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Topological Classification ofZm
p Actions

on Surfaces

Antonio F. Costa & Sergei M. Natanzon

1. Introduction

LetG be a group isomorphic toZm
p ,wherep is a prime integer. Abelian group ac-

tions on surfaces constitutes a classical subject (see [E; J1; J2; Na1; N; S; Z]). In [E;
J1; J2; Z], a connection is established between the topological equivalence classes
of actions and the second homology of the group that is acting. But some attempts
to use these results for the classification of abelian actions give wrong results in
some cases (cf. [E, Rem. 4.5] with Corollary 12 in our Section 4). The full classi-
fication has been found in the cyclic case by Nielsen in [N] and forZm

2 in [Na1].
In this paper we present a direct and complete way to deal with the topological
classification ofZm

p actions, wherep is a prime integer(Zm
p = Zp ⊕ m· · · ⊕ Zp and

Zp = Z/pZ). The main idea of our work is the fact that a fixed point–free action
of Zm

p provides an alternating bilinear form onZm
p .

We give the full description of strong equivalence classes, in particular. In the
case of fixed point–free actions, every action ofG on a surface define an alternat-
ing bilinear form(·, ·) : G∗ ×G∗ → Zp, whereG∗ is the group of forms ofG on
Zp (see Definition 7). Two actions ofG are strongly equivalent if and only if the
actions define the same bilinear form (Theorem 8). All possible such actions are
described in Theorem 9. The case of actions having elements with fixed points is
considered in Theorems 13 and 14.

SinceG is a finite group, it is possible—given an action(S̃, f ) of G—to con-
struct an analytic structure oñS such thatf(G) is a group of automorphisms of
S̃. Hence all the actions considered in this paper appear as automorphism group
actions of complex algebraic curves.

A motivation for our study is the description of the set of connected compo-
nents in the moduli spaceMp,m of pairs(C,G), whereC is a complex algebraic
curve andG ∼= Zm

p is a group of automorphisms ofC. According to [Na2], the de-
scription of connected components ofMp,m is reduced to the description of topo-
logical classes of pairs(S̃, K), whereK is a group of autohomeomorphisms ofS̃
and whereK is isomorphic toZm

p . We consider(S̃, K) and(S̃ ′,K ′) to be equiv-
alent if there exists a homeomorphismϕ : S̃ → S̃ ′ such thatK ′ = ϕ B K B ϕ−1.

These equivalence classes are in one-to-one correspondence with classes of weak
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equivalence (in the terminology of Edmonds [E]). In Theorem 16 we describe the
weak equivalence classes of actions ofG on surfaces.
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2. Algebraic Preliminaries

Let us consider the standard latticeZ2g = Z ⊕ 2g· · · ⊕ Z with the standard basis
(ei) = ((0, . . . ,1(i), . . . ,0)). We define the alternating bilinear form(·, ·) : Z2g ×
Z2g → Z by (ei, ej ) = δi+j,2g+1 for i < j.

We consider also the groupZ2g
p = Zp⊕ 2g· · · ⊕ Zp, wherep is a prime and

Zp = {0,1,2, . . . , p −1}. Let ϕ : Z2g → Z2g
p be the natural projection defined

by ϕ(ei) = ei, whereei = (0, . . . ,1(i), . . . ,0). Then we have an alternating
bilinear form (·, ·)p : Z2g

p × Z2g
p → Zp defined by(ei, ej ) = (ϕ(ei), ϕ(ej ))p =

(ei, ej )modp.
Let Sp(2g,Z) and Spp(2g,Zp) be the subgroups of the automorphism groups

of Z2g andZ2g
p that preserve the bilinear forms(·, ·) and(·, ·)p, respectively. The

natural projectionϕ : Z2g → Z2g
p induces a homomorphismϕ∗ : Sp(2g,Z) →

Spp(2g,Zp) such thatϕ∗(f ) B ϕ = ϕ B f for all f ∈Sp(2g,Z).
The following result is known.

Theorem 1 [Ne, Thms. VII.20, VII.21]. The following equality holds:

ϕ∗(Sp(2g,Z)) = Spp(2g,Zp).

Proof (Sketch). We say that an element ofZ2g is primitive if e 6= nf for all n ∈
Z − {±1} andf ∈ Z2g. For everyap ∈Z2g

p there is a primitivea ∈ Z2g such that
ϕ(a) = ap.

