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Propagation of Regularity and
Global Hypoellipticity

A. Alexandrou Himonas & Gerson Petronilho

1. Introduction

If X = {X1, . . . , Xm} is a collection of realC∞ vector fields on aC∞ manifold
M, then the formulation of necessary and sufficient conditions for the global (or
local) hypoellipticity of theirsub-Laplacian1X

.= −(X2
1 + · · · +X2

m) is an open
problem. We recall that an operatorP is said to be globally hypoelliptic if, for any
distributionu inM such thatPu is in C∞(M), we have thatu is in C∞(M).

An operatorP is said to be locally hypoelliptic if the last condition holds in any
open subset of the manifold. Global and local analytic hypoellipticity are defined
similarly. Also, we recall that a point inM is said to be of finite type (or satisfies
the bracket condition) if the Lie algebra generated by the vector fieldsX1, . . . , Xm
spans the tangent space ofM at the given point. Otherwise, it is said to be of in-
finite type. By the celebrated theorem of Hörmander [Hö] (see also Kohn [K],
Oleinik and Radkevic [OR], and Rothschild and Stein [RS]), the finite-type condi-
tion is sufficient for the local hypoellipticity of1X and hence for its global hypo-
ellipticity. In the analytic category, Derridj [D] proved that the finite-type condi-
tion is also necessary for hypoellipticity. Baouendi and Goulaouic [BG] proved
that the finite-type condition is not sufficient for the analytic hypoellipticity of
1X. We shall not discuss here the problem of analytic hypoellipticity, for which
we refer the reader to Bernadi, Bove, and Tartakoff [BBT], Christ [C2], Grigis
and Sjöstrand [GS], Hanges and Himonas [HH2], Helffer [Hel], Metivier [M],
Tartakoff [Ta], Treves [Tr], and the references therein.

Our first result here is about semi-local propagation of regularity for an operator
that is the sum of a sub-Laplacian and lower-order terms:P = 1X +X0+ ib(t).
Theorem 1. On the torusT(n+1)+m with variables(t, x) let P be the operator

P = −1t −
n∑
j=1

X2
j +X0 + ib(t), (1.1)

whereXj = ∂tj +
∑m

k=1 ajk(t)∂xk for j = 0, . . . , n and withajk(t) andb(t) real-
valued functions inC∞(Tn+1). If u∈D ′(Tn+1+m), Pu∈C∞(Tn+1+m), andu∈
C∞(U × Tm) for some open setU ⊂ Tn+1, thenu∈C∞(Tn+1+m).
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In general, the operatorP in (1.1) is notglobally hypoelliptic, since if allajk(t) and
b(t) are identically equal to zero then any functionu = u(x) will be a solution to
Pu = 0. However, Theorem 1 implies the following result.

Corollary 1. LetP be as in(1.1). If there exists a point(t0, x0) ∈ Tn+1+m of
finite type for the vector fields∂t0, ∂t1, . . . , ∂tn andX0, X1, . . . , Xn, thenP is glob-
ally hypoelliptic inTn+1+m.

In fact, since the finite type is an open condition, there exists an open setU ⊂
Tn+1 such thatt0 ∈U and all points of the setU ×Tm are of finite type. Thus, by
Hörmander’s theorem [Hö], the operatorP is hypoelliptic inU ×Tm. Therefore,
if u ∈D ′(Tn+1+m) is such thatPu ∈ C∞(Tn+1+m), then Theorem 1 implies that
u∈C∞(Tn+1+m) and henceP is globally hypoelliptic inTn+1+m.

In Section 3 we state a necessary and sufficient condition for the global hypoel-
lipticity of the operator(1.1)(whenn = 1, X0 = 0, andb = 0) using Diophantine
approximations (see Theorem 5). Here we state a result concerning semi-local
propagation of regularity for our second family of operators.

Theorem 2. On Tn+1 with variables(t1, . . . , tn, x), let P be the operator de-
fined by

P = −(∂2
t1
+ · · · + ∂2

tn−1
)− (∂tn + a(t1, . . . , tn)∂x)2, (1.2)

wherea(t1, . . . , tn) is a real-valued function inC∞(Tn). If u ∈ D ′(Tn+1), Pu ∈
C∞(Tn+1),andu∈C∞(U×T2) for some open setU ⊂ Tn−1, thenu∈C∞(Tn+1).

