3. Global Hypoellipticity and Diophantine Approximations

Finding necessary and sufficient conditions for the global hypoellipticity of a subLaplacian is a difficult open problem. One of the main obstacles is the appearance
of Diophantine phenomena (see e.g. [FO; GPY; GW; H; HP1; HP2]). Such is the case in our next result for the operator (1.2), when the finite-type condition fails everywhere.

Theorem 4. Let X_{1}, \ldots, X_{n} be as in Theorem 3, and let P be as in (1.2). If every point in \mathbb{T}^{n+1} is of infinite type for the vector fields X_{1}, \ldots, X_{n}, then the operator P is globally hypoelliptic in \mathbb{T}^{n+1} if and only if the average of the function a is a non-Liouville number.

Proof. Suppose that every point in \mathbb{T}^{n+1} is of infinite type for the vector fields X_{1}, \ldots, X_{n}. Then we must have $\partial_{t_{j}} a(t)=0$ for all $t \in \mathbb{T}^{n}$ and for all $j=$ $1, \ldots, n-1$. This means that $a(t)=a\left(t_{n}\right)$. Thus, the average of the function a is given by

$$
a_{0}=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{T}^{n}} a(t) d t=\frac{1}{2 \pi} \int_{-\pi}^{\pi} a\left(t_{n}\right) d t_{n}
$$

If we now change the variables t_{1}, \ldots, t_{n} and x to the new variables s_{1}, \ldots, s_{n} and y, where $s_{j}=t_{j}(j=1, \ldots, n)$ and

$$
y=x-\int_{-\pi}^{t_{n}} a(r) d r+a_{0}\left(t_{n}+\pi\right)
$$

then the operator P becomes

$$
Q=-\left(\partial_{s_{1}}^{2}+\cdots+\partial_{s_{n-1}}^{2}\right)-\left(\partial_{s_{n}}+a_{0} \partial_{y}\right)^{2} .
$$

Thus, P is globally hypoelliptic in \mathbb{T}^{n+1} if and only if Q is globally hypoelliptic in \mathbb{T}^{n+1}. It follows from [H, Thm. 1.2] that Q is globally hypoelliptic in \mathbb{T}^{n+1} if and only if a_{0} is a non-Liouville number. This completes the proof of the theorem.

Although Theorems 3 and 4 provide significant information about the global hypoellipticity of the operator (1.2), we still do not understand the full picture. On the other hand, for the operator (1.1) with $n=1, X_{0}=0$, and $b=0$, we have the following complete result using Diophantine approximations.

Theorem 5. Let P be the differential operator defined by

$$
\begin{equation*}
P=-\partial_{t}^{2}-\left(\partial_{t}+\sum_{j=1}^{m} a_{j}(t) \partial_{x_{j}}\right)^{2} \tag{3.1}
\end{equation*}
$$

where $(t, x) \in \mathbb{T}^{1+m}$ and $a_{j}(j=1, \ldots, m)$ are real-valued functions in $C^{\infty}(\mathbb{T})$. Then P is globally hypoelliptic in \mathbb{T}^{1+m} if and only if, after a possible renaming of the variables x_{1}, \ldots, x_{m} and the corresponding coefficients a_{1}, \ldots, a_{m}, the following Diophantine condition (DC$)_{j}$ is satisfied for some $j \in\{0,1, \ldots, m-1\}$:
(DC) ${ }_{j} a_{1}, \ldots, a_{m-j}$ are \mathbb{R}-independent and
$\left(a_{m-j+1}, \ldots, a_{n}\right) \in(S A)^{c}\left(a_{1}, \ldots, a_{m-j}\right)$.
We recall the following definitions from [HP2]. A collection of vectors v_{1}, \ldots, v_{ℓ} in \mathbb{R}^{d} is said to be not simultaneously approximable if there exist a $C>0$ and a $K>0$ such that, for any $\eta=\left(\eta_{1}, \ldots, \eta_{\ell}\right) \in \mathbb{Z}^{\ell}$ and $\xi \in \mathbb{Z}^{d}-\{0\}$, we have

$$
\left|\eta_{j}-v_{j} \cdot \xi\right| \geq \frac{C}{|\xi|^{K}} \quad \text { for some } j=1, \ldots, \ell
$$

When $\ell=1$, this is the definition of a non-Liouville vector (see [Her] and [HP1]). When $d=1$, this is the definition of a collection of real numbers v_{1}, \ldots, v_{ℓ} that are not simultaneously approximable (see [HP1]). If $\ell=1$ and $d=1$, then this is the well-known definition of a non-Liouville number.