The proof makes use of the following two claims.

(1) Assume that〈ã1, ã2〉 is a subgroup ofZ2g
p such that〈ã1, ã2〉 ∼= Z2

p and the
bilinear form restricted to〈ã1, ã2〉 is not trivial. Then there exist primitive ele-
mentsa1, a2 ∈Z2g such that(a1, a2) = 1 andϕ(a1), ϕ(a2)∈ 〈ã1, ã2〉.

(2) Let a, b ∈ Z2, ϕ(a) 6= 0, ϕ(b) 6= 0, and(a, b) = mp with m ∈ Z . Then
〈ϕ(a)〉 = 〈ϕ(b)〉.

Using induction together with claims (1) and (2), it is easy to prove the follow-
ing. LetG be a subgroup ofZ2g

p . Then, fori = 1, . . . , r andj = 1, . . . , k ≤ s
(wherek may be 0), there exists a1 = (ai, bj ) ⊂ Z2g such thatϕ(1) generates
G, 1 is linear independent,(ai, aj ) = (bi, bj ) = 0, and(ai, bj ) = δij .

From this fact and induction, the theorem follows.

We shall also need the following results of symplectic geometry.

Lemma 2 (see [A, Thm. 3.8]). LetH ∼= Zm
p and(·, ·) : H×H → Zp be an alter-

nating bilinear form. Let1 = (ai (i = 1, . . . , r), bj (j = 1, . . . , k)) ⊂ H be a set
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of linear independent elements(k may be0) such that(ai, aj ) = (bi, bj ) = 0 and
(ai, bj ) = δij . Then there is a basis ofH, (ãi (i = 1, . . . , t), b̃j (j = 1, . . . , s)),
such that(ai, aj ) = (bi, bj ) = 0, (ai, bj ) = δij, ãi = ai (i = 1, . . . , r), and
b̃i = bi (i = 1, . . . , k).

Proof (Sketch). Let us consider all systems1′ = (a ′i (i = 1, . . . , t), b ′j (j =
1, . . . , s)) such that(ai, aj ) = (bi, bj ) = 0, (ai, bj ) = δij, a ′i = ai (i = 1, . . . , r),
andb ′i = bi (i = 1, . . . , k). Between them we choose a system3 with maximal
t + s. Then3 is a basis with the conditions that we need.

Theorem 3 (Witt’s Theorem; see [A, 3.9]). LetG,G′ be subgroups ofZ2g
p and

let ψ : G → G′ be an isomorphism such that(ψ(a), ψ(b))p = (a, b)p for all
a, b ∈G. Then there is an automorphism̃ψ ∈Spp(2g,Zp) such thatψ̃ restricted
toG isψ.

3. Strong Classification of Fixed Point–Free
Orientation-Preserving Actions

of Zm
p on Surfaces

In this section we shall consider (orientation-preserving) fixed point–free actions.
Let S̃ be a closed (compact without boundary) oriented surface with genusg and
letG be a group isomorphic toZm

p , wherep is a prime integer.

Definition 4 (Strong Equivalence). Two actions(S̃, f ) and(S̃ ′, f ′) are called
strongly equivalentif there is a homeomorphism,̃ψ : S̃ → S̃ ′, sending the orien-
tation of S̃ to the orientation of̃S ′ and such thatf ′(h) = ψ̃ B f(h) B ψ̃−1 for all
h∈G.
We are interested in finding all strong equivalence classes of actions ofZm

p .

We denote byS = S̃/f(G) and byϕ = ϕ(f ) : S̃ → S the natural projection. We
shall consider first the case whenf(h) has no fixed points for anyh ∈G − {id},
that is, when the action of(S̃, f ) is fixed point–free. The general case will be con-
sidered in Section 5. Then the projectionϕ(f ) : S̃ → S is an unbranched covering
with deck transformation groupf(G).

Let us considerπ1(S) as the group of deck transformations of the universal cov-
ering ofS. Then we have

ω(S̃, f ) : π1(S)→ π1(S)/π1(S̃ ) = f(G) f −1−−→ G.

