WEYL’S THEOREM FOR NONNORMAL OPERATORS
L. A. Coburn

1. INTRODUCTION

Let #(H) be the algebra of all bounded operators on an infinite-dimensional com-
plex Hilbert space H, and let o be the closed ideal of compact operators. I write
o(A) for the spectrum of A in #(H), and I define the Weyl spectrum w(A) by

o) = Noa+x),

where the intersection is taken over all K in 4. A celebrated theorem of Weyl [7]
asserts that if A is normal (A* A = AA¥*), then w(A) consists precisely of all points
in 0(A) except the isolated eigenvalues of finite multiplicity.

In this paper, I show that Weyl’s theorem holds for two large classes of generally
nonnormal operators. The first of these is the class of hyponormal operators, which
has been studied in [6]. The second class of operators for which Weyl’s theorem
holds is the class of Toeplitz operators, which has been studied in [2], [3], [8] and in
many other papers. (References to much of the pertinent literature can be found in
[2].) Finally, the present study of hyponormal operators and Toeplitz operators sug-
gests a notion of “extremally noncompact” operators, which I examine in the last
part of this paper.

2. PRELIMINARIES

Recall that an operator A is a Fredholm operator if its range R(A) is closed
and both R(A)' and the null space N(A) are finite-dimensional. The Fredholm
operators & constitute a multiplicative open semigroup in #(H). In fact [1], if 7
is the natural quotient map from #B(H) to #(H)/, then A is in & if and only if
7(A) is invertible. For any A in &, the index i(A) is defined by the formula

i(A) = dim N(A) - dim R(A)*,

and it is known that i is a continuous integer-valued function on &.

Schechter [5] has observed that for any operator A,
wA) = x| A-2xdFIU{X|A-2xeF and i(A-2) =0},

and I shall use this characterization of w(A). Note that by Schechter’s result, w(A)
is never empty, since

{A|A-x¢ F} = o[n(a)].

It should also be noted that
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w(8*) = {x| X e w(a)}.

Further, w(A) is clearly an invariant under unitary equivalence.

3. WEYL’S THEOREM FOR HYPONORMAL OPERATORS

An operator A is hyponormal if A* A > AA*,

THEOREM (3.1). If A is hyponormal, then w(A) consists precisely of all points
in 0(A) except the isolated eigenvalues of finite multiplicity.

Proof, We note that if A is hyponormal, then so is A - A, for each complex A.
Thus, by virtue of Schechter’s characterization, it suffices to show that A is a
Fredholm operator of index zero but is not invertible if and only if 0 is an isolated
eigenvalue of finite multiplicity in o(A). First, suppose that A is a Fredholm oper-
ator of index zero but is not invertible. Then R(A) is closed and N(A) and R(A)+
are finite-dimensional, nontrivial subspaces of H. Since A is hyponormal,

lax] > [a*x]|
for all x in H. In particular,
N(A) c N(A¥) = R(A)",
and since dim N(A) = dim R(A)!, we must have the relation

N(A) = R(A)*.

1
Thus, A = 0@ B, where B is invertible, and therefore 0 is an isolated eigenvalue of

finite multiplicity in o (A).
For the converse, suppose 0 is an isolated eigenvalue of finite multiplicity in
L
o(A). Again by hyponormality, N(A) C R(A)*, so that A =0@ B, where B is one-
to-one and hyponormal. If B is not invertible, then 0 must be an isolated point in
o(B). A theorem of Stampfli [6] then shows that B has a nontrivial null space. This

contradiction shows that B is invertible, and therefore A is a Fredholm operator of
index zero. The proof is complete.

COROLLARY (3.2). If A is hyponormal and has no isolated eigenvalues of fi-
nite multiplicity, then ||A|| < "A + K" , for each compact operator K.

Proof. Since A is hyponormal,
|A| = spectral radius (A)

[4], and the desired result follows, since 0(A) C (A + K) by the theorem.

COROLLARY (3.3). Every hyponormal operator A can be wvitten in the form
L
A=N@® S, where N is normal and S is hyponormal with w(S)= c(8).

