WEYL'S THEOREM FOR NONNORMAL OPERATORS

L. A. Coburn

1. INTRODUCTION

Let $\mathcal{B}(H)$ be the algebra of all bounded operators on an infinite-dimensional complex Hilbert space H, and let \mathcal{H} be the closed ideal of compact operators. I write $\sigma(A)$ for the spectrum of A in $\mathcal{B}(H)$, and I define the Weyl spectrum $\omega(A)$ by

$$\omega(A) = \int \sigma(A + K)$$

where the intersection is taken over all K in \mathcal{K} . A celebrated theorem of Weyl [7] asserts that if A is normal (A* A = AA*), then $\omega(A)$ consists precisely of all points in $\sigma(A)$ except the isolated eigenvalues of finite multiplicity.

In this paper, I show that Weyl's theorem holds for two large classes of generally nonnormal operators. The first of these is the class of hyponormal operators, which has been studied in [6]. The second class of operators for which Weyl's theorem holds is the class of Toeplitz operators, which has been studied in [2], [3], [8] and in many other papers. (References to much of the pertinent literature can be found in [2].) Finally, the present study of hyponormal operators and Toeplitz operators suggests a notion of "extremally noncompact" operators, which I examine in the last part of this paper.

2. PRELIMINARIES

Recall that an operator A is a Fredholm operator if its range R(A) is closed and both $R(A)^{\perp}$ and the null space N(A) are finite-dimensional. The Fredholm operators $\mathscr F$ constitute a multiplicative open semigroup in $\mathscr B(H)$. In fact [1], if π is the natural quotient map from $\mathscr B(H)$ to $\mathscr B(H)/\mathscr K$, then A is in $\mathscr F$ if and only if $\pi(A)$ is invertible. For any A in $\mathscr F$, the index i(A) is defined by the formula

$$i(A) = \dim N(A) - \dim R(A)^{\perp}$$
,

and it is known that i is a continuous integer-valued function on F.

Schechter [5] has observed that for any operator A,

$$\omega(A) = \{\lambda \mid A - \lambda \notin \mathscr{F}\} \cup \{\lambda \mid A - \lambda \in \mathscr{F} \text{ and } i(A - \lambda) \neq 0\},$$

and I shall use this characterization of $\omega(A)$. Note that by Schechter's result, $\omega(A)$ is never empty, since

$$\{\lambda \mid A - \lambda \notin \mathscr{F}\} = \sigma[\pi(A)].$$

It should also be noted that

Received March 17, 1966.

$$\omega(A^*) = \{\lambda \mid \overline{\lambda} \in \omega(A)\}.$$

Further, $\omega(A)$ is clearly an invariant under unitary equivalence.

3. WEYL'S THEOREM FOR HYPONORMAL OPERATORS

An operator A is hyponormal if $A^*A \ge AA^*$.

THEOREM (3.1). If A is hyponormal, then $\omega(A)$ consists precisely of all points in $\sigma(A)$ except the isolated eigenvalues of finite multiplicity.

Proof. We note that if A is hyponormal, then so is $A - \lambda$, for each complex λ . Thus, by virtue of Schechter's characterization, it suffices to show that A is a Fredholm operator of index zero but is not invertible if and only if 0 is an isolated eigenvalue of finite multiplicity in $\sigma(A)$. First, suppose that A is a Fredholm operator of index zero but is not invertible. Then R(A) is closed and R(A) and R(A) are finite-dimensional, nontrivial subspaces of H. Since A is hyponormal,

$$\|Ax\| \geq \|A^*x\|$$

for all x in H. In particular,

$$N(A) \subset N(A^*) = R(A)^{\perp}$$

and since dim $N(A) = \dim R(A)^{\perp}$, we must have the relation

$$N(A) = R(A)^{\perp}$$
.

Thus, $A = 0 \oplus B$, where B is invertible, and therefore 0 is an isolated eigenvalue of finite multiplicity in $\sigma(A)$.

For the converse, suppose 0 is an isolated eigenvalue of finite multiplicity in

 $\sigma(A)$. Again by hyponormality, $N(A) \subset R(A)^{\perp}$, so that $A = 0 \bigoplus B$, where B is one-to-one and hyponormal. If B is not invertible, then 0 must be an isolated point in $\sigma(B)$. A theorem of Stampfli [6] then shows that B has a nontrivial null space. This contradiction shows that B is invertible, and therefore A is a Fredholm operator of index zero. The proof is complete.

COROLLARY (3.2). If A is hyponormal and has no isolated eigenvalues of finite multiplicity, then $\|A\| \leq \|A + K\|$, for each compact operator K.

Proof. Since A is hyponormal,

$$||A||$$
 = spectral radius (A)

[4], and the desired result follows, since $\sigma(A) \subset \sigma(A + K)$ by the theorem.

COROLLARY (3.3). Every hyponormal operator A can be written in the form

 $A = N \bigoplus S$, where N is normal and S is hyponormal with $\omega(S) = \sigma(S)$.

Proof. It is well-known that eigenspaces of a hyponormal operator reduce the operator. The construction now follows if we split off the appropriate eigenspaces.

4. WEYL'S THEOREM FOR TOEPLITZ OPERATORS

Let $d\Theta$ be normalized Haar measure on the unit circle, and let H^2 be the subspace of $L^2(d\Theta)$ spanned by the functions z^n (n = 0, 1, ...). If P is the orthogonal projection from L^2 onto H^2 , then for each essentially bounded function ϕ in L^2 , an operator T_{φ} on H^2 is defined by

$$T_{\phi}g = P(\phi g)$$
.