The resulting epimorphismω(S̃, f ) : π1(S)→ G ∼= Zm
p is the monodromy epi-

morphism of the coveringϕ(f ) : S̃ → S. The epimorphismω(S̃, f ) : π1(S)→ G

induces the epimorphismθp(S̃, f ) : H1(S,Zp)→ G, sinceG is abelian.
Conversely, given an epimorphismθp : H1(S,Zp) → G, there is an action

(S̃, f ) such thatθp = θp(S̃, f ). To obtain S̃ it is enough to consider the mon-
odromyω : π1(S)→ H1(S,Zp)

θp−→ Gand theñS = U/kerω,whereU is the uni-
versal covering ofS and the action ofG is given byG = π1(S)/kerω.

Definition 5. Let S and S ′ be two surfaces. Then two epimorphismsθ :
H1(S,Zp)→ G andθ ′ : H1(S

′,Zp)→ G are calledstrongly equivalentif there is
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an orientation-preserving homeomorphismψ : S → S ′ inducing an isomorphism
ψp : H1(S,Zp)→ H1(S

′,Zp) such thatθ = θ ′ B ψp.
Theorem 6 [S]. Two actions(S̃, f ) and (S̃ ′, f ′) are strongly equivalent if and
only if the epimorphismsθp(S̃, f ) and θp(S̃ ′, f ′) are strongly equivalent.

Definition 7. Let (S̃, f ) be an action ofG, let S = S̃/f(G), and let θ =
θp(S̃, f ) : H1(S,Zp)→ G be the epimorphism defined by the action(S̃, f ). Now
consider the spaces of homomorphismsG∗ = {e : G → Zp} andH1(S,Zp) =
{e : H1(S,Zp) → Zp}. Then θ generates a monomorphismθ∗ = θ∗(S̃, f ):
G∗ → H1(S,Zp). The intersection form(·, ·)p = (·, ·)Sp on H1(S,Zp) induces
an isomorphismi : H1(S,Zp) → H1(S,Zp) defined by(a, ·) → a and a form
(·, ·)(S̃,f ) : G∗ ×G∗ → Zp such that(a, b)(S̃,f ) = (i B θ∗(a), i B θ∗(b))p.
Theorem 8. Two actions(S̃, f ) and (S̃ ′, f ′) of the groupG are strongly equiv-
alent if and only ifS̃ and S̃ ′ have the same genus and(·, ·)(S̃,f ) = (·, ·)(S̃ ′,f ′ ).

Proof. LetS andS ′ denoteS̃/f(G) andS̃ ′/f ′(G), respectively. Assume that(S̃, f )
and(S̃ ′, f ′) are strongly equivalent. Then, according to Theorem 6, there exists a
homeomorphismψ : S → S ′, which induces an isomorphismψp : H1(S,Zp)→
H1(S

′,Zp) such thatθ = θ ′ B ψp. Becauseψp is induced by a homeomor-
phism, it follows thatψp preserves the intersection form and induces an isomor-
phismψ∗ : H1(S ′,Zp)→ H1(S,Zp) such that(a, b)S

′
p = (ψ∗(a), ψ∗(b))Sp and

θ∗(S̃, f ) = ψ∗ B θ∗(S̃ ′, f ′). Hence, fora, b ∈G∗,
(a, b)(S̃,f ) = (i B θ∗(S̃, f )(a), i B θ∗(S̃, f )(b))Sp

= (i B ψ∗ B θ∗(S̃ ′, f ′)(a), i B ψ∗ B θ∗(S̃ ′, f ′)(b))Sp
= (i ′ B θ∗(S̃ ′, f ′)(a), i ′ B θ∗(S̃ ′, f ′)(b))S ′p = (a, b)(S̃ ′,f ′ ).

Assume now that(·, ·)(S̃,f ) = (·, ·)(S̃ ′,f ′ ), and consider the isomorphisms

Q : H1(S,Zp)→ (Z2g
p , (·, ·)), Q′ : H1(S ′,Zp)→ (Z2g

p , (·, ·)),
such that(Q(a),Q(b))p = (a, b)Sp and (Q′(a ′),Q′(b ′))p = (a ′, b ′)Sp for any
a, b ∈H1(S,Zp) anda ′, b ′ ∈H1(S ′,Zp).

We noteG̃ = Q B θ∗(S̃, f )(G∗) ⊂ Z2g
p andG̃′ = Q′ B θ∗(S̃ ′, f ′)(G∗) ⊂ Z2g

p .