Proof. It is well-known that eigenspaces of a hyponormal operator reduce the
operator. The construction now follows if we split off the appropriate eigenspaces.
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4, WEYL’S THEOREM FOR TOEPLITZ OPERATORS

Let d® be normalized Haar measure on the unit C1rcle and let H2 be the sub-
space of L%d®) spanned by the functions z™ (n = 0, 1, ) If P is the orthogonal
projection from L2 onto HZ, then for each essentially bounded function ¢ in L2, an
operator Ty on H2 is defined by

Tye = P(¢g) .

The operator Ty is called the Toeplitz operator associated with ¢.

It is known [2] that Toeplitz operators are in general nonnormal. Further,
Widom [8] has shown that o(Tg) is always connected. Since there are no quasi-
nilpotent Toeplitz operators except O, 0(T¢) can have no isolated eigenvalues of
finite multiplicity, and Weyl’s theorem becomes equivalent to the conjecture that

w(T¢) = 0’(T¢).
THEOREM (4.1). For each Toeplitz operator Ty, w(T¢) = 0 (Ty).

Proof, Since Ty - A = Ty-», it suffices, by Schechter’s characterization, to show
that if Ty is a Fredholm operator of index zero, then Ty must be invertible. If T
is not 1nvert1b1e but is a Fredholm operator of 1ndex zero, then it is easy to see that
both Tg and T must have nontrivial null spaces. The remainder of the proof
cons1sts of showmg ébhat this can not happen, unless ¢ = 0 and consequently Ty is
the non-Fredholm operator O.

Suppose that there exist nonzero functions ¢, f, and g (¢ essentially bounded, f
and g in HZ%) such that T f =0 and Tjg = 0. Then P(¢f) = 0 and P(¢g) = 0, so that
by standard properties of H2 [4], there exist functions h and k in H2 such that

Shd9=Skd9=o and ¢f =h, ¢g =K

It follows from the theorem of F. and M. Riesz [4] that ¢, £, g, h, k are all nonzero
except on a set of measure zero. Thus, dividing the two s1des of the equation of =
by the corresponding sides of the equa,tlon ¢g = k we see that f/g h/k p01ntw1se
a.e., so that

fk = gh a.e.
By another standard property of HZ, this is impossible unless

gh =0 a.e.

b

using again the theorem of F. and M. Riesz, we conclude that either f =0 a.e. or
g =0 a.e. This contradiction completes the proof.

COROLLARY (4.2). If Ty is a Toeplitz operator, then |l T¢|| < " Ty + K| for
each compact operator K.

Proof, Tt is known [2] that
”Tq')“ = spectral radius (Tgy),

and the desired result follows, since o(T¢,) C O'(T¢ + K).
The proof of Theorem (4.1) is suggested by the result of Hartman and Wintner [3]
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that a Hermitian Toeplitz operator that is not a scalar has no proper values. In fact,
the proof of Theorem (4.1) implies this result.

5. EXTREMALLY NONCOMPACT OPERATORS

Corollaries (3.2) and (4.2) show that a fairly large collection of operators A has
the property that ||A|| < IA + K|| for each compact operator K. This is equivalent
to the statement that

lal = f=)l,

and it is natural to call operators with this property extremally noncompact. Thus,
Corollaries (3.2) and (4.2) can be rephrased: hyponormal operators without isolated
eigenvalues of finite multiplicity and Toeplitz operators ave extremally noncompact.

I am grateful to C. Berger and J. Stampfli for a discussion during which the fol-
lowing result emerged.

THEOREM (5.1). An opervator A is extremally noncompact if and only if |A* Al
is not an isolated eigenvalue of finite multiplicity in o(A* A).

Proof. Since |A|2 = |A*A|| and [|7(A)]|% = |7(A*A)|, we see that A is ex-
tremally noncompact if and only if A¥A is extremally noncompact. If || A*A| is
not an isolated eigenvalue of finite multiplicity in o(A* A), then by Theorem (3.1),
|A*A]l € o(A*A + K) for each compact K, and so |A*A| = |#(A*A)|. Conversely,
if |A*A] is an isolated eigenvalue of finite multiplicity in o(A* A), then by split-
ting off the corresponding eigenspace, we easily get a compact operator K with
|a*A +K|| < [[a*A].
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