A vector $\left(f_{1}(t), \ldots, f_{d}(t)\right)$ of real-valued functions that are linearly independent over \mathbb{R} is said to belong to $(S A)^{c}\left(b_{1}, \ldots, b_{\ell}\right)$ if the following conditions hold:
(1) $\left\{f_{1}, \ldots, f_{d}\right\}$ is contained in the linear span of $\left\{b_{1}, \ldots, b_{\ell}\right\}$; and
(2) the ℓ column vectors of the matrix $\left(\lambda_{j k}\right)$ in the expression

$$
\left(f_{1}, \ldots, f_{d}\right)^{t}=\left(\lambda_{j k}\right)\left(b_{1}, \ldots, b_{\ell}\right)^{t}
$$

are not simultaneously approximable vectors in \mathbb{R}^{d}.
Remark. In [HP2] it was shown that condition (DC) $)_{j}$ is necessary and sufficient for the global hypoellipticity of the operator

$$
\begin{equation*}
Q=-\partial_{t}^{2}-\left(\sum_{j=1}^{m} a_{j}(t) \partial_{x_{j}}\right)^{2} \tag{3.2}
\end{equation*}
$$

Therefore, with respect to global hypoellipticity, the operators (3.1) and (3.2) are equivalent.

Proof of Theorem 5.

Necessity. Let j_{0} be the number of functions among $a_{1}(t), \ldots, a_{m}(t)$ that are linearly independent over \mathbb{R}. Thus $0 \leq j_{0} \leq m$. If condition (DC) $)_{j}$ does not hold then it implies that, after a possible renaming of the variables x_{1}, \ldots, x_{m} and the corresponding coefficients a_{1}, \ldots, a_{m}, either $a_{1} \equiv 0, \ldots, a_{m} \equiv 0$ or the following condition holds:
$(\widetilde{\mathrm{DC}})_{j_{0}} 1 \leq j_{0} \leq n-1$ and $\left\{a_{j_{0}+1}, \ldots, a_{m}\right\} \in(S A)\left(a_{1}, \ldots, a_{j_{0}}\right)$.
The condition $(\widetilde{\mathrm{DC}})_{j_{0}}$ means that $a_{1}, \ldots, a_{j_{0}}$ are linearly independent over \mathbb{R}, $\left\{a_{j_{0}+1}, \ldots, a_{m}\right\}$ is contained in the linear span of $\left\{a_{1}, \ldots, a_{j_{0}}\right\}$, and the j_{0} column vectors of the matrix $\left(\lambda_{l k}\right)$ in the expression

$$
\left(a_{j_{0}+1}, \ldots, a_{m}\right)^{t}=\left(\lambda_{l k}\right)\left(a_{1}, \ldots, a_{j_{0}}\right)^{t}
$$

are simultaneously approximable vectors in $\mathbb{R}^{m-j_{0}}$.
Case 1. Assume that $a_{1} \equiv \cdots \equiv a_{m} \equiv 0$. Then, for any function $u \in$ $C^{0}\left(\mathbb{T}_{x}\right)-C^{\infty}\left(\mathbb{T}_{x}\right)$, we have $P u=0$. Therefore, P is not globally hypoelliptic in \mathbb{T}^{1+m}.

Case 2. Assume that condition $(\widetilde{\mathrm{DC}})_{j_{0}}$ holds. Then

$$
a_{p}=\sum_{k=1}^{j_{0}} \lambda_{k}^{p} a_{k}, \quad p=j_{0}+1, \ldots, m
$$

where the vectors $\left(\lambda_{k}^{j_{0}+1}, \ldots, \lambda_{k}^{m}\right), k=1, \ldots, j_{0}$, are simultaneously approximable. Thus the operator P takes the form

$$
\begin{equation*}
P=-\partial_{t}^{2}-\left(\partial_{t}+\sum_{k=1}^{j_{0}} a_{k}(t)\left(\partial_{x_{k}}+\sum_{p=j_{0}+1}^{m} \lambda_{k}^{p} \partial_{x_{p}}\right)\right)^{2} . \tag{3.3}
\end{equation*}
$$