Operator (1.2) is globally hypoelliptic when the finite-type condition holds on a
“2-dimensional torus” set. More precisely, we have the following result.

Theorem 3. If there exists a point(t01 , . . . , t
0
n−1)∈Tn−1 such that all points in

the set{(t01 , . . . , t0n−1)} × T2 are of finite type for the vector fieldsXj = ∂tj (j =
1, . . . , n−1) andXn = ∂tn + a(t1, . . . , tn)∂x, then the operatorP defined by(1.2)
is globally hypoelliptic inTn+1.

If n = 2 then the operator (1.2) takes the familiar form

1X = −∂2
t1
− [∂t2 + a(t1, t2)∂x ]2. (1.3)

The analytic hypoellipticity of this operator has been considered by several au-
thors (see [C1; HH1; PR]). Ifa is an analytic function, then1X is globally analytic
hypoelliptic if the bracket condition holds [CH]. Ifa = a(t1) and is analytic near
the origin, then1X is not locally analytic hypoelliptic ifa(0) = a ′(0) = 0 [C1].
If a = a(t1) and is inC∞(T), then1X is globally hypoelliptic if and only if the
range ofa contains a non-Liouville number [H]. As a consequence of Theorem 3
it follows that, if there exists a pointt01 ∈T such that all points in the set{t01 }×T2

are of finite type, then the operator1X is globally hypoelliptic inT3. Moreover, if
every point inT3 is of infinite type, then it is globally hypoelliptic if and only if the
average of the functiona is a non-Liouville number (see Theorem 4 in Section 3).
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For more results on local and global hypoellipticity, we refer the reader to [A;
BM; FO; GPY; GW; F; HP1; HP2; KS; T] and the references therein.

2. Proofs of Theorems 1–3

Proof of Theorem 1.Let u∈D ′(Tn+1+m) be such that

Pu = f, f ∈C∞(Tn+1+m), (2.1)

and letu∈C∞(U × Tm) for some open setU ⊂ Tn+1.

If, in (2.1), we take the partial Fourier transform with respect tox ∈Tm, then[
−1t −

n∑
j=1

Y 2
j + Y0 + ib(t)

]
û(t, ξ) = f̂ (t, ξ) for all ξ ∈Zm, (2.2)

where

Yj = ∂tj + i
m∑
k=1

ajk(t)ξk, j = 0, . . . , n. (2.3)

For any fixedξ ∈Zm, we have that̂u(t, ξ) is inC∞(Tn+1) because (2.2) is ellip-
tic in t. Therefore, if we multiply (2.2) with̄̂u, integrate by parts with respect to
t ∈Tn+1, and use (2.3), then

n∑
j=0

‖ûtj (·, ξ)‖2L2(Tn+1)
+

n∑
j=1

‖Yj û(·, ξ)‖2L2(Tn+1)

+ i
[
Im
∫
Tn+1

(∂t0û(t, ξ))
¯̂u dt +

∫
Tn+1

m∑
k=1

a0k(t)ξk|û(t, ξ)|2 dt

+
∫
Tn+1

b(t)|û(t, ξ)|2 dt
]

=
∫
Tn+1

f̂ (t, ξ) ¯̂u(t, ξ) dt.

Taking the real part in the last relation, we obtain

n∑
j=0

‖ûtj (·, ξ)‖2L2(Tn+1)
+

n∑
j=1

‖Yj û(·, ξ)‖2L2(Tn+1)

= Re
∫
Tn+1

f̂ (t, ξ) ¯̂u(t, ξ) dt. (2.4)

Using the Cauchy–Schwarz inequality, relation (2.4) gives

n∑
j=0

‖ûtj (·, ξ)‖2L2(Tn+1)
≤ ‖f̂ (·, ξ)‖L2(Tn+1)‖û(·, ξ)‖L2(Tn+1). (2.5)

Furthermore, using the fundamental theorem of calculus yields
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‖û(·, ξ)‖2
L2(Tn+1)

≤ C
(∫

V

|û(s, ξ)|2 ds +
n∑

j=0

‖ûtj (·, ξ)‖2L2(Tn+1)