Let ψ : G̃→ G̃′ be the isomorphism given byψ = Q′ B Q−1. Then, for every
a, b ∈ G̃, we have(ψ(a), ψ(b))p = (a, b)p. From Theorem 3 it follows that
there is aψ̃ ∈Spp(2g,Z) such thatψ̃ restricted toG̃ is ψ. Consider now9 =
Q−1 B ψ̃ B Q′ : H1(S ′,Zp) → H1(S,Zp). Sinceψ̃ ∈ Spp(2g,Z), we see that
9 comes from an isomorphismψ∗ : H1(S,Z)→ H1(S

′,Z) sending the intersec-
tion form ofH1(S,Z) to the intersection form ofH1(S

′,Z) (Theorem 1). Then,
by a classical result of H. Burkardt in 1890 (see [MKS, p. 178]), there exists a
homeomorphismψ : S → S ′ inducingψ∗ and9; by construction,θ∗(S̃, f ) =
9 B θ∗(S̃ ′, f ′). Then, by Theorem 6, the actions(S̃, f ) and(S̃ ′, f ′) are strongly
equivalent.



Topological Classification ofZm
p Actions on Surfaces 455

Theorem 9. LetG ∼= Zm
p , let (·, ·) : G∗ ×G∗ → Zp be an alternating bilinear

form, and letk = dim{h ∈G∗ : (h,G∗) = 0}. Then there exists an action(S̃, f )
such that(·, ·) = (·, ·)(S̃,f ) andg = g(S̃/f(G)) if and only ifg ≥ 1

2(m + k) for
k = mmod 2andk ≤ m.
Proof. First we construct the action from the form and the numerical conditions.
Applying Lemma 2 yields a basis ofG∗, (a∗i (i = 1, . . . , r), b∗j (j = 1, . . . , s)),
0 ≤ s ≤ r, such that(a∗i , a

∗
j ) = (b∗i , b∗j ) = 0, (a∗i , b

∗
j ) = δij, ands − r = k. Let

(ai (i = 1, . . . , r), bj (j = 1, . . . , s)) be the dual basis of the one just described.
Now consider a surfaceS of genusg and a basis ofH1(S,Zp), (αi (i = 1, . . . , g),
βi (i = 1, . . . , g)). Then we construct the epimorphismθ : H1(S,Zp) → G∗,
which is defined by

θ(αi) =
{
ai if i ≤ r,
0 if i > r,

and by

θ(βi) =
{
bi if i ≤ s,
0 if i > s.

Then the epimorphismθ defines a regular covering̃S → S with automorphism
groupG, and the action ofG on S̃ satisfies(·, ·)(S̃,f ) = (·, ·).

Conversely, if there is an action(S̃, f ) such that(·, ·) = (·, ·)(S̃,f ), then it is ob-
vious thatg = g(S̃/f(G)) ≥ 1

2(m+ k) for k = mmod 2 andk ≤ m.

4. Weak Classification of Fixed Point–Free
Orientation-Preserving Actions

of Zm
p on Surfaces

In this section we shall continue to consider only fixed point–free actions.

Definition 10 (Weak Equivalence). Let (S̃, f ) and(S̃ ′, f ′) be two actions of
a groupG ∼= Zm

p . We shall say that(S̃, f ) and(S̃ ′, f ′) areweakly equivalentif
there is a homeomorphism̃ψ : S̃ → S̃ ′ and an automorphismα ∈ Aut(G) such
thatf ′ B α(h) = ψ̃ B f(h) B ψ̃−1, h∈G.
The next theorem solves the problem of weak classification of actions ofZm

p on
surfaces.

Theorem 11. Let (S̃, f ) and (S̃ ′, f ′) be two actions of a groupG ∼= Zm
p . Let

(·, ·)(S̃,f ) and (·, ·)(S̃ ′,f ′ ) be the alternating bilinear forms induced by the two ac-

tions,k(S̃, f ) = dim{h ∈G∗ : (h,G∗)(S̃,f ) = 0} andk(S̃ ′, f ′) = dim{h ∈G∗ :

(h,G∗)(S̃ ′,f ′ ) = 0}. Then the actions(S̃, f ) and (S̃ ′, f ′) are weakly equivalent if

and only ifg(S̃/f(G)) = g(S̃ ′/f ′(G)) andk(S̃, f ) = k(S̃ ′, f ′).
Proof. Let us putS = S̃/f(G) andS ′ = S̃ ′/f ′(G), and letg = g(S) andg ′ =
g(S ′). Let θ∗(S̃, f ) andθ∗(S̃ ′, f ′) be the epimorphisms defined by the two ac-
tions, letG̃ be the image ofG∗ inH1(S,Zp) by θ∗(S̃, f ), and letG̃′ be the image
of G∗ in H1(S