Since the j_{0} vectors $\left(\lambda_{k}^{j_{0}+1}, \ldots, \lambda_{k}^{m}\right), k=1, \ldots, j_{0}$, are simultaneously approximable, there exist sequences $\left\{\xi_{\ell}\right\}=\left\{\left(\xi_{j_{0}+1, \ell}, \ldots, \xi_{m, \ell}\right)\right\}$ for $\xi_{\ell} \in \mathbb{Z}^{m-j_{0}}-\{0\}$ and $\left\{\eta_{\ell}\right\}=\left\{\left(\eta_{1, \ell}, \ldots, \eta_{j_{0}, \ell}\right)\right\}$ for $\eta_{\ell} \in \mathbb{Z}^{j_{0}}$ such that

$$
\begin{equation*}
\left|\eta_{k, \ell}-\sum_{p=j_{0}+1}^{m} \lambda_{k}^{p} \xi_{p, \ell}\right|<\left|\xi_{\ell}\right|^{-\ell}, \quad \ell=1,2, \ldots, \tag{3.4}
\end{equation*}
$$

for any $k=1, \ldots, j_{0}$.
We now define $u \in D^{\prime}\left(\mathbb{T}^{1+n}\right)-C^{\infty}\left(\mathbb{T}^{1+n}\right)$ by

$$
u(t, x)=\sum_{\ell=1}^{\infty} e^{i\left(\eta_{\ell} \cdot x^{\prime}-\xi_{\ell} \cdot x^{\prime \prime}\right)}
$$

where $x^{\prime}=\left(x_{1}, \ldots, x_{j_{0}}\right)$ and $x^{\prime \prime}=\left(x_{j_{0}+1}, \ldots, x_{m}\right)$. Then

$$
\begin{aligned}
P u= & \sum_{\ell=1}^{\infty}\left\{\sum_{k=1}^{j_{0}} \partial_{t} a_{k}(t)\left(\eta_{k, \ell}-\sum_{p=j_{0}+1}^{m} \lambda_{k}^{p} \xi_{p, \ell}\right)\right\} e^{i\left(\eta_{\ell} \cdot x^{\prime}-\xi_{\ell} \cdot x^{\prime \prime}\right)} \\
& +\sum_{\ell=1}^{\infty}\left\{\left[\sum_{k=1}^{j_{0}} a_{k}(t)\left(\eta_{k, \ell}-\sum_{p=j_{0}+1}^{m} \lambda_{k}^{p} \xi_{p, \ell}\right)\right]^{2}\right\} e^{i\left(\eta_{\ell} \cdot x^{\prime}-\xi_{\ell} \cdot x^{\prime \prime}\right)} .
\end{aligned}
$$

It follows from this and (3.4) that $P u \in C^{\infty}\left(\mathbb{T}^{1+n}\right)$. Hence P is not globally hypoelliptic in \mathbb{T}^{1+n}. This completes the proof of the necessity.

Sufficiency. We will prove that, if condition (DC) ${ }_{j}$ holds for some $j \in\{0,1, \ldots$, $m-1\}$, then P is globally hypoelliptic. For this, let $u \in D^{\prime}\left(\mathbb{T}^{1+n}\right)$ be such that

$$
\begin{equation*}
P u=f, \quad f \in C^{\infty}\left(\mathbb{T}^{1+n}\right) \tag{3.5}
\end{equation*}
$$

If, in (3.5), we take the partial Fourier transform with respect to $x \in \mathbb{T}^{m}$, then

$$
\begin{equation*}
\left[-\partial_{t}^{2}-\left(\partial_{t}+i \sum_{j=1}^{m} a_{j}(t) \xi_{j}\right)^{2}\right] \hat{u}(t, \xi)=\hat{f}(t, \xi) \quad \text { for all } \xi \in \mathbb{Z}^{m} \tag{3.6}
\end{equation*}
$$

For any fixed ξ, we have that $\hat{u}(t, \xi)$ is in $C^{\infty}(\mathbb{T})$ because (3.6) is elliptic in t. Therefore, if we multiply (3.6) with $\overline{\hat{u}}$ and integrate by parts with respect to $t \in \mathbb{T}$, then

$$
\begin{equation*}
\left\|\hat{u}_{t}(\cdot, \xi)\right\|_{L^{2}(\mathbb{T})}^{2}+\int_{\mathbb{T}}\left|\partial_{t} \hat{u}(t, \xi)+i b(t, \xi) \hat{u}(t, \xi)\right|^{2} d t=\int_{\mathbb{T}} \hat{f}(t, \xi) \overline{\hat{u}}(t, \xi) d t \tag{3.7}
\end{equation*}
$$

where

$$
\begin{equation*}
b(t, \xi)=\sum_{j=1}^{m} a_{j}(t) \xi_{j} \tag{3.8}
\end{equation*}
$$