)
, (2.6)

whereV ⊂ V̄ ⊂ U andV̄ is a compact set.
From now on we shall use the letterC to represent a constant, which may change

a finite number of times. Sinceu∈C∞(U × Tm) for a givenN ∈N, there exists
aCN > 0 such that

|û(s, ξ)| ≤ CN |ξ|−2N ∀s ∈V and∀ξ ∈Zm − {0}. (2.7)

By (2.5)–(2.7) it then follows that, for a givenN ∈N, there areCN > 0 andC > 0
such that

‖û(·, ξ)‖2
L2(Tn+1)

≤ C
(∫

V

|û(s, ξ)|2 ds +
n∑

j=0

‖ûtj (·, ξ)‖2L2(Tn+1)

)

≤ C
∫
V

|û(s, ξ)|2 ds + C‖f̂ (·, ξ)‖L2(Tn+1)‖û(·, ξ)‖L2(Tn+1)

≤ CN
∫
V

|ξ|−2N ds + C‖f̂ (·, ξ)‖L2(Tn+1)‖û(·, ξ)‖L2(Tn+1)

≤ CN |ξ|−2N + C‖f̂ (·, ξ)‖L2(Tn+1)‖û(·, ξ)‖L2(Tn+1)

≤ CN |ξ|−2N + C
[

1

2ε2
‖f̂ (·, ξ)‖2

L2(Tn+1)
+ ε

2

2
‖û(·, ξ)‖2

L2(Tn+1)

]
.

If we chooseε > 0 such that 1− cε2/2> 1/2, then

1

2
‖û(·, ξ)‖2

L2(Tn+1)
≤ CN |ξ|−2N + C

2ε2
‖f̂ (·, ξ)‖2

L2(Tn+1)
,

which gives
‖û(·, ξ)‖L2(Tn+1) ≤ CN |ξ|−N ∀ξ ∈Zm − {0}, (2.8)

sincef ∈ C∞(Tn+1+m). Finally, using (2.8) and a standard microlocal analysis
argument (see[H]), we provethatu∈C∞(Tn+1+m).

Proof of Theorem 2.The proof of Theorem 2 is similar to that of Theorem 1, if
one replaces inequality (2.6) with

‖û(·, ξ)‖2
L2(Tn) ≤ C

(∫ π

−π

∫
I

|û(s, tn, ξ)|2 ds dtn +
n−1∑
j=1

‖ûtj (·, ξ)‖2L2(Tn)

)
, (2.9)

whereI ⊂ [−π, π] n−1 andC is a constant independent ofξ. To verify inequal-
ity (2.9), letφ(t) = û(·, ξ), s ∈ I, andt ∈ [−π, π] n. Then, by the fundamental
theorem of calculus, we have

φ(t) = φ(s, tn)+
n−1∑
j=1

∫ tj

sj

φyj (s1, . . . , sj−1, yj, tj+1, . . . , tn) dyj .
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Using the Cauchy–Schwarz inequality gives

|φ(t)|2 ≤ C
(
|φ(s, tn)|2 +

n−1∑
j=1

∫ π

−π
|φyj (s1, . . . , sj−1, yj, tj+1, . . . , tn)|2 dyj

)
.

Finally, integrating this inequality fors ∈ I andt ∈ [−π, π] n yields (2.9).

Proof of Theorem 3.For simplicity we may assume that(t01 , . . . , t
0
n−1) is the ori-

gin in Tn−1. We will show that there existδ (0 < δ ≤ π), functionsc`(t) ∈
C∞([−δ, δ] n−1×T) for ` = 1, . . . ,M, andJ1, . . . , JM ∈J with |J | ≥ 2 such that

∂x =
M∑
`=1

c`(t)XJ` on [−δ, δ] n−1× T, (2.10)

where forJ = (j1, . . . , jp)∈J =⋃∞γ=1{1, . . . , n}γ we define

XJ = [Xj1, [Xj2, [Xj3, . . . , Xjp ]]] .