′,Zp) by θ∗(S̃ ′, f ′).
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Assume thatg(S) = g(S ′)andk(S̃, f ) = k(S̃ ′, f ′). Sincek(S̃, f ) = k(S̃ ′, f ′),
there exists an isomorphismψ : G̃′ → G̃ such that

(ψ(a), ψ(b))(S̃ ′,f ′ ) = (a, b)(S̃,f ).
Then, using Theorem 3 andg(S) = g(S ′), there is an isomorphism̃ψ :

H1(S ′,Zp) → H1(S,Zp) giving by restrictionψ and sending the intersection
form of H1(S ′,Zp) to the intersection form ofH1(S,Zp). By [MKS, p. 178],
there exists a homeomorphismϕ : S → S ′ inducingψ̃ on cohomology. Then, by
Theorem 6, the actions(S̃, f ) and(S̃, ϕ−1 B f ′ B ϕ) are strongly equivalent. The
isomorphismψ defines an automorphism ofG, giving the weak equivalence be-
tween(S̃, f ) and(S̃ ′, f ′).

The following corollary is one of the main results of this paper.

Corollary 12. Weak equivalence classes ofZm
p actions are in bijection with

the set of pairs of positive integers(k, g) such thatk ≤ m, k = mmod 2, andg ≥
1
2(m+ k).
Proof. Theorem 11 tells us that each pair(k, g) determines a weak equivalence
class. By Theorem 9, each pair of numbers(k, g) satisfying the conditions in the
corollary defines a nonempty weak equivalence class.

Example. By Corollary 12, there are four weak equivalence classes of fixed
point–freeZ6

3 actions on surfaces of genus 3649 (cf. [E, Rem. 4.5]); in this case,
by the Riemann–Hurwitz formula, the numberg in the corollary is 6. We shall
construct a representative for each action. We take a Fuchsian surface group0 of
genus 6 acting conformally on the complex discD. The group0 has a canonical
presentation 〈

Ai, Bi, i = 1, . . . ,6;
6∏
i=1

[Ai, Bi ] = 1

〉
.

We consider the epimorphismsθj : 0→ Z6
3 =

⊕6
i=1〈gi : g3

i = 1〉, j = 0,2,4,6,
defined by:

θj(Ai) = gi, θj(Bi) = 0, i = 1, . . . , j,

θj(Ai) = g2i−j−1, θj(Bi) = g2i−j, j < i ≤ j+6
2 ,

θj(Ai) = θj(Bi) = 0, j+6
2 < i ≤ 6.

The Riemann surfacesD/kerθj admit automorphism groups representing each
weak equivalence class of fixed point–freeZ6

3 actions.

5. Classification of Orientation-Preserving Actions of Zmp
with Elements Having Fixed Points

LetG be a group isomorphic toZm
p , and let(S̃, f ) be an action ofG on an ori-

ented closed surfacẽS. By Gfix we denote the subgroup ofG generated by the
elements off(G) having fixed points.
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The projectionϕ = ϕ(f ) : S̃ → S = S̃/f(G) is a covering branched on a finite
set of pointsB = {b1, . . . , br}. The coveringϕ is now determined by an epimor-
phismθp(S̃, f ) : H1(S − B,Zp)→ G.

LetXi (i = 1, . . . , r) denote the element ofH1(S − B,Zp) represented by the
boundary of a small disc inS around the branched pointbi, and with the orien-
tation given by the orientation ofS. Then the set{θp(S̃, f )(Xi)} is a topological
invariant for the action(S̃, f ). We have

〈θp(S̃, f )(Xi), i = 1, . . . , r〉 = Gfix .

Then we have an epimorphismϑ : H1(S,Zp)→ Gfree, defined by

H1(S,Zp)→ H1(S − B,Zp)/〈Xi, i = 1, . . . , r〉 → G/Gfix = Gfree.

In fact, the epimorphismϑ is the epimorphism defined by the fixed point–free
action defined by the unbranched coveringS̃/f(Gfix)→ S. If Gfree= G/Gfix then
ϑ defines, as in Section 2, a bilinear form(·, ·)(S̃,f ) : G∗free×G∗free→ Zp.