First we have the following inequality:

$$
\begin{align*}
\left\|\hat{u}_{t}(\cdot, \xi)\right\|_{L^{2}(\mathbb{T})}^{2} & +\int_{\mathbb{T}} b^{2}(t, \xi)|\hat{u}(t, \xi)|^{2} d t \\
& \leq 3\left\|\hat{u}_{t}(\cdot, \xi)\right\|_{L^{2}(\mathbb{T})}^{2}+3 \int_{\mathbb{T}}\left|\partial_{t} \hat{u}(t, \xi)+i b(t, \xi) \hat{u}(t, \xi)\right|^{2} d t \tag{3.9}
\end{align*}
$$

In fact,

$$
\begin{aligned}
& \left\|\hat{u}_{t}(\cdot, \xi)\right\|_{L^{2}(\mathbb{T})}^{2}+\int_{\mathbb{T}} b^{2}(t, \xi)|\hat{u}(t, \xi)|^{2} d t \\
& \quad=\left\|\hat{u}_{t}(\cdot, \xi)\right\|_{L^{2}(\mathbb{T})}^{2}+\int_{\mathbb{T}}|i b(t, \xi) \hat{u}(t, \xi)|^{2} d t \\
& \quad=\left\|\hat{u}_{t}(\cdot, \xi)\right\|_{L^{2}(\mathbb{T})}^{2}+\int_{\mathbb{T}}\left|\partial_{t} \hat{u}(t, \xi)+i b(t, \xi) \hat{u}(t, \xi)-\partial_{t} \hat{u}(t, \xi)\right|^{2} d t \\
& \quad \leq\left\|\hat{u}_{t}(\cdot, \xi)\right\|_{L^{2}(\mathbb{T})}^{2}+2 \int_{\mathbb{T}}\left|\partial_{t} \hat{u}(t, \xi)+i b(t, \xi) \hat{u}(t, \xi)\right|^{2} d t+2 \int_{\mathbb{T}}\left|\partial_{t} \hat{u}(t, \xi)\right|^{2} d t
\end{aligned}
$$

Now, since condition (DC) ${ }_{j}$ holds for some $j \in\{0,1, \ldots, m-1\}$, it follows from [HP2, (2.13)] with $\varphi(t)=\hat{u}(t, \xi)$ that

$$
\begin{equation*}
\|\hat{u}(\cdot, \xi)\|_{L^{2}(\mathbb{T})}^{2} \leq C|\xi|^{K}\left(\left\|\hat{u}_{t}(\cdot, \xi)\right\|_{L^{2}(\mathbb{T})}^{2}+\int_{\mathbb{T}} b^{2}(t, \xi)|\hat{u}(t, \xi)|^{2} d t\right) \tag{3.10}
\end{equation*}
$$

Using (3.7), (3.9), and (3.10), we have

$$
\begin{align*}
\|\hat{u}(\cdot, \xi)\|_{L^{2}(\mathbb{T})}^{2} & \leq C|\xi|^{K}\left(3\left\|\hat{u}_{t}(\cdot, \xi)\right\|_{L^{2}(\mathbb{T})}^{2}+3 \int_{\mathbb{T}}\left|\partial_{t} \hat{u}(t, \xi)+i b(t, \xi) \hat{u}(t, \xi)\right|^{2} d t\right) \\
& =C|\xi|^{K} \int_{\mathbb{T}} \hat{f}(t, \xi) \overline{\hat{u}}(t, \xi) d t \tag{3.11}
\end{align*}
$$

This and the Cauchy-Schwarz inequality imply that

$$
\begin{equation*}
\|\hat{u}(\cdot, \xi)\|_{L^{2}(\mathbb{T})} \leq C|\xi|^{K}\|\hat{f}(\cdot, \xi)\|_{L^{2}(\mathbb{T})} \tag{3.12}
\end{equation*}
$$

Finally, using a standard microlocal analysis (see [H]), one can prove that P is globally hypoelliptic.