Also, we define|J | = p. By the finite-type assumption, if(0, tn, x) ∈ Tn+1 then
there areJ1, . . . , Jn+1∈J such thatXJ1, . . . , XJn+1 span the tangent space ofTn+1

at (0, tn, x). Since eitherXJ = 0 orXJ = CJ(t)∂x for all J ∈J, whereCJ(t) =
∂ αt a(t) for someα ∈Nn, it follows that the listXJ1, . . . , XJn+1 just displayed nec-
essarily must contain the vector fieldsX1, . . . , Xn. Now, using the assumption that
all points in the set{0} × T2 are of finite type, for each pointtn ∈ T there exist
an open setVtn containing 0 and an open intervalUtn containingtn such that, for
some|J | ≥ 2,

∂x = C−1
J (t)XJ , C−1

J (t)∈C∞(Vtn × Utn).
Since the family of the intervals{Utn}tn∈T coverT, by the compactness ofT there
exist finitely many intervalsU1, . . . , UM coveringT. If we defineV to be the in-
tersection of the corresponding setsV1, . . . , VM, then

∂x = C−1
` (t)XJ`, C−1

` (t)∈C∞(V × U`), |J`| ≥ 2, ` = 1, . . . ,M.

If we chooseδ > 0 such that [−δ, δ] n−1 ⊂ V, then the open setsV × U` cover
the compact set [−δ, δ] n−1× T. Now, taking a partition of unity{ψ`} subordi-
nate to this covering and lettingc`(t) = ψ`(t)C−1

` (t), we obtain the desired rela-
tion (2.10).

Applying Hörmander’s theorem [Hö], we find that the operatorP is hypoellip-
tic in U × T2, whereU ⊂ [−δ, δ] n−1 is an open set. Therefore, ifu ∈D ′(Tn+1)

is such thatPu ∈C∞(Tn+1), thenu ∈C∞(U × T2). Using Theorem 2, we con-
clude thatu∈C∞(Tn+1) and henceP is globally hypoelliptic inTn+1.

3. Global Hypoellipticity and Diophantine Approximations

Finding necessary and sufficient conditions for the global hypoellipticity of a sub-
Laplacian is a difficult open problem. One of the main obstacles is the appearance



476 A. Alexandrou Himonas & Gerson Petronilho

of Diophantine phenomena (see e.g. [FO; GPY; GW; H; HP1; HP2]). Such is the
case in our next result for the operator (1.2), when the finite-type condition fails
everywhere.

Theorem 4. LetX1, . . . , Xn be as in Theorem 3, and letP be as in(1.2). If every
point inTn+1 is of infinite type for the vector fieldsX1, . . . , Xn, then the operator
P is globally hypoelliptic inTn+1 if and only if the average of the functiona is a
non-Liouville number.

Proof. Suppose that every point inTn+1 is of infinite type for the vector fields
X1, . . . , Xn. Then we must have∂tj a(t) = 0 for all t ∈ Tn and for all j =
1, . . . , n−1. This means thata(t) = a(tn). Thus, the average of the functiona is
given by

a0 = 1

(2π)n

∫
Tn
a(t) dt = 1

2π

∫ π

−π
a(tn) dtn.

If we now change the variablest1, . . . , tn andx to the new variabless1, . . . , sn and
y, wheresj = tj (j = 1, . . . , n) and

y = x −
∫ tn

−π
a(r) dr + a0(tn + π),

then the operatorP becomes

Q = −(∂2
s1
+ · · · + ∂2

sn−1
)− (∂sn + a0∂y)

2.

Thus,P is globally hypoelliptic inTn+1 if and only ifQ is globally hypoelliptic in
Tn+1. It follows from [H, Thm. 1.2] thatQ is globally hypoelliptic inTn+1 if and
only if a0 is a non-Liouville number. This completes the proof of the theorem.

Although Theorems 3 and 4 provide significant information about the global hypo-
ellipticity of the operator (1.2), we still do not understand the full picture. On the
other hand, for the operator(1.1) with n = 1, X0 = 0, andb = 0, we have the
following complete result using Diophantine approximations.