Theorem 13. Two actions(S̃, f ) and(S̃ ′, f ′) of the groupG ∼= Zm
p are strongly

equivalent if and only if the following statements hold.

(1) S̃ and S̃ ′ have the same genus.
(2) The number of branched points(r = #B) of the covering̃S → S = S̃/f(G) is

the same as the number of branched points(r ′ = #B ′) of the coveringS̃ ′ →
S ′ = S̃ ′/f ′(G).

(3) [θp(S̃, f )(X1), θp(S̃, f )(X2), . . . , θp(S̃, f )(Xr)]

= [θp(S̃, f )(X1), θp(S̃, f )(X2), . . . , θp(S̃, f )(Xr)],

where[·, . . . , ·] is used to denote unorderedr-tuples of elements ofG− {id}.
As a consequence,Gf

free= Gf ′
free= Gfree.

(4) The intersection forms onGfree induced byf andf ′ are the same,(·, ·)(S̃,f ) =
(·, ·)(S̃ ′,f ′ ).

Proof. Using Dehn twists along curves around the branched points (see [C, p.151,
move (6)]), it is possible to obtain a basis(Ai (i = 1, . . . , g), Bi (i = 1, . . . , g),
Xi (i = 1, . . . , r)) of H1(S − B,Zp) such that

θp(S̃, f )(Ai)∈Gfree, θp(S̃, f )(Bi)∈Gfree, i = 1, . . . , g;
(Ai, Aj ) = 0, (Bi, Bj ) = 0, (Ai, Bj ) = δij .

In the same way, we can construct a basis(A′i (i = 1, . . . , g), B ′i (i = 1, . . . , g),
X ′i (i = 1, . . . , r)) of H1(S

′ − B ′,Zp) such that

θp(S̃
′, f ′)(A′i )∈Gfree, θp(S̃

′, f ′)(B ′i )∈Gfree, i = 1, . . . , g;
(A′i , A

′
j ) = 0, (B ′i, B

′
j ) = 0, (A′i , B

′
j ) = δij .

Note that, by conditions (1) and (2),g = g ′ andr = r ′.
By condition (4) and Theorem 8, it follows that the fixed point–free action

of Gfree on S̃/f(Gfix) given by f and the fixed point–free action ofGfree on
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S̃ ′/f ′(Gfix) given byf ′ are strongly equivalent. Then there exists an orientation-
preserving homeomorphismϕ : S → S ′ inducing on homology an isomorphism
ψ : H1(S,Zp)→ H1(S

′,Zp) and, by the proof of Theorem 8, we can constructϕ

such thatψ(Ai) = A′i andψ(Bi) = B ′i. We now consider a discD onS contain-
ing B and a discD ′ on S ′ containingB ′. Then we can modifyϕ by composing
with an isotopy inS ′ in order thatϕ(D) = D ′ andϕ(bi) = bσ(i), whereσ is a
permutation of{1, . . . , r} such that

(θp(S̃, f )(X1), θp(S̃, f )(X2), . . . , θp(S̃, f )(Xr))

= (θp(S̃, f )(Xσ(1)), θp(S̃, f )(Xσ(2)), . . . , θp(S̃, f )(Xσ(r))).
Now ϕ defines an isomorphism̃ψ : H1(S − B,Zp)→ H1(S

′ − B ′,Zp) such
that ψ̃(Ai) = A′i , ψ̃(Bi) = B ′i, and ψ̃(Xi) = X ′i, so θp(S̃, f ) = θp(S̃ ′, f ′) B ϕ.
Hence the actions(S̃, f ) and(S̃ ′, f ′) are strongly equivalent.

As a consequence of Theorem 13 and Theorem 9, we have the following.

Theorem 14. LetG ∼= Zm
p , and letH ∼= Zn

p be a subgroup ofG. Assume that
[C1, . . . , Cr ], r ≥ n, is an unordered element of(H − {0})r , where{C1, . . . , Cr}
generatesH and

∑r
1 Ci = 0. Let (·, ·) be an alternating bilinear form onG/H

and letk = dim{h ∈ (G/H )∗ : (h, (G/H )∗) = 0}. Then, forg ≥ 1
2(m− n+ k)

and only for suchg, there is an action(S̃, f ) with g = g(S̃/f(G)) and (·, ·) =
(·, ·)(S̃,f ), where (·, ·)(S̃,f ) is the bilinear form induced by the fixed point–free
action onG/H, the elements acting with fixed points generateH, and

[θp(S̃, f )(X1), θp(S̃, f )(X2), . . . , θp(S̃, f )(Xr)] = [C1, C2, . . . , Cr ].