References

[A] K. Amano, The global hypoellipticity of a class of degenerate elliptic-parabolic operators, Proc. Japan Acad. Ser. A. Math. Sci. 60 (1984), 312-314.
[BG] M. S. Baouendi and C. Goulaouic, Nonanalytic-hypoellipticity for some degenerate elliptic operators, Bull. Amer. Math. Soc. 78 (1972), 483-486.
[BM] D. R. Bell and S. A. Mohammed, An extension of Hörmander's theorem for infinitely degenerate second-order operators, Duke Math. J. 78 (1995), 453-475.
[BBT] E. Bernardi, A. Bove, and D. S. Tartakoff, On a conjecture of Treves: Analytic hypoellipticity and Poisson strata, Indiana Univ. Math. J. 47 (1998), 401-417.
[C1] M. Christ, A class of hypoelliptic PDE admitting nonanalytic solutions, The Madison symposium on complex analysis (Madison, WI, 1991), Contemp. Math., 137, pp. 155-167, Amer. Math. Soc., Providence, RI, 1992.
[C2] -, A necessary condition for analytic hypoellipticity, Math. Res. Lett. 1 (1994), 241-248.
[CH] P. D. Cordaro and A. A. Himonas, Global analytic hypoellipticity for sums of squares of vector fields, Trans. Amer. Math. Soc. 350 (1998), 4993-5001.
[D] M. Derridj, Un probleme aux limites pour une classe d'operateurs du second ordre hypoelliptiques, Ann. Inst. Fourier (Grenoble) 21 (1971), 99-148.
[F] V. S. Fedii, Estimates in H^{s} norms and hypoellipticity, Dokl. Akad. Nauk SSSR 193 (1970), 940-942.
[FO] D. Fujiwara and H. Omori, An example of a globally hypoelliptic operator, Hokkaido Math. J. 12 (1983), 293-297.
[GPY] T. Gramchev, P. Popivanov, and M. Yoshino, Global properties in spaces of generalized functions on the torus for second order differential operators with variable coefficients, Rend. Sem. Mat. Univ. Politec. Torino 51 (1994), 145-172.
[GW] S. J. Greenfield and N. R. Wallach, Global hypoellipticity and Liouville numbers, Proc. Amer. Math. Soc. 31 (1972), 112-114.
[GS] A. Grigis and J. Sjöstrand, Front d'onde analytique et sommes de carres de champs de vecteurs, Duke Math J. 52 (1985), 35-51.
[HH1] N. Hanges and A. A. Himonas, Singular solutions for sums of squares of vector fields, Comm. Partial Differential Equations 16 (1991), 1503-1511.
[HH2] -, Non-analytic hypoellipticity in the presence of symplecticity, Proc. Amer. Math. Soc. 126 (1998), 405-409.
[Hel] B. Helffer, Conditions necessaires d'hypoanalyticite pour des operateurs invariants a gauche homogenes sur un groupe nilpotent gradue, J. Differential Equations 44 (1982), 460-481.
[Her] M. R. Herman, Sur le groupe des diffeomorphismes du tore, Ann. Inst. Fourier (Grenoble) 23 (1973), 75-86.
[H] A. A. Himonas, On degenerate elliptic operators of infinite type, Math. Z. 220 (1995), 449-460.
[HP1] A. A. Himonas and G. Petronilho, On global hypoellipticity of degenerate elliptic operators, Math. Z. 230 (1999), 241-257.
[HP2] , Global hypoellipticity and simultaneous approximability, J. Funct. Anal. 170 (2000), 356-365.
[Hö] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171.
[K] J. J. Kohn, Pseudo-differential operators and hypoellipticity, Proc. Sympos. Pure Math., 23, pp. 61-70, Amer. Math. Soc., Providence, RI, 1973.
[KS] S. Kusuoka and D. Strook, Applications of the Malliavin calculus, Part II, J. Fac. Sci. Tokyo Sect. IA Math. 32 (1985), 1-76.
[M] G. Metivier, Une class d'operateurs non hypoelliptiques analytiques, Indiana Univ. Math J. 29 (1980), 823-860.
[OR] O. A. Oleinik and E. V. Radkevic, Second order equations with nonnegative characteristic form, Plenum, New York, 1973.
[PR] Pham The Lai and D. Robert, Sur un problem aux valeurs propres non lineaire, Israel J. Math 36 (1980), 169-186.
[RS] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247-320.
[T] K. Taira, Le principe du maximum et l'hypoellipticite globale, Seminaire Bony-Söstrand-Meyer (1984-1985), Exposé no. I, 348, Ecole Polytech., Plaiseau, 1984.
[Ta] D. S. Tartakoff, Global (and local) analyticity for second order operators constructed from rigid vector fields on products of tori, Trans. Amer. Math. Soc. 348 (1996), 2577-2583.
[Tr] F. Treves, Symplectic geometry and analytic hypo-ellipticity, Differential equations (La Pietra, Florence, 1996), pp. 201-219, Amer. Math. Soc., Providence, RI, 1999.

A. A. Himonas
Department of Mathematics
University of Notre Dame
Notre Dame, IN 46556
alex.a.himonas.1@nd.edu
G. Petronilho
Departamento de Matemática
Universidade Federal de São Carlos
São Carlos, SP 13565-905
Brasil
gerson@dm.ufscar.br

[^0]: Received April 26, 2001. Revision received July 20, 2001.
 The first author was partially supported by NSF under Grant no. DMS-9970857. The second author was partially supported by CNPq.