Theorem 5. LetP be the differential operator defined by

P = −∂2
t −

(
∂t +

m∑
j=1

aj(t)∂xj

)2

, (3.1)

where(t, x) ∈ T1+m andaj (j = 1, . . . , m) are real-valued functions inC∞(T).
ThenP is globally hypoelliptic inT1+m if and only if, after a possible renaming
of the variablesx1, . . . , xm and the corresponding coefficientsa1, . . . , am, the fol-
lowing Diophantine condition(DC)j is satisfied for somej ∈ {0,1, . . . , m− 1}:
(DC)j a1, . . . , am−j areR-independent and

(am−j+1, . . . , an)∈ (SA)c(a1, . . . , am−j ).

We recall the following definitions from [HP2]. A collection of vectorsv1, . . . , v`
in Rd is said to be not simultaneously approximable if there exist aC > 0 and a
K > 0 such that, for anyη = (η1, . . . , η`)∈Z` andξ ∈Zd − {0}, we have



Propagation of Regularity and Global Hypoellipticity 477

|ηj − vj · ξ| ≥ C

|ξ|K for some j = 1, . . . , `.

When` = 1, this is the definition of a non-Liouville vector (see [Her] and [HP1]).
Whend = 1, this is the definition of a collection of real numbersv1, . . . , v` that
are not simultaneously approximable (see [HP1]). If` = 1 andd = 1, then this is
the well-known definition of a non-Liouville number.

A vector (f1(t), . . . , fd(t)) of real-valued functions that are linearly indepen-
dent overR is said to belong to(SA)c(b1, . . . , b`) if the following conditions hold:

(1) {f1, . . . , fd} is contained in the linear span of{b1, . . . , b`}; and
(2) the` column vectors of the matrix(λjk) in the expression

(f1, . . . , fd)
t = (λjk)(b1, . . . , b`)

t

are not simultaneously approximable vectors inRd .

Remark. In [HP2] it was shown that condition(DC)j is necessary and sufficient
for the global hypoellipticity of the operator

Q = −∂2
t −

( m∑
j=1

aj(t)∂xj

)2

. (3.2)

Therefore, with respect to global hypoellipticity, the operators (3.1) and (3.2) are
equivalent.

Proof of Theorem 5.

Necessity.Let j0 be the number of functions amonga1(t), . . . , am(t) that are
linearly independent overR. Thus 0≤ j0 ≤ m. If condition (DC)j does not hold
then it implies that, after a possible renaming of the variablesx1, . . . , xm and the
corresponding coefficientsa1, . . . , am, eithera1≡ 0, . . . , am ≡ 0 or the following
condition holds:

(D̃C)j0 1≤ j0 ≤ n−1 and{aj0+1, . . . , am} ∈ (SA)(a1, . . . , aj0 ).

The condition(D̃C)j0 means thata1, . . . , aj0 are linearly independent overR,
{aj0+1, . . . , am} is contained in the linear span of{a1, . . . , aj0}, and thej0 col-
umn vectors of the matrix(λlk) in the expression

(aj0+1, . . . , am)
t = (λlk)(a1, . . . , aj0 )

t

are simultaneously approximable vectors inRm−j0.

Case 1. Assume thata1 ≡ · · · ≡ am ≡ 0. Then, for any functionu ∈
C 0(Tx) − C∞(Tx), we havePu = 0. Therefore,P is not globally hypoellip-
tic in T1+m.

Case 2.Assume that condition(D̃C)j0 holds. Then

ap =
j0∑
k=1

λ
p

kak, p = j0 +1, . . . , m,
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where the vectors(λj0+1
k , . . . , λmk ), k = 1, . . . , j0, are simultaneously approx-

imable. Thus the operatorP takes the form

P = −∂2
t −

(
∂t +

j0∑
k=1

ak(t)

(
∂xk +

m∑
p=j0+1

λ
p

k∂xp

))2

. (3.3)

Since thej0 vectors(λj0+1
k , . . . , λmk ), k = 1, . . . , j0, are simultaneously approx-

imable, there exist sequences{ξ`} = {(ξj0+1,`, . . . , ξm,`)} for ξ` ∈Zm−j0 − {0} and
{η`} = {(η1,`, . . . , ηj0,`)} for η` ∈Zj0 such that∣∣∣∣ηk,` − m∑

p=j0+1

λ
p

kξp,`

∣∣∣∣ < |ξ`|−`, ` = 1,2, . . . , (3.4)

for anyk = 1, . . . , j0.