The operator T_{ϕ} is called the *Toeplitz operator* associated with ϕ .

It is known [2] that Toeplitz operators are in general nonnormal. Further, Widom [8] has shown that $\sigma(T_{\phi})$ is always connected. Since there are no quasi-nilpotent Toeplitz operators except 0, $\sigma(T_{\phi})$ can have no isolated eigenvalues of finite multiplicity, and Weyl's theorem becomes equivalent to the conjecture that $\omega(T_{\phi}) = \sigma(T_{\phi})$.

THEOREM (4.1). For each Toeplitz operator T_{ϕ} , $\omega(T_{\phi}) = \sigma(T_{\phi})$.

Proof. Since $T_{\phi} - \lambda = T_{\phi-\lambda}$, it suffices, by Schechter's characterization, to show that if T_{ϕ} is a Fredholm operator of index zero, then T_{ϕ} must be invertible. If T_{ϕ} is not invertible, but is a Fredholm operator of index zero, then it is easy to see that both T_{ϕ} and $T_{\phi}^* = T_{\overline{\phi}}$ must have nontrivial null spaces. The remainder of the proof consists of showing that this can not happen, unless $\phi=0$ and consequently T_{ϕ} is the non-Fredholm operator 0.

Suppose that there exist nonzero functions ϕ , f, and g (ϕ essentially bounded, f and g in H^2) such that $T_{\phi}f=0$ and $T_{\overline{\phi}}g=0$. Then $P(\phi f)=0$ and $P(\overline{\phi}g)=0$, so that by standard properties of H^2 [4], there exist functions h and k in H^2 such that

$$\int h d\theta = \int k d\theta = 0 \quad \text{and} \quad \phi f = \bar{h}, \quad \bar{\phi} g = \bar{k}.$$

It follows from the theorem of F. and M. Riesz [4] that ϕ , f, g, h, k are all nonzero except on a set of measure zero. Thus, dividing the two sides of the equation $\overline{\phi f} = h$ by the corresponding sides of the equation $\overline{\phi g} = \overline{k}$, we see that $\overline{f}/g = h/\overline{k}$ pointwise a.e., so that

$$\overline{fk} = gh$$
 a.e.

By another standard property of H², this is impossible unless

$$gh = 0$$
 a.e.;

using again the theorem of F. and M. Riesz, we conclude that either f=0 a.e. or g=0 a.e. This contradiction completes the proof.

COROLLARY (4.2). If T_{ϕ} is a Toeplitz operator, then $\|T_{\phi}\| \leq \|T_{\phi} + K\|$ for each compact operator K.

Proof. It is known [2] that

$$\|\mathbf{T}_{\phi}\| = \text{spectral radius } (\mathbf{T}_{\phi}),$$

and the desired result follows, since $\sigma(T_{\phi}) \subset \sigma(T_{\phi} + K)$.

The proof of Theorem (4.1) is suggested by the result of Hartman and Wintner [3]

that a Hermitian Toeplitz operator that is not a scalar has no proper values. In fact, the proof of Theorem (4.1) implies this result.

5. EXTREMALLY NONCOMPACT OPERATORS

Corollaries (3.2) and (4.2) show that a fairly large collection of operators A has the property that $\|A\| \leq \|A+K\|$ for each compact operator K. This is equivalent to the statement that

$$\|\mathbf{A}\| = \|\pi(\mathbf{A})\|,$$

and it is natural to call operators with this property extremally noncompact. Thus, Corollaries (3.2) and (4.2) can be rephrased: hyponormal operators without isolated eigenvalues of finite multiplicity and Toeplitz operators are extremally noncompact.

I am grateful to C. Berger and J. Stampfli for a discussion during which the following result emerged.

THEOREM (5.1). An operator A is extremally noncompact if and only if $\|A^*A\|$ is not an isolated eigenvalue of finite multiplicity in $\sigma(A^*A)$.

Proof. Since $\|A\|^2 = \|A^*A\|$ and $\|\pi(A)\|^2 = \|\pi(A^*A)\|$, we see that A is extremally noncompact if and only if A^*A is extremally noncompact. If $\|A^*A\|$ is not an isolated eigenvalue of finite multiplicity in $\sigma(A^*A)$, then by Theorem (3.1), $\|A^*A\| \in \sigma(A^*A + K)$ for each compact K, and so $\|A^*A\| = \|\pi(A^*A)\|$. Conversely, if $\|A^*A\|$ is an isolated eigenvalue of finite multiplicity in $\sigma(A^*A)$, then by splitting off the corresponding eigenspace, we easily get a compact operator K with $\|A^*A + K\| < \|A^*A\|$.

REFERENCES

- 1. F. V. Atkinson, The normal solubility of linear equations in normed spaces, Mat. Sb. N.S. 28 (70) (1951), 3-14.
- 2. A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1964), 89-102.
- 3. P. Hartman and A. Wintner, The spectra of Toeplitz's matrices, Amer. J. Math. 76 (1954), 867-882.
- 4. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N.J., 1962.
- 5. M. Schechter, *Invariance of the essential spectrum*, Bull. Amer. Math. Soc. 71 (1965), 365-367.
- 6. J. G. Stampfli, Hyponormal operators, Pacific J. Math. 12 (1962), 1453-1458.
- 7. H. Weyl, Über beschränkte quadratische Formen, deren Differenz vollstetig ist, Rend. Circ. Mat. Palermo 27 (1909), 373-392.
- 8. H. Widom, On the spectrum of a Toeplitz operator, Pacific J. Math. 14 (1964), 365-375.