Remark. The unordered elements ofH r are in one-to-one correspondence with
the functionsF : H → (Z+)p−1. From [C1, C2, . . . , Cr ] we defineF(h) =
(k1, k2, . . . , kp−1) if the elementhi appearski times in [C1, C2, . . . , Cr ]. The func-
tion F gives the topological type of the action ofH.

Theorem 15. Two actions(S̃, f ) and (S̃ ′, f ′) of the groupG ∼= Zm
p are weakly

equivalent if and only if the following statements hold.

(1) S̃ and S̃ ′ have the same genus.
(2) The number of branched points(r = #B) of the covering̃S → S = S̃/f(G) is

the same as the number of branched points(r ′ = #B ′) of the coveringS̃ ′ →
S ′ = S̃ ′/f ′(G).

(3) (θp(S̃, f )(X1), θp(S̃, f )(X2), . . . , θp(S̃, f )(Xr))

= (γ B θp(S̃, f )(Xσ(1)), γ B θp(S̃, f )(Xσ(2)), . . . , γ B θp(S̃, f )(Xσ(r))),
whereσ is a permutation of{1, . . . , r} andγ is an automorphism ofG.

(4) dim{h∈G∗free : (h,G∗free)(S̃,f ) = 0} = dim{h∈G∗free : (h,G∗free)(S̃ ′,f ′ ) = 0}.
Proof. Similar to the proof of Theorem 13.
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Theorem 16. LetG ∼= Zm
p . Then the weak equivalence classes of actions ofG,

such that there arer points in the surface where the action takes place that are fixed
for elements ofG,are in bijection with the set of triples(k, g,Aut(G)[C1, . . . , Cr ]),
where:

(1) k andg are integers such that, ifr > 0, then there is an integern (n ≥ 1)
such thatk ≤ m− n, k = (m− n)mod 2, andg ≥ 1

2(m− n+ k) for r ≥ n;
and

(2) [C1, . . . , Cr ] is an unorderedr-tuple of nontrivial elements ofG such that
{C1, . . . , Cr} generates a group isomorphic toZn

p and
∑r

1 Ci = 0.

Proof. Theorem 15 tells us that each triple determines a weak equivalence class
and, by Theorem 14, each triple satisfying the conditions in Theorem 16 defines a
nonempty weak equivalence class.

Example. There is only one weak equivalence class of actions ofZ2
p on surfaces

of a fixed genus such that there is exactly one fixed point for some of the elements
of Z2

p. In this situation, wherem = 2 andr = 1, we haven = 1 andk = 1, and
there is only one class of nontrivial elements under the action of Aut(G). A rep-
resentative for the weak equivalence class, wheng > 1, can be constructed in the
following way. We take a Fuchsian group0 with signature(g, [p]). The group0
has a canonical presentation〈

Ai, Bi, i = 1, . . . , g, X; X
g∏
i=1

[Ai, Bi ] = 1, Xp = 1

〉
.

We construct an epimorphismθ : 0→ Z2
p = 〈g1〉 ⊕ 〈g2〉 defined byθ(A1) = g1,

θ(Ai) = θ(Bj ) = 0 for i 6= 1, andθ(X) = g2. The Riemann surface uniformized
by kerθ has a group of automorphisms representing the weak equivalence class
that we are looking for.

LetMp,m be the space of pairs(R̃,G), whereR̃ is a Riemann surface andG
is a group of automorphisms of̃R. The coveringR̃ → R̃/G defines a projection
p : Mp,m → M, whereM is the moduli space of Riemann surfaces. The projec-
tion p : Mp,m → M gives a topology onMp,m, the weakest topology wherep is
continuous.

From Theorem 16 and [Na2, Sec. 6], we have the following.

Consequence. There exists a one-to-one correspondence between the con-
nected components ofMp,m with such topology and the triples

(k, g,Aut(G)[C1, . . . , Cr ])

described in Theorem 16. Each connected component ofMp,m is homeomorphic
to the quotientRn/Mod of a vector spaceRn by the discontinuous action of a
groupMod.
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