We now defineu∈D ′(T1+n)− C∞(T1+n) by

u(t, x) =
∞∑
`=1

ei(η`·x
′−ξ`·x ′′ ),

wherex ′ = (x1, . . . , xj0 ) andx ′′ = (xj0+1, . . . , xm). Then

Pu =
∞∑
`=1

{ j0∑
k=1

∂t ak(t)

(
ηk,` −

m∑
p=j0+1

λ
p

kξp,`

)}
ei(η`·x

′−ξ`·x ′′ )

+
∞∑
`=1

{[ j0∑
k=1

ak(t)

(
ηk,` −

m∑
p=j0+1

λ
p

kξp,`

)]2}
ei(η`·x

′−ξ`·x ′′ ).

It follows from this and (3.4) thatPu∈C∞(T1+n). HenceP is not globally hypo-
elliptic in T1+n. This completes the proof of the necessity.

Sufficiency.We will prove that, if condition(DC)j holds for somej ∈ {0,1, . . . ,
m−1}, thenP is globally hypoelliptic. For this, letu∈D ′(T1+n) be such that

Pu = f, f ∈C∞(T1+n). (3.5)

If, in (3.5), we take the partial Fourier transform with respect tox ∈Tm, then[
−∂2

t −
(
∂t + i

m∑
j=1

aj(t)ξj

)2]
û(t, ξ) = f̂ (t, ξ) for all ξ ∈Zm. (3.6)

For any fixedξ, we have that̂u(t, ξ) is in C∞(T) because (3.6) is elliptic int.
Therefore, if we multiply (3.6) with̄̂u and integrate by parts with respect tot ∈T,
then

‖ût(·, ξ)‖2L2(T)+
∫
T
|∂t û(t, ξ)+ ib(t, ξ)û(t, ξ)|2 dt =

∫
T
f̂ (t, ξ) ¯̂u(t, ξ) dt, (3.7)

where

b(t, ξ) =
m∑
j=1

aj(t)ξj . (3.8)
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First we have the following inequality:

‖ût(·, ξ)‖2L2(T) +
∫
T
b2(t, ξ)|û(t, ξ)|2 dt

≤ 3‖ût(·, ξ)‖2L2(T) + 3
∫
T
|∂t û(t, ξ)+ ib(t, ξ)û(t, ξ)|2 dt. (3.9)

In fact,

‖ût(·, ξ)‖2L2(T) +
∫
T
b2(t, ξ)|û(t, ξ)|2 dt

= ‖ût(·, ξ)‖2L2(T) +
∫
T
|ib(t, ξ)û(t, ξ)|2 dt

= ‖ût(·, ξ)‖2L2(T) +
∫
T
|∂t û(t, ξ)+ ib(t, ξ)û(t, ξ)− ∂t û(t, ξ)|2 dt

≤ ‖ût(·, ξ)‖2L2(T) + 2
∫
T
|∂t û(t, ξ)+ ib(t, ξ)û(t, ξ)|2 dt + 2

∫
T
|∂t û(t, ξ)|2 dt.

Now, since condition(DC)j holds for somej ∈ {0,1, . . . , m−1}, it follows from
[HP2, (2.13)] withϕ(t) = û(t, ξ) that

‖û(·, ξ)‖2
L2(T) ≤ C|ξ|K

(
‖ût(·, ξ)‖2L2(T) +

∫
T
b2(t, ξ)|û(t, ξ)|2 dt

)
. (3.10)

Using (3.7), (3.9), and (3.10), we have

‖û(·, ξ)‖2
L2(T) ≤ C|ξ|K

(
3‖ût(·, ξ)‖2L2(T) + 3

∫
T
|∂t û(t, ξ)+ ib(t, ξ)û(t, ξ)|2 dt

)
= C|ξ|K

∫
T
f̂ (t, ξ) ¯̂u(t, ξ) dt. (3.11)

This and the Cauchy–Schwarz inequality imply that

‖û(·, ξ)‖L2(T) ≤ C|ξ|K‖f̂ (·, ξ)‖L2(T). (3.12)

Finally, using a standard microlocal analysis (see[H]), one can provethatP is
globally hypoelliptic.
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